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ABSTRACT

In this paper we propose the use of fractals and especially the Hilbert curve, in order to
design good distance-preserving mappings. Such mappings improve the performance of
secondary-key- and spatial- access methods, where multi-dimensional points have to be stored on
an 1-dimensional medium (e.g., disk). Good clustering reduces the number of disk accesses on
retrieval, improving the response time. Our experiments on range queries and nearest neighbor
queries showed that the proposed Hilbert curve achieves better clustering than older methods
("bit-shuffling", or Peano curve), for every situation we tried.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design-access
methods; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing-indexing
methods
General Terms: Algorithms, Design, Performance
Additional Keywords: distance preserving mappings, geometric data.

1. INTRODUCTION

In this work we propose some space-filling curves which achieve superior distance-
preserving mappings. Informally, a space-filling curve is a continuous path which visits every
point in a k-dimensional grid exactly once and never crosses itself. The space-filling curves pro-
vide a way to order linearly the points of a grid. The goal is to preserve the distance, that is,
points which are close in space and represent similar data should be stored close together in the
linear order. The space-filling curves are a special case of fractals [10].

Distance preserving mappings are useful in two general situations: a) when we have to
manage multi-dimensional points (geometric data) and b) when we have to store a k-dimensional
array on the disk. Multidimensional data appear in many applications. In all of them, the perfor-
mance is improved if the data (=points) are clustered in groups of similar points. The main
motivation for this work is efficient secondary key retrieval. A record with k attributes
corresponds to a point in a k-d space (see Figure 1.1).

A class of secondary key methods is based on the idea of distance preserving mappings,
using "bit-shuffling" or "z-ordering" [14], which is essentially the Peano curve. The binary
representations of the attribute values are combined ("shuffled") to create a single value, the "z-
value", which can be used as the primary key in conjunction with any primary-key access
method. Thus, any primary key access methods gives immediately rise to a secondary key access
method. The performance of the latter clearly depends on how good a clustering the distance-
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Figure 1.1.
Records of employees correspond to multidimensional points.

preserving mapping achieves.

Moreover, older secondary key methods can benefit from the present work: E.g., the grid
file [12] needs to store a k-d directory on the disk; a good way to store it would definitely reduce
the number of disk accesses on partial match and range queries.

Additional applications for distance-preserving mappings include the following:

1) Cartography. Maps could be stored and searched electronically, answering efficiently
geometric queries [5], [17]. In the TIGER project at the U.S. Bureau of Census, the map
of the United States will eventually be stored in a database [19]; the "bit-shuffling" method
is used for a distance-preserving mapping.

2) Computer-Aided Design (CAD). For example, VLSI design systems need to store many
thousands of rectangles [15] representing electronic gates and higher level elements. Rec-
tangles can be divided in pieces; each piece is assigned a "z-value", according to the Peano
curve [13].

3) Computer vision and robotics.

4) Retrieval in large knowledge bases [9], [11], [18].

5) Clustering of data in data base machines [3], [4].

6) In numerical analysis, large k-d arrays that have to be stored on disk [6].

7) In computational geometry. Heuristics in geometric complexity problems use distance-
preserving mappings: E.g., to solve the traveling salesman problem, the cities are ordered in
a linear ordering, and visited in this order. [1].

The three space-filling curves we compare are the Peano curve, the reflected binary gray-
code (RBG) curve [7] and the Hilbert curve. The first two have been used before as distance
preserving mappings for partial match retrieval. The hypothesis is that the proposed Hilbert
curve yields a better distance preserving mapping, because it avoids long jumps between points.
Among the different types of queries [16], we focus on range queries and nearest neighbor
queries; based on them, we derive measures to quantify the "goodness" of a distance preserving
mapping.

The structure of the paper is as follows: Section 2 shows how these three space-filling
curves are recursively derived. Section 3 briefly describes the experiments on range queries and
nearest neighbor queries. Section 4 discusses the results of the experiments. Appendix A lists the
algorithms used in the experiments.
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2. SURVEY - SPACE-FILLING CURVES

In general, space-filling curves start with a basic path on a k-dimensional square grid of side
2. The path visits every point in the grid exactly once without crossing itself. It has two free
ends which may be joined with other paths. The basic curve is said to be of order 1. To derive a
curve of order i, each vertex of the basic curve is replaced by the curve of order i−1, which may
be appropriately rotated and/or reflected to fit the new curve.

