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Abstract

We revisit the problem of accurately answering large classestatistical queries while preserving
differential privacy. Previous approaches to this problewe either been very general but have not had
run-time polynomial in the size of the database, have appi@y to very limited classes of queries,
or have relaxed the notion of worst-case error guaranteethid paper we consider the large class of
sparsequeries, which take non-zero values on only polynomiallynynaniverse elements. We give
efficient query release algorithms for this class, in bothitiieractive and the non-interactive setting.
Our algorithms also achieve better accuracy bounds thangusegeneral techniques do when applied
to sparse queries: our bounds are independent of the uaisas. In fact, even the runtime of our
interactive mechanism is independent of the universe aizé,so can be implemented in the “infinite
universe” model in which no finite universe need be specifiethb data curator.

1 Introduction

A databaseD represents a finite collection of individual records frormgalata universeY’, which repre-
sents the set of afjossiblerecords. We typically think ot as being extremely large: exponentially large
in the size of the database, or in some cases, possibly efiaitein A fundamental task in private data
analysis is to accurately answer statistical queries adodatabas®, while provably preserving the privacy
of the individuals whose records are containedinThe privacy solution concept we use in this paper is
differential privacy which has become standard, and which we define in sédtion 2.

Accurately answering statistical queries is the most wialied problem in differential privacy, and the
results to date come in two types. There are a large numbettrgingely general and powerful techniques
(see for example [BLR08, DNRD9,[DRVI0, RRID, HT10, HR10]) that can accurately answeitrary
families of statistical queries which can be exponentitdige in the size of the database. Unfortunately,
these techniques all have running time that is at leastriimethe size of the data univers&’| (i.e. pos-
sibly exponentialin the size of the database), and so are in many cases ingalacthere are also several
techniques that do run in polynomial time, but that are kaiteither they can answer queries from a very
general and structurally rich class (i.e. all low-sengitiqueries), but can only answer a linear number
of such queries (i.e. [DMNSO06]), or they can answer a vergdanumber of queries, but only from a
structurally very simple class (i.e. intervals on the uimied [BLROS])), or as in several recent results (for
conjunction and parity queries respectively) [GHRU11, HERhey run in polynomial time, but offer only
average case guarantees for randomly chosen queries. Qine fain open questions in data privacy is
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to develop general data release techniques comparablevier po the known exponential time techniques
that run in polynomial time. There is evidence, however this is not possible for arbitrary linear queries
[DNR™09,[UV11/GHRUIL].

In this paper, we consider a restricted but structurallip diass of linear queries which we calparse
queries. We say that a queryris-sparse if it takes non-zero values on ontyuniverse elements, and that
a class of queries isi-sparse if each query it containssis sparse for some’ < m. We will typically
think of m as being some polynomial in the database sizeNote that although each individual query
is restricted to have support on only a polynomially sizelsst of the data universe, different queries in
the same class can have different supports, and so a claparsesqueries can still have support over the
entire data universe. Note that the classrebparse queries is both very large (of size rougily™), and
very structurally complex (the class nf-sparse queries have VC-dimensior). Sparse queries represent
guestions about individuals whose answer is rarely “yesénvhsked about an individual who is drawn
uniformly at random from the data population. Neverthelessh questions can be useful to a data analyst
who has some knowledge about which segment of the populatidatabase might be drawn from. For
example, a database resulting from a medical study mightitomdividuals who have some rare disease,
but the data analyst does not knavhich disease — although there may be many such queries, each one is
sparse. Alternately, a data analyst might have knowledgeatahe participants of several previous studies,
and might want to know how much overlap there is between thicyants of each previous study and of
the current study. In general, sparse queries will only leduligo a data analyst who has some knowledge
about the database, beyond that it is merely a subset of amerpally sized data universe. Our results can
therefore be viewed as a way of privately releasing infoiomadibout a database that is useful to specialists
— but is privacy preserving no matter who makes use of it. regal, this work can be thought of as part of
an agenda to find ways to make use of doenain knowledgef the data analyst, to make private analysis
of large-scale data-sets feasible.

1.1 Results

We give two algorithms for releasing accurate answers:iteparse queries while preserving differential
privacy: one in the interactive setting, in which the dateator acts as an intermediary and must answer
an adaptively chosen stream of queries as they arrive, amdnathe non-interactive setting, in which the
data curator must in one shot output a data-structure wincbdes the answers to every query of interest.
In the interactive setting, we require that the running tmeeded to answer each query is bounded by a
polynomial inn, the database size (so to answer any sequenkeaoéries takes timé - poly(n)). In the
non-interactive setting, the entire computation must bdopmed in time polynomial im, and the time
required to evaluate any query on the output data structws aiso be polynomial. Therefore, from the
point of view of running time, the non-interactive settisgstrictly more difficult than the interactive setting.
In the interactive setting, we give the following utility tmad:

Theorem 1.1(Informal, some parameters hiddefhere exists ale, §)-differentially private query release
mechanism in the interactive setting, with running time gueery O (m/a?) that isa-accurate with respect
to any set ok adaptively chosem-sparse queries with:

o tosm) (log 3 log k)"
(en)1/2

In the non-interactive setting, we give the bound:

Theorem 1.2(Informal, some parameters hiddeMhere exists afk, ¢)-differentially private query release
mechanism in the non-interactive setting, with runningetipplynomial in the database size m, and
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log | X|, that isa-accurate with respect to any classiofn-sparse linear queries, with:

mlog (%)
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a=0 |logk

Several aspects of these theorems are notable. First, ¢theaag bounds do not have any dependence
on the size of the data univers&|, and instead depend only on the sparsity parametef herefore, in
addition to efficiency improvements, these results giveugamy improvements for sparse queries, when
compared to the general purpose (inefficient) mechanisnmméar queries, which typically have accuracy
which depends oivg | X'|. Since we typically viewX'| as exponentially large in the database size, whereas
m is only polynomially large in the database size for theseritlgms to be efficient, this can be a large
improvement in accuracy.

