
A

Foundations of Typestate-Oriented Programming

Ronald Garcia, University of British Columbia
Éric Tanter, University of Chile
Roger Wolff, Carnegie Mellon University
Jonathan Aldrich, Carnegie Mellon University

Typestate reflects how the legal operations on imperative objects can change at runtime as their internal
state changes. A typestate checker can statically ensure, for instance, that an object method is only called
when the object is in a state for which the operation is well-defined. Prior work has shown how modular type-
state checking can be achieved thanks to access permissions and state guarantees. However, typestate was
not treated as a primitive language concept: typestate checkers are an additional verification layer on top of
an existing language. In contrast, a typestate-oriented programming language directly supports expressing
typestates. For example, in the Plaid programming language, the typestate of an object directly corresponds
to its class, and that class can change dynamically. Plaid objects have not just typestate-dependent inter-
faces, but also typestate-dependent behaviors and runtime representations.

This paper lays foundations for typestate-oriented programming by formalizing a nominal object-oriented
language with mutable state that integrates typestate change and typestate checking as primitive concepts.
We first describe a statically-typed language, called Featherweight Typestate (FT), where the types of object
references are augmented with access permissions and state guarantees. We describe a novel flow-sensitive
permission-based type system for FT. Because static typestate checking is still too rigid for some applica-
tions, we then extend this language into a gradually-typed language, called Gradual Featherweight Types-
tate (GFT). This language extends the notion of gradual typing to account for typestate: gradual typestate
checking seamlessly combines static and dynamic checking by automatically inserting runtime checks into
programs. The gradual type system of GFT allows programmers to write dynamically safe code even when
the static type checker can only partly verify it.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory—
Semantics; D.3.3 [Programming Languages]: Language Constructs and Features—Typestate; D.2.10
[Software Engineering]: Design—Representation

General Terms: Languages, Design, Reliability, Theory, Verification

Additional Key Words and Phrases: Access permissions, gradual typing, types, typestates

ACM Reference Format:
Garcia, R., Tanter, É., Wolff, R., Aldrich, J., 2014. Foundations of Typestate-Oriented Programming. ACM
Trans. Program. Lang. Syst. Accepted for Publication (May 2014), 46 pages.

An earlier version of this article was presented at the European Conference on Object-Oriented Program-
ming (ECOOP), July 2011 [Wolff et al. 2011].
R. Garcia is supported by the National Science Foundation under Grant #0937060 to the Computing Re-
search Association for the CIFellows Project and by the Natural Sciences and Engineering Research Council
of Canada. É. Tanter is partially funded by FONDECYT Project 1110051, Chile. J. Aldrich and R. Wolff are
supported by the National Science Foundation under grants #CCF-0811592 and #CCF-1116907.
Author’s addresses: R. Garcia, Software Practices Laboratory, Computer Science Department, University
of British Columbia; É. Tanter, PLEIAD Laboratory, Computer Science Department (DCC), University of
Chile; J. Aldrich and R. Wolff, Institute for Software Research, Carnegie Mellon University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax `1 (212)
869-0481, or permissions@acm.org.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:2 R. Garcia et al.

1. INTRODUCTION
This paper investigates an approach to increase the expressiveness and flexibility of
object-oriented languages, with the goal of improving the reliability of software. By
introducing typestate directly into the language and extending its type system with
support for gradual typing, useful abstractions can be implemented directly, stronger
program properties can be enforced statically, and when necessary dynamic checks can
be introduced seamlessly.

An object’s type specifies the methods that can be called on it. In most programming
languages, this type is constant throughout the object’s lifetime, but in practice, the
methods that it makes sense to call on an object change as its runtime state changes
(e.g., an open file cannot be opened again). These constraints typically lie outside the
reach of standard type systems, and unintended uses of objects result, at best, in run-
time exceptions.

More broadly, types generally denote properties that hold without change, and in
mainstream type systems, they fail to account for how changes to mutable state can af-
fect the properties of an object. To address this shortcoming, Strom and Yemini [1986]
introduced the notion of typestate as an extension of the traditional notion of type.
Typestate reflects how the legal operations on imperative objects can change at run-
time as their internal state changes.

The seminal work on typestate [Strom and Yemini 1986] focused primarily on
whether variables were properly initialized, and presented a static typestate checker. A
typestate checker must account for the flow of data and control in a program to ensure
that objects are used in accordance with their state at any given point in a computa-
tion. Since that original work, typestate has been used to codify and check more so-
phisticated state-dependent properties of object-oriented programs. It has been used,
for instance, to verify object invariants in .NET [DeLine and Fähndrich 2004], to verify
that Java programs adhere to object protocols [Fink et al. 2008; Bierhoff et al. 2009;
Bodden 2010], and to check that groups of objects collaborate with each other according
to an interaction specification [Naeem and Lhoták 2008; Jaspan and Aldrich 2009].

Most imperative languages cannot express typestates directly: rather, typestates are
encoded through a disciplined use of member variables. For instance, consider a typical
object-oriented file abstraction. A closed file may have a null value in its file descriptor
field. Accordingly, the close method of the file object first checks if the file descriptor is
null, in which case it throws an exception to signal that the file is already closed. Such
typestate encodings hinder program comprehension and correctness. Comprehension
is hampered because the protocols underlying the typestate properties, which reflect
a programmer’s intent, are at best described in the documentation of the code. Also,
typestate encodings cannot guarantee by construction that a program does not perform
illegal operations. Checking typestate encodings can be done through a whole-program
analysis (e.g. [Fink et al. 2008]), or with a modular checker based on additional pro-
gram annotations (e.g. [Bierhoff and Aldrich 2007]). In either case, the lack of integra-
tion with the programming language hinders adoption by programmers.

To overcome the shortcomings of typestate encodings, a typestate-oriented program-
ming (TSOP) language directly supports expressing them [Aldrich et al. 2009]. For in-
stance, in a class-based language that supports dynamically changing an object’s class
(such as Smalltalk), typestates can be represented as classes and can be dynamically
updated: objects can have typestate-dependent interfaces, behaviors, and representa-
tions. Protocol violations in a dynamically-typed TSOP language however result in
“method not found” errors. To catch such errors as early as possible, we want to regain
the guarantees provided by static type checking.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:3

Static typestate checking is challenging, especially in the presence of aliasing.
Some approaches sacrifice modularity and rely on whole program analyses [Fink
et al. 2008; Naeem and Lhoták 2008; Bodden 2010]; others retain modularity at the
expense of sophisticated type systems, typically based on linear logic [Walker 2005]
and requiring many annotations. One kind of annotations is access permissions, which
specify certain aliasing patterns [Boyland 2003; DeLine and Fähndrich 2004; Bierhoff
and Aldrich 2007]. None of these approaches, however, incorporates typestates as a
core language concept.

The first contribution of this paper is a core calculus for typestate-oriented pro-
gramming inspired by Featherweight Java [Igarashi et al. 2001], called Featherweight
Typestate (FT). FT is a nominal object-oriented language with mutable state that in-
tegrates typestate change and typestate checking as primitive concepts. Much like FJ,
which characterizes Java and nominal object-oriented programming, Featherweight
Typestate is meant to precisely characterize TSOP and to serve as a platform for ex-
ploring extensions to the paradigm and interactions with proven and bleeding-edge
language features. A novel flow-sensitive permission-based type system makes it pos-
sible to modularly check FT programs.

Unfortunately, FT and all existing static typestate checkers cannot always verify
safe code, due to the conservative assumptions they must make. Advanced techniques
like fractional permissions [Boyland 2003] increase the expressiveness of a type sys-
tem, within limits, but increase its complexity. Many practical languages already pro-
vide a simple feature for overcoming the limitations of their type systems: dynamic
coercions. Although these coercions (a.k.a. casts) may fail at runtime, they are often
necessary in specific scenarios where the static machinery is insufficient. Runtime as-
sertions about typestates are not supported by any modular approach we know of; one
primary objective of this work is to support them.

Once dynamic coercions on typestates are available, they can be used to ease the
transition from dynamically- to statically-typed code. For this reason, we extend grad-
ual typing [Siek and Taha 2006, 2007] to account for typestates: we make typestate
annotations optional, check as much as possible statically, and automatically insert
runtime checks into programs where needed. This allows programmers to gradually
annotate their code and get progressively more support from the type checker, while
still being able to safely run a partially-annotated program.

The second contribution of this work is Gradual Featherweight Typestate
(GFT), an extension of FT that supports dynamic permission checking and gradual
typing. Like FT, GFT directly integrates typestate as a first-class language concept.
Its analysis is modular and safe without imposing complex notions like fractional per-
missions onto programmers. It supports recovery of precise typing using dynamically-
checked assertions, supports the gradual addition of type annotations to a program,
and enables permission- and typestate-based reasoning in dynamically typed pro-
grams.

Section 2 introduces the key elements of typestate-oriented programming with ac-
cess permissions and state guarantees. Section 3 describes Featherweight Typestate,
including its syntax, static and dynamic semantics, and its metatheory. Section 4
extends FT to Gradual Featherweight Typestate. GFT’s dynamic semantics are pre-
sented using a type-safe internal language to which GFT translates. The soundness
proofs for both languages are available in companion technical reports [Garcia et al.
2013; Wolff et al. 2013]. Section 5 relates the dynamic semantics of FT to that of GFT.
In particular, every FT program is also a GFT program, and its translation to GFTIL
has the same runtime behavior as running the FT program directly. This connection

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:4 R. Garcia et al.

close()
file_desc
OpenFile

getPath()
path

File

open()
ClosedFile

AtEOF
read()
NotEOF

full

shared

pure

owner others

yes

yes

no

no

yes

yes

change state?

(a) (b)

ClosedFile

OpenFile

NotEOF

AtEOF

open()close()

read()

Fig. 1: (a) State diagram of a file. (b) Hierarchy of files states.

is analogous to the relationship between the simply typed, gradually typed, and cast-
based languages of [Siek and Taha 2006]. Section 6 concludes. A translator for GFT’s
source language, type checker for the internal language, and executable runtime se-
mantics are available at:
http://www.cs.ubc.ca/~rxg/gft/gft-toplas.tgz.1

2. TYPESTATE-ORIENTED PROGRAMMING
In order to avoid conditionals on flag fields or other indirect mechanisms like the
State pattern [Gamma et al. 1994], typestate-oriented programming proposes to ex-
tend object-oriented programming with an explicit notion of state (from here on we use
state to mean typestate). In TSOP, objects are modeled not just in terms of classes, but
in terms of changing states. Each state may have its own representation and methods,
which may transition the object to new states.

To illustrate this concept in practice, consider a familiar example. A file object has
methods such as open, close and read. However, these methods cannot be called at
just any time. A file can only be read after it has been opened; if we reach the end-of-
file, then reading is not available anymore; an open file cannot be opened again, etc.
Figure 1a shows a state diagram of a file object, describing the protocol. Figure 1b
depicts the corresponding TSOP model of file objects in terms of states, using distinct
classes in a subclass hierarchy to represent states. File is an abstract state; a file
object is either in the OpenFile or ClosedFile state. Note that the path field is present
in both states, but that the file_desc field, which refers to the low-level operating
system resource, is only present in the OpenFile state. Any OpenFile can be closed;
however, it is only possible to read from an open file if the end-of-file has not been
reached. Therefore, the OpenFile state has two refining substates, AtEOF and NotEOF.

State change. A Typestate-oriented programming language supports a state change
operation, denoted Ð. For instance, the close method in OpenFile can be defined as:

void close() { this Ð ClosedFile(this.path); }

The expression form eÐ C(...) transitions the object described by e into the state C;
the arguments are used to initialize the fields of the object. In other words, Ð behaves
like a constructor, but updates the object in-place.

1 An earlier version of this article was presented at the European Conference on Object-Oriented Program-
ming (ECOOP), July 2011 [Wolff et al. 2011]. This paper differs from our previous article in a number of
ways. Most importantly, we present the static language Featherweight Typestate (FT) in Section 3. Gradual
Typestate’s type system is simplified to more clearly reflect its foundations and its relation to FT.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:5

full
shared
pure

owner others

yes
yes
no

no
yes
yes

change state?

Fig. 2: Access permissions.

Declaring state changes. A statically-typed TSOP language must track state changes
in order to reject programs that invoke methods on objects in inappropriate states.
Consider the following:

OpenFile f = ...; f.close(); f.close();

The type of f before the first call to close is OpenFile. However, the second call to
close should be rejected by a type checker. One way to do so is to analyze the body of
the close method to deduce that it updates the state of its argument to ClosedFile.
However, this approach sacrifices modularity. Therefore, a method’s signature should
specify the output state of its arguments as well as that of its receiver. The calculi in
this paper specify the state changes of methods by annotating each argument with its
input and output state, separated by the " symbol. The input and output states of the
receiver object are placed in square brackets after the normal argument list, e.g.:

void close() [OpenFile " ClosedFile] {...}

Access permissions. In a language with aliasing, tracking state changes is a subtle
process. For instance, consider the following (where F, OF and CF are abbreviations for
File, OpenFile and ClosedFile, respectively):

void m(OF " CF f,OF " OF g) {f.close(); print(g.file_desc.pos);}

Because of possible aliasing, f and g may refer to the same object. In that case, the
method body of m must not be well-typed, as g may refer to a closed file by the time it
needs to access its (potentially non-existent) file_desc field.

To track state changes in the presence of aliasing, Bierhoff and Aldrich have pro-
posed access permissions [Bierhoff and Aldrich 2007; Bierhoff et al. 2009]. An access
permission specifies whether a given reference to an object can be used to change its
state or not, as well as the access permissions that other aliases to the same object
might have. In this work we consider three kinds of access permissions (Figure 2): full,
shared and pure. We say a reference has write access if it has the ability to change the
state of an object. full and shared have write access, where full implies exclusive write
access. Our choice of permissions captures a coherent and self-contained set from the
literature that supports common programming idioms. We can easily add more known
permissions (e.g., immutable, unique, and none), but they would simply add more com-
plexity to our development without providing any new insights.

One fix for the m method is to require that f and g have exclusive write access to an
OF in order to ensure that they are not aliases, and therefore that f.close() cannot
affect g’s referent.

void m(full OF " full CF f, full OF " full OF g){ ... }

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:6 R. Garcia et al.

State guarantees. Requiring g to have exclusive write access seems like overkill here.
Only a pure access permission is required to read the field file_desc. But we must still
ensure that the two parameters are not aliases.

For more flexible reasoning in the presence of aliasing, access permissions are aug-
mented with state guarantees (proposed by Bierhoff and Aldrich [2007] but formalized
and proven sound for the first time here). A state guarantee puts an upper bound on
the state change that may be performed by a reference with write access: it can only
transition an object to some subclass of the state guarantee. A type specification then
has the form k(D) C, where k is the access permission, D is the state guarantee, and C
is the current state of the object. A permission, k(D), is the access permission coupled
with the state guarantee.

Consider:

full(Object) NotEOF x = new NotEOF(...);
pure(OF) OF y = x;
x.read();
print(y.file_desc.pos);

While x.read() may change the state of the file by transitioning it to AtEOF, the type
system ensures that it cannot invalidate the open file assumption held by y.

State guarantees improve modular reasoning about typestates substantially. For in-
stance, they recover the ability to express something similar to an ordinary object-
oriented type: shared(C) C allows an object to be updated but guarantees that it always
obeys the interface C.2 Also, it turns out that we can use state guarantees to express
an alternative solution to the previous example: restrict g to the pure access permis-
sion it requires, but add a state guarantee of OF to ensure that no other reference can
transition the object to ClosedFile:

void m(full(F) OF " full(F) CF f,
pure(OF) OF " pure(OF) OF g){ ... }

In this case, we can still statically enforce that f and g are not aliases by carefully
choosing exactly how references to objects can be created. In this way, we can allow the
programmer more flexibility than always demanding exclusive access to objects.