The basic Peano curve for a 2*2 grid, denoted N1, is shown in Fig. 2.1. To derive higher
orders of the Peano curve, replace each vertex of the basic curve with the previous order curve.
Fig. 2.1 also shows the Peano curve of order 2 and 3.
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Fig. 2.1 Peano curves of order 1, 2, and 3

The basic reflected binary gray-code curve of a 2*2 grid, denoted R1 is shown in Fig. 2.2.
The procedure to derive higher orders of this curve is to reflect the previous order curve over the
x-axis and then over the y-axis. Fig. 2.2 also shows the reflected binary gray-code curve of order
2 and 3.
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Fig. 2.2 Reflected binary gray-code curves of order 1, 2, and 3

The basic Hilbert curve of a 2*2 grid, denoted H1, is shown in Fig. 2.3. The procedure to
derive higher orders of the Hilbert curve is to rotate and reflect the curve at vertex 0 and at vertex
3. The curve can keep growing recursively by following the same rotation and reflection pattern
at each vertex of the basic curve. Fig. 2.3 also shows the Hilbert curves of order 2 and 3. An
algorithm to draw this curve is given in Griffiths [8] and Wirth [20].
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Fig. 2.3 Hilbert curves of order 1, 2, and 3

The path of a space-filling curve imposes a linear ordering, which may be calculated by
starting at one end of the curve and following the path to the other end. Orenstein [14] used the
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term z-ordering to refer to the ordering of the Peano curve. He also used the term z-value to
refer to the order of the point in the z-ordering. We shall use the same terminology here and we
shall introduce the terms h-ordering and h-values to refer to the corresponding ordering and
values of the Hilbert curve. Similarly, we use r-ordering and r-values for the RBG curve. Fig.
2.4 gives an example of the ordering imposed by the Peano curve, the RBG curve, and the Hilbert
curve of order 2.
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Fig. 2.4 Z-ordering of the Peano curve, r-ordering of the
RBG curve, and h-ordering of the Hilbert curve of order 2

Table T2.1 lists the symbols and their definitions

symbol definition

n order of the curve
N size of the side of the grid (= 2n)
k number of dimensions

Table 2.1. List of symbols

3. EXPERIMENTS.

Since our goal is to find the best distance preserving mapping, we have to define a measure
for the "goodness". In this section we describe two such measures and we justify their use.

The first measure is related to the performance of a distance preserving mapping under
range queries. The setting we have in mind is as follows: We are given a set of multidimensional
points; we use a distance-preserving mapping to assign a value (say, "x"-value) to each point; we
sort the points according to their "x"-values (where "x" is in the set {r, h, z}) and store them on
disk pages. Note that not all possible "x"-values need to be present; only the existing points are
stored. In this setting, the best measure for the response time is the number of disk accesses that
the average range query requires.

The number of disk accesses depends not only on the mapping, but also on the capacity of
the disk pages, the number and distribution of data points etc. A measure that depends only on
the mapping is the number of clusters that the average query retrieves.

Definition: For a given distance-preserving mapping "x" that maps the points of a k-d grid on 1-
d, a cluster is defined to be a group of points with consecutive "x"-values.

The proposed measure is a good indication of how good a clustering a distance-preserving
mapping can achieve: If a range query retrieves few clusters, then it is likely to require few disk
accesses on the actual file.
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Figure 3.1 illustrates a range query where the Hilbert curve is better than the Peano curve.
The shaded area is the range query. The Peano curve has four pieces (clusters) in the shaded area,
while the Hilbert curve only has two.

N3 H3

Fig. 3.1 Illustration of clusters for
the Peano curve and the Hilbert Curve

The second proposed measure is related to nearest neighbor queries. An example of a
nearest neighbor query is to find the closest gas station from the point of the accident (See Figure
3.2 ). The entire grid is a map of a neighborhood, which is stored in a database. X represents the
point of the accident and G represents the gas stations in the area. The lines represent street
blocks and the numbers represent the order we stored the information in the database (using the
h-ordering for the Hilbert curve).
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Fig. 3.2 An example of a nearest neighbor query

A straightforward algorithm to solve this problem is as follows:

1. Calculate the h-value of X

2. Find X’s preceeding and succeeding points on the Hilbert path. Continue following
both ends of the path until one of the points corresponds to a gas station. In our exam-
ple, G15 is the first one found.