Second, the interactive mechanism does not even have adégpenor}.X’| in its running time! In fact,
it works even in arinfinite universe (e.g. data entries with string valued attributélomt pre-specified
upper bound on Ieng@.) In this setting, queries may still be concisely specified@ &ist of polynomially
many individuals from the possibly infinite universe thaisfg the query. Moreover, because the accuracy
of this mechanism depends only very mildly o1y and the running time is linear im, it can be used to
answerm-sparse queries for arbitrarily large polynomial valuesmgfwhere the mechanism is constrained
only by the available computational resources.

The non-interactive mechanism in contrast has a worse depee onm. This bound essentially
matches the error that would result from releasing the pestlihistogramof the database, but does so
in a way that requires computation and output representatidy polynomial inn (rather than linear in
|X|, as releasing a histogram would require). Because accliaayds> 1 are trivial, this mechanism
only guarantees non-trivial accuracy fersparse queries withh << n?/log k (This is still of course a
very large class of queries: there are rougmy"2/1°g’f such queries, i.e., super-exponentially manyjn
Nevertheless, there are distinct advantages to having-#ntenactive mechanism that only needs to be run
once. This is among the firpblynomial timenon-interactive mechanisms for answering an exponeptiall
large, unstructured class of queries while preservingfitial privacy.

We note that our results give as a corollary, more efficiegodthms for answering conjunctions with
many literals. This complements the beautiful recent wéitkardt, Rothblum, and Servedio [HRS11], who
give more efficient algorithms for answering conjunctiorithew literals, based on reductions to threshold
learning problems.

1.2 Techniques

Our interactive mechanism is a modification of the very gahmultiplicative weights mechanism of Hardt
and Rothblum[[HR10]. We give the interactive mechanism k&ftamework of [GRU11] which efficiently
maps objects calleiterative database constructioridefined in sectiohl3) into private query release mecha-
nisms in the interactive setting. IDC algorithms are vemikir to online learning algorithms in the mistake
bound model, and we use this analogy to implement a versidheomultiplicative weights IDC of Hardt
and Rothblum[[HR10] analogously to how the Winnow algoritnimplemented in thénfinite attribute
modelof learning, defined by Blumi [BIu90]. The algorithm roughlosks as follows: the multiplicative
weights algorithm normally maintains a distribution oV&t| elements, one for each element in the data

2The algorithm must be able to reachamefor each universe element it deals with, and so it can of euart deal with
elements that have no finite description length. But for ai¢ably) infinite universe, the running time would dependhanlength
of the largest string used to denote a universe element atexedl during the running of the algorithm, and not in anyiafpway
on the (unboundedly large) size of the universe.



universe. It can be easily implemented in such a way so thahwths updated after a que€y arrives, only
those weights corresponding to elements in the supporteofitiery are updated: for am-sparse query,
this means it only need update positions. It also comes with a guarantee that it never neegsrform
more thanlog |X'|/a? updates before achieving erroy and so at most: log |X|/a elements ever need to
be updated. The key insight is to pick a smaller univefsesuch thatt’ > mlog X/a2 butnot to commit
to the identity of the elements in this univelsfore running the algorithm, letting all elements be aliiyi
unassigned. The algorithm then maintains a hash table mgyefements oft’ to elements oft. Elements
in X are assigned temporary mappings to elements @i queries come in, but are only assigned permanent
mappings when an update is performed. Because logly( /a? updates are ever performed, akdwas
chosen such that > mlog X/a2 the algorithm never runs out of elementsBfto permanently assign.
Because{X| depends only on the desired accuracgnd the sparsity parametet, andnot on X’ in any
way, the algorithm can be implemented and run without anyvedge of X’ (even for infinite universes),
and neither the running time nor the resulting accuracy e | X |.

The non-interactive mechanism releases a random prajecfithe database into polynomially many
dimensions, together with the corresponding projectiotrimaQueries are evaluated by computing their
projection using the public projection matrix, and thenirigkthe inner product of the projected query
and the projected database. The difficulty comes becaugadfextion matrix projects vectors frofd’|-
dimensional space to pdly) dimensional space, and so normally would tak&poly(n)-many bits to
represent. Our algorithms are constrained to run in timg(p9] however, and so we need a concise
representation of the projection matrix. We achieve thisisimg a matrix implicitly generated by a family
of limited-independence hash functions which have con@peesentations. This requires using a limited
independence version of the Johnson-Lindenstrauss lermdagf concentration bounds. This algorithm
also gives accuracy bounds which are independefit pf

1.3 Related Work

Differential privacy was introduced by Dwork, McSherry,s§im, and Smith [DMNSO06], and has since
become the standard solution concept for privacy in thertfimal computer science literature. There is now
a vast literature concerning differential privacy, so wentren here only the most relevant work, without
attempting to be exhaustive. Dwork et al. [DMNS$O06] alsoadtrced thd_aplace mechanism, which is
able to efficiently answer arbitrary low-sensitivity querin the interactive setting. The Laplace mechanism
does not make efficient use of thavacy budgetiowever, and can answer only linearly many queries in the
database size.

Blum, Ligett, and Roth[[BLR0O8] showed that in the non-inténze setting, it is possible to answer
exponentiallysized families of counting queries. This result was extdnaled improved by Dwork et al.
[DNR™09] and Dwork, Rothblum, and Vadhan [DRV10], who gave imgavunning time and accuracy
bounds, and fofe, §)-differential privacy gave similar results for arbitramgw sensitivity queries. Roth
and Roughgarden [RR10] showed that accuracy bounds cobipdamBLRO8] could be achieved even
in the interactive setting, and this result was improved in both accuracy anding time by Hardt and
Rothblum, who give the multiplicative weights mechanisnhick achieves nearly optimal accuracy and
running time [HR10]. Gupta, Roth, and Ullm&n [GRU11] getiemathe algorithms of [RR10, HR10] into
a generic framework in which objects call@drative database constructioredficiently reduce to private
data release mechanisms in the interactive setting. Wmfatgly, the running time of all of the algorithms
discussed here is at least linear|ii|, and so typically exponential in the size of the private Has.
Moreover, there are both computational and informatiomrsigc lower bounds suggesting that it may be
very difficult to give private release algorithms for gendinear queries with substantially better run time
[DNRT09,[UV11GHRUI1]. As in this work, these algorithms give agntee on the worst-case error of



any answered query.