Permission flows. Permissions are split between all aliases and carefully restricted
to ensure safety. This includes aliases in local variables, as well as in object fields.
Consider the following snippet:

class FileContainer{ shared(OF) OF file; }

full(Object) OF x = new OF(...);
pure(OF) OF y = x;
full(Object) FileContainer z = new FileContainer(x);

After construction of the OF, the reference x has no aliases, so it is safe to give it full ac-
cess permission with an unrestricted update capability (Object state guarantee). Then,
a local alias y is created, capturing a pure access permission with OF guarantee. After
this point, any state change done through x must respect this guarantee. Therefore, the
permission of x must be downgraded to full(OF). Finally, a container object is created,

2In FT, state guarantees are enforced for the rest of program execution. As we will see, however, when we
consider gradual typing, a guarantee can be removed if the variable of the guaranteed type goes out of scope,
or a run-time assertion on that variable is executed. Extensions such as borrowing can also allow guarantees
(e.g. on a borrowed object) to be removed.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:7

passing x as argument to the constructor. The field of z captures a shared(OF) permis-
sion. The permission of x is downgraded again, this time to shared(OF). At this point,
there are three aliases to the same file object: x and z.file both hold a shared(OF) per-
mission, and y holds a pure(OF). All aliases must be consistent, in that a state update
through one alias must not break the invariants of other references.

Temporarily holding permissions. Consider the example of a socket. A socket (of type
S) is like a file in that it can be open (OS) or closed (CS). However, an open socket can
also be ready (RS) or blocked (BS). The wait method accepts a blocked socket and waits
until it is ready,3 while the read method gets data from the socket. The methods of
socket have the following signatures:

void wait() [pure(OS) OS >> pure(OS) RS]
int read() [shared(OS) RS >> shared(OS) OS]

Now consider the following program, which waits on a blocked socket and then reads
from it:

shared(OS) OS x = new OS(...);
x.wait();
x.read();

This program is ill-typed due to the downgrading of permissions. In order to invoke
wait, the permission to x is downgraded from shared(OS) OS to pure(OS) OS. Therefore,
read, which requires a shared(OS) RS, cannot be called, even though the call to read
is safe: wait requires a read-only alias to its argument, and does nothing that would
interfere with the caller’s shared(OS) permission. This is an unfortunate limitation
due to the conservative nature of the type system.

We could attempt to work around this problem by creating a temporary alias to x
with only a pure access permission, and use that alias to invoke wait. This is however
cumbersome and does not allow for permissions to be merged back later. Merging the
permission returned by wait into the permission held by the client is crucial in this
case, because we want x to have type shared(OS) RS, taking advantage of the fact that
wait returns when the socket is ready (RS).

In order to properly support this pattern, we introduce a novel expression, hold,
which reserves a permission to a variable for use within a lexical scope, and then
merges that permission with that of the variable at the end of the scope. For instance:

shared(OS) OS x = new OS(...);
hold[x:shared(OS) OS] { x.wait(); }
x.read();

The program is now type correct: hold retains a shared access permission to the object
referenced by x, which is merged back once the body of hold is evaluated. The call to
wait is performed with just the necessary access permission, pure, and the state of
the object is merged back into the permission of x, enabling the call to read. Our hold
construct serves a similar purpose to borrowing [Boyland and Retert 2005; Naden et al.
2012], in that it can be used to ensure that the caller retains the permissions it needs
after making a method call. The two differ in that borrowing ensures the callee returns
all of the permissions that it was given without storing any in the heap. In contrast
hold is for the caller only: the callee can do what it wants with the permissions it
receives so long as sufficient permissions are returned to the caller.

3Note that wait does not actually change the state of the socket itself, but rather asserts the desired RS type
once the state of the socket has been changed, e.g. by another thread or by a coroutine.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:8 R. Garcia et al.

Dynamic permission asserts. As sophisticated as the type system might be, it is still
necessarily conservative and therefore loses precision. Dynamic checks, like runtime
casts, are often useful to recover such precision. For instance, consider the following
extension of the FileContainer snippet seen previously in which both y and z are up-
dated to release their aliases to x.
...
y = new OF(...);
z Ð Object();
assert<full(F) OF>(x);
x.close();

Assuming close requires a full(F) permission to its receiver, the type system is unable
to determine that x can be closed, even though it is safe to do so (because x is once
again the sole reference to the object). A dynamic assert allows this permission to be
recovered. Like casts, dynamic asserts may fail at runtime.

Note that dynamic class asserts, which modify the static class of an object but leave
permissions alone, need no special support beyond what is needed for a typical object-
oriented language. Therefore, a static typestate language that runs on a standard OO
backend can support dynamic assertions about the class of an object. Dynamic permis-
sion asserts, on the other hand, require special support from the runtime system.

Gradual typing. A statically-typed TSOP program requires more annotations than
a comparable object-oriented program. This may be prohibitively burdensome for a
programmer, especially during the initial stages of development. For this reason, we
develop a gradually-typed calculus that supports a dynamic type Dyn. Precise type
annotations can then be omitted from an early draft of a program as in the following
code:
Dyn f = ...; f.read();

A runtime check verifies that f refers to an object that has a read method4. Assume
that read is annotated with a receiver type full(OF) NotEOF. In this case, we must
ensure that we have an adequate permission to the receiver. Thus, a further runtime
check verifies that f refers to an object that is currently in the NotEOF state, that no
aliases have write access, and that all aliases have a state guarantee that is a su-
perstate of OF. The last two conditions ensure that invariants of aliases to f cannot
be broken. Gradual typing thus enables dynamically and statically-typed parts of a
program to coexist without compromising safety.

While typestate checking has historically been considered only in a fully static set-
ting, supporting gradual typestate checking means that access permissions and state
guarantees are properties that are dynamically enforced. Just like objects have refer-
ences to their class, object references have both access permissions and state guaran-
tees. For instance:
Dyn x = app.getFile();
pure(OF) OF y = x;
app.process(x);

x is a dynamic reference to a file, and remains so even after a statically-typed alias y
is created. However, the static assumptions made by y are dynamically enforced: both
x and y refer to (at least) an open file after the execution of process. If process tries to
close x, an error is raised.

4Note that Dyn is different from Object: if f had type Object then type checking would fail because Object
has no read method.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:9

Putting it all together. Listing 1 exhibits the above capabilities in a small logging
example that generalizes to other shared resources5. The OpenFileLogger (OFL) state
holds a reference to a file object (OF) and provides a log method for logging messages to
it. When logging is complete, the close method acquires all permissions to the file by
swapping in a sentinel value6 (with :=:, explained in the next section), closes the file,
and transitions the logger to the FileLogger (FL) state, which has no file handle. The
client code declares and uses two logging interfaces, staticLog and dynamicLog. They
are somewhat contrived, but are meant to represent APIs that utilize a file logger
but do not store it. After creating logger (line 23), the file0 reference no longer has
enough permission to close the file, so calls to logger.log() are safe. Line 25 passes
logger to a dynamically-typed method; as a result, logger is of type Dyn after the call.
Using hold, we hold a shared(OFL) OFL permission to the logger while the dynamicLog
call happens, then restore those permissions before the call to staticLog. Had we not
held these permissions, the logger would have Dyn type, and the call to staticLog()
(line 26) would be preceded by an (automatically-inserted) assertion to dynamically
ensure that logger is of the appropriate type (shared(OFL) OFL). By line 28, logger
only has shared access permission, though no other aliases exist. After asserting back
full access permission, logger can close the file log.

3. FEATHERWEIGHT TYPESTATE
In this section we present Featherweight Typestate (FT), a static language for
typestate-oriented programming. FT is based on Featherweight Java (FJ) [Igarashi
et al. 2001]. FT is the first formalization of a nominal typestate-oriented program-
ming language, with support for representing typestates as classes, modular typestate-
checking and state guarantees.

3.1. Syntax
Figure 3 presents FT’s syntax. Smallcaps (e.g. FIELDNAMES) indicates syntactic cate-
gories, italics (e.g. C) indicates metavariables, and sans serif (e.g. Object) indicates par-
ticular elements of a category. An overbar (e.g. A) indicates possibly empty sequences
(e.g. A1, ..., An). FT assumes a number of primitive notions, such as identifiers (includ-
ing this) and method, field, and class names (including Object). An FT program PG is
a list of class declarations CL paired with an expression e. Class definitions are stan-
dard, except that an FT class does not have an explicit constructor: instead, it has an
implicit constructor that assigns an initial value to each field. Featherweight Java, for
instance, requires an explicit constructor, but its type system forces the same behavior
as in FT. Fields F and methods M are mostly standard. Each method parameter is
annotated with its input and output types, and the method itself carries an annotation
(in square brackets) for the receiver object. Like FJ, we use helper functions like fields,
method , etc., whose definitions are deferred to the appendix.

Types in FT extend the Java notion of class names as types. As explained in Sec-
tion 2, the type of an FT object reference has two components, its permission and its
class (or state). The permission can be broken down further into its access permission
k (described previously in Figure 2) and state guarantee D. We write these object ref-
erence types in the form kpDq C. Following the Java tradition, the Void type classifies
expressions executed purely for their effects. No source-level values have the Void type.

5When the output type is the same as the input type, we omit it for brevity; a practical language would
provide means to further abbreviate our type annotations.
6A practical language would support nullable references, but for simplicity we omit this.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:10 R. Garcia et al.

1 class FileLogger { /* Logging´related data and methods */ }
2
3 class OpenFileLogger : FileLogger {
4 full(OF) OF file;
5
6 void log(string s)[shared(OFL) OFL] {...}
7
8 void close()[full(FL) OFL " full(FL) FL] {
9 full(OF) OF fileT = (this.file :=: new OF("/dev/null"));

10 assert<full(F) OF>(fileT);
11 fileT.close();
12 this Ð FileLogger();
13 }
14 }
15
16 // Client code
17 void staticLog(shared(OFL) OFL logger) {
18 logger.log("in staticLog");
19 }
20 Dyn dynamicLog(Dyn logger) { logger.log("in dynamicLog"); }
21
22 full(OF) OF file0 = new OF(...);
23 full(OFL) OFL logger = new OFL(file0);
24
25 hold[logger:shared(OFL) OFL]{ dynamicLog(logger); }
26 staticLog(logger);
27
28 assert<full(FL) OFL>(logger);
29 logger.close();

Listing 1: Sample Typestate-Oriented Code.

To simplify the description of the type system, expressions in FT are restricted to
A-normal form [Sabry and Felleisen 1993], so let expressions explicitly sequence all
complex operations (we write e1; e2 as shorthand for the standard encoding).

Apart from method invocation, field reference and object creation (all standard), FT
includes the update operation x0 Ð Cpx1q, which lets programs directly express types-
tate change. It replaces the object referred to by x0 with a new object of class C, which
may not be the same as x0’s current class. Also non-standard is the swapping assign-
ment x0.f :=: x1. It assigns the value of x1 to the field f of object x0 and returns the
old value as its result. Section 3.3 explains why this is needed.

The assert operation changes the static type of an object reference. Asserts are sim-
ilar to casts in that an assert up the subclass hierarchy succeeds immediately, while
an assert down the class hierarchy requires a runtime check. Assertions are strictly
more powerful than casts: they change the type of an existing reference, whereas casts
produce a new reference with a different type. In fact, a type cast pT q x can be encoded
using class assertions:

pTq x
4
=

let y : T0 = x
in let z : Void = assertxTypyq
in y

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:11

x, this P IDENTIFIERNAMES
m P METHODNAMES
f P FIELDNAMES

C,D,E,Object P CLASSNAMES
PG ::= xCL, ey (programs)
CL ::= class C extends D t F M u (classes)
F ::= T f (fields)
M ::= T mpT " T xq rT " T s t return e; u (methods)
T ::= P C | Void (types)
P ::= kpDq (permissions)
k ::= full | shared | pure (access permissions)
e ::= x | let x : T = e in e | new Cpxq (expressions)
| x.f | x.mpxq | x.f :=: x | xÐ Cpxq
| assertxT ypxq | holdrx : T speq

∆ ::= x : T (type contexts)

Fig. 3: Featherweight Typestate: Syntax

where y and z are fresh, and the type T0 depends on how much permissions are to be
taken from x. The assert operation of FT cannot change the permission of a variable,
but the run-time permission tracking introduced in GFT will allow us to add support
for permission-changing assertions there.

The hold expression holdrx : T speq captures the amount of x’s permissions denoted
by T for the duration of the computation e. When e completes, these permissions are
merged back into x.

3.2. Managing Permissions
Before we present FT’s typing judgments, we must explain how permissions are
treated. Permissions to an object are a resource that is split among the variables and
fields that reference it. Figure 4 presents several auxiliary judgments that specify how
permissions may be safely split, and how they relate to typing.

First, access permission splitting k1 V k2{k3 describes how given a k1 access permis-
sion, k2 can be acquired, leaving behind k3 as the residual. When we are only concerned
that k2 can be split from k1 (i.e. the residual access permission is irrelevant), we write
k1 V k2. For instance, given any access permission k, full V k and k V k.

Permissions partially determine what operations are possible, as well as when an
object can be safely bound to an identifier. The restrictions on permissions are for-
malized as a partial order, analogous to subtyping. The notation P1 ă: P2 says that
P1 is a subpermission of P2, which means that a reference with P1 permission may
be used wherever an object reference with P2 permission is needed. As expected, the
subpermission relation is reflexive, transitive, and anti-symmetric. The first subper-
mission rule says that splitting an access permission produces a lesser (or identical)
permission. The subpermission rules for pure and full access permissions respectively
capture how state guarantees affect the strength of permissions. Pure access permis-
sions covary with their state guarantee because a pure reference with a superclass
state guarantee assumes less reading capability. Full access permissions contravary
with their state guarantee because a full reference with a subclass state guarantee
assumes less writing capability (i.e. it can update to fewer possible states). Although
full access permissions also allow reads, those reads can only see writes through the
full reference itself; therefore contravariance is enough and we do not have to enforce
invariance. The last rule ensures that subpermissions are transitive.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:12 R. Garcia et al.

k V k{k Access Permission Splitting

k V pure{k full V full{pure

k P t full, shared u
k V shared{shared

P Ø P Compatible Permissions

E ă: D
kpEq Ø purepDq

P1 Ø P2

P2 Ø P1

sharedpDq Ø sharedpDq

@i, j : i ‰ j.Pi Ø Pj

P compatible

P ă: P Subpermission

k1 V k2
k1pDq ă: k2pDq

E ă: D
purepEq ă: purepDq

D ă: E
fullpEq ă: fullpDq

P1 ă: P2 P2 ă: P3

P1 ă: P3

P V P {P Permission Splitting

k1pD1q ă: k2pD2q k1 V k2{k3
D3 = D1

ă
: D2

k1pD1qV k2pD2q{k3pD3q

T V T {T Type Splitting

P1 V P2{P3 C1 ă: C2

P1 C1 V P2 C2{P3 C1

Void V Void{Void

T {T V T Type merging

P = P1

ă
: P2 C = C1

ă
: C2

P1 C1{P2 C2 V P C T {Dyn V T Dyn{T V T

T ă: T

Subtyping

T1 V T2

T1 ă: T2

T ó T

Max. Residual

T1 V T1{T2

T1 ó T2

TÓ Type Demotion

psharedpDq CqÓ = sharedpDq D
ppurepDq CqÓ = purepDq D

TÓ = T otherwise

A type kpDqC is well-formed iff C ă: D

Fig. 4: Permission and Type Management Relations

Permission splitting extends access permission splitting to account for state guar-
antees. First, if k1pD1q ă: k2pD2q, then the latter can safely be split from the former.
The remaining task then is to determine the proper residual permission k3pD3q. The
residual access permission k3 comes directly from access permission splitting. For the
residual state guarantee, observe that k1pD1q ă: k2pD2q implies that D1 and D2 are re-
lated by subclassing. By considering the possible cases of permission splitting, we find
that the state guarantee should be whichever of D1 and D2 is subclass of the other:
this is necessary if k3 is a write access, and ideal if k3 is pure. We denote this as the
greatest lower bound of D1 and D2 in the subclass hierarchy D1

ă
: D2, an operation

that we use (along with greatest lower-bound permission P1

ă
: P2) several times in the

language formalization.
Permission splitting in turn extends to type splitting T V T {T , taking subclasses

into account for object references; the Void type can be arbitrarily split. Type splitting

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:13

has a special case called the maximum residual, the most permissions that can be split
without changing the original type. Type splitting determines the notion of subtyping
T ă: T used in FT. As with access permission splitting, we write P1 V P2 or T1 V T2 to
express that P2 or T2 can be split from P1 or T1 respectively.

Converse to type splitting is type merging, denoted T {T V T . The type merging re-
lation describes how two separate permissions to the same underlying object may be
combined.

The compatible permissions relation P1 Ø P2 says that two distinct references to the
same object, one with permissions P1 and the other with P2 can soundly coexist at run-
time. For instance, sharedpCq Ø sharedpCq, and fullpCq Ø purepObjectq. On the other
hand, fullpCq Ü fullpCq because if one of these references updated its state guarantee
(further down the subclass hierarchy), then the other reference could violate it during
a state change operation. The compatible permission relation is used to define the re-
lation P compatible: that the outstanding permissions P of references to a particular
object can all coexist. These concepts are critical for showing that well-typed programs
remain in a consistent state as they run.

