
ar
X

iv
:1

11
1.

68
42

v1
 [

cs
.D

S
]

29
 N

ov
 2

01
1

Fast Private Data Release Algorithms for Sparse Queries

Avrim Blum∗ Aaron Roth†

November 30, 2011

Abstract

We revisit the problem of accurately answering large classes of statistical queries while preserving
differential privacy. Previous approaches to this problemhave either been very general but have not had
run-time polynomial in the size of the database, have applied only to very limited classes of queries,
or have relaxed the notion of worst-case error guarantees. In this paper we consider the large class of
sparsequeries, which take non-zero values on only polynomially many universe elements. We give
efficient query release algorithms for this class, in both the interactive and the non-interactive setting.
Our algorithms also achieve better accuracy bounds than previous general techniques do when applied
to sparse queries: our bounds are independent of the universe size. In fact, even the runtime of our
interactive mechanism is independent of the universe size,and so can be implemented in the “infinite
universe” model in which no finite universe need be specified by the data curator.

1 Introduction

A databaseD represents a finite collection of individual records from somedata universeX , which repre-
sents the set of allpossiblerecords. We typically think ofX as being extremely large: exponentially large
in the size of the database, or in some cases, possibly even infinite. A fundamental task in private data
analysis is to accurately answer statistical queries abouta databaseD, while provably preserving the privacy
of the individuals whose records are contained inD. The privacy solution concept we use in this paper is
differential privacy, which has become standard, and which we define in section 2.

Accurately answering statistical queries is the most well studied problem in differential privacy, and the
results to date come in two types. There are a large number of extremely general and powerful techniques
(see for example [BLR08, DNR+09, DRV10, RR10, HT10, HR10]) that can accurately answer arbitrary
families of statistical queries which can be exponentiallylarge in the size of the database. Unfortunately,
these techniques all have running time that is at least linear in the size of the data universe|X | (i.e. pos-
sibly exponentialin the size of the database), and so are in many cases impractical. There are also several
techniques that do run in polynomial time, but that are limited: either they can answer queries from a very
general and structurally rich class (i.e. all low-sensitivity queries), but can only answer a linear number
of such queries (i.e. [DMNS06]), or they can answer a very large number of queries, but only from a
structurally very simple class (i.e. intervals on the unit line1 [BLR08]), or as in several recent results (for
conjunction and parity queries respectively) [GHRU11, HRS11] they run in polynomial time, but offer only
average case guarantees for randomly chosen queries. One ofthe main open questions in data privacy is

∗Department of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213. Email:avrim@cs.cmu.edu
†Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA 19104. Email:

aaroth@cis.upenn.edu
1The algorithm of [BLR08] can be generalized to answer axis-aligned rectangle queries in constant dimension, but this isstill a

class that has only constant VC-dimension.

1

http://arxiv.org/abs/1111.6842v1

to develop general data release techniques comparable in power to the known exponential time techniques
that run in polynomial time. There is evidence, however, that this is not possible for arbitrary linear queries
[DNR+09, UV11, GHRU11].

In this paper, we consider a restricted but structurally rich class of linear queries which we callsparse
queries. We say that a query ism-sparse if it takes non-zero values on onlym universe elements, and that
a class of queries ism-sparse if each query it contains ism′ sparse for somem′ ≤ m. We will typically
think of m as being some polynomial in the database sizen. Note that although each individual query
is restricted to have support on only a polynomially sized subset of the data universe, different queries in
the same class can have different supports, and so a class of sparse queries can still have support over the
entire data universe. Note that the class ofm-sparse queries is both very large (of size roughly|X |m), and
very structurally complex (the class ofm-sparse queries have VC-dimensionm). Sparse queries represent
questions about individuals whose answer is rarely “yes” when asked about an individual who is drawn
uniformly at random from the data population. Nevertheless, such questions can be useful to a data analyst
who has some knowledge about which segment of the populationa database might be drawn from. For
example, a database resulting from a medical study might contain individuals who have some rare disease,
but the data analyst does not knowwhichdisease – although there may be many such queries, each one is
sparse. Alternately, a data analyst might have knowledge about the participants of several previous studies,
and might want to know how much overlap there is between the participants of each previous study and of
the current study. In general, sparse queries will only be useful to a data analyst who has some knowledge
about the database, beyond that it is merely a subset of an exponentially sized data universe. Our results can
therefore be viewed as a way of privately releasing information about a database that is useful to specialists
– but is privacy preserving no matter who makes use of it. In general, this work can be thought of as part of
an agenda to find ways to make use of thedomain knowledgeof the data analyst, to make private analysis
of large-scale data-sets feasible.

1.1 Results

We give two algorithms for releasing accurate answers tom-sparse queries while preserving differential
privacy: one in the interactive setting, in which the data curator acts as an intermediary and must answer
an adaptively chosen stream of queries as they arrive, and one in the non-interactive setting, in which the
data curator must in one shot output a data-structure which encodes the answers to every query of interest.
In the interactive setting, we require that the running timeneeded to answer each query is bounded by a
polynomial inn, the database size (so to answer any sequence ofk queries takes timek · poly(n)). In the
non-interactive setting, the entire computation must be performed in time polynomial inn, and the time
required to evaluate any query on the output data structure must also be polynomial. Therefore, from the
point of view of running time, the non-interactive setting is strictly more difficult than the interactive setting.

In the interactive setting, we give the following utility bound:

Theorem 1.1(Informal, some parameters hidden). There exists an(ǫ, δ)-differentially private query release
mechanism in the interactive setting, with running time perqueryÕ(m/α2) that isα-accurate with respect
to any set ofk adaptively chosenm-sparse queries with:

α = O

(
(logm)1/4

(
log 1

δ log k
)1/2

(ǫn)1/2

)

In the non-interactive setting, we give the bound:

Theorem 1.2(Informal, some parameters hidden). There exists an(ǫ, δ)-differentially private query release
mechanism in the non-interactive setting, with running time polynomial in the database sizen, m, and

2

log |X |, that isα-accurate with respect to any class ofk m-sparse linear queries, with:

α = Õ

log k

√
m log

(
1
δ

)

ǫn

Several aspects of these theorems are notable. First, the accuracy bounds do not have any dependence
on the size of the data universe|X |, and instead depend only on the sparsity parameterm. Therefore, in
addition to efficiency improvements, these results give accuracy improvements for sparse queries, when
compared to the general purpose (inefficient) mechanisms for linear queries, which typically have accuracy
which depends onlog |X |. Since we typically view|X | as exponentially large in the database size, whereas
m is only polynomially large in the database size for these algorithms to be efficient, this can be a large
improvement in accuracy.

Second, the interactive mechanism does not even have a dependence on|X | in its running time! In fact,
it works even in aninfinite universe (e.g. data entries with string valued attributes without pre-specified
upper bound on length)2. In this setting, queries may still be concisely specified asa list of polynomially
many individuals from the possibly infinite universe that satisfy the query. Moreover, because the accuracy
of this mechanism depends only very mildly onm, and the running time is linear inm, it can be used to
answerm-sparse queries for arbitrarily large polynomial values ofm, where the mechanism is constrained
only by the available computational resources.