There is also a small body of work giving more efficient quetgase mechanisms for specific classes of
queries. [[BLRO8] gave an efficient (running time polynonirathe database size) algorithm for releasing
the answers for 1-dimensional intervals on the discretiz@tiline in the non-interactive setting. As far as
we know, prior to this work, this was the only efficient mecisamin either the interactive or non-interactive
settings for releasing the answers to an exponentiallyddamily of queries with worst-case error. This
class is however structurally very simple: it has VC-dimensnly 2. Other efficient algorithms relax the
notion of utility, no longer guaranteeing worst-case efarall queries. [[BLRO8] also give an efficient
algorithm for releasinghalfspacequeries in the unit sphere, but this algorithm only guareshtaccurate
answers for halfspaces that happened to have faayginwith respect to the points in the database. Gupta
et al [GHRU11] gave an algorithm for releasingnjunctionsover d attributes tcaverageerror o over any
product distribution (over conjunctions), which runs imé&d°(/®). This was improved to have running
time O(d'°&1/*) by Cheraghchi et al [CKKL11]. Note that these algorithms$yaun in polynomial time
for constant values of, and only give accuracy bounds in expectation over randoemi€gl Recently,
Hardt, Rothblum, and Servedio [HRS11] gave an algorithmrébeasing conjunctions defined @nout
of d literals with an average-error guarant®ee any pre-specified distribution in timgO(Vk), Using the
private boosting algorithm of [DRV10], they leverage tresult to give an algorithm for releasirgliteral
conjunctions with worst-case error guarantees, whicteases the running time #’*) | although still only
requiring databases of sid€(Vk), They also gave an efficient (i.e. running time polynomiat)jralgorithm
for releasingparity queries to low average error over product distributions.r@veark that our results give
a complementary bound for large conjunctions (with a betdéenple complexity requirement). Our online
algorithm can release all conjunctions @r- k out of d literals with worst-case error guarantees in time
d°®), requiring databases of size ory(k' log d).

The efficient interactive mechanism we give in secfidn 3 iseldaon an analogy between iterative
database construction (IDC) algorithms and online legrmilgorithms in the mistake bound model. We
implement the multiplicative weights IDC of Hardt and Rdtith [HR10] analogously to how Winnow
is implemented in thanfinite attribute modebf Blum [BIu9Q0]. In our setting, it can be thought of as an
infinite universe moddhat has no dependence on the universe size in either thangutime or accuracy
bounds. This involves running the multiplicative weighigosithm on a much smaller universe. Hardt and
Rothblum [HR10] also gave a version of their algorithm whiah on a small subset of the universe to give
efficient run-time guarantees. The main difference is thaiselect the subset of the universe that we run
the multiplicative weights algorithm on adaptively, basedthe queries that arrive, whereas [HR10] select
the subset nonadaptively, independently of the querieR1[H give average case utility bounds for linear
gueries on randomly selected databases; in contrast, wewgikst-case utility bounds that hold for all input
databases, but only for sparse linear queries.

The efficient non-interactive mechanism we give in secfibis Based on random projections using
families of limited independence hash functions, whichehareviously been used for space-bounded com-
putations in the streaming model [CW(09, KNI10]. Limited ipdadence hash functions have also previously
been used for streaming algorithms in the context of diffeéaé privacy [DNP"10].

2 Preliminaries

A databaseD is a multiset of elements from some (possibly infinite) edattuniverseY’. We write|D| = n
to denote the cardinality dP. For anyz € X we can also writéD[z] to denoteD[z] = {2/ € D : 2/ = z}
the number of elements of typein the database. Viewed this way, a databBse NI*! is a vector with
integer entries in the range, n).



A linear query@ : X — [0, 1] is a function mapping elements in the universe to values emel unit
interval. For notational convenience, we will defi@é()) = 0. We can also evaluate a linear query on a
database. The value of a linear quélyon a database is simply the average valu@ an elements of the
database: ) )

QD)= Qz)=—3 Qz)D[]
€D TEX
Similarly to how we can think of a database as a vector, we leak bf a query as a vectap < [0, 1]
with Q[z] = Q(z). Viewed this wayQ(D) = 1(Q, D).

It will sometimes be convenient to think of normalized datsds (with entries that sum to 1). For
a databaseD of size n, we define the corresponding normalized databBs® be the database such
that D[z] = D[z]/n. We evaluate a linear query on a normalized database by dovgpQ(D) =
Y zex Q@)Dz] = (Q, D). Note thatQ (D) = Q(D).

Definition 2.1 (Sparsity) Thesparsityof a linear quen@ is [{z € X : Q(x) > 0}|, the number of elements
in the universe on which it takes a non-zero value. We sayatlogatery ism-sparse if its sparsity is at most
m. We will also refer to the class of alh-sparse linear queries, denotgy, .

In this paper, we will assume that given ansparse query, we can quickly (in time polynomialnir)
enumerate the elementsc X on whichQ(z) > 0.

Remark 2.2. While the assumption that we can quickly enumerate the amnialues of a query may
not always hold, it is indeed the case that for many naturassés of queries, we can enumerate the non-
zero elements in timénear in m. For example, this holds for queries that are specified as lid the
universe elements on which the query is non-zero, as welirasdny implicitly defined query classes such
as conjunctions, disjunctions, parities, Brof course, classes like conjunctions are typically not spar
but conjunctions witkl — O(log n) literals are, and their support can be quickly enumeratege(ethough
there are superpolynomially many such conjunctions).

2.1 Utility

We will design algorithms which can accurately answer largmbers of sparse linear queries. We will be
interested in botlinteractivemechanisms andon-interactivemechanisms. A non-interactive mechanism
takes as input a database, runs one time, and outputs scar&ature capable of answering many queries
without further interaction with the data release mechanig\n interactive mechanism takes as input a
stream of queries, and must provide a numeric answer to agly gefore the next one arrives.

