
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Hemlock Command Implementor's Manual

Rob MacLachlan
Bill Chiles

April 1989

CMU-CS-89-134 ?

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This is a revised version of Technical Report CMU-CS-87-159.

Abstract

This document describes how to write commands for the Hemlock text editor, as of version M3.0. Hemlock is a
customizable, extensible text editor whose initial command set closely resembles that of ITS/TOPS-20 Emacs.
Hemlock is written in the CMU Common Lisp implementation of Common Lisp and has been ported to other
implementations.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976
under contract F33615-87-C-1499 and monitored by the Avionics Laboratory, Air Force Wright Aeronautical
Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, OHIO 45433-6543.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

INDEX

T a b l e o f C o n t e n t s
1. Introduction ^
2. Representation of Text 3

2.1. Lines ^
2.2. Marks *

2.2.1. Kinds of Marks 4
4
5

2.2.2. Mark Functions
2.2.3. Making Marks
2.2.4. Moving Marks

2.3. Regions *
2.3.1. Region Functions

3. Buffers
3.1. The Current Buffer
3.2. Buffer Functions
3.3. Modelines

4. Altering and Searching Text
4.1. Altering Text 15
4.2. Text Predicates 16
4.3. Kill Ring 17
4.4. Active Regions 18
4.5. Searching and Replacing 19

5. The Current Environment 21
5.1. Different Scopes 21
5.2. Shadowing

6
6
9
9
10
12
15

21
23 6. Hemlock Variables

6.1. Variable Names 23
6.-2. Variable Functions 23
6.3. Hooks 25

7. Commands 27
7.1. Introduction 27

7.1.1. Defining Commands 27
7.1.2. Command Documentation 28

7.2. The Command Interpreter 28
7.2.1. Binding Commands to Keys 28
7.2.2. Key Translation 30
7.2 J. Transparent Key Bindings 30
7.2.4. Interactive 30

7.3. Command Types 31
7.4. Command Arguments 31

7.4.1. The Prefix Argument 31
7.4.2. Lisp Arguments 31

7.5. Recursive Edits 31
8. Modes 33

8.1. Mode Hooks 33
8.2. Major and Minor Modes 33
8.3. Mode Functions 34

9. Character Attributes 35
9.1. Introduction 35
9.2. Character Attribute Names 35
9.3. Character Attribute Functions 36

University Libraries
Carnegie Melton University

Pittsburgh, Pennsylvania 15213

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

9.4. Character Attribute Hooks
9.5. System Defined Character Attributes

10. Controlling the Display
10.1. Windows
10.2. The Current Window
10.3. Window Functions
10.4. Cursor Positions
10.5. Redisplay

11. Logical Characters
11.1. Introduction
11.2. Logical Character Functions
11.3. System Defined Logical Characters

12. The Echo Area
12.1. Echo Area Functions
12.2. Prompting Functions
12.3. Control of Parsing Behavior
12.4. Defining New Prompting Functions
12.5. Some Echo Area Commands

13. Files
13.1. File Options and Type Hooks
13.2. Pathnames and Buffers
13.3. File Groups
13.4. File Reading and Writing

14. Hemlock's Lisp Environment
14.1. Entering and Leaving the Editor
14.2. Keyboard Input
14.3. Hemlock Streams
14.4. Interface to the Error System
14.5. Definition Editing
14.6. Event Scheduling
14.7. Miscellaneous

15. High-Level Text Primitives
15.1. Indenting Text
15.2. Lisp Text Buffers
15.3. English Text Buffers
15.4. Logical Pages
15.5. Filling

16. Utilities
16.1. String-table Functions
16.2. Ring Functions
16.3. Undoing commands

17. Auxiliary Systems
17.1. CLX Interface

17.1.1. Keyboard and Mouse Input
17.1.2. Graphics Window Hooks
17.13. Entering and Leaving Windows
17.1.4. How to Lose Up-Events

17.2. Slave Lisps
17.2.1. The Current Slave
17.2.2. Asynchronous Operation Queuing
17.2 J. Synchronous Operation Queuing

37
37
39
39
39
39
41
42
43
43
43
44
45
45
46
48
49
50
51
51
51
52
53
55
55
55
56
57
58
58
58
61
61
61
63
64
65
67
67
68
69
71
71
71
72
73
73
73
73
74
75

INDEX

17.3. Spelling
17.4. File Utilities
17.5. Beeping

Index
Index

1

Chapter 1

Introduction

Hemlock is a text editor which follows in the tradition of editors such as EMACS and the Lisp Machine editor
ZWEI. In its basic form, Hemlock has almost the same command set as EMACS, and similar features such as
multiple buffers and windows, extended commands, and built in documentation.

Both user extensions and the original commands are written in Lisp, therefore a command implementor will have
a working knowledge of this language. Users not familiar with Lisp need not despair however. Many users of
Multics EMACS, another text editor written in Lisp, came to learn Lisp simply for the purpose of writing their own
editor extensions, and found, to their surprise, that it was really pretty easy to write simple commands.

This document describes the Common Lisp functions, macros and data structures that are used to implement new
commands. The basic editor consists of a set of Lisp utility functions for manipulating buffers and the other data
structures of the editor as well as handling the display. All user level commands are written in terms of these
functions. To find out how to define commands see chapter 7.

2

3

Chapter 2

Representation of Text

2.1. Lines

In Hemlock all text is in some line. Text is broken into lines wherever it contains a newline character; newline
characters are never stored, but are assumed to exist between every pair of lines. The implicit newline character is
treated as a single character by the text primitives.

linep line [Function]
This function returns t if line is a line object, otherwise nil.

line-string line [Function]
Given a line* this function returns as a simple string the characters in the line. This is setf 'able to set
the line-string to any string that does not contain newline characters. It is an error to destructively
modify the result of line-string or to destructively modify any string after the line-string of
some line has been set to that string.

line-previous line [Function]
line-next line [Function]

Given a line, line-previous returns the previous line or nil if there is no previous line. Similarly,

line-next returns the line following line or nil.
line-buffer line [Function]

This function returns the buffer which contains this line. Since a line may not be associated with any
buffer, in which case line-buffer returns nil.

line-length line [Function]
This function returns the number of characters in the line. This excludes the newline character at the end.

line-character line index [Function]
This function returns the character at position index within line. It is an error for index to be greater than
the length of the line or less than zero. If index is equal to the length of the line, this returns a
#\newline character.

line-plist line [Function]
This function returns the property-list for line, setf, getf, putf and remf can be used to change
properties. This is typically used in conjunction with line-signature to cache information about the
line's contents.

4

line-signature line [Function]
This function returns an object that serves as a signature for a line's contents. It is guaranteed that any
modification of text on the line will result in the signature changing so that it is not eql to any previous
value. The signature may change even when the text remains unmodified, but this does not happen often.

2.2. Marks
A mark indicates a specific position within the text represented by a line and a character position within that line.

Although a mark is sometimes loosely referred to as pointing to some character, it in fact points between characters.
If the charpos is zero, the previous character is the newline character separating the previous line from the mark's
line. If the charpos is equal to the number of characters in the line, the next character is the newline character
separating the current line from the next. If the mark's line has no previous line, a mark with charpos of zero has
no previous character; if the mark's line has no next line, a mark with charpos equal to the length of the line has
no next character.

This section discusses the very basic operations involving marks, but a lot of Hemlock programming is built on
altering some text at a mark. For more extended uses of marks see chapter 4.

2.2.1. Kinds of Marks
A mark may have one of two lifetimes: temporary or permanent. Permanent marks remain valid after arbitrary

operations on the text; temporary marks do not. Temporary marks are used because less bookkeeping overhead is
involved in their creation and use. If a temporary mark is used after the text it points to has been modified results
will be unpredictable. Permanent marks continue to point between the same two characters regardless of insertions
and deletions made before or after them.

There are two different kinds of permanent marks which differ only in their behavior when text is inserted at the
position of the mart, text is inserted to the left of a left-inserting mark and to the right of right-inserting mark.

2.2.2. Mark Functions

markp mark [Function]
This function returns t if mark is a mark object, otherwise nil.

mark-line mark [Function]
This function returns the line to which mark points.

mark-charpos mark [Function]
This function returns the character position of the character after mark. If mark's line has no next line,
this returns the length of the line as usual; however, there is actually is no character after the mark.

mark-kind mark [Function]
This function returns one of : right-inserting, : left-inserting or : temporary depending
on the mark's kind. A corresponding setf form changes the mark's kind.

previous-character mark [Function]
next-character mark [Function]

This function returns the character immediately before (after) the position of the mark, or nil if there is
no previous (next) character. These characters may be set with setf when they exist; the setf methods

5

for these forms signal errors when there is no previous or next character.

2.2.3. Making Marks

mark line charpos & optional kind [Function]
This function returns a mark object that points to the charpos'th character of the line. Kind is the kind of
mark to create, one of -.temporary, : left-inserting, or : right-inserting. The default is
:temporary.

copy-mark mark ^optional kind [Function]
This function returns a new mark pointing to the same position and of the same kind, or of kind kind if it
is supplied.

delete-mark mark [Function]
This function deletes mark. Delete any permanent marks when you are finished using it.

with-mark ({(mark pos [kind])}*) [form]* [Macro]
This macro binds to each variable mark a mark of kind kind, which defaults to : temporary, pointing to
the same position as the mark pos. On exit from the scope the mark is deleted. The value of the last form
is the value returned.

2.2.4. Moving Marks
These functions destructively modify marks to point to new positions. Other sections of this document describe

mark moving routines specific to higher level text forms than characters and lines, such as words, sentences,
paragraphs, Lisp forms, etc.

move-to-position mark charpos ^optional line [Function]
This function changes the mark to point to the given character position on the line line. Line defaults to
mark's line.

move-mark mark new-position [Function]
This function moves mark to the same position as the mark new-position and returns it.

line-start mark fioptional line [Function]
line-end mark fioptional line [Function]

This function changes mark to point to the beginning or the end of line and returns it. Line defaults to
mark's line.

buffer-start mark ^optional buffer [Function]
buffer-end mark fioptional buffer [Function]

These functions change mark to point to the beginning or end of buffer, which defaults to the buffer mark
currently points into. If buffer is unsupplied, then it is an error for mark to be disassociated from any
buffer.

mark-before mark [Function]
mark-after mark [Function]

These functions change mark to point one character before or after the current position. If there is no
character before/after the current position, then they return nil and leave mark unmodified.

6

character-offset mark n [Function]
This function changes mark to point n characters after (n before if n is negative) the current position. If
there are less than n characters after (before) the mark, then this returns nil and mark is unmodified.

line-offset mark n ^optional charpos [Function]
This function changes mark to point n lines after (n before if n is negative) the current position. The
character position of the resulting mark is

(min (line-length resulting-line) (mark-charpos mark))
if charpos is unspecified, or

(xain (line-length resulting-line) charpos)
if it is. As with c h a r a c t e r - o f f s e t , if there are not n lines then nil is returned and mark is not
modified.

2.3. Regions
A region is simply a pair of marks: a starting mark and an ending mark. The text in a region consists of the

characters following the starting mark and preceding the ending mark (keep in mind that a mark points between
characters on a line, not at them).

By modifying the starting or ending mark in a region it is possible to produce regions with a start and end which
are out of order or even in different buffers. The use of such regions is undefined and may result in arbitrarily bad
behavior.

2.3.1. Region Functions

region start end [Function]
This function returns a region constructed from the marks start and end. It is an error for the marks to
point to non-contiguous lines or for start to come after end.

regionp region [Function]
This function returns t if region is a region object, otherwise nil.

make-empty-region [Function]
This function returns a region with start and end marks pointing to the start of one empty line. The start
mark is a : right-inserting mark, and the end is a : left-inserting mark.

copy-region region [Function]
This function returns a region containing a copy of the text in the specified region. The resulting region
is completely disjoint from region with respect to data references — marks, lines, text, etc.

region-to-string region [Function]
string-to-region string [Function]

These functions coerce regions to Lisp strings and vice versa. Within the string, lines are delimited by
newline characters.

7

[Function] line-to-region line
This function returns a region containing all the characters on line. The first mark is
: right-inserting and the last is : left-inserting.

region-start region
region-end region

This function returns the start or end mark of region.

[Function]
[Function]

region-bounds region
This function returns as multiple-values the starting and ending marks of region.

[Function]

set-region-bounds region start end [Function]
This function sets the start and end of region to start and end. It is an error for start to be after or in a
different buffer from end.

count-lines region [Function]
This function returns the number of lines in the region, first and last lines inclusive. A newline is
associated with the line it follows, thus a region containing some number of. non-newline characters
followed by one newline is one line, but if a newline were added at the beginning, it would be two lines.

count-characters region [Function]
This function returns the number of characters in a given region. This counts line breaks as one
character.

check-region-query-size region [Function]
Region Query Size (initial value 30) ' [Hemlock Variable]

check-region-query-size counts the lines in region, and if their number exceeds the
Region Query Size threshold, it prompts the user for confirmation. This should be used in commands
that perform destructive operations and are not undoable. If the user responds negatively, then this
signals an editor-error, aborting whatever command was in progress.

8

9

Chapter 3

Buffers

A buffer is an environment within Hemlock consisting of:
1. A name.

2. A piece of text.

3. A current focus of attention, the point.

4. An associated file (optional).

5. A write protect flag.

6. Some variables (page 23).

7. Some key bindings (page 28).

8. Some collection of modes (page 33).

9. Some windows in which it is displayed (page 39).

10. A list of modeline fields (optional).

3.1. The Current Buffer

current-buffer [Function]
Set Buffer Hook [Hemlock Variable]
After Set Buffer Hook [Hemlock Variable]

current-buf f er returns the current buffer object. Usually this is the buffer that current-window
(page 39) is displaying. This value may be changed with setf, and the setf method invokes
Set Buffer Hook before the change occurs with the new value. After the change occurs, the method
invokes After Set Buffer Hook with the old value.

current -point [Function]
This function returns the buffer-point of the current buffer. This is such a common idiom in
commands that it is defined despite its trivial implementation.

current-mark [Function]
pop-buffer-mark [Function]
push-buffer-mark mark ^optional activate-region [Function]

current-mark returns the top of the current buffer's mark stack. There always is at least one mark at
the beginning of the buffer's region, and all marks returned are right-inserting.

pop-buffer-mark pops the current buffer's mark stack, returning the mark. If the stack becomes

10

empty, this pushes a new mark on the stack pointing to the buffer's start. This always deactivates the
current region (see section 4.4).

push-buffer-mark pushes mark into the current buffer's mark stack, ensuring that the mark is
right-inserting. If mark does not point into the current buffer, this signals an error. Optionally, the
current region is made active, but this never deactivates the current region (see section 4.4). Mark is
returned.

buffer-list [Variable]
This variable holds a list of all the buffer objects made with make-buffer.

buf fer-names [Variable]
This variable holds a string-table (page 67) of all the names of the buffers in *buf f er-list*.
The values of the entries are the corresponding buffer objects.

buffer-history [Variable]
This is a list of buffer objects ordered from those most recently selected to those selected farthest in the
past. When someone makes a buffer, an element of Make Buffer Hook adds this buffer to the end of this
list. When someone deletes a buffer, an element of Delete Buffer Hook removes the buffer from this
list. Each buffer occurs in this list exactly once, but it never contains the *echo-area-buf f er*.

change-to-buffer buffer [Function]
This switches to buffer in the current-window maintaining buffer-history.

previous-buffer [Function]
This returns the first buffer from *buffer-history* that is not the current-buffer. If none can
be found, then this returns nil.

3.2. Buffer Functions

make-buffer name &key .modes :modeline-fields :delete-hook [Function]
Make Buffer Hook [Hemlock Variable]
Default Modeline Fields [Hemlock Variable]

make-buffer creates and returns a buffer with the given name. If a buffer named name already exists,
nil is returned. Modes is a list of modes which should be in effect in the buffer, major mode first,
followed by any minor modes. If this is omitted then the buffer is created with the list of modes
contained in Default Modes (page 33). Modeline-fields is a list of modeline-field objects (see section
3.3) which may be nil. delete-hook is a list of delete hooks specific to this buffer, and
delete-buf f er invokes these along with Delete Buffer Hook.

Buffers created with make-buffer are entered into the list *buffer-list*, and their names are
inserted into the string-table *buf fer-names*. When a buffer is created the hook Make Buffer Hook
is invoked with the new buffer.

bufferp buffer
Returns t if buffer is a buffer object, otherwise n i l .

[Function]

11

buffer-name buffer [Function]
Buffer Name Hook [Hemlock Variable]

buffer-name returns the name, which is a string, of the given buffer. The corresponding setf form
invokes Buffer Name Hook with buffer and the new name and then sets the buffer's name. When the
user supplies a name for which a buffer already exists, the setf method signals an error.

buffer-region buffer [Function]
Returns the buffer's region. This can be set with setf. Note, this returns the region that contains all the
text in a buffer, not the current-region (page 19).

buffer-pathname buffer [Function]
Buffer Pathname Hook [Hemlock Variable]

buffer-pathname returns the pathname of the file associated with the given buffer, or nil if it has no
associated file. This is the truename of the file as of the most recent time it was read or written. There is
a setf form to change the pathname. When the pathname is changed the hook Buffer Pathname Hook
is invoked with the buffer and new value.

buffer-write-date buffer [Function]
Returns the write date for the file associated with the buffer in universal time format. When this the
buffer-pathname is set, use setf to set this to the corresponding write date, or to nil if the date is
unknown or there is no file.

buffer-point buffer [Function]
Returns the mark which is the current location within buffer. To move the point, use move-mark or
move-to-position (page 5) rather than setting buffer-point with setf.

buffer-mark, buffer [Function]
This function returns the top of buffer's mark stack. There always is at least one mark at the beginning of
buffer's region, and all marks returned are right-inserting.

buffer-start-mark buffer [Function]
buffer-end-mark buffer [Function]

These functions return the start and end marks of buffer's region:
(buffer-start-mark buffer) <==>

(region-start (buffer-region buffer))
and
(buffer-end-mark buffer) <==>

(region-end (buffer-region buffer))

buffer-writable buffer N [Function]
This function returns t if the buffer can be altered, nil if it can't. There is a setf form to change this
value. If a buffer is not writable, then any attempt to modify text in the buffer results in an error.

buffer-modified buffer [Function]
Buffer Modified Hook [Hemlock Variable]

buffer-modified returns t if the buffer has been modified, nil if it hasn't. This attribute is set
whenever a text-altering operation is performed on a buffer. There is a setf form to change this value.

Buffer Modified Hook is invoked with the buffer whenever the value of the modified flag changes.