The non-interactive mechanism in contrast has a worse dependence onm. This bound essentially
matches the error that would result from releasing the perturbed histogramof the database, but does so
in a way that requires computation and output representation only polynomial inn (rather than linear in
|X|, as releasing a histogram would require). Because accuracybounds> 1 are trivial, this mechanism
only guarantees non-trivial accuracy form-sparse queries withm << n2/ log k (This is still of course a
very large class of queries: there are roughly|X |n2/ log k such queries, i.e., super-exponentially many inn).
Nevertheless, there are distinct advantages to having a non-interactive mechanism that only needs to be run
once. This is among the firstpolynomial timenon-interactive mechanisms for answering an exponentially
large, unstructured class of queries while preserving differential privacy.

We note that our results give as a corollary, more efficient algorithms for answering conjunctions with
many literals. This complements the beautiful recent work of Hardt, Rothblum, and Servedio [HRS11], who
give more efficient algorithms for answering conjunctions with few literals, based on reductions to threshold
learning problems.

1.2 Techniques

Our interactive mechanism is a modification of the very general multiplicative weights mechanism of Hardt
and Rothblum [HR10]. We give the interactive mechanism via the framework of [GRU11] which efficiently
maps objects callediterative database constructions(defined in section 3) into private query release mecha-
nisms in the interactive setting. IDC algorithms are very similar to online learning algorithms in the mistake
bound model, and we use this analogy to implement a version ofthe multiplicative weights IDC of Hardt
and Rothblum [HR10] analogously to how the Winnow algorithmis implemented in theinfinite attribute
modelof learning, defined by Blum [Blu90]. The algorithm roughly works as follows: the multiplicative
weights algorithm normally maintains a distribution over|X | elements, one for each element in the data

2The algorithm must be able to read anamefor each universe element it deals with, and so it can of course not deal with
elements that have no finite description length. But for a (countably) infinite universe, the running time would depend onthe length
of the largest string used to denote a universe element encountered during the running of the algorithm, and not in any a-priori way
on the (unboundedly large) size of the universe.

3

universe. It can be easily implemented in such a way so that when it is updated after a queryQ arrives, only
those weights corresponding to elements in the support of the queryQ are updated: for anm-sparse query,
this means it only need updatem positions. It also comes with a guarantee that it never needsto perform
more thanlog |X |/α2 updates before achieving errorα, and so at mostm log |X |/α2 elements ever need to
be updated. The key insight is to pick a smaller universe,X̂ , such thatX̂ ≥ m log X̂/α2, butnot to commit
to the identity of the elements in this universebefore running the algorithm, letting all elements be initially
unassigned. The algorithm then maintains a hash table mapping elements ofX to elements ofX̂ . Elements
in X are assigned temporary mappings to elements inX̂ as queries come in, but are only assigned permanent
mappings when an update is performed. Because onlylog X̂/α2 updates are ever performed, and̂X was
chosen such that̂X ≥ m log X̂/α2, the algorithm never runs out of elements ofX̂ to permanently assign.
Because|X̂ | depends only on the desired accuracyα and the sparsity parameterm, andnot onX in any
way, the algorithm can be implemented and run without any knowledge ofX (even for infinite universes),
and neither the running time nor the resulting accuracy depend on|X |.

The non-interactive mechanism releases a random projection of the database into polynomially many
dimensions, together with the corresponding projection matrix. Queries are evaluated by computing their
projection using the public projection matrix, and then taking the inner product of the projected query
and the projected database. The difficulty comes because theprojection matrix projects vectors from|X |-
dimensional space to poly(n) dimensional space, and so normally would take|X |poly(n)-many bits to
represent. Our algorithms are constrained to run in time poly(n), however, and so we need a concise
representation of the projection matrix. We achieve this byusing a matrix implicitly generated by a family
of limited-independence hash functions which have conciserepresentations. This requires using a limited
independence version of the Johnson-Lindenstrauss lemma,and of concentration bounds. This algorithm
also gives accuracy bounds which are independent of|X |.

1.3 Related Work

Differential privacy was introduced by Dwork, McSherry, Nissim, and Smith [DMNS06], and has since
become the standard solution concept for privacy in the theoretical computer science literature. There is now
a vast literature concerning differential privacy, so we mention here only the most relevant work, without
attempting to be exhaustive. Dwork et al. [DMNS06] also introduced theLaplacemechanism, which is
able to efficiently answer arbitrary low-sensitivity queries in the interactive setting. The Laplace mechanism
does not make efficient use of theprivacy budgethowever, and can answer only linearly many queries in the
database size.

Blum, Ligett, and Roth [BLR08] showed that in the non-interactive setting, it is possible to answer
exponentiallysized families of counting queries. This result was extended and improved by Dwork et al.
[DNR+09] and Dwork, Rothblum, and Vadhan [DRV10], who gave improved running time and accuracy
bounds, and for(ǫ, δ)-differential privacy gave similar results for arbitrary low sensitivity queries. Roth
and Roughgarden [RR10] showed that accuracy bounds comparable to [BLR08] could be achieved even
in the interactivesetting, and this result was improved in both accuracy and running time by Hardt and
Rothblum, who give the multiplicative weights mechanism, which achieves nearly optimal accuracy and
running time [HR10]. Gupta, Roth, and Ullman [GRU11] generalize the algorithms of [RR10, HR10] into
a generic framework in which objects callediterative database constructionsefficiently reduce to private
data release mechanisms in the interactive setting. Unfortunately, the running time of all of the algorithms
discussed here is at least linear in|X |, and so typically exponential in the size of the private database.
Moreover, there are both computational and information theoretic lower bounds suggesting that it may be
very difficult to give private release algorithms for generic linear queries with substantially better run time
[DNR+09, UV11, GHRU11]. As in this work, these algorithms give a guarantee on the worst-case error of

4

any answered query.
There is also a small body of work giving more efficient query release mechanisms for specific classes of

queries. [BLR08] gave an efficient (running time polynomialin the database sizen) algorithm for releasing
the answers for 1-dimensional intervals on the discretizedunit-line in the non-interactive setting. As far as
we know, prior to this work, this was the only efficient mechanism in either the interactive or non-interactive
settings for releasing the answers to an exponentially sized family of queries with worst-case error. This
class is however structurally very simple: it has VC-dimension only 2. Other efficient algorithms relax the
notion of utility, no longer guaranteeing worst-case errorfor all queries. [BLR08] also give an efficient
algorithm for releasinghalfspacequeries in the unit sphere, but this algorithm only guaranteed accurate
answers for halfspaces that happened to have largemarginwith respect to the points in the database. Gupta
et al [GHRU11] gave an algorithm for releasingconjunctionsoverd attributes toaverageerrorα over any
product distribution (over conjunctions), which runs in timedO(1/α). This was improved to have running
timeO(dlog 1/α) by Cheraghchi et al. [CKKL11]. Note that these algorithms only run in polynomial time
for constant values ofα, and only give accuracy bounds in expectation over random queries. Recently,
Hardt, Rothblum, and Servedio [HRS11] gave an algorithm forreleasing conjunctions defined onk out
of d literals with an average-error guaranteefor any pre-specified distribution in timedÕ(

√
k). Using the

private boosting algorithm of [DRV10], they leverage this result to give an algorithm for releasingk-literal
conjunctions with worst-case error guarantees, which increases the running time todÕ(k), although still only
requiring databases of sizedÕ(

√
k). They also gave an efficient (i.e. running time polynomial inn) algorithm

for releasingparity queries to low average error over product distributions. Weremark that our results give
a complementary bound for large conjunctions (with a bettersample complexity requirement). Our online
algorithm can release all conjunctions ond − k out of d literals with worst-case error guarantees in time
dÕ(k), requiring databases of size onlỹO(k1.5 log d).