Definition 2.3 (Accuracy for non-Interactive Mechanismd)et Q be a set of queries. A non-interactive
mechanismM : X* — R for some abstract rang® is («, 3)-accurate forQ if there exists a function
Eval : Q@ x R — R s.t. for every databasP € X, with probability at leastt — S over the coins of
M, M(D) outputsr € R such thatmaxgco |Q(D) — Eval(Q, )| < a. We will abuse notation and write
Q(r) = Eval(Q, ).

M is efficientif both M andEval run in time polynomial in the size of the database

Definition 2.4 (Accuracy for Interactive Mechanismd)et Q be a set of queries. An interactive mechanism
M takes as input an adaptively chosen stream of quélies. . , Q; € Q and for each querg);, outputs an

*The set of conjunctions over tiledimensional boolean hypercube with- log(n) literals aren-sparse. Even though there are
superpolynomially many such conjunctions, it is simplernaraerate the entries on which these conjunctions take aonvalue
in time linear inn. We can simply enumerate all of th&¥2™ = n, values that the unassigned variables can take.



answera; € R before receivingy; ;. Itis («, 8)-accurateif for every databas® < X*, with probability
at leastl — g over the coins of\/: max; |Q; — a;| < .

M is efficientif the update time for each query (i.e. the time to producevans; after receiving query
Q;) is polynomial in the size of the database

2.2 Differential Privacy

We will require that our algorithms satistlifferential privacy defined as follows. We must first define the
notion ofneighboring databases

Definition 2.5 (Neighboring Databases)wo database®, D’ areneighborsif they differ only in the data
of a single individual: i.e. if their symmetric difference|DAD’| < 1.

Definition 2.6 (Differential Privacy [DMNSO06]) A randomized algorithml\/ acting on databases and out-
putting elements from some abstract rargés (e, J)-differentially private if for all pairs of neighboring
database®, D’ and for all subsets of the rangeC R the following holds:

Pr[M(D) € S] < exp(e) Pr[M(D') € S| + 6

Remark 2.7. For a non-interactive mechanisn®, is simply the set of data-structures that the mechanism
outputs. For an interactive mechanism, because the querégsbe adaptively chosen by an adversdtys

the set of query/answer transcripts produced by the algoritvhen interacting with an arbitrary adversary.
For a detailed treatment of differential privacy and adaptiadversaries, see [DRV10].

A useful distribution is thé.aplacedistribution.

Definition 2.8 (The Laplace Distribution) The Laplace Distribution (centered at 0) with scalés the
distribution with probability density functionLap(z|b) = 5 exp(—‘—f‘). We will sometimes write Lafb)
to denote the Laplace distribution with scaleand will sometimes abuse notation and wiitep(b) simply

to denote a random variablé ~ Lap(b).

A fundamental result in data privacy is that perturbing le@mstivity queries with Laplace noise pre-
serveq(e, 0)-differential privacy.

Theorem 2.9([IDMNSO06]). Suppose&) : X* — R is a function such that for all neighboring databases
andD’, |Q(D) — Q(D')| < ¢. Then the procedure which on inpDtreleases) (D) + X, whereX is a draw
from a Lafc/¢) distribution, preservesge, 0)-differential privacy.

It will be useful to understand how privacy parameters fdividual steps of an algorithm compose into
privacy guarantees for the entire algorithm. The followirsgful theorem is a special case of a theorem
proven by Dwork, Rothblum, and Vadhan:

Theorem 2.10 (Privacy Composition[[DRV10])Let 0 < ¢, < 1, and let My,..., My be (¢,0)-
differentially private algorithms for some at most:

e < 76 .
1/ 8T log (%)

Then the algorithm\/ which outputsM (D) = (M; (D), ..., Mp(D)) is (e, 0)-differentially private.



3 A Fast IDC Algorithm For Sparse Queries

In this section we use the abstraction ofitrative database constructiaimat was introduced by Gupta,
Roth, and Ullman[[GRU11]. It was shown in [GRU11] that effitié¢DC algorithms automatically reduce
to efficient differentially private query release mechamssin the interactive setting. Roughly, an IDC
mechanism works by maintaining a sequence of data strgciyeDs,, ... that give increasingly good
approximations to the input databe®gin a sense that depends on the IDC). Moreover, these machsni
produce the next data structure in the sequence by conmmydeniy one query) thatdistinguisheshe real
database in the sense tidatD,) differs significantly fromQ (D).

Syntactically, we will consider functions of the forld : Ry x @ x R — Ry. The inputs toU
are a data structure iRy, which represents the current data structlfea queryQ, which represents the
distinguishing query, and may be restricted to a certai@seind also a real number which estimatgd).
Formally, we define a@atabase update sequenct capture the sequence of inputslioused to generate
the database sequerbg, Do, . ...

Definition 3.1 (Database Update Sequencd)et D € NI¥| be any database and let
{(Dt,Qt,Et)} T € (Ru x @ x R)T be a sequence of tuples. We say the sequence is an

(U,D, Q,a, T)-aaiféibase update sequendadt satisfies the following properties:
1. D, =U(@,-,-),
2. foreveryt =1,2,...,7,|Q:(D) — Qi«(Dy)| > «,
3. foreveryt =1,2,...,T, ‘Qt(D) — Et‘ < q,
4. andforevery =1,2,..., T — 1, Diy1 = U(Dy, Q, Ay).

Definition 3.2 (Iterative Database ConstructionlLet U : Ry x Q@ x R — Ry be an update rule and let
B : R — R be a function. We sayJ is a B(«a)-iterative database construction for query clagsif for
every databas® € NI, every(U, D, Q, o, T')-database update sequence satigfies B(a).

Note that the definition of af?(«)-iterative database construction implies thatlifis a B(«)-iterative
database construction, then given any maxifRalD, Q, «, T')-database update sequence, the final database
D7 must satisfymaxgeo |Q(P) — Q(Dr)| < a or else there would exist another query satisfying property
2 of Definition[3.1, and thus there would exist@, D, Q, «, T+ 1)-database update sequence, contradicting
maximality.

B(«)-IDC algorithms generically reduce fe, 0)-differentially private(«, 5)-accurate query release
mechanisms in an efficiency preserving way. This framewak implicitly used by[[RR10] and [HR10].