Finally, we defer the discussion of type demotion to the end of Section 3.3.

3.3. Static Semantics
Armed with the permission management relations, we now discuss the most salient
feature of FT’s static semantics: flow-sensitive typing.

As with FJ, the FT type system relies upon type contexts. Whereas Γ is the standard
metavariable for type contexts, we use a different metavariable ∆ to emphasize that
the typing contexts are not merely lexical. In our notation, ∆, x : T specifies a context
∆1 that includes all of the bindings in ∆ plus the binding x : T , which requires that ∆
contains no entry for x. In FT’s type system, the types of identifiers are flow-sensitive
in the sense that they vary over the course of a program. In part this reflects how the
permissions to a particular object may be partitioned and shared between references
as computation proceeds, but it also reflects how update and assert operations may
change the class of an object during execution.

The FT typing judgment is a quaternary relation of the form ∆1 $ e : T % ∆2, which
means “given the typing assumptions ∆1, the expression e can be assigned the type
T and doing so produces typing assumptions ∆2 as its output.” The assumptions in
question are the types of each reference. Threading typing contexts through the typing
judgment captures the flow-sensitivity of type assumptions.

Typing rules. Figure 5 presents the typing rules for FT expressions (all prefixed with
“ST”: S for “static typing” and T for “typing”).

The (STvar) typing rule, for variable references, demonstrates flow-sensitive typing
immediately. If the type context binds a variable x to a type T1, and that variable is
referenced at type T2, then the output type context resets the type assumption for x
according to the type splitting relation. Observe that the (STvar) rule implies that in
general a variable reference can be given many possible types:

LEMMA 3.1. If ∆ $ x : T1 % ∆1 and T1 ă: T2 Then ∆ $ x : T2 % ∆2 for some ∆2.

This is similar to the standard subsumption rule for object-oriented languages, but
changing the type from T1 to T2 also changes the output context.

The (STlet) rule reflects the standard value-binding behavior for let, but it also se-
quences permission-consuming operations. After typing the expression bound to x, the
new typing context is updated with a type assumption for x, which is used to type the
body of the let. To preserve lexical scoping, x (and its associated permission) is removed
from the output context.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:14 R. Garcia et al.

∆ $ e : T % ∆ Well-typed Expression

(STvar)
T1 V T2{T3

∆, x : T1 $ x : T2 % ∆, x : T3
(STlet)

∆ $ e1 : T1 % ∆1

∆1, x : T1 $ e2 : T2 % ∆1, x : T 11

∆ $ let x : T1 = e1 in e2 : T2 % ∆1

(STnew)

fieldspCq = T f

∆ $ x : T % ∆1

∆ $ new Cpxq : fullpObjectq C % ∆1

(STupdate)

k P tfull, sharedu fieldspCq = T f C ă: D

∆ $ x2 : T % ∆1, x1 : kpDq E

∆ $ x1 Ð Cpx2q : Void % ∆1Ó, x1 : kpDq C

(STfield)
T2 f P fieldspC1q T2 ó T 12

∆, x : P1 C1 $ x.f : T 12 % ∆, x : P1 C1
(STswap)

T2 f P fieldspC1q

∆, x1 : P1 C1 $ x2 : T2 % ∆1

∆, x1 : P1 C1 $ x1.f :=: x2 : T2 % ∆1

(STinvoke)
P1 C1 ă: Tt mdeclpm,C1q = T mpTi " T 1i q rTt " T 1ts T2 ă: Ti

∆, x1 : P1 C1, x2 : T2 $ x1.mpx2q : T % ∆Ó, x1 : T 1t , x2 : T 1i

(STassert)
∆, x : P C $ assertxP Dypxq : Void % ∆, x : P D

(SThold)

T1 V T2{T3 T2Ó {T 13 V T 11
∆, x : T3 $ e : T % ∆1, x : T 13

∆, x : T1 $ holdrx : T2speq : T % ∆1, x : T 11

where

∆ $ x : T % ∆1
4
= ∆ = ∆0 $ x0 : T0 % ∆1; ∆1 $ x1 : T1 % ∆2; ¨ ¨ ¨ ∆n $ xn : Tn % ∆n`1 = ∆1

Fig. 5: Featherweight Typestate: Expression Typing Rules

The (STnew) rule, for creating a new object, is analogous to the equivalent Java rule.
The prominent difference is that in FT a new object also has permissions associated
with it. The reference to a new object is given fullpObjectq permissions because it is
unique, so it can update the object arbitrarily without concern about aliases. This rule
relies on an auxiliary judgment that captures the idea of a well-typed constructor call:
the arguments to the constructor are iteratively checked against the class fields and
the typing context is iteratively updated accordingly. This means that a variable may
be given for more than one argument to the constructor, but because of flow-sensitive
typing, it may be typed differently each time.

The (STassert) rule reflects how the assert operation assertxT ypxq changes class type
information of the reference x. Though FT types consist of more than the object’s class,
this operation can only affect the class part of an object’s type: the permission must
stay the same. The assert operation could safely decrease permissions to an object, but
it would add no expressiveness to the language.

The (SThold) rule reflects how the hold expression acquires permissions to an object
for the dynamic extent of its subordinate expression. Once that expression completes,
the held permissions are returned to the reference from which they were acquired. It
types the subexpression e after splitting T2 from variable x. The resulting type of x is
the merge of the demotion of T2 (the type being being held) and T 13, the resulting output
type of x after evaluation of e.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:15

Class update. The (STupdate) rule type checks FT’s novel update operation,
x1 Ð C2px2q, which replaces the receiving object referenced by x1 with C2px2q. This
operation is only possible if the reference to the receiving object has shared or full ac-
cess permissions to the underlying object. The possible target states of an object are
implicitly constrained by the state guarantee that the object has after the arguments
to the constructor have been typed, since kpDq C must be a well-formed type. This en-
sures that the outstanding references to the updated object (including possibly its own
fields) all have a consistent view of the object. The type of the update operation is Void
since it is performed solely for its effect on the heap. The type of the updated object in
the output context reflects its new class.

Type demotion. Update operations can alter the state of any number of variable ref-
erences. To retain soundness in the face of these operations, it is sometimes necessary
to discard previously known information in case it has been invalidated. In these cases,
an object reference’s class must revert to its state guarantee, which is a trusted state
after an update. The type demotion function TÓ (Figure 4) expresses this restricting
of assumptions. Note that full references need not be demoted since no other reference
could have changed their states. We write ∆Ó for the compatible extension of demotion
to typing contexts.

The (STupdate) rule necessarily demotes types: type assumptions from the input
context are demoted in the output context to ensure that any aliases to the updated
object retain a conservative approximation of the object’s current class.

Note that type demotion does not imply any runtime overhead: it is a purely static
process. Furthermore, types of class fields have the restriction that they must be in-
variant under demotion (i.e. TÓ = T). This means that a field with shared or pure access
permission has the same class type as its state guarantee. Since the types of fields do
not change as a program runs, they must not be invalidated by update operations.
This restriction ensures that field types remain compatible with other aliases to their
objects. As a result only local variable types need ever be demoted.

The classes of variables in ∆2 are demoted to their state guarantees since state
change may have invalidated those stronger assumptions. Only one object is updated
by this operation, but it may affect any number of outstanding references.

Field Operations. As was mentioned in Section 3.1, two operations operate directly
on an object field: field reference and swapping assignment. Field reference (STfield)
does not relinquish any of the permissions held by the field, so the result type is deter-
mined by taking the maximal residual T 12 of the field type T2. This operation does not
affect the permissions of the object reference used to access the field.

Swap operations (STswap) cause an object to relinquish all permissions to a field
and replace it with a new reference. The swap expression has two purposes. The first
is to reassign a field value in the heap. The second is to return the old field value as the
result of the expression. If a field has shared or pure access permissions to an object,
then field reference can yield the same amount of permission; however, if a field has
full access permission to an object, only swapping can yield that full access permission.

Method Invocation. The (STinvoke) rule describes how method invocations are type
checked. When invoking a method, first the method declaration is looked up based on
the type of the receiver. Next, both the receiver and the arguments are checked for
compatibility. The resulting type of the expression is, as usual, specified by the method
declaration. The outgoing context demotes the references in ∆. This is necessary to
keep type checking modular, since the method call may perform typestate update op-
erations. The outgoing types for the receiver and the arguments are, however, listed in

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:16 R. Garcia et al.

Md ok in C Well-typed Method Declaration

class C extends D t ¨ ¨ ¨ u
mdeclpD,mq undefined

Tr mpTi " T 1i qrPt C " T 1t s ok in C

class C extends D t ¨ ¨ ¨ u
mdeclpD,mq = Tr mpTi " T 1i qrPt E " T 1t s

Tr mpTi " T 1i qrPt C " T 1t s ok in C

M ok in C Well-typed Method

Tr mpTi " T 2i qrPt Ct " T 2t s ok in Ct
this : Pt Ct, x : Ti $ e : Tr % this : T 1t , x : T 1i

T 1t ă: T 2t T 1i ă: T 2i

Tr mpTi " T 2i xq rPt Ct " T 2t s t return e; u ok in Ct

CL ok Well-typed Class

C0 ň: Object kpDq EÓ= kpDq E M ok in C0

class C0 extends C1 t kpDq E f ; M u ok

PG ok Well-typed Program

CL ok ¨ $ e : T % ¨

xCL, ey ok

Fig. 6: FT Program Typing Rules

the method’s declaration, and as such are available to the program when the method
returns.

Note that in several other expressions (new, for example), permissions to certain
variables (arguments to the constructor) are implicitly split, and residual permissions
are left over for typing the remainder of the program. Method invocation is different.
To keep FT’s design simple, the method invocation rule checks that method arguments
(including the receiver) have enough permission to type the method call, and discards
any residual permissions. Also, the structure of (STinvoke) requires all method argu-
ments to be unique, e.g., x.mpy, yq is untypeable (See Section 3.7).

Typing Programs. Recall that an FT program is a pair of a class table and an ex-
pression. To formalize the notion of a well-typed program, we introduce a few more
judgments (Figure 6).

First we consider the interface or declaration of a method:

Md ::= T mpT " T q rT " T s

The method declaration judgment Md ok in C checks that the interface specification
for a method is compatible with a particular class, which holds if the method is alto-
gether new, or a proper override of a superclass method. This is used by the method
typing judgment M ok in C, which checks that a method M is well-typed if it is de-
fined as part of class C. To type the body of the method, the rule assumes the input
types from the method declaration. On completion of typing the method, the argu-
ments and this are checked against the method’s output specification. This typing rule
allows this and the arguments x to be subtypes of the output types specified by the
declaration. The method is well-typed so long as enough permissions remain for these
variables to match the declared output specification. If the type system required the
output context ∆0 to exactly match the output specification, then the language would
need more mechanisms (such as an explicit subsumption rule).

For a class definition to be well-typed, all of its fields must have object reference
types, all of its methods must be well-typed, and its superclass hierarchy must lead
to Object. This implies that all intermediate superclasses are defined and that every
chain of superclasses ends at Object, i.e. there are no inheritance cycles. Also, as ex-

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:17

plained above, we require that the permissions associated with field types be invariant
under demotion.

Finally, a program is well-typed if its class table and main expression are well-typed
in turn.

3.4. Dynamic Semantics
The runtime semantics of the language add some new syntactic notions. In particu-
lar, FT is a stateful language, so most values in the language are references to heap-
allocated objects.

o P OBJECTREFS
l P INDIRECTREFS
v P VALUES

Cpoq P OBJECTS
e ::= s | v | let x : T = e in e | new Cpsq | s.f (expressions)
| s.mpsq | s.f :=: s | sÐ Cpsq | assertxT ypsq
| mergerl : T {lspeq

s ::= x | l (simple expressions)
v ::= void | o (values)
µ P OBJECTREFS á OBJECTS (stores)
ρ P INDIRECTREFS á VALUES (environments)
E ::= ˝ | let x = E in e | mergerl : T {lspEq (evaluation contexts)

Ultimately, expressions in the language evaluate to values, i.e. void or an object refer-
ence o. Since the language is imperative, the value void is used as the result of opera-
tions that are only interesting for their side-effects. In other object-oriented languages,
a void object is unnecessary: imperative operations can return some arbitrary object
reference. However, FT must explicitly consider how permissions to an object are dis-
tributed, so providing a void object lets us clearly indicate when no permissions to any
object are returned.

The merge expression is a technical device that models how held permissions are
treated dynamically. It tracks held permissions at runtime and ultimately merges
those held permissions back into their associated indirect reference. This expression is
purely a tool for proving type safety.

To connect object references to objects, we use stores µ, which abstract the runtime
heap of a program. Stores are represented as partial functions from object references o
to objects Cpoq. A well-formedness condition is imposed on stores: only object references
o in the domain of a store can occur in its range.

In addition to the traditional heap, the dynamic semantics uses a second heap, which
we call the environment, that mediates between variable references and the object
store. The environment serves a purely formal purpose: it supports the proof of type
safety by keeping precise track of the outstanding permissions associated with differ-
ent references to objects at runtime. In the source language, two variables could refer
to the same object in the store, but each can have different permissions to that object.
The environment tracks these differences at runtime. It maps indirect references l to
values v. Two indirect references can point to the same object, but the permissions
associated with the two indirect references are kept separate. The runtime language
therefore adds a notion of simple expressions s, which include true variables x and
indirect references l, and may be used in the runtime language everywhere that vari-
ables can be used in the programmer-visible language (except, of course, variable defi-
nition). The environment is not needed in a practical implementation of the language.
As we show later (Section 3.6), well-typed programs can be safely run on a traditional
single-heap machine where object references are simple expressions.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:18 R. Garcia et al.

µ, ρ, eÑ µ1, ρ1, e1

(SElookup)
µ, ρ, lÑ µ, ρ, ρplq

(SEnew)
o R dompµq

µ, ρ, new Cplq Ñ µro ÞÑ Cpρplqqs, ρ, o

(SElet)
l R dompρq

µ, ρ, let x : T = v in eÑ µ, ρrl ÞÑ vs, rl{xse

(SEupdate)
µ, ρ, plt Ð Cplqq Ñ µrρpltq ÞÑ Cpρplqqs, ρ, void

(SEfield)
µpρplqq = Cpoq fieldspCq = T f

µ, ρ, l.fi Ñ µ, ρ, oi

(SEswap)
µpρpl1qq = Cp¨ ¨ ¨ oi ¨ ¨ ¨ q fieldspCq = T f

µ, ρ, l1.fi :=: l2 Ñ µrρpl1q ÞÑ Cp¨ ¨ ¨ ρpl2q ¨ ¨ ¨ qs, ρ, oi

(SEassert)
µpρplqq = Cp¨ ¨ ¨ q C ă: D

µ, ρ, assertxP Dyplq Ñ µ, ρ, void

(SEinvoke)

µpρplqq = Cp¨ ¨ ¨ q

methodpm,Cq = Tr mpT " T 1 xq rTt " T 1t s t return e; u

µ, ρ, l.mpl1q Ñ µ, ρ, rl1{xsrl{thisse

(SEcongr)
µ, ρ, e1 Ñ µ1, ρ1, e11

µ, ρ, let x : T = e1 in e2 Ñ µ1, ρ1, let x : T = e11 in e2

(SEhold)
l1 R dompρq

µ, ρ, holdrl : T speq Ñ µ, ρrl1 ÞÑ ρplqs,mergerl : pTÓq{l1speq

(SEmcongr)
µ, ρ, eÑ µ1, ρ1, e1

µ, ρ,mergerl1 : T {l2speq Ñ µ1, ρ1,mergerl1 : T {l2spe
1
q

(SEmerge)
µ, ρ,mergerl1 : T {l2spvq Ñ µ, ρ, v

Fig. 7: FT Dynamic Semantics

To state and prove our notion of type safety, we use a notion of evaluation contexts E.
Evaluation contexts are expressions with holes, notation ˝, in them. An expression can
be plugged into the hole to produce a program. Following the presentation of Feather-
weight Java by Pierce [2002], we use evaluation contexts to capture the possibility of
a program getting stuck at a bad assertion.