The efficient interactive mechanism we give in section 3 is based on an analogy between iterative
database construction (IDC) algorithms and online learning algorithms in the mistake bound model. We
implement the multiplicative weights IDC of Hardt and Rothblum [HR10] analogously to how Winnow
is implemented in theinfinite attribute modelof Blum [Blu90]. In our setting, it can be thought of as an
infinite universe modelthat has no dependence on the universe size in either the running time or accuracy
bounds. This involves running the multiplicative weights algorithm on a much smaller universe. Hardt and
Rothblum [HR10] also gave a version of their algorithm whichran on a small subset of the universe to give
efficient run-time guarantees. The main difference is that we select the subset of the universe that we run
the multiplicative weights algorithm on adaptively, basedon the queries that arrive, whereas [HR10] select
the subset nonadaptively, independently of the queries. [HR10] give average case utility bounds for linear
queries on randomly selected databases; in contrast, we give worst-case utility bounds that hold for all input
databases, but only for sparse linear queries.

The efficient non-interactive mechanism we give in section 4is based on random projections using
families of limited independence hash functions, which have previously been used for space-bounded com-
putations in the streaming model [CW09, KN10]. Limited independence hash functions have also previously
been used for streaming algorithms in the context of differential privacy [DNP+10].

2 Preliminaries

A databaseD is a multiset of elements from some (possibly infinite) abstract universeX . We write|D| = n
to denote the cardinality ofD. For anyx ∈ X we can also writeD[x] to denote:D[x] = {x′ ∈ D : x′ = x}
the number of elements of typex in the database. Viewed this way, a databaseD ∈ N

|X | is a vector with
integer entries in the range[0, n].

5

A linear queryQ : X → [0, 1] is a function mapping elements in the universe to values on the real unit
interval. For notational convenience, we will defineQ(∅) = 0. We can also evaluate a linear query on a
database. The value of a linear queryQ on a database is simply the average value ofQ on elements of the
database:

Q(D) = 1

n

∑

x∈D
Q(x) =

1

n

∑

x∈X
Q(x)D[x]

Similarly to how we can think of a database as a vector, we can think of a query as a vectorQ ∈ [0, 1]|X |

with Q[x] = Q(x). Viewed this way,Q(D) = 1
n〈Q,D〉.

It will sometimes be convenient to think of normalized databases (with entries that sum to 1). For
a databaseD of size n, we define the corresponding normalized databaseD̂ to be the database such
that D̂[x] = D[x]/n. We evaluate a linear query on a normalized database by computing Q(D̂) =∑

x∈X Q(x)D̂[x] = 〈Q, D̂〉. Note thatQ(D) = Q(D̂).

Definition 2.1 (Sparsity). Thesparsityof a linear queryQ is |{x ∈ X : Q(x) > 0}|, the number of elements
in the universe on which it takes a non-zero value. We say thata query ism-sparse if its sparsity is at most
m. We will also refer to the class of allm-sparse linear queries, denotedQm.

In this paper, we will assume that given anm-sparse query, we can quickly (in time polynomial inm)
enumerate the elementsx ∈ X on whichQ(x) > 0.

Remark 2.2. While the assumption that we can quickly enumerate the non-zero values of a query may
not always hold, it is indeed the case that for many natural classes of queries, we can enumerate the non-
zero elements in timelinear in m. For example, this holds for queries that are specified as lists of the
universe elements on which the query is non-zero, as well as for many implicitly defined query classes such
as conjunctions, disjunctions, parities, etc.3 Of course, classes like conjunctions are typically not sparse,
but conjunctions withd − O(log n) literals are, and their support can be quickly enumerated (even though
there are superpolynomially many such conjunctions).

2.1 Utility

We will design algorithms which can accurately answer largenumbers of sparse linear queries. We will be
interested in bothinteractivemechanisms andnon-interactivemechanisms. A non-interactive mechanism
takes as input a database, runs one time, and outputs some data structure capable of answering many queries
without further interaction with the data release mechanism. An interactive mechanism takes as input a
stream of queries, and must provide a numeric answer to each query before the next one arrives.

Definition 2.3 (Accuracy for non-Interactive Mechanisms). Let Q be a set of queries. A non-interactive
mechanismM : X ∗ → R for some abstract rangeR is (α, β)-accurate forQ if there exists a function
Eval : Q × R → R s.t. for every databaseD ∈ X ∗, with probability at least1 − β over the coins of
M , M(D) outputsr ∈ R such thatmaxQ∈Q |Q(D) − Eval(Q, r)| ≤ α. We will abuse notation and write
Q(r) = Eval(Q, r).

M is efficientif both M andEval run in time polynomial in the size of the databasen.

Definition 2.4 (Accuracy for Interactive Mechanisms). LetQ be a set of queries. An interactive mechanism
M takes as input an adaptively chosen stream of queriesQ1, . . . , Qk ∈ Q and for each queryQi, outputs an

3The set of conjunctions over thed-dimensional boolean hypercube withd− log(n) literals aren-sparse. Even though there are
superpolynomially many such conjunctions, it is simple to enumerate the entries on which these conjunctions take non-zero value
in time linear inn. We can simply enumerate all of the2log n = n values that the unassigned variables can take.

6

answerai ∈ R before receivingQi+1. It is (α, β)-accurateif for every databaseD ∈ X ∗, with probability
at least1− β over the coins ofM : maxi |Qi − ai| ≤ α.

M is efficientif the update time for each query (i.e. the time to produce answerai after receiving query
Qi) is polynomial in the size of the databasen.

2.2 Differential Privacy

We will require that our algorithms satisfydifferential privacy, defined as follows. We must first define the
notion ofneighboring databases.

Definition 2.5 (Neighboring Databases). Two databasesD,D′ areneighborsif they differ only in the data
of a single individual: i.e. if their symmetric difference is |D△D′| ≤ 1.

Definition 2.6 (Differential Privacy [DMNS06]). A randomized algorithmM acting on databases and out-
putting elements from some abstract rangeR is (ǫ, δ)-differentially private if for all pairs of neighboring
databasesD,D′ and for all subsets of the rangeS ⊆ R the following holds:

Pr[M(D) ∈ S] ≤ exp(ǫ) Pr[M(D′) ∈ S] + δ

Remark 2.7. For a non-interactive mechanism,R is simply the set of data-structures that the mechanism
outputs. For an interactive mechanism, because the queriesmay be adaptively chosen by an adversary,R is
the set of query/answer transcripts produced by the algorithm when interacting with an arbitrary adversary.
For a detailed treatment of differential privacy and adaptive adversaries, see [DRV10].

A useful distribution is theLaplacedistribution.

Definition 2.8 (The Laplace Distribution). The Laplace Distribution (centered at 0) with scaleb is the
distribution with probability density function:Lap(x|b) = 1

2b exp(−
|x|
b). We will sometimes write Lap(b)

to denote the Laplace distribution with scaleb, and will sometimes abuse notation and writeLap(b) simply
to denote a random variableX ∼ Lap(b).