Theorem 3.3 ([GRU11]). If there exists aB(«)-IDC algorithm for a class of querie® using a class

of datastructuresRy that take time at mosp(n, «, |X|) to update their hypotheses, and time at most
q(n,a, |X]) to evaluate a query on an € Ry, then for any0 < €,4,5 < 1 there exists ar(e, d)-
differentially private query release mechanism in the rmtéve setting that has update time at most
O(p(n,a, X) + q(n,a, X)) and is («, §)-accurate with respect to any adaptively chosen sequenée of
gueries from@ where« is the solution to the following equality:

o 30004/ B(«) log(4/9) log(k/5)

en

In this section we will give an efficient IDC algorithm for tlokass ofm-sparse queries, and then call on
Theoreni3.B to reduce it to a differentially private quetgase mechanism in the interactive setting.

First we introduce the Sparse Multiplicative Weights dataciure, which will be the class of datastruc-
turesRy that the Sparse Multiplicative Weights IDC algorithm uses.
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Definition 3.4 (Sparse Multiplicative Weights Data Structur@he sparse multiplicative weights data struc-
ture DSMW of sizes is composed of three parts. We writeMW = (D, h,ind).

1. D is a collection ofs real valued variablesy, ..., z,, with z; € [0, 1] for all i € [s]. Variablex; for
i € [s] is referenced byD[i]. Initially z; = 1/s for all i € [s]. We defineD[i] = 0 forall i > s.

2. his a hash tablé : X — [s] U ® mapping elements in the univerdéto indicesi € [s]. Elements
x € X can also be unassigned in which case we write) = 0. Initially, 2(x) = 0 for all z € X We
write h=1(i) = x if h(z) =4, andh~1(i) = 0 if there does not exist any € X' such thath(x) = i.

3. ind € [s + 1] is a counter denoting the index of the first unassigned Maxiakor alli < ind, there
exists some: € X such thath(xz) = i. For alli > ind, there does not exist any € X such that
h(z) = 1. Initially ind = 1.

Ifind < s, we canadd an unassigned elemente X to DSMW, Adding an element € X to DSMW
setsh(z) « ind and increments ing- ind + 1. If ind = s + 1, attempting to add an element causes the
data structure to repoRAILURE .

A linear query( is evaluated on a sparse MW data structf¥" = (D, h) as follows.

QDY) = > Q(x) - Dlh(x)] + > Q(x) - Dlind]

z€X:Q(x)>0Ah(x)#0 z€X:Q(x)>0Ah(x)=0

We now present Algorithrh] 1, the Sparse Multiplicative WesgtSEMW) IDC algorithm form-sparse
gueries. The algorithm is a version of the Hardt/Rothblumtidiicative Weights IDC[[HR10], modified to
work without any dependence on the universe size. It willmuritiplicative weights update steps over the
variables of the SMW data structure, using the SMW data&trec¢o delay assigning variables to particular
universe elements € X until necessary. Note that it is not simply running the nplittative weights
algorithm from [HR10] implicitly: doing so would yield guantees that depend on the cardinality of the
universe|X'|. Instead, the guarantees we will get will depend onlyrarend so will carry over even to the
infinite-universe setting.

Theorem 3.5. The Sparse Multiplicative Weights algorithm i#é«)-IDC for the class ofn-sparse queries

Q.m, Where:
B 4log s+1

B(a) 5

(0%
ands is the smallest integer such that(log(s) + 1) > 4m/a?.

The analysis largely follows the Multiplicative Weightsadysis given by Hardt and Rothblum [HR10].
The main difference is that rather than using one globalntiaiefunction, we must use a different potential
function for each database update sequence, defined astofuotthe state of the hash table in the last
SMW datastructure in the sequence. We must also argue tha¢wvee run out of variables to assign in the
SMW data structure, which would cause it to retd#RILURE . To argue this, we apply the technique of
Blum [Blu90Q], used to adapt Winnow to the infinite attributedel.

Proof. We will consider any maximal (SMW,DSMW O o, T)-database update sequence
{(DtSMW, Qt,ﬁt)} . We will argue thatT < 21%¢ and that no data structur®>™W in the

«

sequence ever returfAILURE when the SMW algorithm attempts twld some element € X to it.
Consider the real private databa@eand the final data structure in the sequeﬂ%w = (Dp, hy,indy).



Algorithm 1 The Sparse Multiplicative Weights (SMW) IDC Algorithm fer-sparse queries. It is instanti-
ated with an accuracy parameige= /2. It takes as input a sparse MW datastructi@!VV, anm-sparse
query@ € Q,,, and an estimate of the query valde
SMW(DtSMW = (Dt, ht, indt), Qt> Et):
if DPMW = () then
Let s be the smallest integer such tha{log(s) + 1) > 4m/a?.
Return a new Sparse MW data structuBSMW = (Dy, hy,ind;) of size s with hy(z) = 0 for all
x € X,z; =1/sforalli € [s],and ind = 1.
end if
Let DPMW = (Dyy1, g, indigq) < DPMW
Update: For allz € X such thatQ,(z) > 0: If k41 (z) = 0 thenadd = to DMV,
if A, < Qu(DSMW) then
Update: For allz € X such thatQ;(x) > 0: Let

Dyt1[het1(2)] < Degalhe1(2)] - exp(—nQ(w))

else
Update: For allz € X such that),(z) > 0: Let

Dit1lhir1(2)] < Dyya[hira ()] - exp(nQq(w))

end if
Normalize: For alli € [s]:

Output DPMW.
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We will define a non-negative potential functioh based onk; and D and show that it decreases
significantly at each step. We define:

def A Dlz]
wE 2 Pl (Dt[hm)})
Claim 3.6. Forall t € [T], ¥, > —1 and ¥ < log s
Proof. The log-sum inequality states that for any collection of smegative numbers;,...,a, and
bi,...,bn: .