12

with-writable-buffer (buffer) firest forms [Macro]
This macro executes forms with buffer's writable status set. After forms execute, this resets the buffer's
writable and modified status.

buffer-signature buffer [Function]
This function returns an arbitrary number which reflects the buffer's current signature. The result is eql
to a previous result if and only if the buffer has not been modified between the calls.

buffer-variables buffer [Function]
This function returns a string-table (page 67) containing the names of the buffer's local variables. See
chapter 6.

buffer-modes buffer [Function]
This function returns the list of the names of the modes active in buffer. The major mode is first,
followed by any minor modes. See chapter 8.

buffer-windows buffer [Function]
This function returns the list of all the windows in which the buffer may be displayed. This list may
include windows which are not currendy visible. See page 39 for a discussion of windows.

buffer-delete-hook buffer [Function]
This function returns the list of buffer specific functions delete-buf f er invokes when deleting a
buffer. This is setf'able.

delete-buf fer buffer [Function]
Delete Buffer Hook [Hemlock Variable]

delete-buf fer removes buffer from *buffer-list* (page 10) and its name from
buf fer-names (page 10). Before buffer is deleted, this invokes the functions on buffer returned by
buffer-delete-hook and those found in Delete Buffer Hook. If buffer is the
current-buf f er, or if it is displayed in any windows, then this function signals an error.

delete-buffer-if-possible buffer [Function]
This uses delete-buf fer to delete buffer if at all possible. If buffer is the current-buf f er, then
this sets the current-buf f er to the first distinct buffer in buffer-history. If buffer is displayed
in any windows, then this makes each window display the same distinct buffer.

3.3. Modelines
A Buffer may specify a modeline, a line of text which is displayed across the bottom of a window to indicate

status information. Modelines are described as a list of modeline-f ield objects which have individual update
functions and are optionally fixed-width. These have an eql name for convenience in referencing and updating, but
the name must be unique for all created modeline-field objects. When creating a modeline-field with a specified
width, the result of the update function is either truncated or padded on the right to meet the constraint. All
modeline-field functions must return simple strings with standard characters, and these take a buffer and a window
as arguments. Modeline-field objects are typically shared amongst, or aliased by, different buffers' modeline fields
lists. These lists are unique allowing fields to behave the same wherever they occur, but different buffers may
display these fields in different arrangements.

Whenever one of the following changes occurs, all of a buffer's modeline fields are updated:

13

• A buffer's major mode is set.

• One of a buffer's minor modes is turned on or off.

• A buffer is renamed.

• A buffer's pathname changes.

• A buffer's modified status changes.

• A window's buffer is changed.

The policy is that whenever one of these changes occurs, it is guaranteed that the modeline will be updated before
the next trip through redisplay. Furthermore, since the system cannot know what modeline-field objects the user has
added whose update functions rely on these values, or how he has changed Default Modeline Fields, we must
update all the fields. When any but the last occurs, the modeline-field update function is invoked once for each
window into the buffer. When a window's buffer changes, each modeline-field update function is invoked once;
other windows' modeline fields should not be affected due to a given window's buffer changing.

The user should note that modelines can be updated at any time, so update functions should be careful to avoid
needless delays (for example, waiting for a local area network to determine information).

make-modeline-field &key -.name -.width :function [Function]
modeline-field-p modeline-field [Function]
modeline-field-name modeline-field [Function]

make-modeline-f ield returns a modeline-field object with name, width, and function. Width
defaults to nil meaning that the field is variable width; otherwise, the programmer must supply this as a
positive integer. Function must take a buffer and window as arguments and return a simple-string
containing only standard characters. If name already names a modeline-field object, then this signals an
error.

modeline-f ield-name returns the name field of a modeline-field object. If this is set with setf,
and the new name already names a modeline-field, then the setf method signals an error.

modeline-f ield-p returns t or nil, depending on whether its argument is a modeline-field
object.

modeline-field name [Function]
This returns the modeline-field object named name. If none exists, this returns nil.

modeline-field-function modeline-field [Function]
Returns the function called when updating the modeline-field. When this is set with setf, the setf
method updates modeline-field for all windows on all buffers that contain the given field, so the next trip
through redisplay will reflect the change. All modeline-field functions must return simple strings with
standard characters, and they take a buffer and a window as arguments.

modeline-field-width modeline-field [Function]
Returns the width to which modeline-field is constrained, or nil indicating that it is variable width.
When this is set with setf, the setf method updates all modeline-fields for all windows on all buffers
that contain the given field, so the next trip through redisplay will reflect the change. All the fields for
any such modeline display must be updated, which is not the case when setting a modeline-field's
function.

14

buffer-modeline-fields buffer [Function]
Returns a copy of the list of buffer's modeline-field objects. This list can be destructively modified
without affecting display of buffer's modeline, but modifying any particular field's components (for
example, width or function) causes the changes to be reflected the next trip through redisplay in every
modeline display that uses the modified modeline-field. When this is set with setf,
update-modeline-f ields is called for each window into buffer.

buffer-modeline-field-p buffer field [Function]
If field, a modeline-field or the name of one, is in buffer's list of modeline-field objects, it is returned;
otherwise, this returns nil.

update-modeline-f ields buffer window [Function]
This invokes each modeline-field object's function from buffer's list, passing buffer and window. The
results are collected regarding each modeline-field object's width as appropriate, and the window is
marked so the next trip through redisplay will reflect the changes. If window does not display modelines,
then no computation occurs.

update-modeline-f ield buffer window field-or-name [Function
This invokes the modeline-field object's function for field-or-name, which is a modeline-field object or
the name of one for buffer. This passes buffer and window to the update function. The result is applied to
the window's modeline display using the modeline-field object's width, and the window is marked so the
next trip through redisplay will reflect the changes. If the window does not display modelines, then no
computation occurs. If field-or-name is not found in buffer's list of modeline-field objects, then this
signals an error. See buf fer-modeline-f ield-p above.

15

Chapter 4

Altering and Searching Text

4.1. Altering Text

A note on marks and text alteration: : temporary marks are invalid after any change has been made to the text
the mark points to; it is an error to use a temporary mark after such a change has been made. If text is deleted which
has permanent marks pointing into it then they are left pointing to the position where the text was.

insert-character mark character [Function]
insert-string mark string [Function]
insert-region mark region [Function]

Inserts character, string or region at mark, insert-character signals an error if character is not
string-char-p. If string or region is empty, and mark is in some buffer, then Hemlock leaves
buffer-modified of mark's buffer unaffected.

ninsert-region mark region [Function]
Like insert-region, inserts the region at the mark's position, destroying the source region. This
must be used with caution, since if anyone else can refer to the source region bad things will happen. In
particular, one should make sure the region is not linked into any existing buffer. If region is empty, and
mark is in some buffer, then Hemlock leaves buffer-modified of mark's buffer unaffected.

delete-characters mark n [Function]
This deletes n characters after the mark (or -n before if n is negative). If n characters after (or -n before)
the mark do not exist, then this returns nil; otherwise, it returns t. If n is zero, and mark is in some
buffer, then Hemlock leaves buffer-modified of mark's buffer unaffected.

delete-region region [Function]
This deletes region. This is faster than delete-and-save-region (below) because no lines are
copied. If region is empty and contained in some buffer's buffer-region, then Hemlock leaves
buffer-modified of the buffer unaffected.

delete-and-save-region region [Function]
This deletes region and returns a region containing the original region's text. If region is empty and
contained in some buffer's buffer-region, then Hemlock leaves buffer-modified of the buffer
unaffected. In this case, this returns a distinct empty region.

16

f i l t e r - r e g i o n function region \runcuon\
Destructively modifies region by replacing the text of each line with the result of the application of
function to a string containing that text. Function must obey the following restrictions:

1. The argument may not be destructively modified.

2. The return value may not contain newline characters.

3. The return value may not be destructively modified after it is returned from function.
The strings are passed in order, and are always simple strings.

Using this function, a region could be uppercased by doing:
(f i l t e r - r e g i o n # ' s t r i n g - u p c a s e r e g i o n)

4.2. Text Predicates

s t a r t - l i n e - p mark [Function]
Returns t if the mark points before the first character in a line, n i l otherwise.

e n d - l i n e - p mark [Function]
Returns t if the mark points after the last character in a line and before the newline, n i l otherwise.

e m p t y - l i n e - p mark [Function]
Return t of the line which mark points to contains no characters.

b l a n k - l i n e - p line [Function]
Returns t if line contains only characters with a Whitespace attribute of 1. See chapter 9 for discussion
of character attributes.

b l a n k - b e f o r e-p mark [Function]
b l a n k - a f t e r - p mark [Function]

These functions test if all the characters preceding or following mark on the line it is on have a
Whitespace attribute of 1.

s a m e - l i n e - p markl mark! [Function]
Returns t if markl and mark! point to the same line, or n i l otherwise; That is,

(s a m e - l i n e - p a b) < = = > (e q (m a r k - l i n e a) (m a r k - l i n e b))

m a r k < markl mark! [Function]
m a r k < = markl mark! [Function]
m a r k = markl mark! [Function]
m a r k / = markl mark! [Function]
m a r k > = markl mark! [Function]
m a r k > markl mark! [Function]

These predicates test the relative ordering of two marks in a piece of text, that is a mark is m a r k > another
if it points to a position after it. If the marks point into different, non-connected pieces of text, such as
different buffers, then it is an error to test their ordering; for such marks m a r k = is always false and
m a r k / = is always true.

17

line< linel line! [Function]
line<= linel linel [Function]
line>= linel linel [Function]
line> linel linel [Function]

These predicates test the ordering of linel and linel. If the lines are in unconnected pieces of text it is an
error to test their ordering.

lines-related linel linel [Function]
This function returns t if linel and linel are in the same piece of text, or nil otherwise.

first-line-p mark [Function]
last-line-p mark [Function]

first-line-p returns t if there is no line before the line mark is on, and nil otherwise. Last-line-p
similarly tests tests whether there is no line after mark.

4.3. Kill Ring

* ki 1 1 - ring* [Variable]
This is a ring (see section 16.2) of regions deleted from buffers. Some commands save affected regions
on the kill ring before performing modifications. You should consider making the command undoable
(see section 16.3), but this is a simple way of achieving a less satisfactory means for the user to recover.

kill-region region current-type [Function]
This kills region saving it in *kill-ring*. Current-type is either : kill-forward or
: kill-backward. When the last-command-type (page 31) is one of these, this adds region to
the beginning or end, respectively, of the top of *kill-ring*. The result of calling this is undoable
using the command Undo (see the Hemlock User's Manual). This sets last-command-type to
current-type, and it interacts with kill-characters.

kill-characters mark count [Function]
Character Deletion Threshold (initial value 5) [Hemlock Variable]

kill-characters kills count characters after mark if count is positive, otherwise before mark if
count is negative. When count is greater than or equal to Character Deletion Threshold, the killed
characters are saved on *kill-ring*. This may be called multiple times contiguously (that is, without
last-command-type (page 31) being set) to accumulate an effective count for purposes of com
parison with the threshold.

This sets last-command-type, and it interacts with kill-region. When this adds a new region
to *kill-ring*, it sets last-command-type to : kill-forward (if count is positive) or
: kill-backward (if count is negative). When last-command-type is : kill-forward or
: kill-backward, this adds the killed characters to the beginning (if count is negative) or the end (if

count is positive) of the top of *kill-ring*, and it sets last-command-type as if it added a new
region to *kill-ring*. When the kill ring is unaffected, this sets last-command-type to
: char-kill-forward or : char-kill-backward depending on whether count is positive or

negative, respectively.

This returns mark if it deletes characters. If there are not count characters in the appropriate direction,
this returns nil.

18

4.4. Active Regions
Every buffer has a mark stack (page 9) and a mark known as the point where most text altering nominally occurs.

Between the top of the mark stack, the current-mark, and the current-buffer's point, the
current-point, is what is known as the current-region. Certain commands signal errors when the user
tries to operate on the current-region without its having been activated. If the user turns off this feature, then
the current-region is effectively always active.

When writing a command that marks a region of text, the programmer should make sure to activate the region.
This typically occurs naturally from the primitives that you use to mark regions, but sometimes you must explicitly
activate the region. These commands should be written this way, so they do not require the user to separately mark
an area and then activate i t Commands that modify regions do not have to worry about deactivating the region
since modifying a buffer automatically deactivates the region. Commands that insert text often activate the region
ephemerally; that is, the region is active for the immediately following command, allowing the user wants to delete
the region inserted, fill it, or whatever.

Once a marking command makes the region active, it remains active until:

• a command uses the region,

• a command modifies the buffer,

• a command changes the current window or buffer,

• a command signals an editor-error,

• or the user types C-g.

Active Regions Enabled (initial value t) [Hemlock Variable]
When this variable is non-nil, some primitives signal an editor-error if the region is not active. This
may be set to nil for more traditional Emacs region semantics.

ephemerally-active-command-types [Variable]
This is a list of command types (see section 7.3), and its initial value is the list of
:ephemerally-active and runkill. When the previous command's type is one of these, the
current-region is active for the currently executing command only, regardless of whether it does
something to deactivate the region. However, the current command may activate the region for future
commands. : ephemerally-active is a default command type that may be used to ephemerally
activate the region, and : unkill is the type used by two commands, Un-kill and Rotate Kill Ring (what
users typically think of as C - y and M-y) .

act i vat e - region [Function]
This makes the current-region active.

deactivate-region [Function]
After invoking this the current-region is no longer active.

region-active-p [Function]
Returns whether the current-region is active, including ephemerally. This ignores
Active Regions Enabled.

19

check-region-active [Function]
This signals an editor-error when active regions are enabled, and the current-region is not active.

current-region fioptional err or-if-not-active deactivate-region [Function]
This returns a region formed with current-mark and current-point, optionally signaling an
editor-error if the current region is not active. Err or-if-not-active defaults to t. Each call returns a
distinct region object. Depending on deactivate-region (defaults to t), fetching the current region deac
tivates it. Hemlock primitives are free to modify text regardless of whether the region is active, so a
command that checks for this can deactivate the region whenever it is convenient.

4.5. Searching and Replacing

Before using any of these functions to do a character search, look at character attributes (page 35). They provide
a facility similar to the syntax table in real EMACS. Syntax tables are a powerful, general, and efficient mechanism
for assigning meanings to characters in various modes.

search-char-code-limit [Constant]
An exclusive upper limit for the char-code of characters given to the searching functions. The result of
searches for characters with a char-code greater than or equal to this limit is ill-defined, but it is not an
error to do such searches. Bits and font are always ignored.

new-search-pattern kind direction pattern ^optional result-search-pattern [Function]
Returns a search-pattern object which can be given to the find-pattern and replace-pattern
functions. A search-pattern is a specification of a particular sort of search to do. direction is either
: forward DT : backward, indicating the direction to search in. kind specifies the kind of search

pattern to make, and pattern is a thing which specifies what to search for.

The interpretation of pattern depends on the kind of pattern being made. Currently defined kinds of
search pattern are:

:string-insensitive
Does a case-insensitive string search, pattern being the string to search for.

:string-sensitive
Does a case-sensitive string search for pattern.

: character Finds an occurrence of the character pattern. This is case sensitive.
:not-character

Find a character which is not the character pattern.

:test Finds a character which satisfies the function pattern. This function may not be
applied an any particular fashion, so it should depend only on what its argument is,
and should have no side-effects.

: test-not Similar to as : test, except it finds a character that fails the test.

: any Finds a character that is in the string pattern.

: not-any Finds a character that is not in the string pattern.

result-search-pattern, if supplied, is a search-pattern to destructively modify to produce the new pattern.
Where reasonable this should be supplied, since some kinds of search patterns may involve large data
structures.

20

search-pattern-p search-pattern [Function]
Returns t if search-pattern is a search-pattern object, otherwise nil.

get-search-pattern string direction [Function]
last-search-pattern [Variable]
* last-search-string* [Variable]

get-search-pattern interfaces to a default search string and pattern that search and replacing
commands can use. These commands then share a default when prompting for what to search or replace,
and save on consing a search pattern each time they execute. This uses Default Search Kind (see the
Hemlock User's Manual) when updating the pattern object. This returns the pattern, so you probably
don't need to refer to *last-search-pattern*, but *last-search-string* is useful when
prompting.

find-pattern mark search-pattern [Function]
Find the next match of search-pattern starting at mark. If a match is found then mark is altered to point
before the matched text and the number of characters matched is returned. If no match is found then nil
is returned and mark is not modified.

replace-pattern mark search-pattern replacement fioptional n [Function]
Replace n matches of search-pattern with the string replacement starting at mark. If n is nil (the
default) then replace all matches. A mark pointing before the last replacement done is returned.

21

Chapter 5

The Current Environment

5.1. Different Scopes

In Hemlock the values of variables (page 23), key-bindings (page 28) and character-attributes (page 35) may
depend on the current-buffer (page 9) and the modes active in it. There are three possible scopes for
Hemlock values:

buffer local The value is present only if the buffer it is local to is the current-buf f er.
mode local The value is present only when the mode it is local to is active in the current-buf f er.
global The value is always present unless shadowed by a buffer or mode local value.

5.2. Shadowing

It is possible for there to be a conflict between different values for the same thing in different scopes. For
example, there be might a global binding for a given variable and also a local binding in the current buffer.
Whenever there is a conflict shadowing occurs, permitting only one of the values to be visible in the current
environment.

The process of resolving such a conflict can be described as a search down a list of places where the value might
be defined, returning the first value found. The order for the search is as follows:

1. Local values in the current buffer.

2. Mode local values in the minor modes of the current buffer, in order from the highest precedence
mode to the lowest precedence mode. The order of minor modes with equal precedences is undefined.

3. Mode local values in the current buffer's major mode.

4. Global values.

22

23

Chapter 6

Hemlock Variables

Hemlock implements a system of variables separate from the normal Lisp variables; this is done for the following
reasons.

1. Hemlock has different scope rules which are useful in an editor. Hemlock variables can be local to a
buffer (page 9) or a mode (page 33).

2. Hemlock variables have hooks (page 25), functions which are called when the variable is set.

3. There is a database of variable names and documentation which makes it easier to find out what
variables exist and what their values mean.

6.1. Variable Names

To the user r a variable name is a case insensitive string. This string is referred to as the string name of the
variable. A string name is conventionally composed of words separated by spaces.

In Lisp code a variable name is a symbol. The name of this symbol is created by replacing any spaces in the
string name with hyphens. This symbol name is always interned in the Hemlock package and referring to a symbol
with the same name in the wrong package is an error.

global-variable-names [Variable]
Holds a string-table of the names of all the global Hemlock variables. The value of each entry is the
symbol name of the variable.

current-variable-tables [Function]
This returns a list of variable tables currently established globally, in the current-buf f er, and by the
modes of the current-buf f er. This list is suitable for use with prompt-f or-variable.

6.2. Variable Functions

In the following descriptions name is the symbol name of the variable.

defhvar string-name documentation &key :mode .-buffer :hooks rvalue [Function]
Defines a Hemlock variable. An error will be signaled if a reference is made to a variable which is not
defined.

string-name The string name of the variable to define.

documentation The documentation string for the variable.

24

:mode : buffer If buffer is supplied the variable is local to that buffer, likewise if mode is supplied it
is local to that mode. If neither is supplied it is global.

: hooks : value The initial hook-list and value for the variable, which default to nil.
If a variable with the same name is already declared in the same place then its hooks and value are set to
the value of hooks and value when these keywords are supplied.

variable-value name fioptional kind where [Function]
This function returns the value of a Hemlock variable in some place. The following values for kind are
defined:

: current Return the value present in the current environment, taking into consideration any
mode or buffer local variables. This is the default.

: global Return the global value for the variable name.