The dynamic semantics of FT is formalized as a structural operational semantics de-
fined over store/environment/expression triples. Figure 7 presents the rules (prefixed
by “SE”: “S” for static typing, “E” for evaluation).

The (SElookup) rule dereferences an indirect reference to get the underlying value.
The (SEnew) rule creates a new object based on the constructor expression given. The
arguments to the constructor are dereferenced so that the objects in the heap contain
object references. The (SElet) rule handles a variable binding by allocating a new in-
direct reference, associating the object reference in question to it in the environment
and substituting the fresh reference into the body of the let expression. The (SEupdate)

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:19

rule replaces a binding in the store with a newly-constructed object. The (SEfield) rule
looks up the field of an object in the heap and returns the corresponding object refer-
ence. The (SEswap) rule swaps the field of an object with a new object reference and
returns the old one. The (SEassert) rule checks that a reference points to an object
with a type compatible with the assertion. If the assertion succeeds, the program re-
turns a void value; if not, the program gets stuck. The (SEinvoke) rule substitutes the
arguments to the method invocation into the method body and continues executing.
The (SEcongr) rule ensures that the bound expression in a let is computed before the
body of the let. The (SEhold) rule initiates the bookkeeping process of holding on to
permissions while a subexpression executes. It uses a new indirect reference l1 to hold
its permissions. The (SEmcongr) rule allows the expression inside of the merge expres-
sion to execute. The (SEmerge) expression removes the bookkeeping information once
the relevant subexpression has evaluated to a final value.

3.5. Type Safety
In order to establish type safety, the type system must be extended to account for
runtime phenomena. First, we must type the void value.

(STvoid)
∆ $ void : Void % ∆

To type runtime programs, type contexts must be extended to account for runtime
references.

b P x | l | o (context bindings)
∆ ::= b : T (linear type contexts)

Since runtime expressions have no free variables but may now contain indirect refer-
ences l and object references o, a typing context may only have entries of the form l : T
and o : T . As such, the type rules must account for references in a runtime program,
e.g.:

(STvar)
T1 V T2{T3

∆, s : T1 $ s : T2 % ∆, s : T3
(STobj)

∆, o : T $ o : T % ∆

Since variables are replaced by indirect references at runtime, they should be typed
similarly. On the other hand, an object reference may only appear once in a program, as
the result of a variable reference, which will either be bound to a variable immediately,
or returned as the final program result. As such, it is safe to consume it entirely.

Other references to variables in FT’s type system should now consider simple ex-
pressions (variables or indirect references) rather than just variables, for example:

(STnew)
fieldspCq = T f ∆ $ s : T % ∆1

∆ $ new Cp s q : fullpObjectq C % ∆1

Furthermore, context demotion ∆Ó must be extended to the reference entries in a con-
text.

In addition, we require a typing rule for the runtime merge expression:

(STmerge)
T1 = TÓ ∆, l2 : T2 $ e : T $ ∆1, l2 : T 12 T1{T

1
2 V T3

∆, l1 : T1, l2 : T2 $ mergerl1 : T1{l2speq : T % ∆1, l2 : T3

The merge expression owns the indirect reference l1, which it uses to store the permis-
sions that it is holding to later merge back into l2. Thus the outgoing permissions of l2
combine the output of the computation e with the held permissions.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:20 R. Garcia et al.

Helper Functions

refTypespµ,∆, ρ, oq = fieldTypespµ, oq `̀ envTypesp∆, ρ, oq `̀ ctxTypesp∆, oq

fieldTypespµ, oq =
ŘŘ

o1Pdompµq

“

Ti | µpo
1
q = Cpo2q, fieldspCq = T f, and o2i = o

‰

envTypesp∆, ρ, oq =
ŘŘ

lPdompρq

rT | ρplq = o and pl : T q P ∆s

ctxTypesp∆, oq = rT | o : T P ∆s

µ,∆, ρ $ o ok Reference Consistency

µpoq = Cpo1q
∣∣o1∣∣ = |fieldspCq|

refTypespµ,∆, ρ, oq = kpEq D

C ă: D kpEq compatible
µ,∆, ρ $ o ok

µ,∆, ρ ok Global Consistency

ranpρq Ă dompµq Y t void u
domp∆q Ă dompρq Y dompµq

t l | pl : Voidq P ∆ u Ă t l | ρplq = void u
t l | pl : kpDq Cq P ∆ u Ă t l | ρplq = o u

µ,∆, ρ $ dompµq ok
µ,∆, ρ ok

ρ $ e mc Merge Consistency

@E. e = Ermergerl1 : T1{l2spe
1
qs ñ ρpl1q = o = ρpl2q

ρ $ e mc
Fig. 8: FT Permission Consistency Relations

To prove type safety, we must account for the outstanding permissions associated
with references to each object o and make sure that they are mutually consistent. To
achieve this, we appeal to some helpers, presented in Figure 8. The fieldTypes function
takes a heap and an object reference in the domain of the heap and produces a list of
the type declarations for every field reference to that object. This function disregards
object references that are not bound to some field of some object. The envTypes func-
tion performs the analogous operation for the indirect references in an environment
that have bindings in the context. This function disregards indirect references in the
environment that have no typing in the context. The ctxTypes function does the same
for object references that occur in a type context. The refTypes function takes a heap,
context, environment, and object and yields the list of type declarations for outstand-
ing heap, environment, and context references. These definitions use square brackets
to express list comprehensions, and `̀ to express list concatenation.

Using the refTypes function and permission compatibility, we can define a notion
of reference consistency that verifies the mutual compatibility of the types of all out-
standing references to some object in the heap. A consistent object reference points to
an object that has the proper number of fields, and all references to it are well-formed,
assume a plausible class, are mutually compatible, and are tracked in the store.

Reference consistency is used in turn to define global consistency, which establishes
the mutual compatibility of a store-environment-context triple. Global consistency im-
plies that every object reference in the store satisfies reference consistency, that every
reference in the type context is accounted for in the store and environment, and that
Void and object-typed indirect references ultimately point to void values and object ref-
erences respectively. Note that global consistency and permission tracking take into
account even objects that are no longer reachable in the program.

To prove that preservation holds, we require an additional notion of consistency,
called merge consistency, to ensure that only indirect references to the same underlying

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:21

object are ever merged. This judgment helps us guarantee that permissions produced
at runtime by hold expressions are only combined in sound ways.

These concepts contribute to the statement (and proof) of type safety.

THEOREM 3.2 pPROGRESSq. If e is a closed expression and ∆ $ e : T % ∆1, then
either e is a value or for any store µ and environment ρ such that µ,∆, ρ ok, either
µ, ρ, e Ñ µ1, ρ1, e1 for some store µ1, environment ρ1, and expression e1, or e is stuck at a
bad assert, i.e., e = ErassertxDyplqs where µpρplqq = Cp¨ ¨ ¨ q, and C ­ă: D.

PROOF. By induction on the derivation of ∆ $ e : T % ∆1.

To facilitate our proof of type preservation, we define and establish an invariant of
program evaluation. Our semantics has many rules that evaluate to an object refer-
ence, but the reference is either returned as the final result of the program, or imme-
diately bound to an identifier (as in let x : T = o in e). Furthermore, at most one object
reference appears in a program at any point of execution. We capture these invariants
as follows:

Definition 3.3. An expression e is in head reference form, notation hdref peq iff either

(1) e contains no object references o; or
(2) e = Eros for some E, o and E contains no object references.

When a program is in head reference form and takes a step that produces or consumes
an object reference, we can easily characterize a type context that establishes preser-
vation.

Finally, we establish a relationship between type contexts that helps us show that
evaluating a subterm retains enough output permissions to continue executing the
rest of the program. This is needed in particular to support method invocations, since
the permissions resulting from evaluating a method body may be be stronger than the
method interface declares.

Definition 3.4. A context ∆ is stronger than a context ∆1, notation ∆ ă ∆1 if and
only if for all l : T 1 P ∆1, there is some T ă: T 1 such that l : T P ∆.

Using these formal helpers, we can state and prove a preservation theorem.

THEOREM 3.5 pPRESERVATIONq. If e is a closed expression, ∆ $ e : T % ∆2,
µ,∆, ρ ok, hdref peq, ρ $ e mc, and µ, ρ, e Ñ µ1, ρ1, e1 then for some ∆1, ∆1 $ e1 : T % ∆3,
µ1,∆1, ρ1 ok, ρ1 $ e1 mc, and ∆3 ăl ∆2.

PROOF. By induction on µ, ρ, eÑ µ1, ρ1, e1.

3.6. Single-Heap Implementation Model
As we have previously mentioned, the environment in the FT dynamic semantics is
specifically a tool for proving type safety. In particular, we need indirect references
so that we can independently track the permissions to a particular object held by in-
dividual aliases. Similarly, hold and merge expressions only play a role in statically
allocating permissions, and need not be considered after type checking FT programs.
Here we formally show that a practical implementation of the language can use a tra-
ditional heap and can do without hold and merge. Figure 9 presents the rules (prefixed
by “SI”: “S” for static, “I” for implementation). The implementation semantics almost
exactly matches the dynamic semantics, but leaves out the extra layer of indirection
imposed by indirect references l and environments ρ. Note as well that there are no
rules for hold or merge. This is because Featherweight Typestate does not need to
track runtime permissions in practice. The hold expression is a purely static means of

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:22 R. Garcia et al.

µ, eÑ µ1, e1

(SInew)
o R dompµq

µ, new Cpo1q Ñ µro ÞÑ Cpo1qs, o
(SIlet)

µ, let x : T = v in eÑ µ, rv{xse

(SIupdate)
µ, pot Ð Cpoqq Ñ µrot ÞÑ Cpoqs, void

(SIfield)
µpoq = Cpo1q fieldspCq = T f

µ, o.fi Ñ µ, o1i

(SIswap)
µpo1q = Cp¨ ¨ ¨ o1i ¨ ¨ ¨ q fieldspCq = T f

µ, o1.fi :=: o2 Ñ µro1 ÞÑ Cp¨ ¨ ¨ o2 ¨ ¨ ¨ qs, o
1
i

(SIassert)
µpoq = Cp¨ ¨ ¨ q C ă: D

µ, assertxP Dypoq Ñ µ, void

(SIinvoke)

µpoq = Cp¨ ¨ ¨ q

methodpm,Cq = Tr mpT " T 1 xq rTt " T 1t s t return e; u

µ, o.mpo1q Ñ µ, ro1{xsro{thisse

(SIcongr)
µ, e1 Ñ µ1, e11

µ, let x : T = e1 in e2 Ñ µ1, let x : T = e11 in e2

Fig. 9: FT Implementation Semantics

controlling permission flows, and merge is merely a technical device for proving type
safety, so the implementation semantics for FT can discard them.

We define a simulation relation „ between Dynamic Semantics configurations and
Implementation Semantics configurations.

µ, ρ, e „ µ, ρpEpeqq
Where the erasure function Epeq is the natural extension of the following equations:

Epholdrl : T speqq = Epeq
Epmergerl1 : T {l2speq = Epeq

and where ρpeq is the natural extension of ρplq to arbitrary expressions. Note that this
relation is defined up to choice of object references.

PROPOSITION 3.6.

(1) If e is a source program, then H,H, e „ H, Epeq.
(2) If µ1, ρ1, e1 „ µ11, e

1
1 and µ1, ρ, e1 Ñ µ2, ρ2, e2 then µ11, e

1
1 Ñ

∗ µ12, e
1
2 and

µ2, ρ2, e2 „ µ12, e
1
2, for some store µ12, and some expression e12.

PROOF.

(1) Immediate.
(2) by induction on µ1, ρ1, e1 Ñ µ2, ρ2, e2.

3.7. Discussion
In the design of Featherweight Typestate we made a number of decisions based on
the desire to simplify the resulting calculus. We now discuss these decisions and their
alternatives.

Method calls. In FT, two particular restrictions on method calls are made to sim-
plify the type system design for clarity of presentation. First, the (STinvoke) rule

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:23

enforces that a variable may be passed only once as an argument to a method call.
For example, x1.mpx2, x2q would never type check because x2 is passed as the argu-
ment for two method parameters. Type checking duplicated arguments like these adds
substantial complexity to the type system and the type safety proof specifically be-
cause method parameters change state. For instance, suppose that m were declared as
Void mpT1 " T2,T1 " T3qrT " Ts, where T2 ‰ T3. Then the question arises: what is the
type of x2 after the method call? One could define a sensible merging of T2 and T3 as its
output type. However, this is not sufficient because when proving type preservation,
a single indirect reference would be substituted for two different method parameters
into a method body that was type checked using two independent variables. One so-
lution in the formalism is to use a generalized form of merge to temporarily split a
reference into two references for the dynamic extent of the method call.

The second simplification we make to method calls is that when a method call
takes a variable argument, it drops permissions on the floor. For example, consider
the method call x1.mpx2q where x2 has type fullpObjectqC but the method is declared
as Void mppurepObjectqC " purepObjectqCqrT " Ts. Then the extra full permission is lost
during the call and is not recovered after the method returns. A practical version of
this language would allow methods calls to preserve extra permissions so that, for in-
stance, x2 could recover its full permission. We can use hold to implement this explicitly
in our model language: a practical language would integrate hold semantics directly
into method calls.

Method overriding. For clarity and simplicity, the language definition provides con-
servative constraints on what counts as a legal method override. The overriding rule
from Figure 6 says that the overriding method’s signature must match the superclass
method exactly except that the incoming class of the receiver object must be the class
in which the override is being declared. One side-effect of this restriction is that call-
ing an overridden method on an object of statically known subclass type can lose type
information. For example, consider two classes:

1 class C { Void m()[full(Object) C >> full(Object) C] { ... } }
2 class D { Void m()[full(Object) D >> full(Object) C] { ... } }

Because of the method type restriction, the following code:

1 x = new D();
2 x.m()

results in the type of x being C rather than D. This particular drawback can be rectified
by loosening the restriction on the output type of the receiver, but the language benefits
much more from a generally broader notion of legal method overrides. In particular, a
method can be a legal override of an existing method if:

(1) The input permission of the receiver is a superpermission of the overridden
method’s receiver input permission;

(2) The input class of the receiver must match the current class definition, which is
therefore a subclass of the overridden method’s receiver input class. Note that co-
variance in the receiver class is standard in object-oriented type systems, and is
sound because we dispatch on the receiver.

(3) The output type of the receiver is a subtype of the overridden method’s receiver
output type;

(4) The input types of the arguments are supertypes of the overridden method’s input
types;

(5) The output types of the arguments are subtypes of the overridden method’s output
types; and

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:24 R. Garcia et al.

(6) The return type is a subtype of the overridden method’s return type.

Demotion. The process of demoting environment references at update operations is
quite coarse in the current design. Many objects that need not be demoted in particular
cases are currently. For example, if an object is updated, then any existing environment
variable whose type is unrelated is surely not an alias to the object at hand. As such,
it need not be demoted. In addition, methods could also be annotated to indicate that
they do not perform state change. Such safe methods need not cause any variables to
be demoted when they are called. For simplicity of presentation, we demote uniformly.

Kinds of permissions. The literature on modular typestate checking with permis-
sions (e.g. [Bierhoff and Aldrich 2007; Naden et al. 2012]) introduces other kinds of
access permissions, such as none, which provides no guarantees about the behavior
of other aliases, unique, which guarantees that there are no other usable aliases, and
immutable, which guarantees that no one can change the underlying object. Note that
the semantics of none and unique make their state guarantees essentially irrelevant, so
each could be limited to none(Object) and unique(Object) respectively, or alternatively
none and unique could be treated as permissions P rather than access permissions k.

We integrate full, pure, and shared into Featherweight Typestate because they con-
stitute a self-contained and representative set of access permissions, especially in a
language that supports state change for aliased objects. The full permission embodies
the concept of granting a single alias the ability to change state (much like unique);
the pure permission embodies the inability to change state (much like immutable); and
the shared permission characterizes support for multiple sources of state change. The
other permissions described above can all be integrated into Featherweight Typestate
without any additional machinery.

In general, as a program executes, permissions to variables get split and are strictly
weakened. There are many ways to refine the static type system in order to increase
expressiveness, such as parametric polymorphism, fractional permissions and borrow-
ing [Boyland 2003; Boyland and Retert 2005; Naden et al. 2012]. We believe that hold
is a simple but expressive means of recovering permissions, and is complementary to
these more sophisticated but complex mechanisms.