;ai log <Z—:> > alog (%)
wherea = >~ | a; andb = " | b;. We therefore have:

. Dz
U, = Y  Dillog (ﬁ)

z:hp(x)#0

> > aihr(@)20 Pl) )
z] | lo
) (x:hTZ(::c);éwD[ ]) g<2x:hT(x>¢@Dt[hT($)]
= ( > 75[96]) 10g< > 25[95])
x:hy(x)#0 wihp ()0
> !

(&

where the first inequality follows from the log-sum ineqtlithe second follows from the fact that
> whp ()20 Dielhr ()] < 1, and the third follows from the fact thatin,c(yjaloga = —¢. To see
that ¥ < log s, recall thatDy[i] = 1/s for all i. Therefore:

Uy = Z Dlz] log <sf)[x]>

x:hy(z)#0
SinceD is a probability distribution, this expression takes maximvaluelog s. O

We will argue that in every step the potential drops by attledg4. Because the potential begins at
log s, and must always be non-negative, we therefore know thee tten be at most < 4log s/a? steps.
To begin, let us see exactly how much the potential dropsdit step:

Lemma 3.7.
Uy — Wypq > a?/4

11



Proof. We follow the analysis of [HR10]. We consider the case in \hh@; < Q¢(DPMW), In this case:

) 2 Dla]
Uy =Wy = Z D IOg<Dt[ (g:]>_ Z D log<m>

wihr (z)£0 ) wih (2)£0
_ 51plog [ Perillir(@)]
- x:hg)ﬁ“g( Bl )

Birllog [ EPENQ(@)) - Difhr ()] - oxp(— ~1¢ ;
> x:hTZ(:m)ﬂD[ ]1 g( Dulhr(@)] ) 1g<; p(—nQ:(hy (J)))Dt[J])
= Y —DlanQi(x) —log (Zexp(th(ht 1(j)))Dt[j])

z:Qt(x)>0 j=1

= —nQiD) —log Zexp(th(htl(j)))Dt[j])
j=1

> —nQu(D) —log | > (1 —nQu(h, ' (7)) + nzmm)
j=1

= QD) —log |1+n*—n Z Qi(z)Di[he(z )])

z:Q¢(x)>0

> QDY) - QD)) —

> o?/2 - a?/4

= o?/4

In this calculation, we used the facts that:

exp(=nQu(x:)) < 1= nQu(ws) + 1°Qu(x:)? < 1 —nQy(as) + 17
thath.:1 Dy[j] = 1, thatlog(1 + y) < y for y > —1, that by the definition of a database update sequence,

when 4, < Q,(DSMW) we also have thaf),(D) < Q.(DSMW), and that by the definition of database
update sequence we always hage(DPMV) — Q,(D)| > «. Finally we recall that) = /2 The case when
A, > Qy(DEMW) is exactly similar. O
Theoreni 3.6 then immediately follows by combining Claim ®ith Lemm&3.V:
2
—1 §\I’T§10gs—T-a—
e 4
Solving forT we find:

1 1 1 1
ogs42— /e <4ogs+

T <4 -

«
Finally to see that the SMW data structure never repeftd URE , it suffices to observe that ird< s.
Because each query; is assumed to be:-sparse, at most variables can bedded to the SMW data
structure at each update. Therefore, we have

4m(log s + 1) <

indTgm'Tg 5 <

(07

12



The last inequality follows from recalling that we chassuch thats/(log s +1) > 4m/a?. This completes
the proof. O

Finally, we may observe that both the update time for the SND@ bnd the time to evaluate a query
on the SMW datatructure 9(s) = O(m/a?). Therefore, we may instantiate Theorem 3.3 with the SMW
IDC algorithm to obtain the main result of this section:

Theorem 3.8. For any0 < ¢, 4, 3 < 1 There exists afe, 6)-differentially private query release mechanism
in the interactive setting, with running time per quédym /a?) that is (a, 3)-accurate with respect to the
set of allm-sparse linear querie®),,,, with:

1/2
(log m)l/4 (log % log %)

(e -n)'/?

a=0

Proof. The proof follows by instantiating Theorem B.3 with the SM®Q algorithm, together with the
bound B(a) = % proven in Theorenl 315, and recalling thais the smallest integer such that
s/(log s+ 1) > 4m/a?. O

3.1 Applications to Conjunctions

In this section, we briefly mention a simple application a$ tigorithm to the problem of releasing conjunc-
tions with many literals. The algorithm given in this seatieads to new results for releasing conjunctions
ond — k out of d literals. This complements the recent results of HardthBloin, and Servedio [HRS11]
for releasing conjunctions oh out of d literals. The class of conjunctions are defined over thearse

X = {0,1}¢ equal to thel-dimensional boolean hypercube.

Definition 3.9. A conjunction is a linear query specified by a subset of véemB C [d], and defined by
the predicate)s : {0,1}¢ — {0,1} whereQg(z) = [I;cs zi- We say that a conjunctiofds hast literals
if |S]=¢t.

Remark 3.10. The set of all conjunctions af— k literals, denoted’,;_, is 2* sparse, and of siZ€| < d*.

We can release the answers to all querigS in; by running the sparse multiplicative weights algorithm
on each query. We therefore get the following corollary:

Corollary 3.11. There exists afe, §)-differentially private algorithm in the non-interactivelease setting

with running time at most
- ok ~ [ (2d)F
O(’Cd—k!'—Q>=O<( 2) >
« «

that is («, 8)-accurate for the set of all conjunctions a@n— k literals, which requires a database of size
only:

1.5 1 d
. k logglogﬁ

ea?

We note that the running time of this algorithm is comparabléne running time of the algorithm of
[HRS11] for releasing all conjunctions @fout of d literals to worst case error (time roughty(|Cx|) =
O(d*)), but requires a database of size only roughly log d, rather thani®(V®) as required by [HRS11].

Of course, conjunctions ok literals are a more natural class than conjunctiongl enk literals, but the
results are complimentary.

13



Moreover, applying the sparse multiplicative weights alipon in the interactive setting gives polyno-
mially bounded running time per query for conjunctions dr- k literals for anyk = O(logn). Note
that this is still a super-polynomially sized class of caowgjions, with|Co1gn)| = dOUogn) - This is
the first interactive query release algorithm that we areraved that is simultaneously privacy-efficient
and computationally-efficient for a super-polynomiallgesi class of conjunctions (or any other family of
gueries with super-constant VC-dimension).