:mode Return value for name in the mode named where.

: buffer Return the value for name in the buffer where.

When set with setf, the value of the specified variable is set and the functions in its hook list are called
with the values for name, kind, where and the new value.

variable-documentation name ^optional kind where [Function]
variable-hooks name ^optional kind where [Function]
variable-name name ^optional kind where [Function]

These function return the documentation, hooks and string name of a Hemlock variable. The kind and
where arguments are the same as for variable-value. The documentation and hook list may be set
using setf.

string-to-variable string [Function]
This function converts a string into the corresponding variable symbol name. String need not be the
name of an actual Hemlock variable.

value name [Macro]
setv name new-value [Macro]

These macros get and set the current value of the Hemlock variable name. Name is not evaluated. There
is a setf form for value.

hlet ({(var value)]*) {form}* [Macro]
This macro is very similar to let in effect; within its scope each of the Hemlock variables var have the
respective values, but after the scope is exited by any means the binding is removed. This does not cause
any hooks to be invoked. The value of the last form is returned.

hemlock-bound-p name fioptional kind where [Function]
Returns t if name is defined as a Hemlock variable in the place specified by kind and where, or nil
otherwise.

delete-variable name ^optional kind where [Function]
Delete Variable Hook [Hemlock Variable]

delete-variable makes the Hemlock variable name no longer defined in the specified place. Kind
and where have the same meanings as they do for variable-value, except that : current is not
available, and the default for kind is : global

25

An error will be signaled if no such variable exists. The hook, Delete Variable Hook is invoked with
the same arguments before the variable is deleted.

6.3. Hooks

Hemlock actions often have hooks associated with them, which are lists of functions to be called before that
action is performed. Each variable and mode has such a hook, and the ways to manipulate these object-specific
hooks are described with the rest of the actions defined on these objects. Many events that affect editor state also
call functions in a hook list; these hooks are described along with the functions that invoke them.

A hook function may be specified either as a symbol with a function definition or a function, but it is recom
mended to use symbols, since this results in better behavior if the hook function is redefined.

add-hook place hook-fun [Macro]
remove-hook place hook-fun [Macro]

These macros add or remove a hook function in some place. If place is a symbol then it is interpreted as
a Hemlock variable, it is taken to be a generalized variable.

invoke-hook name firest args [Function]
Call all the functions in the list which is the value of the Hemlock variable name. An error will be
signalled if no such variable is defined.

26

27

Chapter 7

Commands

7.1. Introduction

The way that the user tells Hemlock to do something is by invoking a command. Commands have three
attributes:

name A command's name provides a way to refer to it. Command names are usually capitalized
words separated by spaces, such as Forward Word.

documentation The documentation for a command is used by on-line help facilities.

function A command is implemented by a Lisp function, which is callable from Lisp.

command-names [Variable]
Holds a string-table (page 67) associating command names to command objects. Whenever a new
command is defined it is entered in this table.

7.1.1. Defining Commands

def command [command-name I (command-name function-name)} lambda-list
command-doc function-doc [form]* [Macro]

Defines a command named name, def command creates a function to implement the command from the
lambda-list and form's supplied. The lambda-list must specify one required argument, see section 7.4,
which by convention is typically named p. If the caller does not specify function-name, def command
creates the command name by replacing all spaces with hyphens and appending "-command".
Function-doc becomes the documentation for the function and should primarily describe issues involved
in calling the command as a function, such as what any additional arguments are. Command-doc
becomes the command documentation for the command.

make-command name documentation function [Function]
Defines a new command named name, with command documentation documentation and function

function. The command in entered in the string-table *command-names* (page 27), with the com
mand object as its value. Normally command implementors will use the def command macro, but this
permits access to the command definition mechanism at a lower level, which is occasionally useful.

commandp command [Function]
Returns t if command is a command object, otherwise nil.

28

c o m m a n d - d o c u m e n t a t i o n command
c o m m a n d - f u n c t i o n command
c o m m a n d - n a m e command

Returns the documentation, function, or name for command. These may be set with s e t f

7.1.2. Command Documentation
Command documentation is a description of what the command does when it is invoked as an extended command

or from a key. Command documentation may be either a suing or a function. If the documentation is a string then
the first line should briefly summarize the command, with remaining lines filling the details. Example:

(d e f c o m t n a n d " F o r w a r d C h a r a c t e r " (p)
" M o v e t h e p o i n t f o r w a r d o n e c h a r a c t e r .

W i t h p r e f i x a r g u m e n t m o v e t h a t m a n y c h a r a c t e r s , w i t h n e g a t i v e
a r g u m e n t g o b a c k w a r d s . "

" M o v e t h e p o i n t o f t h e c u r r e n t b u f f e r f o r w a r d p c h a r a c t e r s . "

. . .)

Command documentation may also be a function of one argument. The function is called with either : s h o r t or
: f u l l , indicating that the function should return a short documentation string or do something to document the
command fully.

[Function]
[Function]
[Function]

7.2. The Command Interpreter
The command interpreter is a function which reads keystrokes from the keyboard and dispatches to different

commands on the basis of what is typed. When the command interpreter calls a command, we say it invokes the
command. The command interpreter also provides several facilities for communication between sequential com
mands and does various house cleaning operations.

* i n v o k e - h o o k * [Variable]
This variable contains a function which is called by the command interpreter when it wants to invoke a
command. The function is passed the command and the prefix argument as arguments. The initial value
is a function which simply funcalls the c o m m a n d - f u n c t i o n of the command with the supplied prefix
argument This is useful for implementing keyboard macros and similar things.

Command Abort Hook [Hemlock Variable]
The command interpreter invokes the function in this variable whenever a command is aborted (for
example, if someone called e d i t o r - e r r o r) .

When Hemlock initially starts the command interpreter is in control, but commands may read from the keyboard
themselves and assign whatever interpretation they will to the characters read. Commands may call the command
interpreter recursively using the function r e c u r s i v e - e d i t (page 32).

7.2.1. Binding Commands to Keys
The command interpreter determines which command to invoke on the basis of key bindings. A key binding is an

association between a command and a sequence of keystrokes. A sequence of keystrokes is called a key, and is
represented by a single character or a sequence (list or vector) of characters.

The set of key bindings in effect at any given time is determined by the current environment (page 21), since key
bindings may be local to a mode or buffer. When the command interpreter tries to find the binding for a key it
checks first to see if there is a local binding in the c u r r e n t - b u f f e r (page 9), then if there is a binding in each

29

of the minor modes and the major mode for the current buffer (page 33), and finally checks to see if there is a global
binding. If no binding is found then the command interpreter beeps or flashes the screen to indicate this.

command-char-code-liinit [Constant]
command-char-bits-limit [Constant]

Hemlock implementation is not required to support entirely arbitrary characters in key bindings;
command-char-code-limit is the upper bound on character codes, and
command-char-bits-limit is the limit for bits. These constants are analogous to the Common
Lisp constants char-code-limit and char-bits-limit, and will be less than or equal to them.
Bits not supported and font are ignored. Note that no attempt is made to define some virtual character set
in which bindings can be specified in an implementation independent fashion; key bindings should be set
up in file that contains nothing else so that they may be easily changed for different implementations.

bind-key name key ^optional kind where [Function]

Make key be bound to the command name in some environment. There are three possible values of kind:

: global The default, make a global key binding.

:mode Make a mode specific key binding in the mode whose name is where.
r buffer Make a binding which is local to buffer where.

If the specified key is some prefix of a key binding which already exists in the specified place, then the
new one will override the old one, effectively deleting it. Normally global and mode bindings are made
only at load time, do-alpha-chars is useful for setting up bindings in certain new modes.

command-bindings command [Function]
Returns a list of the places where command is bound. A place is specified as a list of the key vector, the
kind of binding, and then either the mode of buffer the binding is local to, or nil if it is a global binding.

delete-key-binding key ^optional kind where [Function]
Removes the binding of key in some place, kind is the kind of binding to delete, one of : global, the
default, rmode or : buf fer. If kind is rmode, where is the mode name, and if kind is : buf fer, then
where is the buffer. This function signals an error if key is unbound.

get-command key fioptional kind where [Function]
Returns the command bound to key; if key is not bound return nil. If the sequence given is a prefix and
not a unique key then the keyword r prefix is returned. There are four cases of kind:

r current Return the current binding of key using the current buffer's search list. This is the
default. If there are any transparent key bindings for key, then they are returned in a
list as a second value.

: global Return the global binding of key.

: mode Return the binding of key in the mode named where.

Return the binding of key local to the buffer where. rbuffer

map-bindings function kind ^optional where [Function]
This function maps over the key-bindings in some place. For each binding, function is passed the key
bound and the command bound to it. Kind and where are as in get-command, except that : current
is not available. The key is not guaranteed to remain valid after a given iteration.

30

7.2.2. Key Translation
Key translation is a process that the command interpreter applies to keys before doing anything else. There are

two kinds of key translations: substitution and bit-prefix. In either case, key translation is done when a specified
character sequence appears in a key.

In a substitution translation, the matched subsequence is replaced with another character sequence. Key trans
lation is not recursively applied to the substituted characters.

In a bit-prefix translation, the matched subsequence is removed, and specified bits are set in the next character in
the key.

If the key being translated ends in a prefix of some translation, or if there is no character following a bit-prefix
translation, then the matched characters are not translated. If there is a binding for this partially untranslated key,
then the command interpreter will invoke that command, otherwise it will wait for more characters to be typed.

key-translation key [Function]
Return the key translation for key, or nil if there is none. If key is a prefix of a translation, then
: prefix is returned. Whenever key appears as a subsequence of a key argument to the binding
manipulation functions, that portion will be replaced with the translation. A key translation may also be a
list (:bits {bit-name}*). In this case, the named bits will be set in the next character in the key
being translated.

7.2.3. Transparent Key Bindings
Key bindings local to a mode may be transparent. A transparent key binding does not shadow less local key

bindings, but rather indicates that the bound command should be invoked before the first normal key binding.
Transparent key bindings are primarily useful for implementing minor modes such as auto fill and word abbrevia
tion. There may be several transparent key bindings for a given key, in which case all of the commands bound are
invoked in the order they were found. If there no normal key binding for a key typed, then the command interpreter
acts as though the key is unbound even if there are transparent key bindings.

The : transparent-p argument to def mode (page 34) determines whether the key bindings in a mode are
transparent or not.

7.2.4. Interactive
Hemlock supports keyboard macros. A user may enter a mode where the editor records his actions, and when the

user exits this mode, the command Last Keyboard Macro plays back the actions. Some commands behave
differently when invoked as part of the definition of a keyboard macro. For example, when used in a keyboard
macro, a command that message's useless user confirmation will slow down the repeated invocations of
Last Keyboard Macro because the command will pause on each execution to make sure the user sees the message.
This can be eliminated with the use of interactive. As another example, some commands conditionally signal
an editor-error versus simply beeping the device depending on whether it executes on behalf of the user or a
keyboard macro.

interactive
This returns t when the user invoked the command directly.

[Function]

31

7.3. Command Types

In many editors the behavior of a command depends on the kind of command invoked before it. Hemlock
provides a mechanism to support this known as command type.

last-command-type [Function]
This returns the command type of the last command invoked. If this is set with setf, the supplied value
becomes the value of last-command-type until the next command completes. If the previous
command did not set last-command-type, then its value is nil. Normally a command type is a
keyword. The command type is not cleared after a command is invoked due to a transparent key binding.

7.4. Command Arguments

There are three ways in which a command may be invoked: It may be bound to a key which has been typed, it
may be invoked as an extended command, or it may be called as a Lisp function. Ideally commands should be
written in such a way that they will behave sensibly no matter which way they are invoked. The functions which
implement commands must obey certain conventions about argument passing if the command is to function
properly.

7.4.1. The Prefix Argument

Whenever a command is invoked it is passed as its first argument what is known as the prefix argument. The
prefix argument is always either an integer or nil. When a command uses this value it is usually as a repeat count,
or some conceptually similar function.

prefix-argument [Function]
This function returns the current value of the prefix argument. When set with setf, the new value %

becomes the prefix argument for the next command.

If the prefix argument is not set by the previous command then the prefix argument for a command is nil. The
prefix argument is not cleared after a command is invoked due to a transparent key binding.

7.4.2. Lisp Arguments

It is often desirable to call commands from Lisp code, in which case arguments which would otherwise be
prompted for are passed as optional arguments following the prefix argument. A command should prompt for any
arguments not supplied.

7.5. Recursive Edits

use-buffer buffer {form}
[Macro]

The effect of this is similar to setting the current-buffer to buffer during the evaluation of forms. There
are restrictions placed on what the code can expect about its environment. In particular, the value of any
global binding of a Hemlock variable which is also a mode local variable of some mode is ill-defined; if
the variable has a global binding it will be bound, but the value may not be the global value. It is also
impossible to nest use-buffer's in different buffers. The reason for using use-buffer is that it
may be significantly faster than changing current-buf f er to buffer and back.

32

recursive-edit ^optional handle-abort [Function]
Enter Recursive Edit Hook [Hemlock Variable]

recursive-edit invokes the command interpreter. The command interpreter will read from the
keyboard and invoke commands until it is terminated with either exit-recursive-edit or
abo rt - recur s ive -edit.
Normally, an editor-error or C-g aborts the command in progress and returns control to the top-level
command loop. If recursive-edit is used with handle-abort true, then editor-error or C-g
will only abort back to the recursive command loop.

Before the command interpreter is entered the hook Enter Recursive Edit Hook is invoked.

in-recursive-edit [Function]
This returns whether the calling point is dynamically within a recursive edit context.

exit-recursive-edit & optional values-list [Function]
Exit Recursive Edit Hook [Hemlock Variable]

exit-recursive-edit exits a recursive edit returning as multiple values each element of values-list,
which defaults to nil. This invokes Exit Recursive Edit Hook after exiting the command interpreter.
If no recursive edit is in progress, then this signals an error.

abort-recursive-edit &rest args [Function]
Abort Recursive Edit Hook [Hemlock Variable]

abort-recursive-edit terminates a recursive edit by applying editor-error (page 57) to
args after exiting the command interpreter. This invokes Abort Recursive Edit Hook with args before
aborting the recursive ed i t . If no recursive edit is in progress, then this signals an error.

33

Chapter 8

Modes

A mode is a collection of Hemlock values which may be present in the current environment (page 21) depending
on the editing task at hand. Examples of typical modes are Lisp, for editing Lisp code, and Echo Area, for
prompting in the echo area.

8.1. Mode Hooks

When a mode is added to or removed from a buffer, its mode hook is invoked. The hook functions take two
arguments, the buffer involved and t if the mode is being added or nil if it is being removed.

Mode hooks are typically used to make a mode do something additional to what it usually does. One might, for
example, make a text mode hook that turned on auto-fill mode when you entered.

8.2. Major and Minor Modes

There are two kinds of modes, major modes and minor modes. A buffer always has exactly one major mode, but
it may have any number of minor modes. Major modes may have mode character attributes while minor modes may
not.

A major mode is usually used to change the environment in some major way, such as to install special commands
for editing some language. Minor modes generally change some small attribute of the environment, such as whether
lines are automatically broken when they get too long. A minor mode should work regardless of what major mode
and minor modes are in effect.

Default Modes (initial value ("Fundamental" "Save")) [Hemlock Variable]
This variable contains a list of mode names which are instantiated in a buffer when no other information
is available.

*mode -name s * [Variable]
Holds a string-table of the names of all the modes.

Illegal

34

8.3. Mode Functions

defmode name &key : setup-function :cleanup-function :major-p [Function]
:precedence :transparent-p

This function defines a new mode named name, and enters it in *mode-names* (page 33). If major-p
is supplied and is not nil then the mode is a major mode; otherwise it is a minor mode.

Setup-function and cleanup-function are functions which are invoked with the buffer affected, after the
mode is turned on, and before it is turned off, respectively. These functions typically are used to make
buffer-local key or variable bindings and to remove them when the mode is turned off.

Precedence is only meaningful for a minor mode. The precedence of a minor mode determines the order
in which it in a buffer's list of modes. When searching for values in the current environment, minor
modes are searched in order, so the precedence of a minor mode determines which value is found when
there are several definitions.

Transparent-p determines whether key bindings local to the defined mode are transparent. Transparent
key bindings are invoked in addition to the first normal key binding found rather than shadowing less
local key bindings.

buffer-major-mode buffer [Function]
Buffer Major Mode Hook [Hemlock Variable]

buffer-major-mode returns the name of buffer's major mode. The major mode may be changed
with setf; then Buffer Major Mode Hook is invoked with buffer and the new mode.

buffer-minor-mode buffer name [Function]
Buffer Minor Mode Hook [Hemlock Variable]

buffer-minor-mode returns t if the minor mode name is active in buffer, nil otherwise. A minor
mode may be turned on or off by using setf; then Buffer Minor Mode Hook is invoked with buffer,
name and the new value.

mode-variables name [Function]
Returns the string-table of mode local variables.

mode-major-p name [Function]
Returns t if name is the name of a major mode, or nil if it is the name of a minor mode. It is an error
for name not to be the name of a mode.

35

Chapter 9

Character Attributes

9.1. Introduction

Character attributes provide a global database of information about characters. This facility is similar to, but more
general than, the syntax tables of other editors such as EMACS. For example, you should use character attributes for
commands that need information regarding whether a character is whitespace or not. Use character attributes for
these reasons:

1. If this information is all in one place, then it is easy the change the behavior of the editor by changing
the syntax table, much easier than it would be if character constants were wired into commands.

2. This centralization of information avoids needless duplication of effort.

3. The syntax table primitives are probably faster than anything that can be written above the primitive
level.

Note that an essential part of the character attribute scheme is that character attributes are global and are there
for the user to change. Information about characters which is internal to some set of commands (and which the user
should not know about) should not be maintained as a character attribute. For such uses various character searching
abilities are provided by the function find-pattern (page 20).

syntax-char-code-limit [Constant]
The exclusive upper bound on character codes which are significant in the character attribute functions.
Font and bits are always ignored.

9.2. Character Attribute Names

As for Hemlock variables, character attributes have a user visible string name, but are referred to in Lisp code as
a symbol. The string name, which is typically composed of capitalized words separated by spaces, is translated into
a keyword by replacing all spaces with hyphens and interning this string in the keyword package. The attribute
named Ada Syntax would thus become : ada-syntax.

character-attribute-names [Variable]
Whenever a character attribute is defined, its name is entered in this string table (page 67), with the
corresponding keyword as the value.

36

9.3. Character Attribute Functions

defattribute name documentation ^optional type initial-value [Function]
This function defines a new character attribute with string name name. Documentation describes the uses
of the character attribute.

Type, which defaults to (mod 2) , specifies what type the values of the character attribute are. Values of
a character attribute may be of any type which may be specified to make-array. Initial-value (default
0) is the value which all characters will initially have for this attribute.

character-attribute-name attribute [Function]
character-attribute-documentation attribute [Function]

These functions return the name or documentation for attribute.

character-attribute attribute character [Function]
Character Attribute Hook [Hemlock Variable]

character-attribute returns the value of attribute for character. This signals an error if attribute
is undefined.

setf will set a character's attributes. This setf method invokes the functions in
Character Attribute Hook on the attribute and character before it makes the change.