3. Calculate the Manhattan distance from G15 to X. In our example, this distance d is
two blocks.

4. Check all points which are within d(=2) blocks of X (on the two dimensional grid) to
see if any closer gas station exists. From Figure 3.2 we see that such a gas station
exists which is only one block away from X.

Figure 3.3 is a one-dimensional diagram which shows the points which are within two blocks of
X on the two-dimensional grid. The points which are accessed are in the shaded regions of the
diagram.

In the above algorithm, it is desirable to have the neighbors which are close on the linear-
ized path indeed close in the k-dimensional space. This gave rise to the second proposed meas-
ure, the maximum neighbor distance: For a given distance preserving mapping and a given radius
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Fig. 3.3 The shaded regions of this one-dimensional
diagram illustrate the points which are accessed in

step 4 of the above example.

R, the maximum neighbor distance of a point X is the largest Manhattan distance (in the k-d
space) of the points within distance R on the linear curve.

To carry out the experiments, we needed algorithms that calculate the "x"-value of a point
given its coordinates, as well as the inverse. These algorithms are listed in Appendix A.

4. RESULTS

We experimented with the Hilbert curve, the Peano curve and the RBG curve of two, three
and four dimensions.

Tables 4.1 and 4.2 show the average number of clusters for all the possible range queries,
for 2 and 3 dimensions, respectively. Table 4.3 shows the average number of clusters for all
3*3*3*3 shaped range queries on the four dimensional grid. Three*three*three*three shaped
range queries means each attribute (dimension) has a range of three values. The reasons the
queries are limited on the fourth dimension is because of the large number of queries possible.
Due to the large number of points in the three- and four-dimensions, only the smaller orders of
the curves are tested. The first column of the Tables gives the order n of the curve and the second
gives the number of points N (= 2n) on each side of the grid.

Order N*N HILBERT RBC PEANO
n GRID

1 2*2 1.11 1.11 1.22

2 4*4 1.64 1.92 2.16

3 8*8 2.93 4.02 4.41

4 16*16 5.60 8.71 9.29

Table 4.1 Average number of clusters for all possible range
queries for two-dimensional curves.

Order N*N*N HILBERT RBC PEANO
n GRID

1 2*2*2 1.33 1.33 1.59

2 4*4*4 3.72 3.44 4.49

Table 4.2 Average number of clusters for all possible range
queries for three-dimensional curves

Note that the number Q of possible range queries is exponential on the dimensionality k of
the space:

Q=
R
J
Q 2
N(N+1) H

J
P

k

(1)
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Order N*N*N*N HILBERT RBC PEANO
n GRID

1 4*4*4*4 24.74 28.00 40.00

2 8*8*8*8 26.63 29.37 40.33

Table 4.3 Average number of clusters for all 3*3*3*3
shaped range queries for four-dimensional curves

For large values of N or k, the number of queries is too large, making the experimentation
difficult.

The results show that the Hilbert curve usually requires fewer clusters than the Peano curve
and the reflected binary gray-code curve. The only time the RBG curve does better is for the
three dimensional curves of order 2. Both the Hilbert curve and the RBG curve consistently do
better than the Peano curve.

Tables 4.4, 4.5 and 4.6 show the average farthest distance from each point to its neighbor
points (points whose "x"-values are within N/2 numbers of the current point’s "x"-value), for 2, 3
and 4 dimensions, respectively. Again, the results show that the Hilbert curve generates a better
distance-preserving mapping than the other two mappings. In this application, the surprising
results are that for large orders of n on a two-dimensional grid, the Peano curve does better than
the RBG curve.

Order N*N HILBERT RBC PEANO
n GRID

1 2*2 1.00 1.00 1.50

2 4*4 2.00 2.75 2.75

3 8*8 3.28 5.00 4.84

4 16*16 4.89 8.52 7.91

Table 4.4 Average farthest distance of the neighbors
of all the points, for two-dimensional curves.