4 A Non-Interactive Mechanism via Random Projection

In this section, we give a non-interactive query releasehaeism for sparse queries based on releasing a
perturbed random projection of the private database, hegetith the projection matrix. Note that when
viewing the databas® as a vector, it is afX'|-dimensional objectD ¢ RI*l. A linear projection ofD
into T' dimensions is obtained by multiplying it by|&’| x 7" matrix, which cannot even be represented
explicitly if we require algorithms that run in time polyn@hin n = |D| for n << |X|. Itis therefore
essential that we use projection matrices which can be septed concisely using hash functions drawn
from limited-independence families.

We will use a limited-independence version of the Johnsimaldnstrauss lemma presented.in [KIN10],
first proven by[[Ach0ll, CWQ9].

Theorem 4.1(The Johnson-Lindenstrauss Lemma with Limited IndepecgleéAch01,[ CW09, KN10])
Ford > 0 an integer and any < ¢,7 < 1/2, let A be aT' x d random matrix witht1/+/T entries that are
r-wise independent faf > 4 - 642¢=2log(1/7) andr > 2log(1/7). Then for anyr € R¢:

Pr{l[|Az|[3 = |l=l[3] = ll=[|3] < 7

We will use the fact that random projections also preseniemvze inner products. The following
corollary is well known:

Corollary 4.2. For d > 0 an integer and any) < ¢,7 < 1/2, let A be aT x d random matrix with
+1/+/T entries that are--wise independent f&F > 4 - 642¢~21og(1/7) andr > 2log(1/7). Then for any
T,y € R
S
Pr{[((Az), (Ay)) — (@, )| 2 5(\!%\!3 +lyl[3)] < 27
Proof. Consider the two vectors = x + y andv = x — y. We apply Theorerm 411 to andv. By a union

bound, except with probabilitgr we have:|||A(z + y)||2 — ||z + y||3] < ||z + y||2 and|||A(z — y)|3 —
[z — y|[3] < s||z — yl|3. Therefore:

(A0),(Ag) = (A +9) Al +)) — (Alw — y), Alw — y)))
7 (1AG + )l + 1A — )IB)
LA+l — =9l —vld)

= (z.y) + 3 (=I5 +Iyl3)

An identical calculation shows thatAz), (Ay)) > (z,y) — 5 (||=|3 + |ly[|3), which completes the proof.
]
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Definition 4.3 (Random Projection Data Structurélhe random projection datastructufg of sizeT is
composed of two parts: we wri®, = (u, f).

1. u € RT is a vector of lengtl7.

2. f:[|X|-T) — {-1/¥/T,1//T} is a hash function implicitly representingZax |X| projection
matrix A € {—1/vT,1/vT} >, Forany(i, j) € T x |X|, we write A[i, 5] for f(|X|-(i—1)+7).

To evaluate a linear quer® on a random projection datastructufe = (u, f) we first project the query
and then evaluate the projected query. To project the quergampute a vecta) € R” has follows. For
eachi € [T]

Then we output)(D,) = 1(Q, u).

Algorithm 2 SparseProject takes as input a private dataldasé size n, privacy parameters andd, a
confidence parametét, a sparsity parameten, and the size of the target query class
SparseProjectD, ¢, 6, 3, m, k)

Let 7 45, T 4 4- 642 log (1) (52 + g+ imn?), 0 T
Let f be a randomly chosen hash function from a family2 &g (k7 /2/3)-wise independent hash func-
tions mappindT x |X|] — {—1/vT,1//T}. Write A[i, j] to denotef (|X| - (i — 1) + 7).
Let u,» € RT be a vectors of lengtif.
fori =1to7T do
Let ui < >_,.ppuj>o Plz] - Ali, 2]
Let v; < Lap(1/o)
end for
Output D, = (u + v, f).

Remark 4.4. There are various ways to select a hash function from a faafilywise independent hash
functions mappingI” x |X|] — {0,1}. The simplest, and one that suffices for our purposes, id¢ctdte
smallest integes such thaR® > T'x |X'|, and then to leff be a random degreepolynomial in the finite field
GTF[2%]. Selecting and representing such a function takes time pade®) (r - s) = O(r(log | X | +log T)).

f is then an unbiased-wise independent hash function mappig§[2°] — GF[2°]. Taking only the last
output bit gives an unbiasedwise independent hash function mappifigx |X|] to {0, 1}, as desired.

Theorem 4.5. SparseProject ige, 0)-differentially private.

Proof. For each, write u;(D) = >_,.p,j-0 P[] Ali, z]. Note that because each entry/ohas magnitude

1/V/T, for any databas®’ that is neighboring wittD, |u;(D) — u;(D’)| < 1/+/T. Therefore by Theorem
[2.9, releasing.; + v; preservese/(1/8T In(1/6)), 0)-differential privacy. We may now apply the composi-
tion Theoren 2.0 to find that releasing &lcoordinates of. + v preservese, §)-differential privacy. Note
that f was chosen independently Df and releasing it has no privacy cost. O

We first give a high probability bound on the maximum magretod any coefficien@i of a projected
query for any query) € Q. If we were using a random sign matrix for our projection, fiblllowing lemma
would be a consequence of a simple Chernoff bound, but besagisire using only a limited independence
family of random variables, we must be more careful.
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Lemma 4.6. Let Q be a collection ofn-sparse linear queries of siz@| = k, and A € RT*I*I be a matrix
with r-wise independent entries taking values{inl/v/T,1/V/T}, for some even integer. Denote the
projection ofQ € Q by A by @ € R”. Then except with probability at mast

()

Proof. We follow the approach of Bellare and Rompel [BR94, DP09]cdfiehat for any query), @ e RT

is defined to be the vector such thafi] = > wex:0(x)>0 @z - Ali,z]. Note that each coordinate is
dominated by the sum of at most r-wise independent Rademacher random variables (i.e. BHirno
random variables taking values {nl 11): Q[i] < f >, R;, and so it is sufficient to bound this sum.