Syntactic sugar. In addition to increasing expressiveness, a practical language could
also implement some convenient shorthands that would make programs more concise
while retaining their expressiveness and precision. For example, many method argu-
ments are likely to have the same incoming and outgoing type. A language can abbre-
viate this idiom by allowing a single type parameter specification T x to be equivalent
to an identical type transition specification T " T x.

A practical typestate-oriented language could easily simplify the presentation of
class field types. Since field types must be invariant under demotion, any field with
pure or shared access permission has the same class assumption and state guarantee,
e.g. sharedpCq C. In these cases, a field type can be abbreviated to include the access
permission and a single class, e.g. shared C. In the case of full, the state guarantee
must be specified to be precise, though the same abbreviation could have the same
meaning as a common case.

Unicity of typing. As with many object-oriented languages, the FT expressions are
not uniquely typed. In particular, because of subtyping, most values could be assigned
many possible types. This absence of type unicity can be traced specifically to the vari-
able reference rule (STvar), which can assign to a variable reference any subtype of
that variable’s current type. In most cases, however, the type of a variable reference is
restricted by the surrounding context.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:25

To see these phenomena in practice, consider the following program:

let x : fullpObjectq C = y in x

The type annotation on x’s declaration restricts how (STvar) applies to y: the type
of this reference must match the annotation. On the other hand, no such annotation
constrains the reference to x in the body of the let. Treated as an entire program, this
whole expression could be assigned any subtype of x. In fact, because programs are in
A-normal form, this flexibility of typing manifests only for the top-level program type.

Even with programs in A-normal form, it is possible to extend Featherweight Type-
state to have even more flexible typing. Such changes do not increase the expressive
power of the language, but they do make some programs more convenient to write.
First, type annotations on let-bindings could be elided from the language, thereby re-
quiring the type system to guess a type for each variable. This kind of design would
increase the nondeterminism of typing. Consider its effect on the program above:

let x = y in x

As before, the reference to x can be typed many ways. However, the type of x is no
longer fixed when it is declared, so the reference to y can be typed many ways, and y’s
output type varies accordingly.

Second, a full subsumption rule could be added to the language:

(STsub)
∆0 $ e : T1 % ∆1 T1 ă: T2

∆0 $ e : T2 % ∆1

Its effect would be to allow any expression, not just variable references, to be typed
many ways.

These two proposed changes to the type system, and their increase in nondetermin-
ism of typing, add no significant expressive power to the type system. Once a method
body is type checked, any extra permissions left over are either discarded (in the case
of local variables) or adjusted to match the method interface specification (in the case
of method arguments). This means that adding subsumption has no effect on the set of
typeable FT programs. Since permissions are simply a type-checking device, and have
no effect on runtime behavior in FT, there is no particular need for subsumption.

We find in the next section that such nondeterminism in typing is incompatible with
a runtime treatment of permissions, which is needed to support gradual typing. In that
context we depend on the determinism of typing that comes from the design presented
in this section.

4. GRADUAL FEATHERWEIGHT TYPESTATE
Despite its sophistication, Featherweight Typestate cannot statically typecheck all
typestate-oriented programs that one might want to write. In this section, we present
Gradual Featherweight Typestate (GFT), a gradually typed [Siek and Taha 2007] ex-
tension of Featherweight Typestate. GFT seamlessly enhances FT’s static type system
with support for dynamic typestate checking. To support GFT, we extend concepts of
gradual typing to encapsulate the sophistication of permissions, typestate change, and
modular flow-sensitive typing.

4.1. Considerations
The design of Gradual Featherweight Typestate is driven by several interacting forces.
Here, we outline three primary observations that inform how we extend Featherweight
Typestate.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:26 R. Garcia et al.

4.1.1. Dynamic typing. The most visible feature of a gradually typed programming lan-
guage is the presence of dynamically typed values. To support this, GFT adds a dy-
namic type:

T ::= ¨ ¨ ¨ | Dyn
The type system treats the Dyn type with greater leniency: type checks on Dyn values
are deferred to runtime.

A Dyn typed value is quite different from an object with Object type. This can be seen
by looking at programs (in the sugared syntax of Section 2) that are legal with a Dyn
value and not legal with an Object value:
full(Object) Object y = ...;
Dyn ydyn = y; // y’s type does not change
shared(Object) Object ystc = y; // y’s type changes

full(Object) Object xs1 = ystc; // Type error
full(Object) Object xs2 = ydyn; // Okay

ystc.f(y); // Type error: no method f
ydyn.f(y); // Okay

// Void f([full(Object) Object >> pure(Object) Object]) [T >> T]
m.f(ystc); // Type error: incompatible permissions
m.f(ydyn); // ydyn now has type pure(Object) Object

Each of the scenarios above captures a difference between static types and dynamic
types. Assigning a statically typed variable y to a dynamically typed variable ydyn
does not change y’s permissions. As seen in Section 2, this is not generally true for
static types. Furthermore, assigning y to ystc may fail if, for example y were pure.
Conversely, a dynamic variable can be assigned to any other variable, regardless of
its type: safety is checked at runtime. However, assigning a static variable to another
static variable is always checked. Next, method calls on dynamic objects are always
safe, and any arguments are treated as dynamic. This is not the case for static method
calls. Finally, static method calls on static objects are checked for conformance. On
the other hand, a dynamic object can always be passed as an argument to a method
call. Note, however, that the type of the dynamic object after the method call matches
the method declaration. Newly discovered static information is not automatically dis-
carded, but as we show below, a program can choose to discard this type information.

On the surface, adding Dyn, a single syntactic difference, is the only necessary addi-
tion for gradual typing, but this small interface change implies substantial underlying
formal and implementation machinery, which we outline in this section. The fact that
it is almost trivial syntactically is one of the great strengths of gradual typing.

4.1.2. Type assertions. Runtime type tests are at the heart of gradual typing, though
they need not appear in the surface syntax of a gradual language. However, type tests
in the form of casts are a standard feature of object-oriented programming. As dis-
cussed earlier, Featherweight Typestate’s assert operation is analogous to traditional
object-oriented language support for type casting, but FT does not track runtime infor-
mation about permissions. For this reason, FT assertions cannot manipulate variable
permissions. Since GFT requires runtime permission information to support gradual
typing, we can expose them at the source language by extending the semantics of assert
to manipulate the full type of an object reference, not just its class. For instance, using
assert the method call example from Section 4.1.1 can be extended to revert the ydyn
variable back to Dyn.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:27

m.f(ydyn); // ydyn now has type pure(Object) Object
assert<Dyn>(ydyn); // ydyn now has Dyn type.

4.1.3. Dynamic Permissions Need Deterministic Typing. In Section 3.7, we observed that
Featherweight Typestate’s type system could be made more nondeterministic by re-
moving type annotations on let-bound variables and by adding full subsumption. This
kind of nondeterminism would be problematic for the semantics of a gradual language
that depends on dynamic permission tracking. To understand this phenomenon, con-
sider the following hypothetical example in a gradual language with the above exten-
sions. Suppose x has type fullpDq D, and that class C has one field of type purepDq D,
and consider the following expression:

let y = x in
let z = new Cpyq in z

What are the types of x and y at the end? The answer depends on what type was given
to the x reference when it was bound to y. If x was given type fullpDq D, then x would
have type purepDq D and y would have type fullpDq D; but if the reference to x was
given type purepDq D, then the reverse would be true: x would have type fullpDqD and
y would have type purepDq D; finally if the reference to x were given type sharedpDq D,
then both x and y would end up with that type.

This flexibility allows many more programs to be typed without the programmer
having to annotate every variable binding, or change those annotations as the pro-
gram changes, but such nondeterminism is incompatible with dynamic permission as-
sertions. Suppose we extend the example with a dynamic assertion:

let y = x in
let z = new Cpyq in
let w = assertxsharedpDq Dypyq in z

Then the behavior of this example depends on how the types are resolved. If y has
shared or full access permission, then the assertion is a safe “upcast” that always suc-
ceeds; if y ends up with pure permission, then the assertion is a “downcast” that must
be checked dynamically (and in this case fails because x’s full permission is not com-
patible with a shared alias).

These issues do not arise in FT because it cannot check permissions dynamically. As
such it only needs to find some valid typing, after which the permission information is
discarded for runtime. Gradual typing, on the other hand, can detect how permissions
flow in a program at runtime, so permissions must have some deterministic specifi-
cation if gradually typed programs are to behave deterministically. In the following
development, we leverage the fact that FT typing is more deterministic than strictly
necessary to support dynamic permissions and thereby support gradual typing as a
pure extension.7

4.2. Making Featherweight Typestate Gradual
Now that we have brought to light the primary challenges of developing a gradually
typed typestate-oriented language like Gradual Featherweight Typestate, we can pro-
vide an overview of the language and describe how its design addresses these consid-
erations.

7As shown in [Wolff et al. 2011], a typestate-oriented language can simultaneously enjoy deterministic
typing and low annotation overhead.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:28 R. Garcia et al.

T V T {T Type Splitting

T V Dyn{T

T ă:
„ T Consistent Subtyping

T1 ă: T2

T1
ă:
„ T2 Dyn ă:

„ T

Fig. 10: Hybrid Permission Management Relations

∆ $ e : T % ∆ Source Expression Typing

(GTvard)
∆, x : Dyn $ x : T % ∆, x : Dyn

(GTupdated)

fieldspCq = T f

∆ $ x2 : T % ∆1, x1 : Dyn

∆ $ x1 Ð Cpx2q : Void % ∆1
Ó, x1 : Dyn

(GTfieldd)
∆, x : Dyn $ x.f : Dyn % ∆, x : Dyn

(GTswapd)
∆, x1 : Dyn = ∆1, x2 : T

∆, x1 : Dyn $ x1.f :=: x2 : Dyn % ∆1, x2 : Dyn

(GTinvoked)
∆, x1 : Dyn, x2 : T2 $ x1.mpx2q : Dyn % ∆Ó, x1 : Dyn, x2 : Dyn

(GTassert)
∆, x : T $ assertxT 1

ypxq : Void % ∆, x : T 1

Fig. 11: Gradual Featherweight Typestate: Expression Typing Extensions

Aside from the introduction of a dynamic type Dyn, the syntax of GFT is the same
as that of FT. The key extensions to the language can be found in its typing rules and
its runtime semantics.

4.2.1. Managing Permissions. Now that the Dyn type has been introduced to the lan-
guage, we must consider how it interacts with the family of type operations that sup-
ports typestate-oriented programming

Figure 10 presents the necessary adjustments. First, type splitting is extended to
account for Dyn. In particular, any reference can split off a Dyn without affecting its
original type or permissions. This captures the intuition that dynamically typed objects
do not intrinsically carry any permissions.

Following Siek and Taha [2007], we replace subtyping in our rules with a notion of
consistent subtyping T ă:

„ T . Consistent subtyping is the union of the notion of type con-
sistency T „ T from gradual typing—which codifies possibly safe substitution—with
the notion of subtyping T ă: T for Featherweight Typestate—which codifies definitely
safe substitutability. According to consistent subtyping, Dyn ă:

„ T , and also T ă:
„ Dyn

because modified type splitting now forces T ă: Dyn (See Section 4.5). We restrict the
rules to ensure determinism, which facilitates our translation semantics.

4.2.2. Static Semantics. The fundamental differences between Featherweight Types-
tate and Gradual Featherweight Typestate are found in its type system. All of FT’s
typing rules are valid for GFT, so Figure 11 presents only the extensions that GFT
adds to FT’s type system (all prefixed with “GT”: G for “gradual typing” and T for
“typing”).

The (GTassert) rule for assert subsumes the analogous rule in Featherweight Type-
state, though now it considers and affects the entire type of its argument, including
in particular the permissions associated with an object. When T1 ă: T2, the assert is
statically safe; otherwise, a runtime check is required (see Section 4.4).

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:29

o P OBJECTREFS
l P INDIRECTREFS
s ::= x | l (simple exprs)
b ::= x | l | o (bare expr)
e ::= es | ed (expressions)
es ::= b | void | srT V T {T s | new Cpsq (statically checked exprs)

| let x = e in e | releaserT spsq | s.f | s.mpsq
| s.f :=: s | sÐ Cpsq | assertxT " T ypsq
| holdrs : T V T {T " T V T speq | mergerl : T {l : T V T speq

ed ::= s.df | s.dmpsq | s.f :=:d s (dynamically checked exprs)
| sÐd Cpsq | assertdxT " T ypsq

∆ ::= b : T (type context)

Fig. 12: Internal Language Syntax

The full language adds new typing rules for each operation in the case when the
primary object being operated on is dynamically typed. The rest of the new typing rules
account for how Dyn-typed references to objects can be used, as well as their effect on
permissions and type information. The (GTvard) rule says that a Dyn-typed variable
can be referenced at any type. Note that because of our extensions to type splitting,
x : Dyn can already be typed at Dyn using FT’s (STvar) rule. The (GTupdated) rule
accounts for updating a dynamically typed variable. The type system checks that the
arguments to the constructor are suitable, but the checks on the target of the update
are deferred to runtime (see Section 4.4). The (GTfieldd) rule says that accessing a
field of a dynamic object yields another dynamic object (if it succeeds). The (GTswapd)
rule allows an object to be swapped into the field of a dynamic object. Permissions are
checked at runtime for safety. Finally, the (GTinvoked) rule calls a method with objects
of any type. However, the output type of the method’s arguments are all dynamic, since
the effect on their permissions cannot be known until runtime.

4.3. Internal Language
Gradually typed languages are characterized in terms of three languages: a fully stat-
ically typed language, the gradually typed language itself, and the internal imple-
mentation language. For instance, the original work on gradual typing presented the
simply-typed lambda calculus, the gradual lambda calculus, and the cast calculus as
the necessary three components [Siek and Taha 2006]. Here we have already presented
the first two components: Featherweight Typestate and Gradual Featherweight Type-
state. We must now introduce our analogue to the cast calculus.

The semantics of GFT are defined by type-directed translation to GFTIL, an inter-
nal language that makes the details of dynamic permission management explicit. This
section presents the syntax, type system, and dynamic semantics of the internal lan-
guage. Section 4.4 discusses how the source language is mapped to it.

4.3.1. Syntax. GFTIL is structured much like GFT but elaborates several concepts
(Figure 12). First, the internal language introduces explicitly dynamic variants ed of
some operations from the source language. Static variants are ensured to be safe by the
type system; dynamic variants require runtime checks. Second, many expressions in
the language carry explicit type information. This information is used to dynamically
account for the flow of permissions as the program runs. These type annotations play
a role in both the type system and the dynamic semantics. Finally, GFTIL adds the
same runtime constructs as were added to Featherweight Typestate: object references,
indirect references, and the void object.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:30 R. Garcia et al.

In GFTIL, reference expressions come in two forms. A bare reference b signifies
a variable or reference that is never used again. In contrast, a splitting reference
srT V T {T s explicitly specifies the starting type, result type, and the residual type
of the reference. The releaserT spsq expression explicitly releases a reference and its
permissions, after which it can no longer be used.

The notion of a well-typed GFTIL program (see Appendix C) is almost identical in
form to that notion in FT. One notable difference is the typing of method bodies: since
GFTIL explicitly tracks resources, it requires a method’s returned value as well as the
output states of all its parameters (and this) to exactly match the method signature,
for which releaserT spsq is introduced. In contrast, both FT and GFT allow subtyping to
implicitly fill the gap.

4.3.2. Static Semantics. The rules for GFTIL’s typing judgment ∆ $ e : T % ∆ are
defined using the same permission and type management relations as the source lan-
guage. GFTIL’s typing rules explicitly and strictly encode permission flow by check-
ing the input context ∆ to force their arguments s to have exactly the type required.
GFTIL’s dynamic semantics uses this encoding to track permissions.

Figure 13 presents some of GFTIL’s typing rules (rules are prefixed with TI for “Typ-
ing” the “Internal language”). For brevity, we only present the rules for invoke, up-
date and assert, together with their dynamically-typed variants here: the full set can
be found in Appendix C. The (TIinvoke) rule matches a method’s arguments exactly
against the method signature. Each argument’s output type is dictated by the method’s
output states. The (TIupdate) rule almost mirrors GFT’s update rule except that its ar-
gument types must exactly match the class field specifications. The (TIassert) rule is
the safe subset of GFT’s rule, though GFTIL’s assert is explicitly annotated with its
argument’s source type. The dynamic variants of these expressions enforce very little
statically: the (TIupdated) rule only checks that the arguments match the construc-
tor, and the (TIassertd) rule applies when the destination type cannot be split from
the source type. The (TIhold) rule is the explicit analogue to the GFT typing rule. The
(TImerge) rule expresses how merge annotates the expression e with the information
needed to restore the held permissions T1 back to reference l2 after e completes. The
type T 12 of l2 after e completes is merged with T1 to give l2 type T3. The type of e is the
type of the whole expression.