Order N*N*N HILBERT RBC PEANO
n GRID

1 2*2*2 1.00 1.00 2.00

2 4*4*4 2.00 2.50 3.31

3 8*8*8 3.23 4.04 5.10

4 16*16*16 4.20 5.61 7.03

Table 4.5 Average farthest distance of the neighbors
of all the points, for three-dimensional curves.

The contributions of this work are:

g the proposal of the Hilbert curve and, in general, of fractals to achieve good clustering for
secondary key retrieval.
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Order N*N*N*N HILBERT RBC PEANO
n GRID

1 2*2*2*2 1.00 1.00 2.38

2 4*4*4*4 2.02 2.28 3.50

Table 4.6 Average farthest distance of the neighbors
of all the points, for four-dimensional curves.

g the experimentation, that indicates that the proposed Hilbert curve achieves better results
than the z-ordering (Peano curve) and the RBG curve for processing range and nearest
neighbor queries.

Future research includes:

g Effort to find the "best" distance-preserving mapping.

g Experiments with dimensions greater than four.

g Analytical derivation of the above measures.

APPENDIX A : ALGORITHMS

This appendix lists the algorithms that were used to compute the z-values, the r-values and
the h-values of the Peano curve, the RBG curve and the Hilbert curve, respectively. It also lists
the algorithms that were used to compute the average number of clusters required for all possible
range queries and the average farthest distance of neighbors.

A.1 Computing z-values, r-values and h-values

The z-values, r-values, and h-values are computed by interleaving the bits of the binary
representation of coordinates of the point. For the z-values of the two-dimensional Peano curve
the algorithm is as follows:

Algorithm P

1. Read in the binary representation of the x and y coordinates.

2. Interleave the bits of the two binary numbers into one string. See Fig. A.1 for an
example.

x = 0 0 0 1 y = 0 1 1 0 point ( 1 , 6 )

1000 0 1 1 0 )2 = ( 22 )10string = (

Fig. A.1 Bit interleaving (Orenstein and Merrett) [14]

3. Calculate the decimal value of the resulting binary string.
(Note: The the z-value of the point (1,6) in Fig. 4 is 22)

Higher dimensions of the Peano curve are calculated the same way. For k dimensional
curves, read and interleave k numbers instead of two numbers.

The algorithm to compute r-values for the RBG is similar to the Peano curve [7]. The only
difference is that the bit strings are considered as gray-codes instead of binary codes.
Specifically:
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Algorithm R

1. Read in the (integer) x and y coordinates.

2. Convert them to the equivalent gray codes (ie., bit strings).

3. Interleave the bits of the two bit strings

4. Consider the resulting bit string as a gray-codeword, and calculate its decimal value.

The generalization for k dimensions and the inverse algorithm are obvious.

Since the Hilbert curve is more complex than the other two curves, we list three different
algorithms for calculating the h-values for the Hilbert curve, in increasing order of readability.
The first one calculates the h-values for a two-dimensional Hilbert curve. It is the easiest to
understand and shows the rotation and reflection explicitly. The second algorithm, which may be
used only for three-dimensional curves, is a special case of the third algorithm, which is general
and may be used for a Hilbert curve of arbitrary dimensionality.

The algorithm to compute the h-values of the two-dimensional Hilbert curve on a 2n*2n grid
is:

Algorithm H1

1. Read in the (n-bit) binary representation of the x and y coordinates.

2. Interleave bits of the two binary numbers into one string, i.e., the same way as for the
Peano curve.

3. Divide the string from left to right into 2-bit strings, si for i=1,...,N.

4. Give a decimal value, di, for each two bit string according to the following chart.

’00’ equals 0
’01’ equals 1
’10’ equals 3
’11’ equals 2

and put into an array in the same order as the strings occurred. (This gives the h-
values of the basic Hilbert curve.)

5. For each number i in the array, if ...

i=0 then switch every following occurrence of 1 in the array to 3 and every follow-
ing occurrence of 3 in the array to 1;

i=3 then switch every following occurrence of 0 in the array to 2 and every follow-
ing occurrence of 2 in the array to 0;

(This makes up for the rotation and reflection of the curves of order higher than 1.)