A fundamental result in data privacy is that perturbing low sensitivity queries with Laplace noise pre-
serves(ǫ, 0)-differential privacy.

Theorem 2.9([DMNS06]). SupposeQ : X ∗ → R is a function such that for all neighboring databasesD
andD′, |Q(D)−Q(D′)| ≤ c. Then the procedure which on inputD releasesQ(D)+X, whereX is a draw
from a Lap(c/ǫ) distribution, preserves(ǫ, 0)-differential privacy.

It will be useful to understand how privacy parameters for individual steps of an algorithm compose into
privacy guarantees for the entire algorithm. The followinguseful theorem is a special case of a theorem
proven by Dwork, Rothblum, and Vadhan:

Theorem 2.10 (Privacy Composition [DRV10]). Let 0 < ǫ, δ < 1, and let M1, . . . ,MT be (ǫ′, 0)-
differentially private algorithms for someǫ′ at most:

ǫ′ ≤ ǫ√
8T log

(
1
δ

) .

Then the algorithmM which outputsM(D) = (M1(D), . . . ,MT (D)) is (ǫ, δ)-differentially private.

7

3 A Fast IDC Algorithm For Sparse Queries

In this section we use the abstraction of aniterative database constructionthat was introduced by Gupta,
Roth, and Ullman [GRU11]. It was shown in [GRU11] that efficient IDC algorithms automatically reduce
to efficient differentially private query release mechanisms in the interactive setting. Roughly, an IDC
mechanism works by maintaining a sequence of data structures D1,D2, . . . that give increasingly good
approximations to the input databaseD (in a sense that depends on the IDC). Moreover, these mechanisms
produce the next data structure in the sequence by considering only one queryQ thatdistinguishesthe real
database in the sense thatQ(Dt) differs significantly fromQ(D).

Syntactically, we will consider functions of the formU : RU × Q × R → RU. The inputs toU
are a data structure inRU, which represents the current data structureDt; a queryQ, which represents the
distinguishing query, and may be restricted to a certain setQ; and also a real number which estimatesQ(D).
Formally, we define adatabase update sequence, to capture the sequence of inputs toU used to generate
the database sequenceD1,D2,

Definition 3.1 (Database Update Sequence). LetD ∈ N
|X | be any database and let{

(Dt, Qt, Ât)
}
t=1,...,T

∈ (RU × Q × R)T be a sequence of tuples. We say the sequence is an

(U,D,Q, α, T)-database update sequenceif it satisfies the following properties:

1. D1 = U(∅, ·, ·),
2. for everyt = 1, 2, . . . , T , |Qt(D)−Qt(Dt)| ≥ α,

3. for everyt = 1, 2, . . . , T ,
∣∣∣Qt(D)− Ât

∣∣∣ < α,

4. and for everyt = 1, 2, . . . , T − 1,Dt+1 = U(Dt, Qt, Ât).

Definition 3.2 (Iterative Database Construction). Let U : RU ×Q × R → RU be an update rule and let
B : R → R be a function. We sayU is aB(α)-iterative database construction for query classQ if for
every databaseD ∈ N

|X |, every(U,D,Q, α, T)-database update sequence satisfiesT ≤ B(α).

Note that the definition of anB(α)-iterative database construction implies that ifU is aB(α)-iterative
database construction, then given any maximal(U,D,Q, α, T)-database update sequence, the final database
DT must satisfymaxQ∈Q |Q(D)−Q(DT)| ≤ α or else there would exist another query satisfying property
2 of Definition 3.1, and thus there would exist a(U,D,Q, α, T+1)-database update sequence, contradicting
maximality.

B(α)-IDC algorithms generically reduce to(ǫ, δ)-differentially private(α, β)-accurate query release
mechanisms in an efficiency preserving way. This framework was implicitly used by [RR10] and [HR10].

Theorem 3.3 ([GRU11]). If there exists aB(α)-IDC algorithm for a class of queriesQ using a class
of datastructuresRU that take time at mostp(n, α, |X |) to update their hypotheses, and time at most
q(n, α, |X |) to evaluate a query on anyD ∈ RU, then for any0 < ǫ, δ, β < 1 there exists an(ǫ, δ)-
differentially private query release mechanism in the interactive setting that has update time at most
O(p(n, α,X) + q(n, α,X)) and is (α, β)-accurate with respect to any adaptively chosen sequence ofk
queries fromQ whereα is the solution to the following equality:

α =
3000

√
B(α) log(4/δ) log(k/β)

ǫn

In this section we will give an efficient IDC algorithm for theclass ofm-sparse queries, and then call on
Theorem 3.3 to reduce it to a differentially private query release mechanism in the interactive setting.

First we introduce the Sparse Multiplicative Weights data structure, which will be the class of datastruc-
turesRU that the Sparse Multiplicative Weights IDC algorithm uses.:

8

Definition 3.4 (Sparse Multiplicative Weights Data Structure). The sparse multiplicative weights data struc-
tureDSMW of sizes is composed of three parts. We writeDSMW = (D, h, ind).

1. D is a collection ofs real valued variablesx1, . . . , xs, with xi ∈ [0, 1] for all i ∈ [s]. Variablexi for
i ∈ [s] is referenced byD[i]. Initially xi = 1/s for all i ∈ [s]. We defineD[i] = 0 for all i > s.

2. h is a hash tableh : X → [s] ∪ ∅ mapping elements in the universeX to indicesi ∈ [s]. Elements
x ∈ X can also be unassigned in which case we writeh(x) = ∅. Initially, h(x) = ∅ for all x ∈ X We
write h−1(i) = x if h(x) = i, andh−1(i) = ∅ if there does not exist anyx ∈ X such thath(x) = i.

3. ind ∈ [s + 1] is a counter denoting the index of the first unassigned variable. For all i < ind, there
exists somex ∈ X such thath(x) = i. For all i ≥ ind, there does not exist anyx ∈ X such that
h(x) = i. Initially ind = 1.

If ind ≤ s, we canadd an unassigned elementx ∈ X to DSMW. Adding an elementx ∈ X to DSMW

setsh(x) ← ind and increments ind← ind + 1. If ind = s + 1, attempting to add an element causes the
data structure to reportFAILURE .

A linear queryQ is evaluated on a sparse MW data structureDSMW = (D, h) as follows.

Q(DSMW) =
∑

x∈X :Q(x)>0∧h(x)6=∅
Q(x) · D[h(x)] +

∑

x∈X :Q(x)>0∧h(x)=∅
Q(x) · D[ind]

We now present Algorithm 1, the Sparse Multiplicative Weights (SMW) IDC algorithm form-sparse
queries. The algorithm is a version of the Hardt/Rothblum Multiplicative Weights IDC [HR10], modified to
work without any dependence on the universe size. It will runmultiplicative weights update steps over the
variables of the SMW data structure, using the SMW data structure to delay assigning variables to particular
universe elementsx ∈ X until necessary. Note that it is not simply running the multiplicative weights
algorithm from [HR10] implicitly: doing so would yield guarantees that depend on the cardinality of the
universe|X |. Instead, the guarantees we will get will depend only onm, and so will carry over even to the
infinite-universe setting.