4.3.3. Dynamic Semantics. The dynamic semantics of GFTIL, presented in Figure 14,
depend on the same runtime structures as Featherweight Typestate: environments
ρ and stores µ. One significant difference, though, is that GFTIL heaps map object
references to tracked objects:

Cpoq P P TRACKEDOBJECTS
µ P OBJECTREFS á TRACKEDOBJECTS (stores)

Expressions in the language evaluate to values, including void and object references o.
Stores µ associate object references to objects. The novelty of GFTIL is that an object
in the store Cpoq is annotated with the collection of outstanding permissions for ref-
erences to that object, P . The dynamic semantics of GFTIL is defined as transitions
between store/environment/expression triples.

Figure 14 presents some select dynamic semantics rules of GFTIL (prefixed with
GE, for “Gradual typing” and “Evaluation”). Certain rules use two helper functions
for tracking permissions in the heap, whose definitions are given in Figure 15. Per-
mission addition ` augments the permission set for a particular object in the heap.
Conversely, permission subtraction ´ removes a permission from the set of tracked
permissions for an object. Both operations take an arbitrary value and type, but be-

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:31

(TIinvoke)
mdeclpm,C1q = Tr mpT2 " T 1

2qrP1 C1 " T 1
1s

∆, s1 : P1 C1, s2 : T2 $ s1.mps2q : Tr % ∆Ó, s1 : T 1
1, s2 : T 1

2

(TIinvoked)
∆, s1 : Dyn, s2 : Dyn $ s1.dmps2q : Dyn % ∆Ó, s1 : Dyn, s2 : Dyn

(TIupdate)
k P t full, shared u C2 ă: D fieldspC2q = T f

∆, s1 : kpDq C1, s2 : T $ s1 Ð C2ps2q : Void % ∆Ó, s1 : kpDq C2

(TIupdated)
fieldspC2q = T f

∆, s1 : Dyn, s2 : T $ s1 Ðd C2ps2q : Void % ∆Ó, s1 : Dyn

(TIassert)
T1 V T2

∆, s : T1 $ assertxT1 " T2ypsq : Void % ∆, s : T2

(TIassertd)
T1 ­V T2

∆, s : T1 $ assertdxT1 " T2ypsq : Void % ∆, s : T2

(TIhold)
T1 V T2{T3 T2Ó {T

1
3 V T 1

1 ∆, s : T3 $ e : T % ∆1, s : T 1
3

∆, s : T1 $ holdrs : T1 V T2{T3 " T 1
3 V T 1

1speq : T % ∆1, s : T 1
1

(TImerge)
T1 = T1Ó T1{T

1
2 V T3 ∆, l2 : T2 $ e : T % ∆1, l2 : T 1

2

∆, l1 : T1, l2 : T2 $ mergerl1 : T1{l2 : T 1
2 V T3speq : T % ∆1, l2 : T3

Fig. 13: Select Internal Language Typing Rules

have like identity when presented with a type that does not represent a permission,
like Void or Dyn. The (GEinvoke) rule is straightforward. The (GEupdate) rule looks
up the object references for the target reference and the arguments to the class con-
structor, replaces the store object for the target reference with the newly constructed
object, and releases the permissions held by the fields of the old object. The (GEassert)
rule uses permission addition and subtraction to track permissions, and returns void.
Rules for dynamic operators, like (GEinvoked) and (GEupdated), dynamically assert
the necessary permissions (using assertd), defer to the corresponding static operation,
and then statically release the acquired permission (using assert). The (GEassertd)
rule confirms dynamically that its type assertion is safe. The (GEhold) rule performs
the splitting of permissions (one permission to be used through the execution of the
subexpression, and one to be held around it), and evaluates to a merge. A new indirect
reference, l1 is added to the environment as an alias for l to hold the permission T2Ó

during execution of e. Finally, the (GEmerge) rule applies when the subexpression is
fully evaluated, and roughly reverses the (GEhold) rule. It merges the held type of l1
with the type of its alias l, and updates the store accordingly. Note that after this point,
the indirect reference l1 is no longer in scope.

4.3.4. Type safety. As for FT, the type safety proof of GFTIL must account for the out-
standing permissions for each object o and verify that they are mutually compatible.
Figure 16 presents representative updates to FT’s permission accounting operations
needed for GFTIL. The basic reference type operations must be updated to filter out
the Dyn type and to expect tracked objects rather than just objects. The most impor-
tant difference, though, is that when checking reference consistency, that an object is
ok with respect to a context-environment-heap triple, it’s now necessary to check that
the heap is properly tracking permissions.

The definition of global consistency does not change from that of FT. Recall that un-
der global consistency, every reference in the type context is accounted for in the store
and environment, and that Void and object-typed indirect references ultimately point

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:32 R. Garcia et al.

µ, ρ, eÑ µ, ρ, e Dynamic Semantics

(GEinvoke)

µpρpl1qq = Cpoq P

methodpm,Cq = Tr mpTi " T 1i xq rTt " T 1t s t return e; u

µ, ρ, l1.mpl2q Ñ µ, ρ, rl1, l2{this, xse

(GEinvoked)
µpρpl1qq = Cpoq P mdeclpm,Cq = Tr mpTi " T 1i q rTt " T 1t s | Ti |=| l2 |

µ, ρ, l1.dmpl2q Ñ µ, ρ, assertdxDyn " Ttypl1q; assertdxDyn " Tiypl2q;
let ret = l1.mpl2q in assertxT 1t " Dynypl1q;

assertxT 1i " Dynypl2q; assertxTr " Dynypretq;
ret

(GEupdate)
µpρpl1qq = Cpoq P fieldspCq = T f µ1 =

´

µrρpl1q ÞÑ C 1pρpl2qq P s
¯

´ o : T

µ, ρ, l1 Ð C 1pl2q Ñ µ1, ρ, void

(GEupdated)
µpρpl1qq = Cpof q P Dg =

ă
: tD | kpDq P P u C 1 ă: Dg

µ, ρ, l1 Ðd C
1
pl2q Ñ µ, ρ, assertdxDyn " sharedpDgq Cypl1q;

l1 Ð C 1pl2q;
assertxsharedpDgq C 1 " Dynypl1q

(GEassert)
µ1 = µ´ ρplq : T ` ρplq : T 1

µ, ρ, assertxT " T 1yplq Ñ µ1, ρ, void
(GEassertdv)

ρplq = void
µ, ρ, assertdxDyn " Voidyplq Ñ µ, ρ, void

(GEassertdo)
ρplq = o µ1 = µ´ o : T ` o : P 1 C 1 µ1poq = Cpof q P C ă: C 1 P compatible

µ, ρ, assertdxT " P 1 C 1yplq Ñ µ1, ρ, void

(GEhold)
µ1 = µ´ ρplq : T1 ` ρplq : T2 ` ρplq : T3 l1 R dompρq ρ1 = ρrl1 ÞÑ ρplqs

µ, ρ, holdrl : T1 V T2{T3 " T 13 V T 11speq Ñ µ1, ρ1,mergerl1 : T2Ó {l : T 13 V T 11speq

(GEmerge)
µ1 = µ´ ρpl1q : T1 ´ ρplq : T2 ` ρplq : T3

µ, ρ,mergerl1 : T1{l : T2 V T3spvq Ñ µ1, ρ, v

(GEmcongr)
µ, ρ, eÑ µ1, ρ1, e1

µ, ρ,mergerl1 : T {l2speq Ñ µ1, ρ1,mergerl1 : T {l2spe
1
q

Fig. 14: Select Internal Language Dynamic Semantics Rules

µ = µ` v : T Permission Addition

T P tDyn,Voidu
µ = µ` v : T

µpoq = Cpof q P

µro ÞÑ Cpof q P , P
1s = µ` o : P 1 C1

µ = µ´ v : T Permission Subtraction

µ = µ1 ` v : T

µ1 = µ´ v : T

Fig. 15: Internal Dynamics Auxiliary Functions

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:33

Helper Functions

fieldTypespµ, oq =
ŘŘ

o1Pdompµq

”

Ti ‰ Dyn | µpo1q = Cpo2q P2 , fieldspCq = T f, o2i = o, and Ti ‰ Dyn
ı

µ,∆, ρ $ o ok Reference Consistency

µpoq = Cpo1q kpEq
∣∣o1∣∣ = |fieldspCq|

refTypespµ,∆, ρ, oq = kpEq D

C ă: D kpEq compatible
µ,∆, ρ $ o ok

Fig. 16: Changes to Permission-Consistency Relations

to void values and object references respectively. In extending to GFT, Dyn-typed refer-
ences can be ignored because they may point to anything. Note that global consistency
and permission tracking take into account even objects that are no longer reachable in
the program. To recover permissions, a program must explicitly release the fields of an
object before it becomes unreachable.

These concepts contribute to the statement (and proof) of type safety.

THEOREM 4.1 pPROGRESSq. If e is a closed expression, µ,∆, ρ ok, and
∆ $ e : T % ∆1, then only one of the following holds:

— e is a value;
— µ, ρ, eÑ µ1, ρ1, e1 for some µ1, ρ1, e1;
— e = Ereds and µ, ρ, e is stuck.

The last case of the progress theorem holds when a program is stuck on a failed dy-
namically checked expression. All statically checked expressions make progress.

THEOREM 4.2 pPRESERVATIONq. If ∆ $ e : T % ∆1, and µ,∆, ρ ok, and
ρ $ e mc, and µ, ρ, e Ñ µ1, ρ1, e1, then ∆2 $ e1 : T % ∆1 and µ1,∆2, ρ1 ok, and ρ1 $ e1 mc
for some ∆2.

4.4. Source to Target Translation
The dynamic semantics of GFT are defined by augmenting its type system to generate
GFTIL expressions. The typing judgment becomes ∆ $ e1 : T ; eI2 % ∆1, where e1 is
a GFT expression and eI2 is its corresponding GFTIL expression. Figure 17 presents
these rules. We use the I superscript to disambiguate GFTIL expressions as needed.
Several rules use the coerce partial function, which translates consistent subtyping
judgments T ă:

„ T into variable assertions:

coercepx, T1, T2q = assertxT1 " T2ypxq if T1 ă: T2

coercepx,Dyn, T q = assertdxDyn " T ypxq if T ‰ Dyn

Most of the translations are straightforward, and follow similar patterns. For in-
stance, the (TRupdate) rule, which applies when the target of the update is statically
typed, let-binds all of the arguments to the object constructor so as to extract the exact
permissions that it needs before calling GFTIL’s static update. The (TRupdated) rule,
in contrast, applies when the target of the update is dynamically typed. It translates
to a dynamic update operation Ðd, but is otherwise the same. Operations on dynami-
cally typed objects translate to dynamic operations. Other rules like (TRassert) simply

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:34 R. Garcia et al.

∆ $ e : T ; e
I
% ∆ Source to Internal Language Translation

(TRvar)
T1 V T2{T3

∆, x : T1 $ x : T2 ;

xrT1 V T2{T3s % ∆, x : T3

(TRvard)
T ‰ Dyn

∆, x : Dyn $ x : T ; let ret = xrDyn V Dyn{Dyns in
assertdxDyn " T ypretq;
ret % ∆, x : Dyn

(TRlet)

∆ $ e1 : T1 ; eI1 % ∆1

∆1, x : T1 $ e2 : T2 ; eI2 % ∆1, x : T 1
1

∆ $ let x : T1 = e1 in e2 : T2 ;

let x = eI1 in
let ret = eI2 in

releaserT 1
1spxq; ret % ∆1

(TRnew)
fieldspCq = T f ∆ $ x : T ; eI % ∆1

∆ $ new Cpxq : fullpObjectq C ;

let x1 = eI in new Cpx1q % ∆1

(TRinvk)

mdeclpm,C1q = T mpTi " T 1
iqrTt " T 1

ts

coercepx1, P1 C1, Ttq = eI1
coercepx2, T2, Tiq = eI2

∆, x1 : P1 C1, x2 : T2 $ x1.mpx2q : T ;

eI1 ; eI2 ; x1.mpx2q % ∆Ó, x1 : T 1
t, x2 : T 1

i

(TRinvkd)
coercepx2, T2, Dynq = eI2

∆, x1 : Dyn, x2 : T2 $ x1.mpx2q : Dyn ;

eI2 ; x1.dmpx2q % ∆Ó, x1 : Dyn, x2 : Dyn

(TRswap)

T2 f P fieldspC1q

∆, x1 : P1 C1 $ x2 : T2 ; eI2 % ∆1

∆, x1 : P1 C1 $ x1.f :=: x2 : T2 ;

let x1
2 = eI2 in x1.f :=: x1

2 % ∆1

(TRswapd)
∆, x1 : Dyn = ∆1, x2 : T

∆, x1 : Dyn $ x1.f :=: x2 : Dyn ;

assertxT " Dynypx2q;
let x1

2 = x2rDyn V Dyn{Dyns in
x1.f :=:d x1

2 % ∆1, x2 : Dyn

(TRupdate)

fieldspCq = T f

∆ $ x2 : T ; eI2 % ∆1, x1 : kpDq E
k P tfull, sharedu C ă: D

∆ $ x1 Ð Cpx2q : Void ;

let x1
2 = eI2 in

x1 Ð Cpx1
2q % ∆1

Ó, x1 : kpDq C

(TRupdated)

fieldspCq = T2 f

∆ $ x2 : T2 ; eI2 % ∆1, x1 : Dyn

∆ $ x1 Ð Cpx2q : Void ;

let x1
2 = eI2 in

x1 Ðd Cpx1
2q % ∆1

Ó, x1 : Dyn

(TRfield)
T2 f P fieldspC1q T2 ó T 1

2

∆, x : P1 C1 $ x.f : T 1
2 ;

x.f % ∆, x : P1 C1

(TRfieldd)
∆, x : Dyn $ x.f : Dyn ;

x.df % ∆, x : Dyn

(TRassert)
T V T 1

∆, x : T $ assertxT 1
ypxq : Void ;

assertxT " T 1
ypxq % ∆, x : T 1

(TRassertd)
T ­V T 1

∆, x : T $ assertxT 1
ypxq : Void ;

assertdxT " T 1
ypxq % ∆, x : T 1

(TRhold)

T1 V T2{T3 T2Ó {T
1
3 V T 1

1

∆, x : T3 $ e : T ; eI % ∆1, x : T 1
3

∆, x : T1 $ holdrx : T2speq : T ;

holdrx : T1 V T2{T3 " T 1
3 V T 1

1spe
I
q

% ∆1, x : T 1
1

Fig. 17: Type-directed Translation from GFT to GFTIL

use the typing rule to expose the needed extra type annotations for the corresponding
GFTIL expression. The (TRhold) rule specifies how the source-level hold is translated
to the internal expression, which is fully annotated with the intermediate types used
in the derivation.

As intended, the translation rules preserve well-typing:

THEOREM 4.3 pTRANSLATION SOUNDNESSq.
If ∆ $ e : T ; eI % ∆1 then ∆ $ eI : T % ∆1.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:35

This theorem extends straightforwardly to whole programs.

4.5. Discussion
In Featherweight Typestate, permissions are a compile-time phenomenon and need
not be represented at runtime. However, permissions are an integral component of FT
types, so being able to reason about them at runtime is critical to support the dynamic
type checking that is at the heart of gradual typing. For this reason, Gradual Feather-
weight Typestate is designed to support runtime tracking and querying of permissions.

In order to achieve this combination of static and dynamic typestate checking, sev-
eral challenges needed to be overcome. First, given that the language includes objects
whose type changes over time, it is necessary to determine what might be a reason-
able behavior for dynamically typed objects. Since dynamically typed objects include
object references that would otherwise have permissions associated with them, it was
necessary to introduce a notion of runtime-checked permissions, a feature that could
also be applied to purely dynamically typed typestate-oriented languages. Nonethe-
less, this change alone necessitated removing non-determinism from the type system
of FT, while still providing a convenient programming model.