6. Convert each number in the array to its binary representation (two-bit strings), con-
catenate all the strings in order from left to right, and calculate the decimal value.

Example 2 Calculate the h-value of the point (1,2) for the Hilbert curve of order 3.

Step 1: x = 0 0 1 y = 0 1 0

Step 2: string = 0 0 0 1 1 0

Step 3: s1 = 00 s2 = 01 s3 = 10

Step 4: d1 = 0 d2 = 1 d3 = 3

Step 5: for d1
d2 = 3 d3 = 1



- 10 -

(these are the only switches)

Step 6: s1 = 00 s2 = 11 s3 = 01
string = 0 0 1 1 0 1
h-value = 13

(If you look at point (1,2) in H3 in Fig. 2.2, you will notice it is the thirteenth point in the
ordering.)

The H1 algorithm has complexity O(n2) and may only be used for two-dimensional curves.
An O(n) algorithm to compute the h-values of the Hilbert curve was derived by Bially [2]. He
describes a way to create state transition machines to determine h-values for any dimensionality
Hilbert curves. Fig. A.2 shows a state transition machine he created for the three-dimensional
Hilbert curve. The states, which are the circles in Fig. A.2, are k*k matrices, which account for
the rotation and reflection of the curve. Each state has arrows coming in and out of it. The
unbracketed k-tuple on the arrow represents the input and bracketed k-tuple represents the output
after the transformations have taken place. In algorithm H2 which calculate the h-values of the
Hilbert curve on a 2n*2n*2n, we use the state diagram created by Bially, which is shown in Fig.
A.2.

Algorithm H2

1. Read in the binary representation of the x, y and z coordinates.

2. Interleave bits of the three binary numbers into one string, i.e., the same way as for the
Peano curve.

3. Divide the string from left to right into 3-bit strings, but retain the order of the strings.

4. For each three-bit string...

Change the string according to the output string from the current state and move
to the new state pointed to by arrow.

5. Concatenate all the new three bit strings in order and calculate the decimal value.

Example 3 Calculate the h-value of the point (1,2,0) for the Hilbert curve of order 3.

Step 1: x = 0 0 1 y = 0 1 0 z = 0 0 0

Step 2: string = 0 0 0 0 1 0 1 0 0

Step 3: s1 = 000 s2 = 010 s3 = 100

Step 4: current state = 1
for s1: s1 = 000 new state = 9
for s2: s2 = 001 new state = 1
for s3: s3 = 111 new state = 2

Step 5: string = 0 0 0 0 0 1 1 1 1
h-value = 15

Algorithm H2 may only be used with the three-dimensional Hilbert curve, because it specifically
uses the state transition machine for the three-dimensional Hilbert curve. The algorithm to calcu-
late the inverse is the same as algorithm H2 with the input and output interchanged in the state
diagram.

The following two algorithms create a generic algorithm which may be used with Hilbert curves
of any dimension. The first algorithm is done by hand to create some fundamental data which is
used in the second algorithm. The fundamental data provides the essential information needed to
build a state transition machine of a particular-dimension Hilbert curve. The data, which includes
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Fig. A.2 State diagram of the Hilbert curve for three dimensions
(Bially) [2]

information about the basic curve, the rotation and the reflection, will be different for each
dimension. To calculate the h-values for points in four-dimensional space, we created our own
state diagram using the method described by Bially [2].

The following is the algorithm derived by Bially to calculate the fundamental data. The
algorithm here is simplified from the discussion in Bially’s paper [2]. The table this algorithm
derives is in Table TA.1.

Algorithm H3a : Fundamental Data

1. The first column represents the transformation of the basic rotation and reflection. It
is the output from the basic state and is derived by counting in binary.

2. The second column represents the input into the basic state and is derived by counting
in any Gray code. (Table TA.1 uses the reflected binary code.)

3. For each entry in the second column, the third column will have two entries. The very
first entry in the table must be 0000 and the very last entry in the table must be the last
entry in the second column. (In Table TA.1, the last entry of the third column must be
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1000.) The rest of the entries must follow these rules:

1. Each pair of adjacent entries in the third column must differ in one bit position
exactly. (i.e., ...,1100,1000,1010,1000,...)