If character is nil, then the value of the attribute for the beginning or end of the buffer can be accessed
or set. The buffer beginning and end thus become a sort of fictitious character, which simplifies the use
of character attributes in many cases.

character-attribute-p symbol [Function]
This function returns t if symbol is the name of a character attribute, nil otherwise.

shadow-attribute attribute character value mode [Function]
Shadow Attribute Hook [Hemlock Variable]

This function establishes value as the value of character's attribute attribute when in the mode mode.
Mode must be the name of a major mode. Shadow Attribute Hook is invoked with the same arguments
when this function is called. If the value for an attribute is set while the value is shadowed, then only the
shadowed value is affected, not the global one.

unshadow-attribute attribute character mode [Function]
Unshadow Attribute Hook [Hemlock Variable]

Make the value of attribute for character no longer be shadowed in mode. Unshadow Attribute Hook is
invoked with the same arguments when this function is called.

find-attribute mark attribute & optional test [Function]
reverse-find-attribute mark attribute ^optional test [Function]

These functions find the next (or previous) character with some value for the character attribute attribute
starting at mark. They pass Test one argument, the value of attribute for the character tested. If the test
succeeds, then these routines modify mark to point before (after for reverse-find-attribute) the
character which satisfied the tes t If no characters satisfy the test, then these return nil, and mark
remains unmodified. Test defaults to not zerop. There is no guarantee that the test is applied in any
particular fashion, so it should have no side effects and depend only on its argument.

9.4. Character Attribute Hooks

It is often useful to use the character attribute mechanism as an abstract interface to other information about
characters which in fact is stored elsewhere. For example, some implementation of Hemlock might decide to define
a Print Representation attribute which controls how a character is displayed on the screen.

To make this easy to do, each attribute has a list of hook functions which are invoked with the attribute, character
and new value whenever the current value changes for any reason.

character-attribute-hooks attribute [Function]
Return the current hook list for attribute. This may be set with setf. The add-hook and
remove-hook (page 25) macros should be used to manipulate these lists.

9.5. System Defined Character Attributes
These are predefined in Hemlock:

Whitespace
Word Delimiter
Digit

Space

A value of 1 indicates the character is whitespace.

A value of 1 indicates the character separates words (see section 15.3).

A value of 1 indicates the character is a base ten digit. This may be shadowed in modes or
buffers to mean something else.

This is like Whitespace, but it should not include Newl ine. Hemlock uses this primarily for
handling indentation on a line.

Sentence Terminator

A value of 1 indicates these characters terminate sentences (see section 15.3).
Sentence Closing Char

A value of 1 indicates these delimiting characters, such as " or), may follow a
Sentence Terminator (see section 15.3).

Paragraph Delimiter

A value of 1 indicates these characters delimit paragraphs when they begin a line (see section 15.3).

A value of 1 indicates this character separates logical pages (see section 15.4) when it begins a line.

This uses the following symbol values:

nil These characters have no interesting properties.

: escape This is @ for the Scribe formatting language.

: open-paren These characters begin delimited text.

: close-paren These characters end delimited text.

: space These characters can terminate the name of a formatting command.

: newline These characters can terminate the name of a formatting command.

This uses symbol values from the following:

nil These characters have no interesting properties.

: space These characters act like whitespace and should not include Newl ine.
: newline This is the Newl ine character.

: open-paren This is (character.

: close-paren This i s) character.

Page Delimiter

Scribe Syntax

Lisp Syntax

prefix This is a character that is a part of any form it precedes — for example, the
single quote, \

string-quote This is the character that quotes a string literal,".

: char-quote This is the character that escapes a single character, \ .

: comment This is the character that makes a comment with the rest of the l ine , ; .

: constituent These characters are constitute symbol names.

39

Chapter 10

Controlling the Display

10.1. Windows

A window is a mechanism for displaying part of a buffer on some physical device. A window is a way to view a
buffer but is not synonymous with one; a buffer may be viewed in any number of windows. A window may have a
modeline which is a line of text displayed across the bottom of a window to indicate status information, typically
related to the buffer displayed.

10.2. The Current Window

current - window [Function]
Set Window Hook [Hemlock Variable]

current-window returns the window in which the cursor is currently displayed. The cursor always
tracks the buffer-point of the corresponding buffer. If the point is moved to a position which would be
off the screen the recentering process is invoked. Recentering shifts the starting point of the window so
that the point is once again displayed. The current window may be changed with setf. Before the
current window is changed, the hook Set Window Hook is invoked with the new value.

window-list [Variable]
Holds a list of all the window objects made with make-window (page 39).

10.3. Window Functions

make-window mark &key rmodelinep -.window :ask-user [Function]
:x :y :width :height

Default Window Width [Hemlock Variable]
Default Window Height [Hemlock Variable]
Make Window Hook [Hemlock Variable]

make-window returns a window displaying text starting at mark, which must point into a buffer. If it
could not make a window on the device, it returns nil.

Modelinep specifies whether the window should display buffer modelines.

Window is a device dependent window to be used for the Hemlock window. The device may not support
this argument.

If ask-user is t, then the user will be prompted for the missing dimensions (x, y, width, and height) when
the device supports prompting. If ask-user is false, then prompting will never be done. Non-null values

40

other than t may have device dependent meanings. X and y are supplied in pixels, but width and height
are supplied in characters. Default Window Width and Default Window Height are the default values
for the width and height arguments.

This invokes Make Window Hook with the new window.

windowp window [Function]
This function returns t if window is a window object, otherwise nil.

delete-window window [Function]
Delete Window Hook [Hemlock Variable]

delete-window makes window go away, first invoking Delete Window Hook with the hapless
window.

window-buffer window [Function]
Window Buffer Hook [Hemlock Variable]

window-buffer returns the buffer from which the window displays text. This may be changed with
setf, in which case the hook Window Buffer Hook is invoked beforehand with the window and the
new buffer.

window-display-start window [Function]
window-display-end window [Function]

window-display-start returns the mark that points before the first character displayed in window.
Note that if window is the current window, then moving the start may not prove much, since recentering
may move it back to approximately where it was originally.

window-display-end is similar, but points after the last character displayed. Moving the end is
meaningless, since redisplay always moves it to after the last character.

window-point window [Function]
This function returns as a mark the position in the buffer where the cursor is displayed. This may be set
with setf. If window is the current window, then setting the point will have little effect; it is forced to
track the buffer point When the window is not current, the window point is the position that the buffer
point will be moved to when the window becomes current.

center-window window mark [Function]
This function attempts to adjust window's display start so the that mark is vertically centered within the
window.

scroll-window window n [Function]
This function scrolls the window down n display lines; if n is negative scroll up. Leave the cursor at the
same text position unless we scroll it off the screen, in which case the cursor is moved to the end of the
window closest to its old position.

displayed-p mark window [Function]
Returns t if either the character before or the character after mark is being displayed in window, or nil
otherwise.

41

window-height window [Function]
window-width window [Function]

Height or width of the area of the window used for displaying the buffer, in character positions. These
values may be changed with setf, but the setting attempt may fail, in which case nothing is done.

next-window window [Function]
previous-window window [Function]

Return the next or previous window of window. The exact meaning of next and previous depends on the
device displaying the window. It should be possible to cycle through all the windows displayed on a
device using either next or previous (implying that these functions wrap around.)

10.4. Cursor Positions

A cursor position is an absolute position within a window's coordinate system. The origin is in the upper-left-
hand corner and the unit is character positions.

mark-to-cursorpos mark window [Function]
Returns as multiple values the X and Y position on which mark is being displayed in window, or nil if it
is not within the bounds displayed.

cursorpos-to-roark X Y window [Function]
Returns as a mark the text position which corresponds to the given (X, Y) position within window, or nil
if that position does not correspond to any text within window.

last -key-event -cursorpos [Function]
Interprets mouse input. It returns as multiple values the (X, Y) position and the window where the
pointing device was the last time some key event happened. If the information is unavailable, this returns
nil.

mark-column mark [Function]
This function returns the X position at which mark would be displayed, supposing its line was displayed
on an infinitely wide screen. This takes into consideration strange characters such as tabs.

move-to-column mark column ^optional line [Function]
This function is analogous to move-to-position (page 5), except that it moves mark to the position
on line which corresponds to the specified column. Line defaults to the line that mark is currently on. If
the line would not reach to the specified column, then nil is returned and mark is not modified. Note
that since a character may be displayed on more than one column on the screen, several different values
of column may cause mark to be moved to the same position.

show-mark mark window time [Function]
This function highlights the position of mark within window for time seconds, possibly by moving the
cursor there. The wait may be aborted if there is pending input. If mark is positioned outside the text
displayed by window, then this returns nil, otherwise t.

42

10.5. Redisplay

Redisplay is the process by which the editor translates changes in the internal representation of text into changes
on the screen. Ideally this process finds the minimal transformation of the screen that brings it into correspondence
with the text, in order to maximize the speed of redisplay.

redisplay invokes the redisplay process, and the command interpreter typically causes this after the
completion of each command. The redisplay process repeatedly checks for input, and if any is detected,
redisplay aborts. This function invokes the functions in Redisplay Hook on the current window after
completely preparing for but not executing redisplay. After invoking the hook, it recomputes the
redisplay again and then finally executes it on the current window.

redisplay
Redisplay Hook

[Function]
[Hemlock Variable]

redisplay-all [Function]
This causes all editor windows to be completely redisplayed.

editor-finish-output window [Function]
This makes sure the editor is synchronized with respect to redisplay output to window. This may do
nothing on some devices.

43

Chapter 11

Logical Characters

11.1. Introduction

Some primitives such as prompt-f or-key (page 47), and commands such as EMACS query replace, read
characters directly from they keyboard instead of using the command interpreter. In order to encourage consistency
between these commands and make them portable and easy to customize, there is a mechanism for defining logical
characters.

A logical character is a keyword which stands for some set of characters which are globally used to mean a
certain thing, for example, the .help logical character stands for whatever set of characters is used to ask for help
in a given implementation. It is important to note that this mapping is not a one-to-one mapping, but rather a
many-to-many mapping in that a given logical character may have several corresponding real characters, and each of
those characters may have several logical characters.

11.2. Logical Character Functions

logical-character-names [Variable]
This variable holds a string-table of all the logical characters string-names, with the values of each entry
being the actual logical-character keyword.

define-logical-character string-name documentation [Function]
Takes string-name and converts it into a keyword by replacing spaces with hyphens, as with
def attribute (page 36), and then defines the keyword to be a logical character having the given
documentation.

logical-character-characters keyword [Function]
Returns the list of characters that are equivalent to the logical character keyword.

logical-character-name keyword [Function]
logical-character-documentation keyword [Function]

Return the string name and documentation given to def ine-logical-character when the logical
character keyword was defined.

logical-char= character keyword [Function]
Returns true if the specified character has keyword as a corresponding logical character. The value that
is returned for any character/keyword pair may be set by using setf; this is how a real character and a
logical character are associated. It is a error for keyword not to be a defined logical character. Character

44

is case-folded, thus comparisons are case insensitive, but bits and font are significant.

11.3. System Defined Logical Characters

There a number of standard logical characters defined, some of which are used by functions documented in this
manual, and others defined simply so that commands can use them. If a command wants to read a single character
command that fits one of these descriptions then the character read should be compared to the corresponding logical
character instead of wiring the actual character into the code. In many cases the command-case (page 46) macro
can be used. This makes using logical characters easy, and takes care of prompting and displaying help messages.

: yes Indicates that that some action, such as doing a replacement should be taken.

: no Analogous to : yes, but it indicates that the action should not be taken.

: do-all Indicates that the action under consideration should be repeated as many times as possible.

: exit Tells the command to terminate in a normal fashion.

: help Instructs the command to display some help information.

: confirm Confirms any input, or if none, indicates that the default should be taken.

: quote Indicates that the following character is not to be treated as a command, regardless of what it is,
but rather simply stands for itself.

: recursive-edit
Indicates that the command should enter a recursive edit in the current context.

Define a new logical character whenever:
1. The character concerned represents a general class of actions, and thus might want to be known about

by several commands.

2. The exact character chosen to invoke the action concerned is likely to be a matter of violent dispute,
and thus should be easy to change.

3. The character concerned is not standard-char-p, and thus cannot be specified in a implemen
tation independent fashion.

45

Chapter 12

The Echo Area

Hemlock provides a number of facilities for displaying information and prompting the user for it. Most of these
work through a small window displayed at the bottom of the screen. This is called the echo area and is supported by
a buffer and a window. This buffer's modeline (see section 3.3) is referred to as the status line, which, unlike other
buffers' modelines, is used to show general status about the editor, Lisp, or world.

Default Status Line Fields [Hemlock Variable]
This is the initial list of modeline-field objects stored in the echo area buffer.

Echo Area Height (initial value 3) [Hemlock Variable]
This variable determines the initial height in lines of the echo area window.

12.1. Echo Area Functions

It is considered poor taste to perform text operations on the echo area buffer to display messages; the message
function should be used instead. A command must use this function or set buffer-modified (page 11) for the
Echo Area buffer to nil to cause Hemlock to leave text in the echo area after the command's execution.

clear-echo-area [Function]
Clears the echo area.

message control-string firest format-arguments [Function]
Message Pause (initial value 0 . 5) [Hemlock Variable]

Displays a message in the echo area. The message is always displayed on a fresh line, message pauses
for Message Pause seconds before returning to assure that messages are not displayed too briefly to be
seen. Because of this, message is the best way to display text in the echo area.

* echo -a rea - window* [Variable]
* e cho - a r ea -buf f e r * [Variable]

echo-area-buffer contains the buffer object for the echo area, which is named Echo Area. This
buffer is usually in Echo Area mode, echo-area-window contains a window displaying
echo-area-buffer. Its modeline is the status line, see the beginning of this chapter.

46

echo-area-stream [Variable]
This is a buffered Hemlock output stream (56) which inserts text written to it at the point of the echo area
buffer. Since this stream is buffered a force-output must be done when output is complete to assure
that it is displayed.

12.2. Prompting Functions

Most of the prompting functions accept the following keyword arguments:

: must-exist If : must-exist has a non-nil value then the user is prompted until a valid response is
obtained. If : must-exist is nil then return as a string whatever is input. The default is t.

: default If null input is given when the user is prompted then this value is returned. If no default is given
then some input must be given before anything interesting will happen.

:default-string
If a -.default is given then this is a string to be printed to indicate what the default is. The
default is some representation of the value for : default, for example for a buffer it is the
name of the buffer.

: prompt This is the prompt string to display.
: help This is similar to : prompt, except that it is displayed when the help command is typed during

input.
This may also be a function. When called with no arguments, it should either return a string
which is the help text or perform some action to help the user, returning nil.

prompt-for-buffer &key :prompt :help :must-exist : default [Function]
- :default-string

Prompts with completion for a buffer name and returns the corresponding buffer. If must-exist is nil,
then it returns the input string if it is not a buffer name. This refuses to accept the empty string as input
when :default and :default-string are nil. -.default-string may be used to supply a
default buffer name when -.default is nil, but when -.must-exist is non-nil, it must name an
already existing buffer.

command-case ({key value}*) {({({tag}*) I tag) help {form}*)}* [Macro]
This macro is analogous to the Common Lisp case macro. It is intended to be used by commands such
as Query Replace which read single-character commands and dispatch from them. Since the descrip
tion of this is rather complex, here is an example:

(defcommand "Save All Buffers" (p)
"Give the User a chance to save each modified buffer."
"Give the User a chance to save each modified buffer."
(dolist (b *buffer-list*)

(select-buffer-command () b)
(when (buffer-modified b)

(command-case (rprompt "Save this buffer: [Y] "
:help "Save buffer, or do something else:")

((:yes :confirm)
"Save this buffer and go on to the next."
(save-file-command () b))

(:no "Skip saving this buffer, and go on to the next.")
(:recursive-edit
"Go into a recursive edit in this buffer."
(do-recursive-edit) (reprompt))

((:exit #\P) "Punt this silly loop."
(return nil))))))

47

Normally command-case prompts for a character and then evaluates the first option in the body with a
tag equivalent to the character read. Each tag is either a logical character (page 43) or a standard
character, one that satisfies the Common Lisp standard-char-p predicate. If the tag is a logical
character keyword, then the search for an appropriate case compares the character read with the tag using
logical-char=. If the tag is a character, then this case-folds it and compares it to the character read
using char=.

The keyword arguments are used to specify how the prompting is done. The following values for a key
are defined:

:help This string is displayed by the default .help option before each possibility is
described.

: prompt This is the prompt used when reading the character.
:change-window

If this is true (the default), then the echo area window is made the current window
while the character is read. Sometimes it is desirable not to change the window since
the user may want to answer the question on the basis of where the point is in the
current buffer.

: bind The argument to this keyword is a variable which is to be bound to the character read.

: character If this is specified, then no character is read initially, and processing proceeds as
though the character of the corresponding value had been read.

There are default options for two logical characters: -.help and : abort. If a help character is read,
then a help message is displayed. The message is created out of the string given to the : help key and the
help strings specified for each option. After the help message is displayed the prompting is repeated. If
an abort character is read then an editor error is signalled. Either of these actions may be overridden by
explicitly specifying some option that subsumes these.

Instead of specifying a tag or tag list, t may be used - this becomes the default option, and is evaluated
only if no other option, including the default ones can be. This option has no help string, and is not
mentioned in any help message. The default default option beeps and then does a reprompt.

Within the body of command-case, the reprompt macro is defined. Use of this macro causes the
prompting and option selection process to be immediately restarted.

prompt-for-character &key :prompt : change-window [Function]
Prompts for a character and does not wait for confirmation before returning, command-case (page
46) is more useful for most purposes. When appropriate use logical characters (page 43).

prompt-for-key &key .prompt :help rmust-exist .default [Function]
:default-string

Prompts for key, a vector of characters, suitable for being passed to any of the functions that manipulate
key bindings (page 28). If must-exist is true then the key must be bound in the current environment and
the command currently bound is returned as the second value.

prompt-for-file &key .prompt .help :must-exist :default [Function]
:default-string

Prompts for an acceptable filename in some system dependent fashion. Acceptable means that it is a
legal filename and it exists if must-exist is not nil. prompt-f or-file returns a Common Lisp
pathname.

If the file exists as entered then it is returned, otherwise it is merged with default as by
merge-pathnames.

48

prompt-for-integer &key :prompt :help :must-exist :default [Function]
:default-string

Prompts for a possibly signed integer. If must-exist is nil then prompt-for-integer returns the
input as a string if it is not a valid integer.

prompt-for-keyword string-tables fikey :prompt .help :must-exist [Function]
:default :default-string

Prompts for a keyword with completion using the string tables in the list string-tables. If must-exist is not
nil then the result must be an unambiguous prefix of a string in one of the string-tables, and the
complete string is returned even if only a prefix of the full string was typed. In addition, the value of the
corresponding entry in the string table is returned as the second value.