Equivalently, we can writ€)[i] < ﬁ (2>°%, B; —m), where theB;s arer-wise independent Bernoulli
random variables. LeB = " | B;. By Markov’s inequality, we have:

E[(B-%)]

t?”

max max
QeQ ie[T) ’Q[ ” -

Pr [\B—%\>t] = Pr [(B—%)T>t7"} < 1)

Note that because th;s arer-wise independent, we hale[(B — %)"] = E [(E -y ] whereB is the

sum ofm truly independent Bernoulli random variables. We can therefopdyaa standard Chernoff bound
to control B:

E[(B-mj2y] = /OOO Pr (B —m/2| > /7] at

/OO exp <— 2t:f> dt
0
- (57 6)

where the first inequality follows by a Chernoff bound and ¢leeond inequality follows by Stirlings ap-
proximatioﬂ]. Plugging this in to Equatian 1, we find:

IN

IN

m mr\T/2
Pr|IB—3| >t <2(%5) (2)
Recall than[ ]| > cifand only if | B — | > @ - c. Applying Equatiori 2 and taking a union bound over
all k queries and’” indices per query proves the lemma. O

Corollary 4.7. Let Q be a collection ofn-sparse linear queries of siZ@| = k, and A € R™*|¥l pe a
matrix withr-wise independent entries taking valueginl /v/T,1/v/T}, for some integer > log ( B)

Denote the projection a € O by A byQ € R”. Then except with probability at most

mlog(kT/20)

max ma. <4.
Qégze[;(’ [” \/T

4The form of Stirlings approximation that we use is:

k
k< et/ (20 /onk (E)
e
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We will also make use of a tail bound for sums of Laplace randarnables. This bound is likely well
known. We use a version proven in [GRU11].

Lemma 4.8 ([GRU11]). Suppose tha{y;}7_, are i.i.d. Lap(b) random variables, and scalarg <
[~ B, B]. DefineY = S_L | ¢;Y;. Then:

exp <—6§i%> , Ifa<T;

exp (—%), If a > T.

We can now prove a utility theorem for SparseProject:

Pr[|Y]| > Ba] < {

Theorem 4.9. For any0 < ¢,6 < 1, and anys < 1, and with respect to any class of-sparse linear
queriesQ C Q,, of cardinality |Q| < k, SparseProject i$«, /3)-accurate for:

-0 (£) V)

where theD hides a term logarithmic iim + n).

Proof. LetD, = (u, f) be the random- 1-projection data-structure output by Spareg€s, wheréi = u+v.
Consider any fixed querg € O. LetQ € R7T denote the projection ap by the matrix implicitly defined
by f. We have:

1,4 . 1/ A N
QD,) = {Q.1) = - ((Qu) +(Q.v)
We will have two sources of error: distortion from the randprojection, which we will analyze using the

Johnson-Lindenstrauss lemma, and error introduced beaHuke Laplace noise added for privacy. We
will analyze each source separately, starting with therdroon the random projection.

Recall that we selected = ;7 andT = 4 - 642¢=21og(1/7) for ¢ = i@ Therefore, applying
Corollary[4.2 together with a union bound over/aljueries) € Q, except with probability at most/2:

max[(Q.D) — (@.u)l < F(IDIE+IIQIR)

< %(n2 +m)

=

We now consider the error introduced by the Laplace nois@/e first apply Corollary 4]7 to see that
except with probability at most/4, we have:

o mlog(2kT/13)
< 4.
mas manx | QL] < T

Conditioning on this event occurring, we may apply Lenimawith B = 4 - 7wn10\gng/5) together with
a union bound over alt queries € Q, to find that except with probability at mosy4:

s 4¢6m<1>%og<4;> (o 2) e
_ 16\f log <§> <log <%> —|—logT>
_ 5 (10g <5> mlgﬂ)
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where theD is hiding alog(T') term which is logarithmic inn andn.
Finally we can complete the proof. We have shown that excéhtprobability at mosts:

1 ~
8§5|Q(D)_Q(Dr)| = Egﬂggl@,m—@,wl 3)
< 2w (1(Q.D) — (@)l +1(Q.0)]) @

(5)

1 1
_ 6 (log (%) w ©)

which completes the proof. O
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4.1 Applications to Conjunctions

In this section, we again briefly briefly mention a simple aggilon of our non-interactive mechanism to
the problem of releasing conjunctions with many literalkisTgives the first polynomial time algorithm for
non-interactively releasing a super-polynomially sizetlad conjunctions.

Definition 4.10. Recall that a conjunction is a linear query specified by aetublvariablesS C [d], and
defined by the predicat@g : {0,1}¢ — {0,1} whereQg(z) = [[,cs=;. We say that a conjunctio@s
hast literals if | S| = t.

Remark 4.11. The set of all conjunctions af—  literals, denoted’,;_. is 2* sparse, and of siz&;_| <
d*.
Sparseproject therefore gives the following corollary:

Corollary 4.12. There exists afe, §)-differentially private algorithm in the non-interactivelease setting
with polynomially bounded running time, that(is, 5)-accurate for the class of conjunctiofi$; .. , On

d — log n literals for:
. log (5
a=0 (<lognlogd+log %) E\/TE(S))

Note thatCy_1.s 1, IS @ super-polynomially sized set of conjunctions. As famasknow, this rep-
resents the first algorithm in the non-interactive settirith won-trivial accuracy guarantees for a super-
polynomially sized set of conjunctions that also achievagnmomial running time.

5 Conclusions and Open Problems

In this paper, we have given fast interactive and non-iotem algorithms for privately releasing the class
of sparsequeries. Query release algorithms with run-time polyndiithe database size are unfortunately
rare, and so a natural question is whether the fast algasithiven here can be leveraged as subroutines in
the development of efficient algorithms for other applicas. Of course the main question which remains
open is to find other classes of queries for which fast datasel algorithms exist. Random projections of
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the database, together with concise representations gftiection matrix seem like a powerful tool. Can
they be leveraged in a setting beyond the case of sparseguetien the norm of the queries are comparable
to the norm of the database itself?
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