2. For each pair of adjacent entries in the second column, say A and B, the second
entry in the third column corresponding to entry A and the first entry in the third
column corresponding to entry B must differ in exactly the same bit position that
entries A and B differ.

4. The fourth column is derived by placing a ’1’ in the only bit position which changes
between the pair of adjacent entries in the third column which have the same
corresponding entry in the second column. Place a ’0’ in all other bit positions.

5. The last column is derived by forming a P matrix which satisfies
(P)*(entry in fourth column) = last entry in second column
(i.e., in this table, the last entry is 1000) P must be formed so there is exactly one ’1’
in each column and row.

6. The positive and negative ones of matrix P in the fifth column are determined by the
first entry of the pair of entries in the third column which have the same corresponding
entry in second column. If the i-th element of this first entry is a ’1’ then the element
in the i-th column of the matrix P is ’-1’, otherwise it is positive one.

The hardest part of this algorithm is step 3. While the rules may look easy, it is hard
to implement so that all the rules are satisfied simultaneously. Also, there may be more
than one derivation of step 3.

Once the fundamental data is established, a computer program may calculate all the
other information for the state diagram as it is needed in the calculation for the h-value.
This is also described in Bially’s paper. The algorithm to compute the h-values of the four
dimensional Hilbert curve on a 2n*2n*2n*2n grid is:

Algorithm H3b : General Algorithm for the Hilbert Curve

0. Initialize the fundamental data from Algorithm H3a. Any state in the Table
TA.1 may be used as the initial state to produce a space filling curve. In this
experiment, we used the first matrix, P, in table TA.1.

1. Read in the binary representation of the x, y, z, and t coordinates.

2. Interleave bits of the four binary numbers into one string, i.e., the same way as
for the Peano curve.

3. Divide the string from left to right into 4-bit strings, input, but retain the order of
the strings.

4. For each four bit string...

1. For j = 0 to 3

1. Find the nonzero element in the j-th row of the current matrix.

2. Set i = the column which corresponds to that nonzero element.

3. If the nonzero element = 1 then output[j] = input[i]
else if the nonzero element = -1 then output[j] = 1 - input[i]

2. Using the fundamental data (Table TA.1), search the second column for
the calculated four bit output string. The corresponding entry in the first



- 13 -

Output Input P

0 0 0 1
0000 0000 0000 0001 0 0 1 0

0001 0 1 0 0
1 0 0 0

0 0 1 0
0001 0001 0000 0010 0 0 0 1

0010 0 1 0 0
1 0 0 0

0 1 0 0
0010 0011 0000 0100 0 0 0 1

0100 0 0 1 0
1 0 0 0

1 0 0 0
0011 0010 0101 1000 0 -1 0 0

1101 0 0 1 0
0 0 0 -1

0 0 1 0
0100 0110 1001 0010 0 0 0 -1

1011 0 1 0 0
-1 0 0 0

0 0 -1 0
0101 0111 1010 0010 0 0 0 1

1000 0 1 0 0
-1 0 0 0

0 0 1 0
0110 0101 1010 0010 0 0 0 1

1000 0 1 0 0
-1 0 0 0

0 0 1 0
0111 0100 1001 0010 0 0 0 -1

1011 0 1 0 0
-1 0 0 0

1 0 0 0
1000 1100 0011 1000 0 1 0 0

1011 0 0 -1 0
0 0 0 -1

-1 0 0 0
1001 1101 1010 1000 0 1 0 0

0010 0 0 -1 0
0 0 0 1

Table TA.1 (Table continued on next page)

column is the new four bit rotated string.

3. Calculate the new current state...

1. Retrieve the matrix Pbasic from Table TA.1 which corresponds to that
entry in the first column which is the rotated string.
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Output Input P

1 0 0 0
1010 1111 0000 1000 0 1 0 0

1000 0 0 1 0
0 0 0 1

0 0 1 0
1011 1110 1001 0010 0 0 0 -1

1011 0 1 0 0
-1 0 0 0

0 0 -1 0
1100 1010 1111 0010 0 0 0 -1

1101 0 -1 0 0
-1 0 0 0

0 -1 0 0
1101 1011 1100 0100 0 0 0 1

1000 0 0 1 0
-1 0 0 0

0 0 -1 0
1110 1001 1010 0010 0 0 0 1

1000 0 1 0 0
-1 0 0 0

0 0 0 -1
1111 1000 1001 0001 0 0 1 0

1000 0 1 0 0
-1 0 0 0

Table TA.1 Calculations of fundamental data
for Hilbert curve of four dimensions.