If must-exist is nil then the string is returned exactly as entered. The difference between
prompt-f or-keyword with must-exist nil, and prompt-f or-string, is that completion may be
done using the Complete Parse and Complete Field commands.

prompt-for-expression &key :prompt :help :must-exist : default [Function]
:default-string

Reads a Lisp expression. If must-exist is nil and a read error occurs then the string typed is returned.

prompt-f or-string &key : prompt :help : default : default-string [Function]
Prompts for a string; this cannot fail.

prompt-f or-variable &key .prompt .help :must-exist .default [Function]
:default-string

Prompts for a variable name. If must-exist is non-nil then the string must be a variable defined in the
current environment, in which case the symbol name of the variable found is returned as the second
value.

prompt-for-y-or-n &key :prompt :help :must-exist :default [Function]
:default-string

Prompts for "y" or "n" (or "Y" or "N" naturally), and returns t or nil without waiting for confirmation.
When a confirming key is typed, return the default if there is one. If must-exist is nil then return
whatever character was first typed if it was not "y" or "n". This is analogous to the Common Lisp
function y-or-n-p.

prompt-for-yes-or-no &key :prompt :help :must-exist .default [Function]
:default-string

This function is to prompt-f or-y-or-n as yes-or-no-p is to y-or-n-p. "Yes" or "No" must
be typed out in full and confirmation must be given.

12,3. Control of Parsing Behavior
The behavior of the parsing routines is parameterized by a variable and a character attribute.

The character attribute Parse Field Separator, is a boolean attribute, a value of one indicating that that character
is considered to be a field separator by the Complete Field command.

49

Beep On Ambiguity (initial value t) [Hemlock Variable]
If this variable is true, then an attempt to complete a parse which is ambiguous will result in a "beep".

12.4. Defining New Prompting Functions

Prompting functions are implemented as a recursive edit in the Echo Area buffer. Completion, help, and other
parsing features are implemented by commands which are bound in Echo Area Mode.

A prompting function passes information down into the recursive edit by binding a collection of special variables.

parse-verification-f unction [Variable]
The system binds this to a function that Confirm Parse (page 50) calls. It does most of the work when
parsing prompted input. Confirm Parse (page 50) passes one argument, which is the string that was in
parse-input-region when the user invokes the command. The function should return a list of
values which are to be the result of the recursive edit, or nil indicating that the parse failed. In order to
return zero values, a non-nil second value may be returned along with a nil first value.

parse-string-tables [Variable]
This is the list of string-tables, if any, that pertain to this parse.

parse-value-must-exist [Variable]
This is bound to the value of the : must-exist argument, and is referred to by the verification
function, and possibly some of the commands.

parse-def ault [Variable]
When prompting the user, this is bound to a string representing the default object, the value supplied as
the : default argument. Confirm Parse supplies this to the parse verification function when the
parse-input-region is empty.

parse-def ault-string [Variable]
When prompting the user, if *parse-def ault* is nil, Hemlock displays this string as a represen
tation of the default object; for example, when prompting for a buffer, this variable would be bound to the
buffer name.

parse-type [Variable]
The kind of parse in progress, one of .file, :keyword or :string. This tells the completion
commands how to do completion, with : string disabling completion.

parse-prompt [Variable]
The prompt being used for the current parse.

parse-help [Variable]
The help string or function being used for the current parse.

parse-starting-mark [Variable]
This variable holds a mark in the *echo-area-buf f er* (page 45) which is the position at which the
parse began.

50

parse-input-region [Variable]
This variable holds a region with *parse-starting-mark* as its start and the end of the echo-area
buffer as its end. When Confirm Parse is called, the text in this region is the text that will be parsed.

12.5. Some Echo Area Commands

These are some of the Echo Area commands that coordinate with the prompting routines. Hemlock binds other
commands specific to the Echo Area, but they are uninteresting to mention here, such as deleting to the beginning
of the line or deleting backwards a word.

Help On Parse (bound to H o m e , C-_ in Echo Area mode) [Command]
Display the help text for the parse currently in progress.

Complete Keyword (bound to E s c a p e in Echo Area mode) [Command]
This attempts to complete the current region as a keyword in *string-tables*. It signals an
editor-error if the input is ambiguous or incorrect.

Complete Field (bound to S p a c e in Echo Area mode) [Command]
Similar to Complete Keyword, but only attempts to complete up to and including the first character in
the keyword with a non-zero : parse-field-separator attribute. If there is no field separator then
attempt to complete the entire keyword. If it is not a keyword parse then just self-insert.

Confirm Parse (bound to R e t u r n in Echo Area mode) [Command]
If * string-tables* is non-nil find the string in the region in them. Call
parse-verif ication-f unction with the current input. If it returns a non-nil value then that
is returned as the value of the parse. A parse may return a nil value if the verification function returns a
non-nil second value.

51

Chapter 13

Files

This chapter discusses ways to read and write files at various levels — at marks, into regions, and into buffers.
This also treats automatic mechanisms that affect the state of buffers in which files are read.

13.1. File Options and Type Hooks

The user specifies file options with a special syntax on the first line of a file. If the first line contains the string
" - * - " , then Hemlock interprets the text between the first such occurrence and the second, which must be contained
in one line , as a list of "option: value" pairs separated by semicolons. The following is a typical example:

;;; Mode: Lisp, Editor; Package: Hemlock -*-
See the Hemlock User's Manual for more details and predefined options.

File type hooks are executed when Hemlock reads a file into a buffer based on the type of the pathname. When
the user specifies a Mode file option that turns on a major mode, Hemlock ignores type hooks. This mechanism is
mostly used as a simple means for turning on some appropriate default major mode.

define-file-option name (buffer value) {declaration}* {form}* [Macro]
This defines a new file option with the string name name. Buffer and value specify variable names for the
buffer and the option value string, and form's are evaluated with these bound.

def ine-f ile-type-hook type-list (buffer type) {declaration}* {form}* [Macro]
This defines some code that process-file-options (below) executes when the file options fail to
set a major mode. This associates each type, a simple-string, in type-list with a routine that binds
buffer to the buffer the file is in and type to the type of the pathname.

process-file-options buffer fioptional pathname [Function]
This checks for file options in buffer and invokes handlers if there are any. Pathname defaults to buffer's
pathname but may be nil. If there is no Mode file option that specifies a major mode, and pathname
has a type, then this tries to invoke the appropriate file type hook, read-buffer-file calls this.

13.2. Pathnames and Buffers

There is no good way to uniquely identify buffer names and pathnames. However, Hemlock has one way of
mapping pathnames to buffer names that should be used for consistency among customization and primitives.
Independent of this, Hemlock provides a means for consistently generating prompting defaults when asking the user
for pathnames.

52

pathname-to-buffer-name pathname [Function]
name/type-separator-character [Variable]

This returns a string of the form "Name Type Directory" using components of pathname. If the pathname
contains no name field, but it does contain a type, then the type is preceded by
name/type-separator-character (defaults to a period). The file system may not support file
types, and Hemlock cannot know what the name/type separator is anyway. This is mostly a visual
convenience for listing buffers for the user. It is an error for this character to be anything but a graphical
character, not including space.

Pathname Defaults (initial value (pathname "gazonk.del")) [Hemlock Variable]
Last Resort Pathname Defaults Function [Hemlock Variable]
Last Resort Pathname Defaults (initial value (pathname "gazonk")) [Hemlock Variable]

These variables control the computation of default pathnames when needed for promting the user.
Pathname Defaults is a sticky default. See the Hemlock User's Manual for more details.

buffer-default-pathname buffer [Function]
This returns Buffer Pathname if it is bound. If it is not bound, and buffer's name is composed solely of
alphnumeric characters, then return a pathname formed from buffer's name. If buffer's name has other
characters in it, then return the value of Last Resort Pathname Defaults Function called on buffer.

13.3. File Groups
File groups provide a simple way of collecting the files that compose a system and naming that collection.

Hemlock supports commands for searching, replacing, and compiling groups.

active-f ile-group [Variable]
This is the list of files that constitute the currently selected file group. If this is nil, then there is no
current group.

do - act i ve -group [form} * [Macro]
Group Find File (initial value nil) [Hemlock Variable]
Group Save File Confirm (initial value t) [Hemlock Variable]

do-active-group iterates over *active-file-group* executing the forms once for each file.
While the forms are executing, the file is in the current buffer, and the point is at the beginning. If there
is no active group, this signals an editor-error.

This reads each file into its own buffer using find-file-buffer. Since unwanted buffers may
consume large amounts of memory, Group Find File controls whether to delete the buffer after execut
ing the forms. When the variable is false, this deletes the buffer if it did not previously exist; however,
regardless of this variable, if the user leaves the buffer modified, the buffer persists after the forms have
completed. Whenever this processes a buffer that already existed, it saves the location of the buffer's
point before and restores it afterwards.

After processing a buffer, if it is modified, do-active-group tries to save it. If
Group Save File Confirm is non-nil, it asks for confirmation.

53

13.4. File Reading and Writing

Common Lisp pathnames are used by the file primitives. For probing, checking write dates, and so forth, all of
the Common Lisp file functions are available.

read-file pathname mark [Function]
This inserts the file named by pathname at mark.

write-file region pathname &key : keep-backup : access [Function]
Keep Backup Files (initial value nil) [Hemlock Variable]

write-file writes the contents of region to the file named by pathname. This writes region using a
stream as if it were opened with : if -exists supplied as : rename-and-delete. When
keep-backup, which defaults to the value of Keep Backup Files, is non-nil, it is as if the stream were
opened with : if-exists supplied as : rename. Access is an implementation dependent value that is
suitable for setting pathname's access or protection bits.

write-buffer-file buffer pathname [Function]
Write File Hook [Hemlock Variable]
Add Newline at EOF on Writing File (initial value : ask-user) [Hemlock Variable]

write-buf fer-f ile writes buffer to the file named by pathname including the following:
• It assumes pathname is somehow related to buffer's pathname: if the buffer's write date is not

the same as pathname's, then this prompts the user for confirmation before overwriting the
file.

• It consults Add Newline at EOF on Writing File (see Hemlock User's Manual for possible
values) and interacts with the user if necessary.

• It sets Pathname Defaults, and after using write-file, marks buffer unmodified.

• It updates Buffer's pathname and write date.

• It renames the buffer according to the new pathname if possible.

• It invokes Write File Hook.

Write File Hook is a list of functions that take the newly written buffer as an argument.

read-buffer-file pathname buffer [Function]
Read File Hook [Hemlock Variable]

read-buffer-file deletes buffer's region and uses read-file to read pathname into it, including
the following:

• It sets buffer's write date to the file's write date if the file exists; otherwise, it message's
that this is a new file and sets buffer's write date to nil.

• It moves buffer's point to the beginning.

• It sets buffer's unmodified status.

• It sets buffer's pathname to the result of probing pathname if the file exists; otherwise, this
function sets buffer's pathname to the result of merging pathname with
def ault-directory.

• It sets Pathname Defaults to the result of the previous item.

• It processes the file options.

• It invokes Read File Hook.

54

Read File Hook is a list functions that take two arguments — the buffer read into and whether the file
existed, t if so.

find-file-buffer pathname [Function]
This returns a buffer assoicated with the pathname, reading the file into a new buffer if necessary. This
returns a second value indicating whether a new buffer was created, t if so. If the file has already been
read, this checks to see if the file has been modified on disk since it was read, giving the user various
recovery options. This is the basis of the Find File command.

55

Chapter 14

Hemlock's Lisp Environment

This chapter is sort of a catch all for any functions and variables which concern Hemlock's interaction with the
outside world.

14.1. Entering and Leaving the Editor

ed ^optional x [Function]
Entry Hook [Hemlock Variable]

ed enters the editor. It is basically as specified in Common Lisp. If x is supplied and is a symbol, the
definition of x is put into a buffer, and that buffer is selected. If x is a pathname, the file specified by x is
visited in a new buffer. If x is not supplied or nil, the editor is entered in the same state as when last
exited.

The Entry Hook is invoked each time the editor is entered.

exit-hemlock fioptional value [Function]
Exit Hook [Hemlock Variable]

exit-hemlock leaves Hemlock and return to Lisp; value is the value to return, which defaults to t.
The hook Exit Hook (page 55) is invoked before this is done.

pause-hemlock [Function]
pause-hemlock suspends the editor process and returns control to the shell. When the process is
resumed, it will still be running Hemlock.

14.2. Keyboard Input

Keyboard input interacts with a number of other parts of the editor. Since the command loop works by reading
from the keyboard, keyboard input is the initial cause of everything that happens. Redisplay is also normally done
as a side-effect of keyboard input. If someone tries to read from the keyboard and there is no pending input, then
redisplay is invoked.

* edit o r-input * [Variable]
real-editor-inPut [Variable]

f H e m l o c k Variable]
A b o r t H o o k [H e m l o c k ^ *]

•editor-input* is an input stream which reads characters from the keyboard immediately and
without echoing.

56

If the eoferrorp argument to the reading function is nil then input is quoted as far as possible to enable
the reading of interrupt characters and similar things.

* real-editor-input* holds the initial value of *editor-input*. This is useful for reading
from the terminal when *editor-input* is rebound (such as within a keyboard macro.)

Hemlock invokes the functions in Input Hook each time someone reads a character from
real-editor-input. These take no arguments.

When the user aborts, as by typing C -g, Hemlock invokes the functions in Abort Hook. These take no
arguments. When aborting, Hemlock ignores the Input Hook.

editor-sleep time [Function]
Return either after time seconds have elapsed or when input is available on *editor-input*.

* character-history* [Variable]
This is a Hemlock ring buffer (see page 68) that holds the last 60 characters read from the keyboard.

* last-character-typed* [Variable]
This variable should be used by commands that want to know the character that invoked them. If no
character has yet been typed, then the value is nil. This variable usually holds the last character read
from the keyboard, but it is also maintained within keyboard macros.

input -1 rans cr ipt * [Variable]
If this is non-nil then it should be an adjustable vector with a fill-pointer. When it is non-nil all input
read is also pushed onto this vector.

text-character character [Function]
When given a character as returned by reading from *editor-input*, this returns a character suitable
for inserting in text, or nil if character doesn't have a text representation.

Exactly what this does is implementation dependent, but on ASCII implementations which support bits
this might turn characters with the control bit on into the corresponding ASCII control character.

print-pretty-character character stream [Function]
This prints character to stream suitably for documentation, data displays, etc. Control, meta, super, and
hyper bits are shown as C-, M-, S-, and H-, respectively. If character is not a standard character other
than space or newline, and it has a name, then the name is printed.

14.3. Hemlock Streams

It is possible to create streams which output to or get input from a buffer. This mechanism is quite powerful and
permits easy interfacing of Hemlock to Lisp.

make-hemlock-output-stream mark ^optional buffered [Function]
hemlock-output-stream-p object [Function]

make-hemlock-output-stream returns a stream that inserts at the permanent mark mark all output
directed to it. Buffered controls whether the stream is buffered or not, and its valid values are the
following keywords:

: none No buffering is done. This is the default.

57

: line The buffer is flushed whenever a newline is written or when it is explicitly done with
force-output.

-.full The screen is only brought up to date when it is explicidy done with
force-output

hemlock-output-stream-p returns t if object is a hemlock-output-stream object.

make-hemlock-region-stream region [Function]
hemlock-region-stream-p object [Function]

make-hemlock-region-stream returns a stream from which the text in region can be read.
hemlock-region-stream-p returns t if object is a hemlock-region-stream object.

with-input-from-region (var region) [declaration]* [form]* [Macro]
While evaluating/brms, binds var to a stream which returns input from region.

with-output-to-mark (var mark [buffered]) [declaration]* [form]* [Macro]
During the evaluation of the forms, binds var to a stream which inserts output at the permanent mark.
Buffered has the same meaning as for make-hemlock-output-stream.

with-random-typeout (var n) [declaration]* [form]* [Macro]
Bind var to a stream which, when output to, displays the output on the screen in some aesthetic fashion.
n is an estimate of the number of lines that the output will take to display. Typically what this will do is
make a window n lines high on the screen, display the output in it in more-mode, and then pause at then
end until a character is typed to indicate that the input has been read. This is useful for displaying
information of temporary interest such as buffer lists.

14.4. Interface to the Error System

The error system interface is minimal. There is a simple editor-error condition which is a subtype of error and a
convenient means for signaling them. Hemlock also provides a standard handler for error conditions while in the
editor.

editor-error-format-string condition [Function]
editor-error-format-arguments condition [Function]

Handlers for editor-error conditions can access the condition object with these.

editor-error Srest args [Function]
This function is called to signal minor errors within Hemlock; these are errors that a normal user could
encounter in the course of editing such as a search failing or an attempt to delete past the end of the
buffer. This function signal's an editor-error condition formed from args, which are nil or a
format string possibly followed by format arguments. Hemlock invokes commands in a dynamic
context with an editor-error condition handler bound. This default handler beeps or flashes (or both) the
display. If the condition passed to the handler has a non-nil string slot, the handler also invokes
message on it. The command in progress is always aborted, and this function never returns.

handle-lisp-errors [form}* [Macro]
Within the body of this macro any Lisp errors that occur are handled in some fashion more gracefully
than simply dumping the user in the debugger. This macro should be wrapped around code which may
get an error due to some action of the user — for example, evaluating code fragments on the behalf of and

58

supplied by the user. Using this in a command allows the established handler to shadow the default
editor-error handler, so commands should take care to signal user errors (calls to editor-errors)
outside of this context.

14.5. Definition Editing

Hemlock provides commands for finding the definition of a function, macro, or command and placing the user at
the definition in a buffer. This, of course, is implementation dependent, and if an implementation does not associate
a source file with a routine, or if Hemlock cannot get at the information, then these commands do not work. If the
Lisp system does not store an absolute pathname, independent of the machine on which the maintainer built the
system, then users need a way of translating a source pathname to one that will be able to locate the source.

add-definition-dir-translation dirl dirl [Function]
This maps directory pathname dirl to dir2. Successive invocations using the same dirl push into a
translation list. When Hemlock seeks a definition source file, and it has a translation, then it tries the
translations in order. This is useful if your sources are on various machines, some of which may be
down. When Hemlock tries to find a translation, it first looks for translations of longer directory
pathnames, finding more specific translations before shorter, more general ones.

delete-definition-dir-translation dir [Function]
This deletes the mapping of dir to all directories to which it has been mapped.

14.6. Event Scheduling

The mechanism described in this chapter is only operative when the Lisp process is actually running inside of
Hemlock, within the ed function. The designers intended its use to be associated with the editor, such as with
auto-saving files, reminding the user, e t c

schedule-event time function ^optional repeat [Function]
This causes Hemlock to call function after time seconds have passed, optionally repeating every time
seconds. Repeat defaults to t. This is a rough mechanism since commands can take an arbitrary amount
of time to run; Hemlock invokes function at the first possible moment after time has elapsed. Function
takes the time in seconds that has elapsed since the last time it was called (or since it was scheduled for
the first invocation).

remove-scheduled-event function [Function]
This removes function from the scheduling queue. Function does not have to be in the queue.

14.7. Miscellaneous

in-lisp [form}* [Function]
This evaluates form's inside handle-lisp-errors. It also binds *package* to the package
named by Current Package if it is non-nil. Use this when evaluating Lisp code on behalf of the user.