Once runtime permission tracking and dynamic assertions are added, the introduc-
tion of the Dyn type of gradual typing can be viewed as a pure language extension,
since any program with no Dyn types falls in the non-gradual subset of the language.
To keep the development simple, our presentation introduces gradual typing by mak-
ing some modifications to the existing permission management operations and typing
rules. However, the Dyn type could have been introduced to GFT as a pure extension
atop the language with dynamic type assertions. First, we could have preserved a full
separation between dynamic typing and type-splitting/subtyping by only specifying
that Dyn ñ Dyn{Dyn, which is standard for any type that does not track permissions
(like Void). We could then have introduced a distinct notion of dynamic type splitting
T „ T {T solely for handling the special properties of the Dyn type. Its two rules would
be T „ Dyn{T and Dyn „ T {Dyn. The type system could then be extended with special
rules for checking variables and complex expressions at Dyn, as well as checking Dyn-
typed variables at non-dyn types. Furthermore, we could define consistent type split-
ting as the union of standard type splitting and dynamic type splitting. This would
lead to the definition of consistent subtyping that we ultimately used, though by a
more circuitous route. We found it simpler to allow Dyn to be the head of the subclass
hierarchy and then extend subtyping to consistent subtyping directly.

In Featherweight Typestate, hold is a purely static notion, and supports the
permission-based type discipline, but is not needed at runtime. In a gradually-typed
setting, however, we must account for temporarily-held permissions at runtime, so
both hold and merge have GFTIL counterparts that implement the necessary permis-
sion bookkeeping. Compared to prior work on borrowing, the semantics of hold is novel
in two ways that can be ascribed to its straightforward and effective integration with
gradual typing. First, in order to provide a static guarantee that the held permissions
remain valid, hold must do runtime bookkeeping to ensure that the code inside the
nested block does not assert an incompatible permission. Second, hold does not al-
ways restore the exact original permission; rather, it agnostically the held permission
with the available pending permissions. Because of dynamic assertions that can occur
within the nested block, the merged permission may be stronger or weaker than the
original permissions. Borrowing has to date been conceived only in a static context,
and it recovers exactly the permissions that were loaned to a function call. It remains
to be explored how borrowing interacts with dynamic permission assertion.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:36 R. Garcia et al.

5. GFT SIMPLY EXTENDS FT
The prior sections present two source languages, Featherweight Typestate and Grad-
ual Featherweight Typestate, as well as type systems and operational semantics for
both. However, despite the presence of two separate operational semantics, we claim
that GFT is simply an extension of the FT language, with support for gradual typing
and dynamic permission management. This section clarifies the sense in which this is
so.

We start with the syntax and static semantics of these languages. As discussed in
Section 4, FT is syntactically a subset of GFT, with the only extension being the addi-
tion of the Dyn type. Furthermore, GFT’s type system accepts all FT programs. So the
syntax and static semantics of the two languages are in sync.

From here, however, things appear to diverge. We give FT a direct operational se-
mantics. On the other hand, GFT is defined by type-directed translation to GFTIL,
an intermediate language that is given its own operational semantics, independent of
that of FT.

To complete the connection between FT and GFT, we bridge the difference between
these operational semantics. In particular, since every FT program is also a GFT pro-
gram, we show that translating an FT program to GFTIL and then running it produces
the same behavior as running the FT program directly.

The key observation underlying this connection is that many GFTIL expressions
are designed to maintain proper permission accounting so that information may be
queried whenever runtime permission checks are needed. FT, being a static language,
never needs to query runtime permissions (though assert may check class identity in
the case of a downcast). Furthermore, as shown in Section 3.6, indirect references and
their environment are irrelevant to the behavior of programs: it’s the structure of the
heap that matters. Thus, we want to show that FT programs produce the same heap
structures when run on the FT semantics and the GFTIL semantics.

The relationship between FT, GFT, and GFTIL programs is reminiscent of the con-
nection between Siek and Taha [2006]’s simply typed, gradually typed, and cast calcu-
lus programs. Every simply-typed program is also a gradually-typed program and thus
translates to a cast calculus program which has the same semantics. The correspon-
dence between semantics in their system is immediately evident and needs no proof.
In our present case, we must account for GFTIL’s strict permission tracking and show
that it does not affect the behavior of FT programs.

First, we establish what it means for an FT state and a GFTIL state to be in corre-
spondence. We must appeal to the GFT translation for this.

Definition 5.1. Let ∆ $ µ, ρ, e „ µI , ρI , eI if and only if

(1) µ,∆, ρ ok;
(2) µI ,∆, ρI ok;
(3) µ = |µI |;
(4) ρ Ă ρI ;
(5) ∆ $ e : T ; eI0 % ∆1;
(6) eI0 expands to eI ; and
(7) ∆ $ eI % ∆2;

The above definition relies on several auxiliary concepts. The |µI | operation
converts a GFTIL heap µI to an FT heap by discarding permission informa-
tion. Also, the relation eI1 expands to eI2 is defined by the following rules:

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:37

(release)
eI1 expands to eI2

eI1 expands to let ret = eI2 in releaserT splq; ret

(assert)
eI1 expands to eI2 C ă: D

eI1 expands to let ret = eI2 in assertxP C " P Dyplq; ret.

(refl)
eI expands to eI

(let)
eI1 expands to eI2 eI3 expands to eI4

let x = eI1 in eI3 expands to let x = eI2 in eI4
This relation accounts for the extra code added by the translation of let expressions
and method bodies.

The resulting correspondence ∆ $ µ, ρ, e „ µI , ρI , eI captures the idea that we can
consider an FT and GFTIL state to be in sync if they are the same apart from indirect
references and permission tracking steps.

Armed with these definitions, we can establish correspondence.

PROPOSITION 5.2.

(1) If ‚ $ e : T ; eI % ‚ then ‚ $ H,H, e „ H,H, eI .
(2) Let eI1 be one of:

(a) a value v;
(b) a reference lrT1 V T2{T3s; or
(c) an assertion assertxT " T yplq.
If eI1 expands to eI2 , µ,∆, ρ ok, ∆ $ eI2 : T % ∆1, and µI , ρI1 , e

I
1 ÝÑ

∗ µ, ρI2 , v then
µI , ρI1 , e

I
2 ÝÑ

∗ µI , ρI3 , v where ρ2 Ă ρ3.
(3) If ∆1 $ µ1, ρ1, e1 „ µI1 , ρ

I
1 , e
I
1 and µ1, ρ1, e1 Ñ µ2, ρ2, e2 then µI1 , ρ

I
1 , e
I
1 Ñ

∗ µI2 , ρ
I
2 , e
I
2

and ∆2 $ µ2, ρ2, e2 „ µI2 , ρ
I
2 , e
I
2 for some ∆2.

PROOF SKETCH.

(1) Straightforward
(2) By induction on eI1 expands to eI2 .
(3) By simultaneous induction on µ1, ρ1, e1 Ñ µ2, ρ2, e2 and eI1 expands to eI2 .

Cases (SEassert) and (SEinvoke) make explicit use of well-typed translation. In
particular, Some assert expressions in FT translate to assertd in GFTIL, but they
never modify the permissions, only the class.
To account for the let-bound arguments introduced by translation, cases (SEnew),
(SEupdate), and (SEinvoke) appeal to part (2) and use a nested simultaneous in-
duction on the eI1 expands to eI2 relation and the number of let bindings in eI1 .
Finally, to properly translate running programs, we extend (TRref) to include indi-
rect references and add the following rules:

(TRvoid)
∆ $ void : Void ; void % ∆

(TRobj)
∆, o : T $ o : T ; o % ∆

(STmerge)
T1 = TÓ ∆, l2 : T2 $ e : T $ ∆1, l2 : T 12 T1{T

1
2 V T3

∆, l1 : T1, l2 : T2 $
mergerl1 : T1{l2speq : T ;

mergerl1 : T1{l2 : T 12 V T3speq
% ∆1, l2 : T3

6. CONCLUSION
Related Work. A lot of research has been done on typestates since they were first

introduced by Strom and Yemini [1986]. Most typestate analyses are whole-program

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:38 R. Garcia et al.

analyses, which makes them very flexible in handling aliasing. Approaches based on
abstract interpretation (e.g. [Fink et al. 2008]) rely on a global alias analysis and
generally assume that the protocol implementation is correct and only verify client
conformance. Naeem and Lhoták [2008] developed an analysis for checking typestate
properties over multiple interacting objects. These global analyses typically run on the
complete code base, only once a system is fully implemented, and are time consuming.

Fugue [DeLine and Fähndrich 2004] was the first modular typestate verification sys-
tem for object-oriented software. It tracks objects as “not aliased” or “maybe aliased”;
only “not aliased” objects can change state. Bierhoff and Aldrich [2007] extended
this approach by supporting more expressive method specifications based on linear
logic [Girard 1987]. They introduce the notion of access permissions in order to allow
state changes even in the presence of aliasing. They also use fractions, first proposed by
Boyland [2003], to support patterns like borrowing and adoption [Boyland and Retert
2005]. The Plural tool supports modular typestate checking with access permissions
for Java. It has been used in a number of practical studies [Bierhoff et al. 2009]. Al-
though Plural introduced state guarantees, this paper provides their first formaliza-
tion. Nanda et al. [2005] present a system for deriving typestate information from Java
programs. In general, type and typestate inference techniques are complementary and
orthogonal to gradual typing [Siek and Vachharajani 2008].

Work on distributed session types [Gay et al. 2010] provides essentially the same
expressiveness as Plural, but with protocols expressed in the structural setting of a
process algebra instead of the setting of nominal typestates. It considers communica-
tion over distributed channels as well as object protocols, but does not allow aliasing
for objects with protocols.

The above approaches do not address typestate-oriented programming, as they are
not integrating typestates within the programming model, but rather overlay static
typestate analysis on top of an existing language. TSOP has been proposed by Aldrich
et al. [2009]; its defining characteristic is supporting run-time changes to the rep-
resentation of objects in the dynamic semantics and type system. The programming
language Plaid8 is the first language to integrate typestates in the core programming
model. Saini et al. [2010] developed the first core calculus for a TSOP language; their
language is object-based and relies on structural types. Gradual Featherweight Type-
state builds on this work but adapts it to a class-based, nominal approach with shared
access permissions and state guarantees for reasoning about typestate in the presence
of aliasing. Earlier work related to TSOP includes the Fickle system [Drossopoulou
et al. 2001], which can change the class of an object at runtime, but has limited ability
to reason about the states of an object’s fields.

This work also builds upon existing techniques for partial typing, like hybrid typ-
ing [Knowles and Flanagan 2010] and gradual typing [Siek and Taha 2006, 2007;
Bierman et al. 2010]. Gradual Featherweight Typestate is a considerable advance in
this sense, by showing how to gradually check flow-sensitive resources in a modular
fashion. Bodden [2010] presented a hybrid approach to typestate checking. A static
typestate analysis is performed to avoid unnecessary instrumentation of programs for
monitoring typestates at runtime. While the hybrid perspective is shared with this
work, the proposed analysis is global. Turning a conventional alias analysis into a
modular analysis would require heavy low-level annotations (such as abstract loca-
tions) that are not directly meaningful to programmers. In contrast, permissions are
designed to match human abstractions.

Ahmed et al. [2007] define a core functional programming language that supports
strong updates, i.e. changing the type of an object in a reference cell. Similarly to our

8Under development at CMU: http://plaid-lang.org

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:39

approach, it uses linear typing. They present two languages, L3, and extended L3. L3
allows aliasing, but only has exclusive access, through a capability: only one reference
can read/write to an object. In contrast, full, shared and pure access permissions allow
for more varied aliasing patterns. Extended L3 allows recovering a capability, but the
programmer must provide a proof that no other capabilities exist to the reference cell.
Extended L3 is a parametrized framework: one must add one’s own type system to
associate a proof with the capability request.

Future Work. Gradual Featherweight Typestate is at the core of the Plaid language
design project at CMU. We are integrating other access permissions from Bierhoff
and Aldrich [2007], and looking at how a gradual type system could support Plaid’s
Statechart-like multidimensional, compositional state model [Sunshine et al. 2011].
Another interesting direction is examining how gradual permissions could be lever-
aged in Plaid’s support for concurrency [Stork 2013]. Most importantly, we are explor-
ing ways to extend the power of the static type system in order to avoid resorting to
dynamic asserts. An example of such an extension is permission borrowing [Boyland
and Retert 2005; Naden et al. 2012], which, if specified in method signatures, avoids
having to dynamically reassert permissions after “lending” them to a sub-computation.
The language we present here already includes one such refinement, namely hold, used
to hold some permissions to a reference while a sub-computation is performed.

Importantly, it remains an outstanding research question if the cost of dynamic per-
mission checking can be amortized over the number of permission checks. As it now
stands, enabling dynamic permission checking mandates a fully-instrumented run-
time semantics to keep track of permissions. In Plaid, we intend to address this with
reference counting, not for memory management, but for enabling runtime permission
checks. Standard optimization techniques like deferred increments [Baker 1994] and
update coalescing [Levanoni and Petrank 2006] will be applied. We believe these tech-
niques will reduce reference count overhead to a small percentage of runtime, and will
study this empirically in future. The formalism presented here establishes a baseline
from which to explore this capability and develop new models for permission tracking.

Conclusion. Featherweight Typestate (FT) and Gradual Featherweight Typestate
(GFT) are nominal core calculi for typestate-oriented programming. By introducing
typestate directly into the languages and extending their type systems with support
for gradual typing, state abstractions can be implemented directly, stronger program
properties can be enforced statically, and when necessary dynamic checks can be in-
troduced seamlessly. Both languages support a rich set of access permissions together
with state guarantees for substantial reasoning about typestate in the presence of
aliasing. Furthermore, this work paves the way for further gradual approaches by
showing how to modularly and gradually check flow-sensitive resources.

REFERENCES

AHMED, A., FLUET, M., AND MORRISETT, G. 2007. L3: A linear language with loca-
tions. Fundamenta Informaticae 77, 4, 397–449.

ALDRICH, J., SUNSHINE, J., SAINI, D., AND SPARKS, Z. 2009. Typestate-oriented
programming. In Proc. Onward! 2009. ACM, New York, NY, USA, 1015–1022.

BAKER, H. G. 1994. Minimizing reference count updating with deferred and anchored
pointers for functional data structures. SIGPLAN Not. 29, 38–43.

BIERHOFF, K. AND ALDRICH, J. 2007. Modular typestate checking of aliased ob-
jects. In Proc. Conference on Object-oriented Programming Systems and Applica-
tions. ACM, New York, NY, USA, 301–320.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:40 R. Garcia et al.

BIERHOFF, K., BECKMAN, N. E., AND ALDRICH, J. 2009. Practical API protocol check-
ing with access permissions. In Proc. European Conference on Object-Oriented Pro-
gramming. Springer, Berlin, Heidelberg, 195–219.

BIERMAN, G., MEIJER, E., AND TORGERSEN, M. 2010. Adding dynamic types to
C#. In Proc. European Conference on Object-oriented Programming. ECOOP’10.
Springer-Verlag, Berlin, Heidelberg, 76–100.

BODDEN, E. 2010. Efficient hybrid typestate analysis by determining continuation-
equivalent states. In Proc. International Conference on Software Engineering. ACM,
New York, NY, USA, 5–14.

BOYLAND, J. 2003. Checking interference with fractional permissions. In Proc. Static
Analysis (SAS). Springer-Verlag, Berlin, Heidelberg, 55–72.

BOYLAND, J. AND RETERT, W. 2005. Connecting effects and uniqueness with adoption.
In Symposium on Principles of Programming Languages. ACM, New York, NY, USA,
283—-295.

DELINE, R. AND FÄHNDRICH, M. 2004. Typestates for objects. In Proc. European
Conference on Object-Oriented Programming. Springer, Berlin, Heidelberg, 465–490.

DROSSOPOULOU, S., DAMIANI, F., DEZANI-CIANCAGLINI, M., AND GIANNINI, P.
2001. Fickle: Dynamic object re-classification. In Proc. European Conference on
Object-Oriented Programming. Springer-Verlag, Berlin, Heidelberg.

FINK, S. J., YAHAV, E., DOR, N., RAMALINGAM, G., AND GEAY, E. 2008. Effec-
tive typestate verification in the presence of aliasing. ACM Trans. Softw. Eng.
Methodol. 17, 2, 1–34.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1994. Design Patterns:
Elements of Reusable Object-Oriented Software. Professional Computing Series.
Addison-Wesley, Boston, MA, USA.

GARCIA, R., WOLFF, R., TANTER, É., AND ALDRICH, J. 2013. Featherweight Types-
tate. Tech. Rep. CMU-ISR-13-112, Carnegie Mellon University. Sept.