Theorem 3.5.The Sparse Multiplicative Weights algorithm is aB(α)-IDC for the class ofm-sparse queries
Qm, where:

B(α) = 4
log s+ 1

α2

ands is the smallest integer such thats/(log(s) + 1) ≥ 4m/α2.

The analysis largely follows the Multiplicative Weights analysis given by Hardt and Rothblum [HR10].
The main difference is that rather than using one global potential function, we must use a different potential
function for each database update sequence, defined as a function of the state of the hash table in the last
SMW datastructure in the sequence. We must also argue that wenever run out of variables to assign in the
SMW data structure, which would cause it to returnFAILURE . To argue this, we apply the technique of
Blum [Blu90], used to adapt Winnow to the infinite attribute model.

Proof. We will consider any maximal (SMW,DSMW,Q, α, T)-database update sequence{
(DSMW

t , Qt, Ât)
}
t=1,...,T

. We will argue thatT ≤ 4 log s
α2 and that no data structureDSMW

t in the

sequence ever returnsFAILURE when the SMW algorithm attempts toadd some elementx ∈ X to it.
Consider the real private databaseD and the final data structure in the sequenceDSMW

T = (DT , hT , indT).

9

Algorithm 1 The Sparse Multiplicative Weights (SMW) IDC Algorithm form-sparse queries. It is instanti-
ated with an accuracy parameterη = α/2. It takes as input a sparse MW datastructureDSMW, anm-sparse
queryQ ∈ Qm, and an estimate of the query valuêA.

SMW(DSMW
t = (Dt, ht, indt), Qt, Ât):

if DSMW
t = ∅ then

Let s be the smallest integer such thats/(log(s) + 1) ≥ 4m/α2.
Return a new Sparse MW data structureDSMW

1 = (D1, h1, ind1) of sizes with h1(x) = ∅ for all
x ∈ X , xi = 1/s for all i ∈ [s], and ind1 = 1.

end if
Let DSMW

t+1 = (Dt+1, ht+1, indt+1)← DSMW
t

Update: For allx ∈ X such thatQt(x) > 0: If ht+1(x) = ∅ thenadd x toDSMW
t+1 .

if Ât < Qt(DSMW
t) then

Update: For allx ∈ X such thatQt(x) > 0: Let

Dt+1[ht+1(x)]← Dt+1[ht+1(x)] · exp(−ηQt(x))

else
Update: For allx ∈ X such thatQt(x) > 0: Let

Dt+1[ht+1(x)]← Dt+1[ht+1(x)] · exp(ηQt(x))

end if
Normalize: For all i ∈ [s]:

Dt+1[i] =
Dt+1[i]∑s
j=1Dt+1[j]

Output DSMW
t+1 .

10

We will define a non-negative potential functionΨ based onhT and D̂ and show that it decreases
significantly at each step. We define:

Ψt
def
=

∑

x:hT (x)6=∅
D̂[x] log

(
D̂[x]

Dt[hT (x)]

)

Claim 3.6. For all t ∈ [T], Ψt ≥ −1
e andΨ0 ≤ log s

Proof. The log-sum inequality states that for any collection of non-negative numbersa1, . . . , an and
b1, . . . , bn:

n∑

i=1

ai log

(
ai
bi

)
≥ a log

(a
b

)

wherea =
∑n

i=1 ai andb =
∑n

i=1 bi. We therefore have:

Ψt =
∑

x:hT (x)6=∅
D̂[x] log

(
D̂[x]

Dt[hT (x)]

)

≥

 ∑

x:hT (x)6=∅
D̂[x]

 log

(∑
x:hT (x)6=∅ D̂[x]∑

x:hT (x)6=∅Dt[hT (x)]

)

≥

 ∑

x:hT (x)6=∅
D̂[x]

 log

 ∑

x:hT (x)6=∅
D̂[x]

≥ −1

e

where the first inequality follows from the log-sum inequality, the second follows from the fact that∑
x:hT (x)6=∅Dt[hT (x)] ≤ 1, and the third follows from the fact thatmina∈[0,1] a log a = −1

e . To see
thatΨ0 ≤ log s, recall thatD0[i] = 1/s for all i. Therefore:

Ψ0 =
∑

x:hT (x)6=∅
D̂[x] log

(
sD̂[x]

)

SinceD̂ is a probability distribution, this expression takes maximum valuelog s.

We will argue that in every step the potential drops by at least α2/4. Because the potential begins at
log s, and must always be non-negative, we therefore know that there can be at mostT ≤ 4 log s/α2 steps.
To begin, let us see exactly how much the potential drops at each step:

Lemma 3.7.
Ψt −Ψt+1 ≥ α2/4

11

Proof. We follow the analysis of [HR10]. We consider the case in which Ât < Qt(DSMW
t). In this case:

Ψt −Ψt+1 =
∑

x:hT (x)6=∅
D̂[x] log

(
D̂[x]

Dt[hT (x)]

)
−

∑

x:hT (x)6=∅
D̂[x] log

(
D̂[x]

Dt+1[hT (x)]

)

=
∑

x:hT (x)6=∅
D̂[x] log

(Dt+1[hT (x)]

Dt[hT (x)]

)

≥
∑

x:hT (x)6=∅
D̂[x] log

(
exp(−ηQt(x)) · Dt[hT (x)]

Dt[hT (x)]

)
− log

s∑

j=1

exp(−ηQt(h
−1
t (j)))Dt[j]

=
∑

x:Qt(x)>0

−D̂[x]ηQt(x)− log

s∑

j=1

exp(−ηQt(h
−1
t (j)))Dt[j]

= −ηQt(D)− log

s∑

j=1

exp(−ηQt(h
−1
t (j)))Dt[j]

≥ −ηQt(D)− log

s∑

j=1

(1− ηQt(h
−1
t (j)) + η2)Dt[j]

= −ηQt(D)− log

1 + η2 − η

∑

x:Qt(x)>0

Qt(x)Dt[ht(x)]

≥ η(Qt(DSMW
t)−Qt(D))− η2

≥ α2/2− α2/4

= α2/4

In this calculation, we used the facts that:

exp(−ηQt(xi)) ≤ 1− ηQt(xi) + η2Qt(xi)
2 ≤ 1− ηQt(xi) + η2

that
∑s

j=1Dt[j] = 1, thatlog(1 + y) ≤ y for y > −1, that by the definition of a database update sequence,

when Ât < Qt(DSMW
t) we also have thatQt(D) < Qt(DSMW

t), and that by the definition of database
update sequence we always have|Qt(DSMW

t)−Qt(D)| ≥ α. Finally we recall thatη = α/2 The case when
Ât > Qt(DSMW

t) is exactly similar.

Theorem 3.5 then immediately follows by combining Claim 3.6with Lemma 3.7:

−1

e
≤ ΨT ≤ log s− T · α

2

4

Solving forT we find:

T ≤ 4
log s+ 1/e

α2
< 4

log s+ 1

α2

Finally to see that the SMW data structure never reportsFAILURE , it suffices to observe that indT ≤ s.
Because each queryQt is assumed to bem-sparse, at mostm variables can beadded to the SMW data
structure at each update. Therefore, we have

indT ≤ m · T ≤ 4m(log s+ 1)

α2
≤ s

12

The last inequality follows from recalling that we choses such thats/(log s+1) ≥ 4m/α2. This completes
the proof.