59

do-alpha-chars (var land [result) [form}*] [Macro]
This iterates over alphabetic characters in Common Lisp binding var to each character in order as
specified under character relations in Common Lisp the Language. Kind is one of : lower, : upper, or
:both. When the user supplies :both, lowercase characters are processed first.

60

61

Chapter 15

High-Level Text Primitives

This chapter discusses primitives that operate on higher level text forms than characters and words. For English
text, there are functions that know about sentence and paragraph structures, and for Lisp sources, there are functions
that understand this language. This chapter also describes mechanisms for organizing file sections into logical
pages and for formatting text forms.

15.1. Indenting Text

Indent Function (initial value tab-to-tab-stop) [Hemlock Variable]
The value of this variable determines how indentation is done, and it is a function which is passed a mark
as its argument. The function should indent the line that the mark points to. The function may move the
mark around on the line. The mark will be : left-inserting. The default simply inserts a tab
character at the mark. A function for Lisp mode probably moves the mark to the beginning of the line,
deletes horizontal whitespace, and computes some appropriate indentation for Lisp code.

Indent with Tabs (initial value indent -using-tabs) [Hemlock Variable]
Spaces per Tab (initial value 8) [Hemlock Variable]

Indent with Tabs holds a function that takes a mark and a number of spaces. The function will insert a
maximum number of tabs and a minimum number of spaces at mark to move the specified number of
columns. The default definition uses Spaces per Tab to determine the size of a tab. Note,
Spaces per Tab is not used everywhere in Hemlock yet, so changing this variable could have un
expected results.

indent-region region [Function]
indent-region-for-commands region [Function]

indent-region invokes the value of Indent Function on every line of region.
indent-region-f or-commands uses indent-region but first saves the region for the Undo
command.

delete-horizontal-space mark [Function]
This deletes all characters with a Space attribute (see section 9.5) of 1.

15.2. Lisp Text Buffers

Hemlock bases its Lisp primitives on parsing a block of the buffer and annotating lines as to what kind of Lisp
syntax occurs on the line or what kind of form a mark might be in (for example, string, comment, list, etc.). These

62

do not work well if the block of parsed forms is exceeded when moving marks around these forms, but the block
that gets parsed is somewhat programmable.

There is also a notion of a top level form which this documentation often uses synonymously with defun, meaning
a Lisp form occurring in a source file delimited by parentheses with the opening parenthesis at the beginning of
some line. The names of the functions include this inconsistency.

pre-command-parse-check mark for-sure [Function]
Parse Start Function (initial value start-of-parse-block) [Hemlock Variable]
Parse End Function (initial value end-of -parse-block) [Hemlock Variable]
Minimum Lines Parsed (initial value 50) [Hemlock Variable]
Maximum Lines Parsed (initial value 500) [Hemlock Variable]
Defun Parse Goal (initial value 2) [Hemlock Variable]

pre-command-parse-check calls Parse Start Function and Parse End Function on mark to get
two marks. It then parses all the lines between the marks including the complete lines they point into.
When for-sure is non-nil, this parses the area regardless of any cached information about the lines.
Every command that uses the following routines calls this before doing so.

The default values of the start and end variables use Minimum Lines Parsed,
Maximum Lines Parsed, and Defun Parse Goal to determine how big a region to parse. These two
functions always include at least the minimum number of lines before and after the mark passed to them.
They try to include Defun Parse Goal number of top level forms before and after the mark passed them,
but these functions never return marks that include more than the maximum number of lines before or
after the mark passed to them.

form-offset mark count [Function]
This tries to move mark count forms forward if positive or -count forms backwards if negative. Mark is
always moved. If there were enough forms in the appropriate direction, this returns mark, otherwise nil.

top-level-offset mark count [Function]
This tries to move mark count top level forms forward if positive or -count top level forms backwards if
negative. If there were enough top level forms in the appropriate direction, this returns mark, otherwise
nil. Mark is moved only if this is successful.

mark-top-level-form markl mark! [Function]
This moves markl and mark! to the beginning and end, respectively, of the current or next top level
form. Markl is used as a reference to start looking. The marks may be altered even if unsuccessful. If
successful, return markl, else nil. Mark! is left at the beginning of the line following the top level form if
possible, but if the last line has text after the closing parenthesis, this leaves the mark immediately after
the form.

defun-region mark [Function]
This returns a region around the current or next defun with respect to mark. Mark is not used to form the
region. If there is no appropriate top level form, this signals an editor-error. This calls
pre-command-parse-check first.

inside-defun-p mark [Function]
start-defun-p mark [Function]

These return, respectively, whether mark is inside a top level form or at the beginning of a line im
mediately before a character whose Lisp Syntax (see section 9.5) value is : opening-paren.

63

forward-up-list mark [Function]
backward-up-list mark [Function]

Respectively, these move mark immediately past a character whose Lisp Syntax (see section 9.5) value
is :closing-paren or immediately before a character whose Lisp Syntax value is
:opening-paren.

valid-spot mark forwardp [Function]
This returns t or nil depending on whether the character indicated by mark is a valid spot. When
forwardp is set, use the character after mark and vice versa. Valid spots exclude commented text, inside
strings, and character quoting.

def indent name count [Function]
This defines the function with name to have count special arguments, indent-f or-lisp, the value of
Indent Function (see section 15.1) in Lisp mode, uses this to specially indent these arguments. For
example, do has two, with-open-f ile has one, etc. There are many of these defined by the system
including definitions for special Hemlock forms. Name is a simple-string, case insensitive and purely
textual (that is, not read by the Lisp reader); therefore, "with-a-mumble" is distinct from
"mumble :with-a-mumble".

15.3. English Text Buffers

This section describes some routines that understand basic English language forms.

word-offset mark count [Function]
This moves mark count words forward (if positive) or backwards (if negative). If mark is in the middle
of a word, that counts as one. If there were count {-count if negative) words in the appropriate direction,
this returns mark, otherwise nil. This always moves mark. A word lies between two characters whose
Word Delimiter attribute value is 1 (see section 9.5).

sentence-offset mark count [Function]
This moves mark count sentences forward (if positive) or backwards (if negative). If mark is in the
middle of a sentence, that counts as one. If there were count {-count if negative) sentences in the
appropriate direction, this returns mark, otherwise nil. This always moves mark.

A sentence ends with a character whose Sentence Terminator attribute is 1 followed by two spaces, a
newline, or the end of the buffer. The terminating character is optionally followed by any number of
characters whose Sentence Closing Char attribute is 1. A sentence begins after a previous sentence
ends, at the beginning of a paragraph, or at the beginning of the buffer.

paragraph-offset mark count fioptional prefix [Function]
Paragraph Delimiter Function [Hemlock Variable]

This moves mark count paragraphs forward (if positive) or backwards (if negative). If mark is in the
middle of a paragraph, that counts as one. If there were count {-count if negative) paragraphs in the
appropriate direction, this returns mark, otherwise nil. This only moves mark if there were enough
paragraphs.

Paragraph Delimiter Function holds a function that takes a mark, typically at the beginning of a line,
and returns whether or not the current line should break the paragraph,
default-para-delim-function returns t if the next character, the first on the line, has a
Paragraph Delimiter attribute value of 1. This is typically a space, for an indented paragraph, or a

64

newline, for a block style. Some modes require a more complicated determinant; for example, Scr ibe
modes adds some characters to the set and special cases certain formatting commands.

Prefix defaults to Fill Prefix (see section 15.5), and the right prefix is necessary to correctly skip
paragraphs. If prefix is non-nil, and a line begins with prefix, then the scanning process skips the prefix
before invoking the Paragraph Delimiter Function. Note, when scanning for paragraph bounds, and
prefix is non-nil, lines are potentially part of the paragraph regardless of whether they contain the
prefix; only the result of invoking the delimiter function matters.

The programmer should be aware of an idiom for finding the end of the current paragraph. Assume
paragraphp is the result of moving mark one paragraph, then the following correctly determines
whether there actually is a current paragraph:

(or paragraphp
(and (last-line-p mark)

(end-line-p mark)
(not (blank-line-p (mark-line mark)))))

In this example mark is at the end of the last paragraph in the buffer, and there is no last newline
character in the buffer, paragraph-offset would have returned nil since it could not skip any
paragraphs since mark was at the end of the current and last paragraph. However, you still have found a
current paragraph on which to operate, mark-paragraph understands this problem.

mark-paragraph markl mark2 [Function]
This marks the next or current paragraph, setting markl to the beginning and markl to the end. This uses
Fill Prefix (see section 15.5). Markl is always on the first line of the paragraph, regardless of whether the
previous line is blank. Mark! is typically at the beginning of the line after the line the paragraph ends on,
this returns mark! on success. If this cannot find a paragraph, then the marks are left unmoved, and nil
is returned.

15.4. Logical Pages
Logical pages are a way of dividing a file into coarse divisions. This is analogous to dividing a paper into

sections, and Hemlock provides primitives for moving between the pages of a file and listing a directory of the page
titles. Pages are separated by Page Delimiter characters (see section 9.5) that appear at the beginning of a line.

goto-page mark n [Function]
This moves mark to the absolute page numbered n. If there are less than n pages, it signals an editor-
error. If it returns, it returns mark. Hemlock numbers pages starting with one for the page delimited by
the beginning of the buffer and the first Page Delimiter (or the end of the buffer).

page-offset mark n [Function]
This moves mark forward n (-/i backwards, if n is negative) Page Delimiter characters that are in the
zero'th line position. If a Page Delimiter is the immediately next character after mark (or before mark,
if n is negative), then skip it before starting. This always moves mark, and if there were enough pages to
move over, it returns mark', otherwise, it returns nil.

page-directory buffer [Function]
This returns a list of each first non-blank line in buffer that follows a Page Delimiter character that is in
the zero'th line position. This includes the first line of the buffer as the first page tide. If a page is empty,
then its title is the empty string.

65

display-page-directory stream directory [Function]
This writes the list of strings, directory, to stream, enumerating them in a field three wide. The number
and string are separated by two spaces, and the first line contains headings for the page numbers and title
strings.

15.5. Filling

Filling is an operation on text that breaks long lines at word boundaries before a given column and merges shorter
lines together in an attempt to make each line roughly the specified length. This is different from justification which
tries to add whitespace in awkward places to make each line exactly the same length. Hemlock's filling optionally
inserts a specified string at the beginning of each line. Also, it eliminates extra whitespace between lines and words,
but it knows two spaces follow sentences (see section 15.3).

Fill Column (initial value 75) [Hemlock Variable]
Fill Prefix (initial value nil) [Hemlock Variable]

These variables hold the default values of the prefix and column arguments to Hemlock's filling primi
tives. If Fill Prefix is nil, then there is no fill prefix.

fill-region region ^optional prefix column [Function]
This deletes any blank lines in region and fills it according to prefix and column. Prefix and column
default to Fill Prefix and Fill Column.

fill-region-by-paragraphs region fioptional prefix column [Function]
This finds paragraphs (see section 15.3) within region and fills them with fill-region. This ignores
blank lines between paragraphs. Prefix and column default to Fill Prefix and Fill Column.

66

67

Chapter 16

Utilities

This chapter describes a number of utilities for manipulating some types of objects Hemlock uses to record
information. String-tables are used to store names of variables, commands, modes, and buffers. Ring lists can be
used to provide a kill ring, recent command history, or other user-visible features.

16.1. String-table Functions

String tables are similar to Common Lisp hash tables in that they associate a value with an object. There are a
few useful differences: in a string table the key is always a case insensitive string, and primitives are provided to
facilitate keyword completion and recognition. Any type of string may be added to a string table, but the string table
functions always return simple-string's.

A string entry in one of these tables may be thought of as being separated into fields or keywords. The interface
provides keyword completion and recognition which is primarily used to implement some Echo Area commands.
These routines perform a prefix match on a field-by-field basis allowing the ambiguous specification of earlier fields
while going on to enter later fields. While string tables may use any string-char as a separator, the use of
characters other than s p a c e may make the Echo Area commands fail or work unexpectedly.

make-string-table Skey : separator : initial-contents [Function]
This function creates an empty string table that uses separator as the character, which must be a
string-char, that distinguishes fields. Initial-contents specifies an initial set of strings and their
values in the form of a dotted a-list, for example:

'(("Global" . t) ("Mode" . t) ("Buffer" . t))

string-table-p string-table
This function returns t if string-table is a string-table object, otherwise nil.

delete-string string table
clrstring table

[Function]

[Function]
[Function] [Function]

delete-string removes any entry for string from the string-table table, returning t if there
was an entry, clrstring removes all entries from table.

get st ring string table [Function]
This function returns as multiple values, first the value corresponding to the string if it is found and nil
if it isn't, and second t if it is found and nil if it isn't.

This may be set with setf to add a new entry or to store a new value for a string. It is an error to try to
insert a string with more than one field separator character occurring contiguously.

68

complete-string string tables [Function]
This function completes string as far as possible over the list of tables, returning five values. It is an error
for tables to have different separator characters. The five return values are as follows:

• The maximal completion of the string or nil if there is none.

• An indication of the usefulness of the returned string:

: none There is no completion of string.
: complete The completion is a valid entry, but other valid completions exist too.

This occurs when the supplied string is an entry as well as initial substr
ing of another entry.

: unique The completion is a valid entry and unique. .

: ambiguous The completion is invalid; get-string would return nil and nil if
given the returned string.

• The value of the string when the completion is : unique or : complete, otherwise nil.
• An index, or nil, into the completion returned, indicating where the addition of a single field

to string ends. The command Complete Field uses this when the completion contains the
addition to string of more than one field.

• An index to the separator following the first ambiguous field when the completion is
: ambiguous or : complete, otherwise nil.

find-ambiguous string table [Function]
find-containing string table [Function]

find-ambiguous returns a list in alphabetical order of all the strings in table matching string. This
considers an entry as matching if each field in string, taken in order, is an initial substring of the entry's
fields; entry may have fields remaining.

find-containing is similar, but it ignores the order of the fields in string, returning all strings in
table matching any permutation of the fields in string.

do-strings (string-var value-var table [result]) {declaration}* [tag I statement}* [Macro]
This macro iterates over the strings in table in alphabetical order. On each iteration, it binds string-var to
an entry's string and value-var to an entry's value.

16.2. Ring Functions

There are various purposes in an editor for which a ring of values can be used, so Hemlock provides a general
ring buffer type. It is used for maintaining a ring of killed regions (see section 4.3), a ring of marks (see section
3.1), or a ring of command strings which various modes and commands maintain as a history mechanism.

make-ring length ^optional delete-function [Function]
Makes an empty ring object capable of holding up to length Lisp objects. Delete-function is a function
that each object is passed to before it falls off the end. Length must be greater than zero.

ringp ring
Returns t if ring is a ring object, otherwise nil.

[Function]

69

ring-length ring [Function]
Returns as multiple-values the number of elements which ring currently holds and the maximum number
of elements which it may hold.

ring-ref ring index [Function]
Returns the index*\h item in the ring, where zero is the index of the most recently pushed. This may be
set with setf.

ring-push object ring [Function]
Pushes object into ring, possibly causing the oldest item to go away.

ring-pop ring [Function]
Removes the most recently pushed object from ring and returns it. If the ring contains no elements then
an error is signalled.

rotate-ring ring offset [Function]
With a positive offset, rotates ring forward that many times. In a forward rotation the index of each
element is reduced by one, except the one which initially had a zero index, which is made the last
element. A negative offset rotates the ring the other way.

16.3. Undoing commands

save-for-undo name method ^optional cleanup method-undo buffer [Function]
This saves information to undo a command. Name is a string to display when prompting the user for
confirmation when he invokes the Undo command (for example, "kill" or "Fill Paragraph").
Method is the function to invoke to undo the effect of the command. Method-undo is a function that
undoes the undo function, or effectively re-establishes the state immediately after invoking the command.
If there is any existing undo information, this invokes the cleanup function; typically method closes over
or uses permanent marks into a buffer, and the cleanup function should delete such references. Buffer
defaults to the current-buffer, and the Undo command only invokes undo methods when they were
saved for the buffer that is current when the user invokes Undo.

make-region-undo kind name region ^optional mark-or-region [Function]
This handles three common cases that commands fall into when setting up undo methods, including
cleanup and method-undo functions (see save-f or-undo). These cases are indicated by the kind

Use this kind when a command modifies a region, and the undo information in
dicates how to swap between two regions - the one before any modification occurs
and the resulting region. Region is the resulting region, and it has permanent marks
into the buffer. Mark-or-region is a region without marks into the buffer (for ex
ample, the result of copy-region). As a result of calling this, a first invocation of
Undo deletes region, saving it, and inserts mark-or-region where region used to be.
The undo method sets up for a second invocation of Undo that will undo the effect of
the undo; that is, after two calls, the buffer is exactly as it was after invoking the
command. This activity is repeatable any number of times. This establishes a
cleanup method that deletes the two permanent marks into the buffer used to locate
the modified region.

Use this kind when a command has deleted a region, and the undo information
indicates how to re-insert the region. Region is the deleted and saved region, and it
does not contain marks into any buffer. Mark-or-region is a permanent mark into the

argument:

:twiddle

: insert

buffer where the undo method should insert region. As a result of calling this, a first
invocation of Undo inserts region at mark-or-region and forms a region around the
inserted text with permanent marks into the buffer. This allows a second invocation
of Undo to undo the effect of the undo; that is, after two calls, the buffer is exactly as
it was after invoking the command. This activity is repeatable any number of times.
This establishes a cleanup method that deletes either the permanent mark into the
buffer or the two permanent marks of the region, depending on how many times the
user used Undo.

: delete Use this kind when a command has inserted a block of text, and the undo information
indicates how to delete the region. Region has permanent marks into the buffer and
surrounds the inserted text. Leave Mark-or-region unspecified. As a result of calling
this, a first invocation of Undo deletes region, saving it, and establishes a permanent
mark into the buffer to remember where the region was. This allows a second
invocation of Undo to undo the effect of the undo; that is, after two calls, the buffer is
exactly as it was after invoking the command. This activity is repeatable any number
of times. This establishes a cleanup method that deletes either the permanent mark
into the buffer or the two permanent marks of the region, depending on how many
times the user used Undo.

Name in all cases is an appropriate string indicating what the command did. This is used by Undo when
prompting the user for confirmation before calling the undo method. The string used by Undo alternates
between this argument and something to indicate that the user is undoing an undo.

71

Chapter 17

Auxiliary Systems

This chapter describes utilities that some implementations of Hemlock may leave unprovided or unsupported.

17.1. CLX Interface

17.1.1. Keyboard and Mouse Input
These routines are defined in the "EXTENSIONS" package since other projects have often used Hemlock's input

translations for interfacing to CLX.

translate-character display scan-code bits [Function]
This translates scan-code and modifier bits to a Lisp character. This first maps scan-code to a keysym
with index 0 (see xlib: keycode->keysym in the CLX documentation); however, if bits include the
: shift bit (see def ine-keyboard-modif ier), then first map with index 1. The keysym is then

mapped to a character as determined by define-keysym.

If this first mapping of the keysym does not result in a character, and the keysym does not represent a
modifier key (shift, Ctrl, etc.), then this signals an error. If the keysym does represent a modifier key, then
this returns nil. The theory is that the user's pressing modifier keys is uninteresting, and, therefore,
these key presses are ignored.