GAY, S., VASCONCELOS, V., RAVARA, A., GESBERT, N., AND CALDEIRA, A. 2010. Mod-
ular session types for distributed object-oriented programming. In Symposium on
Principles of programming languages. ACM, New York, NY, USA, 299–312.

GIRARD, J.-Y. 1987. Linear logic. Theor. Comput. Sci. 50, 1, 1–102.
IGARASHI, A., PIERCE, B. C., AND WADLER, P. 2001. Featherweight Java: a minimal

core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 3, 396–450.
JASPAN, C. AND ALDRICH, J. 2009. Checking framework interactions with relation-

ships. In Proceedings of the 23rd European Conference on Object-oriented Program-
ming (ECOOP 2009), M. Mezini, Ed. Lecture Notes in Computer Science Series, vol.
5653. Springer, Genova, Italy, 27–51.

KNOWLES, K. AND FLANAGAN, C. 2010. Hybrid type checking. ACM Trans. Program.
Lang. Syst. 32, 2, 6:1–6:34.

LEVANONI, Y. AND PETRANK, E. 2006. An on-the-fly reference-counting garbage col-
lector for Java. ACM Trans. Program. Lang. Syst. 28, 1–69.

NADEN, K., BOCCHINO, R., ALDRICH, J., AND BIERHOFF, K. 2012. A type system for
borrowing permissions. In Symposium on Principles of Programming Languages.
POPL ’12. ACM, New York, NY, USA, 557–570.

NAEEM, N. A. AND LHOTÁK, O. 2008. Typestate-like analysis of multiple interacting
objects. In Proc. Conference on Object-oriented programming systems languages and
applications. ACM, New York, NY, USA, 347–366.

NANDA, M. G., GROTHOFF, C., AND CHANDRA, S. 2005. Deriving object typestates
in the presence of inter-object references. In Proc. Conference on Object-oriented
Programming, Systems, Languages, and Applications. ACM, New York, NY, USA,
77–96.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:41

PIERCE, B. C. 2002. Types and programming languages. MIT Press, Cambridge, MA,
USA.

SABRY, A. AND FELLEISEN, M. 1993. Reasoning about programs in continuation-
passing style. Lisp Symb. Comput. 6, 3-4, 289–360.

SAINI, D., SUNSHINE, J., AND ALDRICH, J. 2010. A theory of typestate-oriented pro-
gramming. In Formal Techniques for Java-like Programs. ACM, New York, NY, USA.

SIEK, J. AND TAHA, W. 2006. Gradual typing for functional languages. In Proc. Scheme
and Functional Programming Workshop. ACM, New York, NY.

SIEK, J. AND TAHA, W. 2007. Gradual typing for objects. In Proc. European Conference
on Object-oriented Programming. Springer-Verlag, Berlin, Heidelberg, 2–27.

SIEK, J. G. AND VACHHARAJANI, M. 2008. Gradual typing with unification-based
inference. In Proc. Symposium on Dynamic languages. ACM, New York, NY, USA,
7:1–7:12.

STORK, S. 2013. Æminium: Freeing Programmers from the Shackles of Sequentiality.
Ph.D. thesis, Carnegie Mellon University.

STROM, R. E. AND YEMINI, S. 1986. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Softw. Eng. 12, 1, 157–171.

SUNSHINE, J., NADEN, K., STORK, S., ALDRICH, J., AND TANTER, É. 2011. First-
class state change in plaid. In Proc. Object-oriented Programming, Systems, Lan-
guages, and Applications. ACM, New York, NY, USA.

WALKER, D. 2005. Substructural type systems. In Advanced Topics in Types and
Programming Languages, B. Pierce, Ed. MIT Press, Cambridge, MA, Chapter 1, 3–
43.

WOLFF, R., GARCIA, R., TANTER, É., AND ALDRICH, J. 2011. Gradual typestate.
In Proceedings of the 25th European Conference on Object-oriented Programming
(ECOOP 2011), M. Mezini, Ed. Lecture Notes in Computer Science Series, vol. 6813.
Springer, Lancaster, UK, 459–483.

WOLFF, R., GARCIA, R., TANTER, É., AND ALDRICH, J. 2013. Gradual Featherweight
Typestate. Tech. Rep. CMU-ISR-13-113, Carnegie Mellon University. Sept.

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:42 R. Garcia et al.

A. HELPERS

C ă: C Subclass

class C extends D t F , M u

C ă: D

C ă: C

C ă: D D ă: E
C ă: E

fieldspCq Class Field Declarations

(fields-object)
fieldspObjectq = ¨

(fields-subclass)

class C extends D t T f, M u

fieldspDq = T 1 f 1

f 1 X f = H

fieldspCq = T 1 f 1, T f

methodpm,Cq Method Definition

(method-override)

class C extends D t F , M u

Tr mpT " T 1 xq rTt " T 1ts t return e; u PM

methodpm,Cq = Tr mpT " T 1 xq rTt " T 1ts t return e; u

(method-super)

class C extends D t F , M u m RM

methodpm,Dq = Tr mpT " T 1 xq rTt " T 1ts t return e; u

methodpm,Cq = Tr mpT " T 1 xq rTt " T 1ts t return e; u

mdeclpm,Cq Method Declaration

(mdecl)
methodpm,Cq = Tr mpT " T 1 xq rTt " T 1ts t return e; u

mdeclpm,Cq = Tr mpT " T 1q rTt " T 1ts

B. GFT PROGRAM TYPING RULES

Md ok in C Well-typed Method Declaration

class C extends D t F ,M u

mdeclpD,mq = Tr mpTi " T 1i qrPt E " T 1ts

Tr mpTi " T 1i qrPt C " T 1ts ok in C

class C extends D t F ,M u

mdeclpD,mq undefined

Tr mpTi " T 1i qrPt C " T 1ts ok in C

M ok in C Well-typed Method

Tr mpTi " T 1i xqrTt " T 1ts ok in Ct

x : Ti, this : Tt $ eð Tr % this : T 2t , x : T 2i
T 2t

ă:
„ T 1t T 2i

ă:
„ T 1i

Tr mpTi " T 1i xq rTt " T 1ts t return e; u ok in Ct

F ok Well-typed Field

TÓ= T

T f ok

CL ok Well-typed Class

F ok M ok in C0

class C0 extends C1 t F ; M u ok

PG ok Well-typed Program

CL ok ¨ $ eñ T % ¨

xCL, ey ok

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:43

C. GFT INTERNAL LANGUAGE (GFTIL)

∆ $ e : T % ∆ Well-typed Expression

(TIvoid)
∆ $ void : Void % ∆

(TIinvoke)
mdeclpm,C1q = Tr mpT2 " T 12qrP1 C1 " T 11s

∆, s1 : P1 C1, s2 : T2 $ s1.mps2q : Tr % ∆Ó, s1 : T 11, s2 : T 12

(TIvar-b)
∆, b : T $ b : T % ∆

(TIinvoked)
∆, s1 : Dyn, s2 : Dyn $ s1.dmps2q : Dyn % ∆Ó, s1 : Dyn, s2 : Dyn

(TIvar)
T1 V T2{T3

∆, s : T1 $ srT1 V T2{T3s : T2 % ∆, s : T3
(TIswap)

pT2 fq P fieldspC1q

∆, s1 : P1 C1, s2 : T2 $
s1.f :=: s2 : T2 % ∆, s1 : P1 C1

(TIfield)
pT fq P fieldspCq T ó T 1

∆, s : P C $ s.f : T 1 % ∆, s : P C

(TIswapd)
∆, s1 : Dyn, s2 : Dyn $ s1.f :=:d s2 : Dyn % ∆, s1 : Dyn

(TIfieldd)
∆, s : Dyn $ s.df : Dyn % ∆, s : Dyn

(TIupdate)
k1 P t full, shared u C11 ă: D1 fieldspC11q = T2 f

∆, s1 : k1pD1q C1, s2 : T2 $ s1 Ð C11ps2q : Void % ∆Ó, s1 : k1pD1q C11

(TInew)
fieldspCq = T f

∆, s : T $ new Cpsq : fullpObjectq C % ∆

(TIupdated)
fieldspCq = T2 f

∆, s1 : Dyn, s2 : T2 $ s1 Ðd Cps2q : Void % ∆Ó, s1 : Dyn

(TIrel)
∆, s : T $ releaserT spsq : Void % ∆

(TIhold)
T1 V T2{T3 T2Ó {T 13 V T 11 ∆, s : T3 $ e : T % ∆1, s : T 13

∆, s : T1 $ holdrs : T1 V T2{T3 " T 13 V T 11speq : T % ∆1, s : T 11

(TIlet)

∆ $ e1 : T1 % ∆1

∆1, x : T1 $ e2 : T2 % ∆2

x : Void P ∆2 or x : T 11 R ∆2

∆ $ let x = e1 in e2 : T2 % ∆2 ˜ x

(TImerge)

T1 = T1Ó T1{T 12 V T3
∆, l2 : T2 $ e : T % ∆1, l2 : T 12

∆, l1 : T1, l2 : T2 $ mergerl1 : T1{l2 : T 12 V T3speq : T % ∆1, l2 : T3

(TIassert)
T V T 1

∆, s : T $ assertxT " T 1ypsq : Void % ∆, s : T 1

(TIassertd)
T ­V T 1

∆, s : T $ assertdxT " T 1ypsq : Void % ∆, s : T 1

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:44 R. Garcia et al.

N ok in C Well-typed Method Signatures

class C extends D t F ,M u

mdeclpD,mq = Tr mpTi " T 1i qrPt E " T 1ts

Tr mpTi " T 1i qrPt C " T 1ts ok in C

class C extends D t F ,M u

mdeclpD,mq undefined

Tr mpTi " T 1i qrPt C " T 1ts ok in C

M ok in C Well-typed Method

Tr mpTi " T 1i xqrTt " T 1ts ok in Ct

this : Tt, x : Ti $ e : Tr % this : T 1t , x : T 1i

Tr mpTi " T 1i xq rTt " T 1ts t return e; u ok in Ct

F ok Well-typed Field

TÓ= T

T f ok

CL ok Well-typed Class

F ok M ok in C0

class C0 extends C1 t F ; M u ok

PG ok Well-typed Program

CL ok ¨ $ e : T % ¨

xCL, ey ok

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:45

µ, ρ, eÑ µ, ρ, e Dynamic Semantics

(GElookup-binder)
µ, ρ, lÑ µ, ρ, ρplq

(GEnew)
o R dompµq µ1 = µro ÞÑ Cpρplqq rfullpObjectqss

µ, ρ, new Cplq Ñ µ1, ρ, o

(GElookup-obj)
µ1 = µ´ ρplq : T1 ` ρplq : T2 ` ρplq : T3

µ, ρ, lrT1 V T2{T3s Ñ µ1, ρ, ρplq
(GErel)

µ1 = µ´ ρplq : T

µ, ρ, releaserT splq Ñ µ1, ρ, void

(GEswap)
µpρpl1qq = Cpoq P fieldspCq = T f

µ, ρ, l1.fi :=: l2 Ñ
µrρpl1q ÞÑ rρpl2q{oisCpoq P s, ρ, oi

(GEinvoke)

µpρpl1qq = Cpoq P methodpm,Cq =

Tr mpTi " T 1i xq rTt " T 1ts t return e; u

µ, ρ, l1.mpl2q Ñ µ, ρ, rl1, l2{this, xse

(GEswapd)

µpρpl1qq = Cpoq P fieldspCq = T f

Dg =

ă
: tD | kpDq P P u

µ, ρ, l1.fi :=:d l2 Ñ
µ, ρ, assertdxDyn " sharedpDgq Cypl1q;
assertdxDyn " Tiypl2q;
let ret = l1.fi :=: l2 in

assertxsharedpDgq C " Dynypl1q;
assertxTi " Dynypretq;
ret

(GEinvoked)

µpρpl1qq = Cpoq P

mdeclpm,Cq = Tr mpTi " T 1i q rTt " T 1ts

| Ti |=| l2 |

µ, ρ, l1.dmpl2q Ñ µ, ρ, assertdxDyn " Ttypl1q;

assertdxDyn " Tiypl2q;

let ret = l1.mpl2q in
assertxT 1t " Dynypl1q;
assertxT 1i " Dynypl2q;
assertxTr " Dynypretq;
ret

(GEupdate)

µpρpl1qq = Cpoq P fieldspCq = T f

µ1 = µrρpl1q ÞÑ C1pρpl2qq P s µ1 = µ1 ´ o : T

µ, ρ, l1 Ð C1pl2q Ñ µ1, ρ, void

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

A:46 R. Garcia et al.

(GEupdated)

µpρpl1qq = Cpof q P

Dg =

ă
: tD | kpDq P P u C1 ă: Dg

µ, ρ, l1 Ðd C
1pl2q Ñ

µ, ρ, assertdxDyn " sharedpDgq Cypl1q;
l1 Ð C1pl2q;
assertxsharedpDgq C1 " Dynypl1q

(GEfield)

µpρplqq = Cpoq P fieldspCq = T f
Ti ó T

1 µ1 = µ` oi : T 1

µ, ρ, l.fi Ñ µ1, ρ, oi
(GEassert)

µ1 = µ´ ρplq : T ` ρplq : T 1

µ, ρ, assertxT " T 1yplq Ñ µ1, ρ, void

(GEfieldd)
µpρplqq = Cpoq P fieldspCq = T f

µ, ρ, l.dfi Ñ µ, ρ, oi

(GEassertdv)
ρplq = void

µ, ρ, assertdxDyn " Voidyplq Ñ µ, ρ, void

(GEassertdo)

ρplq = o
µ1 = µ´ o : T ` o : P 1 C1

µ1poq = Cpof q P

C ă: C1 P compatible
µ, ρ, assertdxT " P 1 C1yplq Ñ µ1, ρ, void

(GEhold)
µ1 = µ´ ρplq : T1 ` ρplq : T2 ` ρplq : T3 l1 R dompρq ρ1 = ρrl1 ÞÑ ρplqs

µ, ρ, holdrl : T1 V T2{T3 " T 13 V T 11speq Ñ µ1, ρ1,mergerl1 : T2Ó {l : T 13 V T 11speq

(GEmerge)
µ1 = µ´ ρpl1q : T1 ´ ρplq : T2 ` ρplq : T3

µ, ρ,mergerl1 : T1{l : T2 V T3spvq Ñ µ1, ρ, v

(GEmcongr)
µ, ρ, eÑ µ1, ρ1, e1

µ, ρ,mergerl1 : T {l2speq Ñ µ1, ρ1,mergerl1 : T {l2spe1q

(GElet)
l R dompρq

µ, ρ, let x = v in eÑ µ, ρrl ÞÑ vs, rl{xse

(GEcongr)
µ, ρ, e1 Ñ µ1, ρ1, e11

µ, ρ, let x = e1 in e2 Ñ µ1, ρ1, let x = e11 in e2

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

Foundations of Typestate-Oriented Programming A:47

D. TYPE-DIRECTED TRANSLATION FROM GFT TO GFTIL

M ;MI Method Translation

this : Tt, x : T $ e : Tr ; eI % this : T 2t , x : T 2

eI1 = let ret = eI in coercepthis, T 2t , T 1tq; coercepx, T 2, T 1q; ret

Tr mpT " T 1 xq rTt " T 1t s t return e; u; Tr mpT " T 1 xq rTt " T 1t s t return eI1 ; u

F ; F I Field Translation

F ; F

CL; CL Class Translation

F ; F I M ;MI

class C0 extends C1 t F ; M u

; class C0 extends C1 t F I ; MI u

PG; PGI Program Translation

¨ $ e : T ; eI % ¨ CL; CLI

xCL, ey; xCLI , eIy

ACM Transactions on Programming Languages and Systems, Accepted for Publication (May 2014).

	Introduction
	Typestate-Oriented Programming
	Featherweight Typestate
	Syntax
	Managing Permissions
	Static Semantics
	Dynamic Semantics
	Type Safety
	Single-Heap Implementation Model
	Discussion

	Gradual Featherweight Typestate
	Considerations
	Dynamic typing
	Type assertions
	Dynamic Permissions Need Deterministic Typing

	Making Featherweight Typestate Gradual
	Managing Permissions
	Static Semantics

	Internal Language
	Syntax
	Static Semantics
	Dynamic Semantics
	Type safety

	Source to Target Translation
	Discussion

	GFT Simply Extends FT
	Conclusion
	Helpers
	GFT Program Typing Rules
	GFT Internal Language (GFTIL)
	Type-directed Translation from GFT to GFTIL