Finally, we may observe that both the update time for the SMW IDC and the time to evaluate a query
on the SMW datatructure isO(s) = Õ(m/α2). Therefore, we may instantiate Theorem 3.3 with the SMW
IDC algorithm to obtain the main result of this section:

Theorem 3.8. For any0 < ǫ, δ, β < 1 There exists an(ǫ, δ)-differentially private query release mechanism
in the interactive setting, with running time per queryÕ(m/α2) that is(α, β)-accurate with respect to the
set of allm-sparse linear queriesQm, with:

α = O

(logm)1/4

(
log 4

δ log
k
β

)1/2

(ǫ · n)1/2

Proof. The proof follows by instantiating Theorem 3.3 with the SMW IDC algorithm, together with the
boundB(α) = 4(log s+1)

α2 proven in Theorem 3.5, and recalling thats is the smallest integer such that
s/(log s+ 1) ≥ 4m/α2.

3.1 Applications to Conjunctions

In this section, we briefly mention a simple application of this algorithm to the problem of releasing conjunc-
tions with many literals. The algorithm given in this section leads to new results for releasing conjunctions
on d − k out of d literals. This complements the recent results of Hardt, Rothblum, and Servedio [HRS11]
for releasing conjunctions onk out of d literals. The class of conjunctions are defined over the universe
X = {0, 1}d equal to thed-dimensional boolean hypercube.

Definition 3.9. A conjunction is a linear query specified by a subset of variablesS ⊆ [d], and defined by
the predicateQS : {0, 1}d → {0, 1} whereQS(x) =

∏
i∈S xi. We say that a conjunctionQS hast literals

if |S| = t.

Remark 3.10. The set of all conjunctions ofd−k literals, denotedCd−k is 2k sparse, and of size|C| ≤ dk.

We can release the answers to all queries inCd−k by running the sparse multiplicative weights algorithm
on each query. We therefore get the following corollary:

Corollary 3.11. There exists an(ǫ, δ)-differentially private algorithm in the non-interactiverelease setting
with running time at most

Õ

(
|Cd−k| ·

2k

α2

)
= Õ

(
(2d)k

α2

)

that is (α, β)-accurate for the set of all conjunctions ond − k literals, which requires a database of size
only:

n ≥
k1.5 log 1

δ log
d
β

ǫα2

We note that the running time of this algorithm is comparableto the running time of the algorithm of
[HRS11] for releasing all conjunctions ofk out of d literals to worst case error (time roughlỹO(|Ck|) =

Õ(dk)), but requires a database of size only roughlyk1.5 log d, rather thandÕ(
√
k) as required by [HRS11].

Of course, conjunctions onk literals are a more natural class than conjunctions ond − k literals, but the
results are complimentary.

13

Moreover, applying the sparse multiplicative weights algorithm in the interactive setting gives polyno-
mially bounded running time per query for conjunctions ond − k literals for anyk = O(log n). Note
that this is still a super-polynomially sized class of conjunctions, with |CO(logn)| = dO(logn). This is
the first interactive query release algorithm that we are aware of that is simultaneously privacy-efficient
and computationally-efficient for a super-polynomially sized class of conjunctions (or any other family of
queries with super-constant VC-dimension).

4 A Non-Interactive Mechanism via Random Projection

In this section, we give a non-interactive query release mechanism for sparse queries based on releasing a
perturbed random projection of the private database, together with the projection matrix. Note that when
viewing the databaseD as a vector, it is an|X |-dimensional object:D ∈ R

|X |. A linear projection ofD
into T dimensions is obtained by multiplying it by a|X | × T matrix, which cannot even be represented
explicitly if we require algorithms that run in time polynomial in n = |D| for n << |X |. It is therefore
essential that we use projection matrices which can be represented concisely using hash functions drawn
from limited-independence families.

We will use a limited-independence version of the Johnson-Lindenstrauss lemma presented in [KN10],
first proven by [Ach01, CW09].

Theorem 4.1 (The Johnson-Lindenstrauss Lemma with Limited Independence [Ach01, CW09, KN10]).
For d > 0 an integer and any0 < ς, τ < 1/2, letA be aT × d random matrix with±1/

√
T entries that are

r-wise independent forT ≥ 4 · 642ς−2 log(1/τ) andr ≥ 2 log(1/τ). Then for anyx ∈ R
d:

Pr
A
[|||Ax||22 − ||x||22| ≥ ς||x||22] ≤ τ

We will use the fact that random projections also preserve pairwise inner products. The following
corollary is well known:

Corollary 4.2. For d > 0 an integer and any0 < ς, τ < 1/2, let A be aT × d random matrix with
±1/
√
T entries that arer-wise independent forT ≥ 4 · 642ς−2 log(1/τ) andr ≥ 2 log(1/τ). Then for any

x, y ∈ R
d:

Pr
A
[|〈(Ax), (Ay)〉 − 〈x, y〉| ≥ ς

2
(||x||22 + ||y||22)] ≤ 2τ

Proof. Consider the two vectorsu = x+ y andv = x− y. We apply Theorem 4.1 tou andv. By a union
bound, except with probability2τ we have:|||A(x+ y)||22 − ||x+ y||22| ≤ ς||x+ y||22 and|||A(x− y)||22 −
||x− y||22| ≤ ς||x− y||22. Therefore:

〈(Ax), (Ay)〉 =
1

4
(〈A(x+ y), A(x+ y)〉 − 〈A(x− y), A(x− y)〉)

=
1

4

(
||A(x + y)||22 + ||A(x− y)||22

)

≤ 1

4

(
(1 + ς)||x + y||22 − (1− ς)||x − y||22

)

= 〈x, y〉+ ς

2

(
||x||22 + ||y||22

)

An identical calculation shows that〈(Ax), (Ay)〉 ≥ 〈x, y〉 − ς
2

(
||x||22 + ||y||22

)
, which completes the proof.

14

Definition 4.3 (Random Projection Data Structure). The random projection datastructureDr of sizeT is
composed of two parts: we writeDr = (u, f).

1. u ∈ R
T is a vector of lengthT .

2. f : [|X | · T] → {−1/
√
T , 1/

√
T} is a hash function implicitly representing aT × |X | projection

matrixA ∈ {−1/
√
T , 1/

√
T}T×|X |. For any(i, j) ∈ T×|X |, we writeA[i, j] for f(|X |·(i−1)+j).

To evaluate a linear queryQ on a random projection datastructureDr = (u, f) we first project the query
and then evaluate the projected query. To project the query we compute a vector̂Q ∈ R

T has follows. For
eachi ∈ [T]

Q̂[i] =
∑

x∈X :Q(x)>0

Q[x] ·A[i, x]

Then we output:Q(Dr) =
1
n〈Q̂, u〉.

Algorithm 2 SparseProject takes as input a private databaseD of sizen, privacy parametersǫ and δ, a
confidence parameterβ, a sparsity parameterm, and the size of the target query classk.
SparseProject(D, ǫ, δ, β,m, k)

Let τ ← β
4k , T ← 4 · 642 · log

(
1
τ

) (
m3/2

2 + n4

2
√
m

+
√
mn2

)
, σ ← ǫ√

8 ln(1/δ)

Let f be a randomly chosen hash function from a family of2 log(kT/2β)-wise independent hash func-
tions mapping[T × |X |]→ {−1/

√
T , 1/

√
T}. WriteA[i, j] to denotef(|X | · (i− 1) + j).