When the first mapping of keysym does result in a character, the translation gets more complicated. If
bits exclude the : shift bit but include the : lock bit, and the character is alphabetic, then this maps
scan-code again with an index of 1 this time to a possibly different keysym. Then this keysym is mapped
to a character. If this does not result in a character, an error is signaled. The first character found is
invalid if the : lock bit is on, and the second keysym must be defined.

Given the first mapping of the first keysym results in a character, and bits include the : shift bit, then
this tries to map that keysym again to a special character defined as the shifted character with
def ine-keysym. This allows scan-code's that map to the same keysym, shifted or unshifted, to map
to distinct characters. For example, the number pad, arrow keys, and other special keys, map to the same
keysym regardless of modifier bits, and this translation mechanism provides a simple way to make use of
shifting these keys. Hemlock's default mappings return characters with the : super bit on when
shifting these keys. This may seem perverse, but an editor has much more interesting demands on the
keyboard than standard window clients.

72

define-keysym keysym char ^optional shifted-char [Function)
This causes the X keysym to map to char. If the user supplies shifted-char, it is a character to use when
the incoming keysym's : shift modifier (see def ine-keyboard-modif ier below) is set. If the
user does not supply shifted-char, and the incoming keysym's : shift modifier is set, then
translate-character calls xlib: keycode->keysym with an index of 1 instead of 0. If the
incoming keysym's : lock modifier is set, translate-character treats it as a caps-lock, not a
shift-lock.

def ine-keyboard-modif ier clx-mask modifier-name [Function]
This causes translate-character to interpret clx-mask (see xlib:make-state-mask in the
CLX documentation) as modifier modifier-name, which must be one of : control, :meta, : super,
: hyper, : shift, or : lock.

translate-mouse-character scan-code bits event-key [Function]
This translates button code, scan-code, and modifier bits, bits, for event-key to a Lisp character.
Event-key must be one of :button-press or :button-release. When bits include the : shift
bit, this returns the character defined as the shifted character by def ine-mouse-code. Since the
characters that represent mouse button presses and releases cannot be uppercased, Hemlock provides a
simple means for making use of the : shift bit; the default mappings return mouse button characters
with the : super bit s e t When translating mouse characters, the : lock modifier is treated the same as
the : shift modifier.

def ine-mouse-code button char shifted-char event-key [Function]
This causes the X button code to map to char. When translate-mouse-character sees : shift
and :lock modifiers, it returns shifted-char. For the same button code, event-key may be
:button-press and :button-release on separate calls since button presses and releases are not
distinguished by modifier bits but by completely distinct characters

17.12. Graphics Window Hooks
This section describes a few hooks used by Hemlock's internals to handle graphics windows that manifest

Hemlock windows. Some heavy users of Hemlock as a tool have needed these in the past, but typically functions
that replace the default values of these hooks must be written in the "HEMLOCK-INTERNALS" or "HI" package.
All of these symbols are internal to this package.

If you need this level of control for your application, consult the current implementation for code fragments that
will be useful in correctly writing your own window hook functions.

create-window-hook [Variable]
This holds a function that Hemlock calls when make-window executes under CLX. Hemlock passes
the CLX display and the following arguments from make-window: starting mark, ask-user, x, y, width,
height, and modelinep. The function returns a CLX window or nil indicating one could not be made.

delete-window-hook [Variable]
This holds a function that Hemlock calls when delete-window executes under CLX. Hemlock
passes the CLX window and the Hemlock window to this function.

73

* random-typeout -hook* [Variable]
This holds a function that Hemlock calls when random typeout occurs under CLX. Hemlock passes it a
Hemlock device, a pre-existing CLX window or nil, and the number of pixels needed to display the
number of lines requested in the with-random-typeout form. It should return a window, and if a
new window is created, then a CLX gcontext must be the second value.

create-initial-windows-hook [Variable]
This holds a function that Hemlock calls when it initializes the screen manager and makes the first
windows, typically windows for the Main and Echo Area buffers. Hemlock passes the function a
Hemlock device.

17.1.3. Entering and Leaving Windows

Enter Window Hook [Hemlock Variable]
When the mouse enters an editor window, Hemlock invokes the functions in this hook. These functions
take a Hemlock window as an argument.

Exit Window Hook [Hemlock Variable]
When the mouse exits an editor window, Hemlock invokes the functions in this hook. These functions
take a Hemlock window as an argument.

17.1.4. How to Lose Up-Events
Often the only useful activity user's design for the mouse is to click on something. Hemlock sees a character

representing the down event, but what do you do with the up event character that you know must follow? Having
the command eat it would be tasteless, and would inhibit later customizations that make use of it, possibly adding on
to the down click command's functionality. Bind the corresponding up character to the command described here.

Do Nothing [Command]
This does nothing as many times as you tell it.

17.2. Slave Lisps

Some implementations of Hemlock feature the ability to manage multiple slave Lisps, each connected to one
editor Lisp. The routines discussed here spawn slaves, send evaluation and compilation requests, return the current
server, etc. This is very powerful because without it you can lose your editing state when code you are developing
causes a fatal error in Lisp.

17.2.1. The Current Slave
There is a slave-information structure that these return which is suitable for passing to the routines described in

the following subsections.

create-slave & optional name [Function]
This creates a slave that tries to connect to the editor. When the slave connects to the editor, this returns a
slave-information structure, and the interactive buffer is the buffer named name. This generates a name if
name is nil. In case the slave never connects, this will eventually timeout and signal an editor-error.

74

get-current-server fioptional errorp [Function]
Current Eval Server [Hemlock Variable]

This returns the server-information for the Current Eval Server after making sure it is valid. Of course,
a slave Lisp can die at anytime. If this variable is nil, and errorp is non-nil, then this signals an
editor-error; otherwise, it tries to make a new slave. If there is no current eval server, then this tries to
make a new slave, prompting the user based on a few variables (see the Hemlock User's Manual).

get-current-coxnpile-server [Function]
Current Compile Server [Hemlock Variable]

This returns the server-information for the Current Compile Server after making sure it is valid. This
may return nil. Since multiple slaves may exist, it is convenient to use one for developing code and one
for compiling files. The compilation commands that use slave Lisps prefer to use the current compile
server but will fall back on the current eval server when necessary. Typically, users only have separate
compile servers when the slave Lisp can live on a separate workstation to save cycles on the editor
machine, and the Hemlock commands only use this for compiling files.

17.2.2. Asynchronous Operation Queuing
The routines in this section queue requests with an eval server. Requests are always satisfied in order, but these

do not wait for notification that the operation actually happened. Because of this, the user can continue editing
while his evaluation or compilation occurs. Note, these usually execute in the slave immediately, but if the
interactive buffer connected to the slave is waiting for a form to return a value, the operation requested must wait
until the slave is free again.

string-eval string &key : server : package : context [Function]
region-eval region &key :server .'package :context [Function]
region-compile region &key :server -.package [Function]

string-eval queues the evaluation of the form read from string on eval server server. Server defaults
to the result of get-current-server, and string is a simple-string. The evaluation occurs with
•package* bound in the slave to the package named by package, which defaults to Current Package
or the empty string; the empty string indicates that the slave should evaluate the form in its current
package. The slave reads the form in string within this context as well. Context is a string to use when
reporting start and end notifications in the Echo Area buffer; it defaults to the concatenation of
"evaluation of " and string.

region-eval is the same as string-eval, but context defaults differently. If the user leaves this
unsupplied, then it becomes a string involving part of the first line of region.

region-compile is the same as the above. Server defaults the same; it does not default to
get-current-compile-server since this compiles the region into the slave Lisp's environment,
to affect what you are currently working on.

file-compile file &key : output-file : error-file :load : server [Function]
:package

Remote Compile File (initial value t) [Hemlock Variable]
This compiles file in a slave Lisp. When output file is t (the default), this uses a temporary output file
that is publicly writable in case the client is on another machine, which allows for file systems that do not
permit remote write access. This renames the temporary file to the appropriate binary name or deletes it
after compilation. Setting Remote Compile File to nil, inhibits this. If output-file is non-nil and not
t, then it is the name of the binary file to write. The compilation occurs with *package* bound in the
slave to the package named by package, which defaults to Current Package or the empty string; the

75

empty string indicates that the slave should evaluate the form in its current package. Error-file is the file
in which to record compiler output, and a nil value inhibits this file's creation. Load indicates whether
to load the resulting binary file, defaults to nil. Server defaults to
get-current-compile-server, but if this returns nil, then server defaults to
get-current-server.

17.2.3. Synchronous Operation Queuing
The routines in this section queue requests with an eval server and wait for confirmation that the evaluation

actually occurred. Because of this, the user cannot continue editing while the slave executes the request. Note,
these usually execute in the slave immediately, but if the interactive buffer connected to the slave is waiting for a
form to return a value, the operation requested must wait until the slave is free again.

eval_form-in-client string [Function]
This queues the evaluation of the form read from string in the current slave Lisp and waits for the results.
This returns the results from the slave Lisp in a list of string values. These can be read or simply
displayed depending on the print'ing of the evaluation results. The slave reads the form from string
and evaluates it with the slave's *package* bound to the package named by Current P a c k a g e . If this
is nil, then the empty string is passed to the slave indicating it should use the current package. While
the slave executes the form, it binds *terminal-io* to a stream that signals errors when read from
and dumps output to a bit-bucket. This prevents the editor and slave from dead locking by waiting for
each other to reply.

17.3. Spelling

Hemlock supports spelling checking and correcting commands based on the ITS Ispell dictionary. These com
mands use the following routines which include adding and deleting entries, reading the Ispell dictionary in a
compiled binary format, reading user dictionary files in a text format, and checking and correcting possible spell
ings.

maybe - re ad- spe 11 -die t iona ry [Function]
This reads the default binary Ispell dictionary. Users must call this before the following routines will
work.

spell-read-dictionary filename [Function]
This adds entries to the dictionary from the lines in the file filename. Dictionary files contain line
oriented records like the following:

ent ry 1 / f lagl / f lag2
entry2
entry3/flagl

The flags are the Ispell flags indicating which endings are appropriate for the given entry root, but these
are unnecessary for user dictionary files. You can consult Ispell documentation if you want to know
more about them.

spell-add-entry line fioptional word-end [Function]
This takes a line from a dictionary file, and adds the entry described by line to the dictionary. Word-end
defaults to the position of the first slash character or the length of the line. Line is destructively modified.

76

spell-remove-entry entry [Function]
This removes entry, a simple-string, from the dictionary, so it will be an unknown word. This destruc
tively modifies entry. If it is a root word, then all words derived with entry and its flags will also be
deleted. If entry is a word derived from some root word, then the root and any words derived from it
remain known words.

correct-spelling word [Function]
This checks the spelling of word and outputs the results. If this finds word is correcdy spelled due to
some appropriate suffix on a root, it generates output indicating this. If this finds word as a root entry, it
simply outputs that it found word. If this cannot find word at all, then it outputs possibly correct close
spellings. This writes to * standard-output*, and it calls maybe-read-spell-dictionary
before attempting any lookups.

spell-try-word word word-len [Function]
max-entry-length [Constant]

This returns an index into the dictionary if it finds word or an appropriate root. Word-len must be
inclusively in the range 2 through max-entry-length, and it is the length of word. Word must be
uppercase. This returns a second value indicating whether it found word due to a suffix flag, nil if word
is a root entry.

spell-root-word index [Function]
This returns a copy of the root word at dictionary entry index. This index is the same as returned by
spell-try-word.

spell-collect-close-words word [Function]
This returns a list of words correctly spelled that are close to word. Word must be uppercase, and its
length must be inclusively in the range 2 through max-entry-length. Close words are determined
by the Ispell rules:

1. Two adjacent letters can be transposed to form a correct spelling.

2. One letter can be changed to form a correct spelling.

3. One letter can be added to form a correct spelling.

4. One letter can be removed to form a correct spelling.

spell-root-flags index [Function]
This returns a list of suffix flags as capital letters that apply to the dictionary root entry at index. This
index is the same as returned by spell-try-word.

17.4. File Utilities

Some implementations of Hemlock provide extensive directory editing commands, Dired, including a single
wildcard feature. These commands are based on the following interface exported from the "DIRED" package. An
asterisk denotes a wildcard.

copy-file sped spec! &key : update : clobber : directory [Function]
This function copies spec! to sped. It accepts a single wildcard in the filename portion of the specifica
tion, and it accepts directories. This copies files maintaining the source's write date.

If spec! and spec! are both directories, this recursively copies the files and subdirectory structure of

77

sped; if sped is in the subdirectory structure of sped, the recursion will not descend into it. Use
" /sped/* " to copy only the files from sped to directory sped.

If sped is a directory, and sped is a file, then this copies sped into sped with the same
pathname-name.

When : update is non-nil, then the copying process only copies files if the source is newer than the
destination.

When -.update and :clobber are nil, and the destination exists, the copying process stops and asks
the user whether the destination should be overwritten.

When the user supplies -.directory, it is a list of pathnames, directories excluded, and sped is a
pattern containing one wildcard. This then copies each of the pathnames whose pathname-name
matches the pattern. Sped is either a directory or a pathname whose pathname-name contains a
wildcard.

rename-file sped sped &key :clobber -.directory [Function]
This function renames sped to sped. It accepts a single wildcard in the filename portion of the
specification, and spec! may be a directory with the destination specification resulting in the merging of
sped with sped. If :clobber is nil, and sped exists, then this asks the user to confirm the
renaming. When renaming a directory, end the specification without the trailing slash.

When the user supplies : directory, it is a list of pathnames, directories excluded, and sped is a
pattern containing one wildcard. This then copies each of the pathnames whose pathname-name
matches the pattern. Sped is either a directory or a pathname whose pathname-name contains a
wildcard.

de'lete-file spec &key : recursive : clobber [Function]
This function deletes spec. It accepts a single wildcard in the filename portion of the specification, and it
asks for confirmation on each file if : clobber is nil. If : recursive is non-nil, then spec may be
a directory to recursively delete the entirety of the directory and its subdirectory structure. An empty
directory may be specified without : recursive being non-nil. Specify directories with the trailing
slash.

find-file name ^optional directory find-all [Function]
This function finds the file with f ile-namestring name, recursively looking in directory. If find-all
is non-nil (defaults to nil), then this continues searching even after finding a first occurrence of file
Name may contain a single wildcard, which causes find-all to default to t instead of nil.

make-directory name
This function creates the directory with name. If it already exists, this signals an error.

[Function]

pathnames-f rom-pattern pattern files [Function]
This function returns a list of pathnames from the list files whose f ile-namestring's match pattern.
Pattern must be a non-empty string and contain only one asterisk. Files contains no directories.

update-default [Variable]
clobber-default [Variable]
* recur s ive -de f ault * [Variable]

These are the default values for the keyword arguments above with corresponding names. These default
to nil, t, and nil respectively.

78

* r epo rt - f unc t i on* [Variable]
* e r r o r - f unct ion* [Variable]
* ye sp - f unc t ion* [Variable]

These are the function the above routines call to report progress, signal errors, and prompt for yes or no.
These all take format strings and arguments.

17.5. Beeping

hemlock-beep [Function]
Hemlock binds system: *beep-f unct ion* to this function to beep the device. It is different for
different devices.

Bell Style (initial value : border-flash) [Hemlock Variable]
Beep Border Width (initial value 20) [Hemlock Variable]

Bell Style determines what *hemlock-beep* does in Hemlock under CLX. Acceptable values are
:border-flash, :feep, :border-flash-and-feep, : flash, :flash-and-feep, and
nil (do nothing).

Beep Border Width is the width in pixels of the border flashed by border flash beep styles.

79

Index

80

Index
Abort Hook Hemlock variable 55
Abort Recursive Edit Hook Hemlock variable 32
a b o r t - r e c u r s i v e - e d i t function 32
aborting 32,55
: a c c e s s keyword

for w r i t e - f i l e 53
a c t i v a t e - r e g i o n function 18
Active regions 18
Active Regions Enabled Hemlock variable 18
* a c t i v e - f i l e - g r o u p * variable 52
Add Newline at EOF on Writing File Hemlock variable 53
a d d - d e f i n i t i o n - d i r - t r a n s l a t i o n function 58
add-hook macro 25
After Set Buffer Hook Hemlock variable 9
Altering text 15
: a s k - u s e r keyword

for make-window 39

b a c k w a r d - u p - l i s t function 63
Beep Border Width Hemlock variable 78
Beep On Ambiguity Hemlock variable 49
Bell Style Hemlock variable 78
b i n d - k e y function 29
bit-prefix keys 30
b l a n k - a f t e r - p function 16
b l a n k - b e f o r e - p function 16
b l a n k - l i n e - p function 16
: b u f f e r keyword

for d e f h v a r 23
Buffer Major Mode Hook Hemlock variable 34
Buffer mark stack 9,11
Buffer Minor Mode Hook Hemlock variable 34
Buffer Modified Hook Hemlock variable 11
Buffer Name Hook Hemlock variable 11
Buffer Pathname Hook Hemlock variable 11
buf f e r - d e f a u l t -pathname function 52
b u f f e r - d e l e t e - h o o k function 12
b u f f e r - e n d function 5
b u f f e r - e n d - m a r k function 11
* b u f f e r - h i s t o r y * variable 10
• b u f f e r - l i s t * variable 10, 12
buf f er -major -mode function 34
b u f f e r - m a r k function 11
buf f er -minor -mode function 34
b u f f e r - m o d e l i n e - f i e l d - p function 14
b u f f e r - m o d e l i n e - f i e l d s function 14
b u f f e r - m o d e s function 12
b u f f e r - m o d i f i e d function 11,45
buf fer -name function 11
* b u f f e r - n a m e s * variable 10, 12
b u f f e r - p a t h n a m e function 11
b u f f e r - p o i n t function 11
b u f f e r - r e g i o n function 11
buf f e r - s i g n a t u r e function 12
b u f f e r - s t a r t function 5
b u f f e r - s t a r t - m a r k function 11
buf f e r - v a r i a b l e s function 12
b u f f e r - w i n d o w s function 12
b u f f e r - w r i t a b l e function 11
b u f f e r - w r i t e - d a t e function 11
b u f f e r p function 10
Buffers 9

c e n t e r - w i n d o w function 40
c h a n g e - t o - b u f f e r function 10
: change-window keyword

for p r o m p t - f o r - c h a r a c t e r 47

Character Attribute Hook Hemlock variable 36
Character attributes 35
Character Deletion Threshold Hemlock variable 17
c h a r a c t e r - a t t r i b u t e function 36
c h a r a c t e r - a t t r i b u t e - d o c u m e n t a t i o n function
c h a r a c t e r - a t t r i b u t e - h o o k s function 37
c h a r a c t e r - a t t r i b u t e - n a m e function 36
* c h a r a c t e r - a t t r i b u t e - n a m e s * variable 35
c h a r a c t e r - a t t r i b u t e - p function 36
* c h a r a c t e r - h i s t o r y * variable 56
c h a r a c t e r - o f f s e t function 6
c h e c k - r e g i o n - a c t i v e function 19
c h e c k - r e g i o n - q u e r y - s i z e function 7
: c l e a n u p - f u n c t i o n keyword

for d e f mode 34
c l e a r - e c h o - a r e a function 45
: c l o b b e r keyword

for c o p y - f i l e 76
for d e l e t e - f i l e 77
for r e n a m e - f i l e 77