2. Multiply that state by the current state using matrix multiplication.
Pnew = Pbasic * Pcurrent

5. Concatenate all the four bit rotated strings in order and calculate the decimal
value.

Note that the fundamental data algorithm and the generic algorithm need only be
modified slightly to handle n-dimensional Hilbert curve. Wherever there are four-bit
strings, there will be n-bit strings. The algorithm to determine the inverse will be the same
as algorithm H3.b except columns 1 and 2 of table TA.1 will be interchanged.

Example 4 Calculate the h-value of the point (2,1,3,0)for the Hilbert curve of order 2.

Step 0: current state =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
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Step 1: x1 = 1 0 x2 = 0 1 x3 = 1 1 x4 = 0 0

Step 2: string = 1 0 1 0 0 1 1 0

Step 3: s1: input[0]=1 s2: input[0]=0
input[1]=0 input[1]=1
input[2]=1 input[2]=1
input[3]=0 input[3]=0

Step 4: for s1
4.1) output[0]=input[3]=0

output[1]=input[2]=1
output[2]=input[1]=0
output[3]=input[0]=1

4.2) output = 0 1 0 1 --> 0 1 1 0 = rotated = r1

4.3) new current state =
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 -1

for s2
4.1) output[0]=input[1]=1

output[1]=input[0]=0
output[2]=input[2]=1
output[3]=input[3]=1

4.2) output = 1 0 1 1 --> 1 1 0 1 = rotated = r2

4.3) new current state =
-1 0 0 0
0 0 0 -1
0 0 1 0
0 -1 0 0

Step 5: string = r1 || r2 = 0 1 1 0 1 1 0 1
h-value = 109

A.2. Computing the average number of clusters

The algorithm to compute the average number of clusters of all possible range queries
for the Peano curve (of any dimensionality) is

1. Read in the order n of the curve.

2. For each possible range query...

For each point inside the query range...

1. Calculate the "x"-value of the point.
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2. Calculate the coordinates of the "x"-successor, which is the point
whose "x"-value is one higher than the current point.

3. Check if the coordinates of the "x"-successor are within the query
range - if not, add one more to the number of clusters.

3. Divide the number of clusters by the number of possible range queries.

The same algorithm may be used to compute the average number of clusters of all
possible range queries for the RBG curve and the Hilbert curve. One shortcut may be taken
for the Hilbert curve. Only the borderline points of the range query need to go through step
2 of the above algorithm, since all the points inside the query have successor points either
inside the query or on the border. The Peano curve and the RBG curve, on the other hand,
may have points inside the boundary of the range query which take long diagonal jumps
outside the range to get to their successor points.

A.3. Computing the average maximum neighbor distance

The algorithm to compute the average farthest distance of the neighbors (points with
close "x"-values) for all the points in the two-dimensional curve is

1. Read in N of a N*N grid, i.e., for the basic curve, N=2. Read in the radius R (all
"x"-neighbors within distance R on the "x"-ordering will be considered)

2. For each point ("x"-value) in the curve...

1. Calculate the coordinates of the current point, xcurrent and ycurrent.

2. For each neighboring point P (which is a point whose "x"-value is within R
steps from the current "x"-value)...

1. Calculate the coordinates of the neighbor point, xP and yP.

2. Calculate the distance the neighbor point is from the current point,
using the Manhattan distance. The equation is
| xcurrent−xP | + | ycurrent−yP |

3. Compare the distance to previous neighbor’s distances and find the
largest distance.

3. Add the largest distance calculated in step 2.2.3 step with the other largest
distances previously calculated for other points.

3. Divide the sum of the largest distances (the answer from 2.3) by the number of
points in the curve.

Note that this algorithm may be easily modified to handle curves of any dimensionality.
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