Let u, ν ∈ R
T be a vectors of lengthT .

for i = 1 to T do
Let ui ←

∑
x:D[x]>0D[x] ·A[i, x]

Let νi ← Lap(1/σ)
end for
Output Dr = (u+ ν, f).

Remark 4.4. There are various ways to select a hash function from a familyof r-wise independent hash
functions mapping[T × |X |]→ {0, 1}. The simplest, and one that suffices for our purposes, is to select the
smallest integers such that2s ≥ T×|X |, and then to letf be a random degreer polynomial in the finite field
GF[2s]. Selecting and representing such a function takes time and spaceO(r · s) = O(r(log |X |+ log T)).
f is then an unbiasedr-wise independent hash function mappingGF[2s] → GF[2s]. Taking only the last
output bit gives an unbiasedr-wise independent hash function mapping[T × |X |] to {0, 1}, as desired.

Theorem 4.5. SparseProject is(ǫ, δ)-differentially private.

Proof. For eachi, writeui(D) =
∑

x:D[x]>0D[x] ·A[i, x]. Note that because each entry ofA has magnitude

1/
√
T , for any databaseD′ that is neighboring withD, |ui(D)− ui(D′)| ≤ 1/

√
T . Therefore by Theorem

2.9, releasingui+ νi preserves(ǫ/(
√

8T ln(1/δ)), 0)-differential privacy. We may now apply the composi-
tion Theorem 2.10 to find that releasing allT coordinates ofu+ν preserves(ǫ, δ)-differential privacy. Note
thatf was chosen independently ofD, and releasing it has no privacy cost.

We first give a high probability bound on the maximum magnitude of any coefficient̂Qi of a projected
query for any queryQ ∈ Q. If we were using a random sign matrix for our projection, thefollowing lemma
would be a consequence of a simple Chernoff bound, but because we are using only a limited independence
family of random variables, we must be more careful.

15

Lemma 4.6. LetQ be a collection ofm-sparse linear queries of size|Q| = k, andA ∈ R
T×|X | be a matrix

with r-wise independent entries taking values in{−1/
√
T , 1/

√
T}, for some even integerr. Denote the

projection ofQ ∈ Q byA by Q̂ ∈ R
T . Then except with probability at mostβ

max
Q∈Q

max
i∈[T]
|Q̂[i]| ≤

(
k · T
2β

)1/r

· 2
√
mr√
T

Proof. We follow the approach of Bellare and Rompel [BR94, DP09]. Recall that for any queryQ, Q̂ ∈ R
T

is defined to be the vector such thatQ̂[i] =
∑

x∈X :Q(x)>0Q[x] · A[i, x]. Note that each coordinate is
dominated by the sum of at mostm r-wise independent Rademacher random variables (i.e. Bernoulli
random variables taking values in{−1, 1}): Q[i] ≤ 1√

T

∑m
i=1Ri, and so it is sufficient to bound this sum.

Equivalently, we can writeQ[i] ≤ 1√
T
(2
∑m

i=1Bi −m), where theBis arer-wise independent Bernoulli

random variables. LetB =
∑m

i=1Bi. By Markov’s inequality, we have:

Pr
[
|B − m

2
| > t

]
= Pr

[
(B − m

2
)r > tr

]
<

E
[
(B − m

2)
r
]

tr
(1)

Note that because theBis arer-wise independent, we haveE
[
(B − m

2)
r
]
= E

[
(B̂ − m

2)
r
]

whereB̂ is the

sum ofm truly independent Bernoulli random variables. We can therefore apply a standard Chernoff bound
to controlB̂:

E

[
(B̂ −m/2)r

]
=

∫ ∞

0
Pr
[
|B̂ −m/2| > t1/r

]
dt

≤
∫ ∞

0
exp

(
−2t2/r

m

)
dt

=
(m
2

)r/2 (r
2

)
!

≤ e1/6r
√
πr
(mr

4e

)r/2

where the first inequality follows by a Chernoff bound and thesecond inequality follows by Stirlings ap-
proximation4. Plugging this in to Equation 1, we find:

Pr
[
|B − m

2
| > t

]
< 2

(mr

t2

)r/2
(2)

Recall that|Q̂[i]| > c if and only if |B − m
2 | >

√
T
2 · c. Applying Equation 2 and taking a union bound over

all k queries andT indices per query proves the lemma.

Corollary 4.7. LetQ be a collection ofm-sparse linear queries of size|Q| = k, andA ∈ RT×|X | be a

matrix withr-wise independent entries taking values in{−1/
√
T , 1/

√
T}, for some integerr > log

(
kT
2β

)
.

Denote the projection ofQ ∈ Q byA by Q̂ ∈ R
T . Then except with probability at mostβ

max
Q∈Q

max
i∈[T]
|Q̂[i]| ≤ 4 ·

√
m log(kT/2β)√

T

4The form of Stirlings approximation that we use is:

k! < e
1/(12k)

√

2πk

(

k

e

)k

16

We will also make use of a tail bound for sums of Laplace randomvariables. This bound is likely well
known. We use a version proven in [GRU11].

Lemma 4.8 ([GRU11]). Suppose that{Yi}Ti=1 are i.i.d. Lap(b) random variables, and scalarsqi ∈
[−B,B]. DefineY =

∑T
i=1 qiYi. Then:

Pr[|Y | ≥ Bα] ≤
{

exp
(
− α2

6Tb2

)
, If α ≤ Tb;

exp
(
− α

6b

)
, If α > Tb.

We can now prove a utility theorem for SparseProject:

Theorem 4.9. For any 0 < ǫ, δ < 1, and anyβ < 1, and with respect to any class ofm-sparse linear
queriesQ ⊂ Qm of cardinality |Q| ≤ k, SparseProject is(α, β)-accurate for:

α = Õ

log

(
k

β

) √m log
(
1
δ

)

ǫn

where theÕ hides a term logarithmic in(m+ n).

Proof. LetDr = (û, f) be the random-projection data-structure output by SparseQueries, wherêu = u+ν.
Consider any fixed queryQ ∈ Q. Let Q̂ ∈ R

T denote the projection ofQ by the matrix implicitly defined
by f . We have:

Q(Dr) =
1

n
〈Q̂, û〉 = 1

n

(
〈Q̂, u〉+ 〈Q̂, ν〉

)

We will have two sources of error: distortion from the randomprojection, which we will analyze using the
Johnson-Lindenstrauss lemma, and error introduced because of the Laplace noise added for privacy. We
will analyze each source separately, starting with the error from the random projection.