* c l o b b e r - d e f a u l t * variable 77
c l r s t r i n g function 67
Command Abort Hook Hemlock variable 28
Command interpreter 28
Command types 31
command-bindings function 29
command-case macro 44, 46, 47
c o m m a n d - c h a r - b i t s - l i m i t constant 29
c o m m a n d - c h a r - c o d e - l i m i t constant 29
command-documentation function 28
command-function function 28
command-name function 28
* command-names* variable 27, 27
commandp function 27
Commands 27
Complete Field Command 50
Complete Keyword Command 50
c o m p l e t e - s t r i n g function 68
Confirm Parse Command 49,50
: c o n t e x t keyword

for r e g i o n - e v a l 74
for s t r i n g - e v a l 74

c o p y - f i l e function 76
copy-mark function 5
c o p y - r e g i o n function 6
c o r r e c t - s p e l l i n g function 76
c o u n t - c h a r a c t e r s function 7
c o u n t - l i n e s function 7
Counting lines and characters 7
* c r e a t e - i n i t i a l - w i n d o w s - h o o k * variable 73
c r e a t e - s l a v e function 73
crea te -w indow-hook variable 72
Current buffer 9
Current Compile Server Hemlock variable 74
Current environment 21
Current Eval Server Hemlock variable 74
Current window 39
c u r r e n t - b u f f e r function 9,21,28
current -mark function 9
c u r r e n t - p o i n t function 9
c u r r e n t - r e g i o n function 11,19
c u r r e n t - v a r i a b l e - t a b l e s function 23
current -window function 9,39
Cursor positions 41
c u r s o r p o s - t o - m a r k function 41

d e a c t i v a t e - r e g i o n function 18

81

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

d e f a t t r i b u t e function 36,43
: d e f a u l t keyword

for p r o m p t - f o r - b u f f e r 46
for p r o m p t - f o r - e x p r e s s i o n 48
for p r o m p t - f o r - f i l e 47
for p r o m p t - f o r - i n t e g e r 48
for prompt - f o r - k e y 47
for prompt - f or -keyword 48
for p r o m p t - f o r - s t r i n g 48
for p r o m p t - f o r - v a r i a b l e 48
for prompt - f o r - y - o r - n 48
for p r o m p t - f o r - y e s - o r - n o 48

Default Modeline Fields Hemlock variable 10
Default Modes Hemlock variable 10,33
Default Status Line Fields Hemlock variable 45
Default Window Height Hemlock variable 39
Default Window Width Hemlock variable 39
: d e f a u l t - s t r i n g keyword

for p r o m p t - f o r - b u f f e r 46
for p r o m p t - f o r - e x p r e s s i o n 48
for p r o m p t - f o r - f i l e 47
for p r o m p t - f o r - i n t e g e r 48
for prompt - f o r - k e y 47
for prompt - f or -keyword 48
for p r o m p t - f o r - s t r i n g 48
for p r o m p t - f o r - v a r i a b l e 48
for prompt - f o r - y - o r - n 48
for p r o m p t - f o r - y e s - o r - n o 48

d e f command macro 27
d e f h v a r function 23
d e f i n d e n t function 63
d e f i n e - f i l e - o p t i o n macro 51
d e f i n e - f i l e - t y p e - h o o k macro 51
d e f i n e - k e y b o a r d - m o d i f i e r function 72
d e f i n e - k e y s y m function 72
d e f i n e - l o g i c a l - c h a r a c t e r function 43
d e f i n e - m o u s e - c o d e function 72
Definition editing 58
d e f mode function 30,34
Defun Parse Goal Hemlock variable 62
de fun - r e g i o n function 62
Delete Buffer Hook Hemlock variable 12
Delete Variable Hook Hemlock variable 24
Delete Window Hook Hemlock variable 40
da l e t e - a n d - s a v e - r e g i o n function 15
d e l e t e - b u f f e r function 12
d e l e t e - b u f f e r - i f - p o s s i b l e function 12
d e l e t e - c h a r a c t e r s function 15
d e l e t e - d e f i n i t i o n - d i r - t r a n s l a t i o n function 58
d e l e t e - f i l e function 77
: d e l e t e - h o o k keyword

for m a k e - b u f f e r 10
d e l e t e - h o r i z o n t a l - s p a c e function 61
d e l e t e - k e y - b i n d i n g function 29
d e l e t e - m a r k function 5
d e l e t e - r e g i o n function 15
d e l e t e - s t r i n g function 67
d e l e t e - v a r i a b l e function 24
d e l e t e - w i n d o w function 40
* d e l e t e - w i n d o w - h o o k * variable 72
Deleting 15
: d i r e c t o r y keyword

for c o p y - f i l e 76
for r e n a m e - f i l e 77

d i s p l a y - p a g e - d i r e c t o r y function 65
d i s p l a y e d - p function 40
Do Nothing Command 73
d o - a c t i v e - g r o u p macro 52
d o - a l p h a - c h a r s macro 59
d o - s t r i n g s macro 68

Echo area 46
Echo Area Height Hemlock variable 45
* e c h o - a r e a - b u f f e r * variable 45, 49
* e c h o - a r e a - s t r e a m * variable 46
echo-area -window variable 45
ed function 55
e d i t o r - e r r o r function 32,57
e d i t o r - e r r o r - f o r m a t - a r g u m e n t s function 57
e d i t o r - e r r o r - f o r m a t - s t r i n g function 57
e d i t o r - f i n i s h - o u t p u t function 42
* e d i t o r - i n p u t * variable 55
e d i t o r - s l e e p function 56
e m p t y - l i n e - p function 16
e n d - l i n e - p function 16
English text functions 63
Enter Recursive Edit Hook Hemlock variable 32
Enter Window Hook Hemlock variable 73
Entry Hook Hemlock variable 55
*ephemeral l y - a c t i v e - command- t y p e s * variable
: e r r o r - f i l e keyword

for f i l e - c o m p i l e 74
* e r r o r - f u n c t i o n * variable 78
e v a l _ f o r m - i n - c l i e n t function 75
Evaluating Lisp code 58
Event scheduling 58
Exit Hook Hemlock variable 55, 55
Exit Recursive Edit Hook Hemlock variable 32
Exit Window Hook Hemlock variable 73
e x i t - h e m l o c k function 55
e x i t - r e c u r s i v e - e d i t function 32

File groups 52
File options 51
File type hooks 51
f i l e - c o m p i l e function 74
Files 51
Fill Column Hemlock variable 65
Fill Prefix Hemlock variable 65
f i l l - r e g i o n function 65
f i l l - r e g i o n - b y - p a r a g r a p h s function 65
filling 65
f i l t e r - r e g i o n function 16
f ind-ambiguous function 68
f i n d - a t t r i b u t e function 36
f i n d - c o n t a i n i n g function 68
f i n d - f i l e function 77
f i n d - f i l e - b u f f e r function 54
f i n d - p a t t e r n function 20, 35
f i r s t - l i n e - p function 17
f o r m - o f f s e t function 62
f o r w a r d - u p - l i s t function 63
: f u n c t i o n keyword

for m a k e - m o d e l i n e - f i e l d 13

get-command function 29
g e t - c u r r e n t - c o m p i l e - s e r v e r function 74
g e t - c u r r e n t - s e r v e r function 74
g e t - s e a r c h - p a t t e r n function 20
g e t s t r i n g function 67
* g l o b a l - v a r i a b l e - n a m e s * variable 23
g o t o - p a g e function 64
Group Find File Hemlock variable 52
Group Save File Confirm Hemlock variable 52

h a n d l e - l i s p - e r r o r s macro 57
: h e i g h t keyword

for make-window 39
: h e l p keyword

for p r o m p t - f o r - b u f f e r 46
for p r o m p t - f o r - e x p r e s s i o n 48

INDEX 83

for p r o m p t - f o r - f i l e 47
for p r o m p t - f o r - i n t e g e r 48
for p r o m p t - f o r - k e y 47
for prompt - for -keyword 48
for p r o m p t - f o r - s t r i n g 48
for p r o m p t - f o r - v a r i a b l e 48
for p r o m p t - f o r - y - o r - n 48
for prompt - f o r - y e s - o r - n o 48

Help On Parse Command 50
Hemlock variables 23
h e m l o c k - b e e p function 78
hemlock-bound-p function 24
h e m l o c k - o u t p u t - s t r e a m - p function 56
h e m l o c k - r e g i o n - s t r e a m - p function 57
h l e t macro 24
Hooks 25
: hooks keyword

for d e f h v a r 23

I/O 55,71
Illegal Command 33
i n - l i s p function 58
i n - r e c u r s i v e - e d i t function 32
Indent Function Hemlock variable 61
Indent with Tabs Hemlock variable 61
i n d e n t - r e g i o n function 61
i n d e n t - r e g i o n - f o r - c o m m a n d s function 61
Indenting 61
: i n i t i a l - c o n t e n t s keyword

for m a k e - s t r i n g - t a b l e 67
Input Hook Hemlock variable 55
input, keyboard 55,71
input, mouse 71
* i n p u t - t r a n s c r i p t * variable 56
i n s e r t - c h a r a c t e r function 15
i n s e r t - r e g i o n function 15
i n s e r t - s t r i n g function 15
Inserting 15
i n s i d e - d e f u n - p function 62
i n t e r a c t i v e function 30
Interactive vs. keyboard macro 30
Interpreter, command 28
Invocation, command 28
i n v o k e - h o o k function 25
* i n v o k e - h o o k * variable 28

Keep Backup Files Hemlock variable 53
: keep-backup keyword

for w r i t e - f i l e 53
Key Bindings 28
key translation 30
k e y - t r a n s l a t i o n function 30
keyboard input 55,71
Keyboard macro vs. interactive 30
Kill ring 17
k i l l - c h a r a c t e r s function 17
k i l l - r e g i o n function 17
* k i l l - r i n g * variable 17

Last Resort Pathname Defaults Function Hemlock variable
52

Last Resort Pathname Defaults Hemlock variable 52
* l a s t - c h a r a c t e r - t y p e d * variable 56
l a s t - c o m m a n d - t y p e function 17,31
l a s t - k e y - e v e n t - c u r s o r p o s function 41
l a s t - l i n e - p function 17
* l a s t - s e a r c h - p a t t e r n * variable 20
* l a s t - s e a r c h - s t r i n g * variable 20
l i n e - b u f f e r function 3
l i n e - c h a r a c t e r function 3

l i n e - e n d function 5
l i n e - l e n g t h function 3
l i n e - n e x t function 3
l i n e - o f f s e t function 6
l i n e - p l i s t function 3
l i n e - p r e v i o u s function 3
l i n e - s i g n a t u r e function 4
l i n e - s t a r t function 5
l i n e - s t r i n g function 3
l i n e - t o - r e g i o n function 7
l i n e < function 17
l i n e < = function 17
l i n e > function 17
l i n e > = function 17
l i n e p function 3
Lines 3
l i n e s - r e l a t e d function 17
Lisp environment 55
Lisp text functions 61
: l o a d keyword

for f i l e - c o m p i l e 74
Logical Characters 43
Logical pages 64
l o g i c a l - c h a r = function 43
l o g i c a l - c h a r a c t e r - c h a r a c t e r s function 43
l o g i c a l - c h a r a c t e r - d o c u m e n t a t i o n function 43
l o g i c a l - c h a r a c t e r - n a m e function 43
* l o g i c a l - c h a r a c t e r - n a m e s * variable 43

:major-p keyword
for d e f mode 34

Make Buffer Hook Hemlock variable 10
Make Window Hook Hemlock variable 39
make-buf fer function 10
make-command function 27
m a k e - d i r e c t o r y function 77
make-empty -reg ion function 6
m a k e - h e m l o c k - o u t p u t - s t r e a m function 56
m a k e - h e m l o c k - r e g i o n - s t r e a m function 57
m a k e - m o d e l i n e - f i e l d function 13
make-reg ion-undo function 69
m a k e - r i n g function 68
m a k e - s t r i n g - t a b l e function 67
make-window function 39,39
map-b ind ings function 29
mark function 5
Mark stack 9, 11
m a r k - a f t e r function 5
mark-be f o r e function 5
mark-charpos function 4
mark-column function 41
mark-kind function 4
m a r k - l i n e function 4
mark-paragraph function 64
m a r k - t o - c u r s o r p o s function 41
mark-t o p - l e v e l - f o r m function 62
mark/= function 16
mark< function 16
mark<= function 16
mark= function 16
mark> function 16
mark>= function 16
markp function 4
Marks 4
m a x - e n t r y - l e n g t h constant 76
Maximum Lines Parsed Hemlock variable 62
m a y b e - r e a d - s p e l l - d i c t i o n a r y function 75
message function 45
Message Pause Hemlock variable 45
Minimum Lines Parsed Hemlock variable 62

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

:mode keyword
for defhvar 23

mode-major-p function 34
mode-names variable 33, 34
mode-variables function 34
modeline-field function 13
modeline-field-function function 13
modeline-field-name function 13
modeline-f ield-p function 13
modeline-field-width function 13
:modeline-fields keyword
for make-buffer 10

:modelinep keyword
for make-window 39

Modelines 12,39
Modes 33
: modes keyword
for make-buffer 10

mouse input 71
move-mark function 5
move-to-column function 41
move-to-position function 5,11,41
Moving marks 5
:must-exist keyword
for prompt-for-buf fer 46
for prompt-for-expression 48
for prompt-for-file 47
for prompt-for-integer 48
for prompt-for-key 47
for prompt-f or-keyword 48
for prompt-for-variable 48
for prompt-f or-y-or-n 48
for prompt-for-yes-or-no 48

:name keyword
for make-modeline-field 13

name/type-separator-character variable 52
new-search-pattern function 19
next-character function 4
next-window function 41
ninsert-region function 15
: output -file keyword
for file-compile 74

: package keyword
for file-compile 74
for region-compile 74
for region-eval 74
for string-eval 74

Page functions 64
page-directory function 64
page-offset function 64
Paragraph Delimiter Function Hemlock variable 63
paragraph-offset function 63
Parse End Function Hemlock variable 62
Parse Start Function Hemlock variable 62
parse-default variable 49
parse-default-string variable 49
parse-help variable 49
parse-input-region variable 50
•parse-prompt* variable 49
parse-starting-mark variable 49
parse-string-tables variable 49
parse-type variable 49
parse-value-must-exist variable 49
parse-verification-function variable 49
Pathname Defaults Hemlock variable 52
pathname-to-buffer-name function 52
pathnames-from-pattern function 77

pause-hemlock function 55
Permanent marks 4
pop-buffer-mark function 9
pre-command-parse-check function 62
: precedence keyword
for def mode 34

Prefix arguments 31
pre fix-argument function 31
previous-buffer function 10
previous-character function 4
previous-window function 41
print-pretty-character function 56
process-file-options function 51
: prompt keyword
for prompt-for-buf fer 46
for prompt-for-character 47
for prompt-for-expression 48
for prompt-for-file 47
for prompt-for-integer 48
for prompt-for-key 47
for prompt-f or-keyword 48
for prompt-for-string 48
for prompt-for-variable 48
for prompt-f or-y-or-n 48
for prompt-for-yes-or-no 48

prompt-for-buf fer function 46
prompt-for-character function 47
prompt-for-expression function 48
prompt-for-file function 47
prompt-for-integer function 48
prompt-for-key function 43,47
prompt-f or-keyword function 48
prompt-for-string function 48
prompt-for-variable function 48
prompt-f or-y-or-n function 48
prompt-for-yes-or-no function 48
Prompting functions 46
push-buffer-mark function 9

* random-type out-hook* variable 73
Read File Hook Hemlock variable 53
read-buffer-file function 53
read-file function 53
real-editor-input variable 55
Recursive edits 31
: recursive keyword
for delete-file 77

recursive-default variable 77
recursive-edit function 28,32
redisplay function 42
Redisplay Hook Hemlock variable 42
redisplay-all function 42
region function 6
Region Query Size Hemlock variable 7
region-active-p function 18
region-bounds function 7
region-compile function 74
region-end function 7
region-eval function 74
region-start function 7
region-to-string function 6
regionp function 6
Regions 6
Remote Compile File Hemlock variable 74
remove-hook macro 25, 37
remove-scheduled-event function 58
rename-file function 77
replace-pattern function 20
Replacing 19
•report-function* variable 78

INDEX 85

reverse-find-attribute function 36
ring-length function 69
ring-pop function 69
ring-push function 69
ring-re f function 69
ringp function 68
Rings 68
rotate-ring function 69

same-line-p function 16
save-f or-undo function 69
schedule-event function 58
Scheduling events 58
scroll-window function 40
search-char-code-limit constant 19
search-pattern-p function 20
Searching 19
sentence-offset function 63
: separator keyword

for make-string-table 67
: server keyword

for file-compile 74
for region-compile 74
for region-eval- 74
for string-eval 74

Set Buffer Hook Hemlock variable 9
Set Window Hook Hemlock variable 39
set-region-bounds function 7
: setup- functi on keyword

for def mode 34
setv macro 24
Shadow Attribute Hook Hemlock variable 36
shadow-attribute function 36
show-mark function 41
Slave lisp interface functions 73
Spaces per Tab Hemlock variable 61
spell-add-entry function 75
spell-collect-close-words function 76
spell-read-dictionary function 75
spell-remove-entry function 76
spell-root-flags function 76
spell-root-word function 76
spell-try-word function 76
Spelling checking 75
start-defun-p function 62
start-line-p function 16
string-eval function 74
string-table-p function 67
String-tables 67
string-to-region function 6
string-to-variable function 24
Syntax tables 35
syntax-char-code-limit constant 35

Temporary marks 4
text-character function 56
top-level-offset function 62
translate-character function 71
translate-mouse-character function 72
translating keys 30
Transparent key bindings 30
: transparent-p keyword

for def mode 34
Type hooks 51

Undo functions 69
Unshadow Attribute Hook Hemlock variable 36
unshadow-attribute function 36
: update keyword

for copy-file 76

update-def ault variable 77
update-modeline-field function 14
update-modeline-fields function 14
use-buffer macro 31
Utilities 67

valid-spot function 63
rvalue keyword

for defhvar 23
value macro 24
variable-document at ion function 24
variable-hooks function 24
variable-name function 24
variable-value function 24

: width keyword
for make-modeline-field 13
for make-window 39

Window Buffer Hook Hemlock variable 40
: window keyword

for make-window 39
window-buffer function 40
window-display-end function 40
window-display-start function 40
window-height function 41
window-list variable 39
window-point function 40
window-width function 41
windowp function 40
Windows 39
with-input-from-region macro 57
with-mark macro 5
with-output-to-mark macro 57
with-random-typeout macro 57
with-writable-buffer macro 12
word-offset function 63
Write File Hook Hemlock variable 53
write-buf fer-file function 53
write-file function 53

:x keyword
for make-window 39

:y keyword
for make-window 39

yesp-function variable 78

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