Recall that we selectedτ = β
4k andT = 4 · 642ς−2 log(1/τ) for ς = 2

√
m

m+n2 . Therefore, applying
Corollary 4.2 together with a union bound over allk queriesQ ∈ Q, except with probability at mostβ/2:

max
Q∈Q
|〈Q,D〉 − 〈Q̂, u〉| ≤ ς

2
(||D||22 + ||Q||22)

≤ ς

2
(n2 +m)

=
√
m

We now consider the error introduced by the Laplace noiseν. We first apply Corollary 4.7 to see that
except with probability at mostβ/4, we have:

max
Q∈Q

max
i∈[T]
|Q̂[i]| ≤ 4 ·

√
m log(2kT/β)√

T

Conditioning on this event occurring, we may apply Lemma 4.8with B = 4 ·
√

m log(2kT/β)√
T

together with

a union bound over allk queriesQ ∈ Q, to find that except with probability at mostβ/4:

max
Q∈Q
|〈Q̂, ν〉| ≤ 4

√

6m

(
1

σ

)2

log

(
4k

β

)(
log

(
2k

β

)
+ log T

)

=
16
√
3

ǫ

√
m log

(
4k

β

)
log

(
1

δ

)(
log

(
2k

β

)
+ log T

)

= Õ

log

(
k

β

)
√

m log
(
1
δ

)

ǫ

17

where theÕ is hiding alog(T) term which is logarithmic inm andn.
Finally we can complete the proof. We have shown that except with probability at mostβ:

max
Q∈Q
|Q(D)−Q(Dr)| =

1

n
max
Q∈Q
|〈Q,D〉 − 〈Q̂, û〉| (3)

≤ 1

n
max
Q∈Q

(
|〈Q,D〉 − 〈Q̂, u〉|+ |〈Q̂, ν〉|

)
(4)

≤ 1

n

√m+ Õ

log

(
k

β

)
√

m log
(
1
δ

)

ǫ

 (5)

= Õ

log

(
k

β

)
√

m log
(
1
δ

)

ǫn

 (6)

which completes the proof.

4.1 Applications to Conjunctions

In this section, we again briefly briefly mention a simple application of our non-interactive mechanism to
the problem of releasing conjunctions with many literals. This gives the first polynomial time algorithm for
non-interactively releasing a super-polynomially sized set of conjunctions.

Definition 4.10. Recall that a conjunction is a linear query specified by a subset of variablesS ⊆ [d], and
defined by the predicateQS : {0, 1}d → {0, 1} whereQS(x) =

∏
i∈S xi. We say that a conjunctionQS

hast literals if |S| = t.

Remark 4.11. The set of all conjunctions ofd− k literals, denotedCd−k is 2k sparse, and of size|Cd−k| ≤
dk.

Sparseproject therefore gives the following corollary:

Corollary 4.12. There exists an(ǫ, δ)-differentially private algorithm in the non-interactiverelease setting
with polynomially bounded running time, that is(α, β)-accurate for the class of conjunctionsCd−logn on
d− log n literals for:

α = Õ

(
log n log d+ log

1

β

) √log
(
1
δ

)

ǫ
√
n

Note thatCd−logn is a super-polynomially sized set of conjunctions. As far aswe know, this rep-
resents the first algorithm in the non-interactive setting with non-trivial accuracy guarantees for a super-
polynomially sized set of conjunctions that also achieves polynomial running time.

5 Conclusions and Open Problems

In this paper, we have given fast interactive and non-interactive algorithms for privately releasing the class
of sparsequeries. Query release algorithms with run-time polynomial in the database size are unfortunately
rare, and so a natural question is whether the fast algorithms given here can be leveraged as subroutines in
the development of efficient algorithms for other applications. Of course the main question which remains
open is to find other classes of queries for which fast data release algorithms exist. Random projections of

18

the database, together with concise representations of theprojection matrix seem like a powerful tool. Can
they be leveraged in a setting beyond the case of sparse queries, when the norm of the queries are comparable
to the norm of the database itself?

References

[Ach01] D. Achlioptas. Database-friendly random projections. InProceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of databasesystems, page 281. ACM,
2001.

[BLR08] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy.
In Proceedings of the 40th annual ACM symposium on Theory of computing, pages 609–618.
ACM, 2008.

[Blu90] A. Blum. Learning boolean functions in an infinite attribute space. InProceedings of the
twenty-second annual ACM symposium on Theory of computing, pages 64–72. ACM, 1990.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. InProceedings of the
35th Annual Symposium on Foundations of Computer Science, pages 276–287. IEEE Computer
Society, 1994.

[CKKL11] M. Cheraghchi, A. Klivans, P. Kothari, and H.K. Lee. Submodular functions are noise stable.
Arxiv preprint arXiv:1106.0518, 2011.

[CW09] K.L. Clarkson and D.P. Woodruff. Numerical linear algebra in the streaming model. InPro-
ceedings of the 41st annual ACM symposium on Theory of computing, pages 205–214. ACM,
2009.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. InProceedings of the Third Theory of Cryptography ConferenceTCC, volume
3876 ofLecture Notes in Computer Science, page 265. Springer, 2006.

[DNP+10] C. Dwork, M. Naor, T. Pitassi, G.N. Rothblum, and S. Yekhanin. Pan-private streaming algo-
rithms. InIn Proceedings of ICS, 2010.

[DNR+09] C. Dwork, M. Naor, O. Reingold, G.N. Rothblum, and S. Vadhan. On the complexity of dif-
ferentially private data release: efficient algorithms andhardness results. InProceedings of the
41st annual ACM Symposium on the Theory of Computing, pages 381–390. ACM New York,
NY, USA, 2009.

[DP09] D. Dubhashi and A. Panconesi.Concentration of measure for the analysis of randomized algo-
rithms. Cambridge University Press, 2009.

[DRV10] C. Dwork, G.N. Rothblum, and S. Vadhan. Boosting anddifferential privacy. InProceedings
of the 51st Annua IEEEl Symposium on Foundations of ComputerScience, pages 51–60. IEEE,
2010.

[GHRU11] A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately Releasing Conjunctions and the Sta-
tistical Query Barrier. InProceedings of the 43rd annual ACM Symposium on the Theory of
Computing. ACM New York, NY, USA, 2011.

19

[GRU11] A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release.Arxiv preprint
arXiv:1107.3731, 2011.

[HR10] M. Hardt and G.N. Rothblum. A multiplicative weightsmechanism for privacy-preserving data
analysis. In51st Annual IEEE Symposium on Foundations of Computer Science, pages 61–70.
IEEE, 2010.

[HRS11] M. Hardt, G.N. Rothblum, and R.A. Servedio. Privatedata release via learning thresholds.
Arxiv preprint arXiv:1107.2444, 2011.

[HT10] M. Hardt and K. Talwar. On the Geometry of Differential Privacy. InThe 42nd ACM Symposium
on the Theory of Computing, 2010. STOC’10, 2010.

[KN10] D.M. Kane and J. Nelson. A derandomized sparse johnson-lindenstrauss transform.Arxiv
preprint arXiv:1006.3585, 2010.

[RR10] A. Roth and T. Roughgarden. Interactive Privacy via the Median Mechanism. InThe 42nd ACM
Symposium on the Theory of Computing, 2010. STOC’10, 2010.

[UV11] Jonathan Ullman and Salil P. Vadhan. PCPs and the hardness of generating private synthetic
data. In Yuval Ishai, editor,TCC, volume 6597 ofLecture Notes in Computer Science, pages
400–416. Springer, 2011.

20

	1 Introduction
	1.1 Results
	1.2 Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Utility
	2.2 Differential Privacy

	3 A Fast IDC Algorithm For Sparse Queries
	3.1 Applications to Conjunctions

	4 A Non-Interactive Mechanism via Random Projection
	4.1 Applications to Conjunctions

	5 Conclusions and Open Problems

