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Abstract 

The two important parallel architecture classes are the shared-memory architectures and the message-passing 
architectures. In the past researchers working on the parallel implementations of production systems have focused 
either on shared-memory multiprocessors or on special-purpose architectures. Message-passing computers have not 
been studied. The main reasons have been the large message-passing latency (as large as a few milliseconds) and 
high message-handling overheads (several hundred microseconds) exhibited by the first generation message-passing 
computers. These overheads are too large for the parallel implementation of production systems, where it is 
necessary to exploit parallelism at a very fine granularity to obtain significant speed-up (subtasks execute about 100 
machine instructions). However, recent advances in interconnection network technology and processing node 
design have reduced the network latency and message-handling overhead by 2-3 orders of magnitude, making these 
computers much more interesting. 

In this paper we present techniques for mapping production systems onto message-passing computers. We show 
that using a concurrent distributed hash-table data structure, it is possible to exploit parallelism at a very fine 
granularity and to obtain significant speed-ups from parallelism. We present simulation results for this mapping, and 
show that message-passing computers can provide good speedups for production systems. We perform a detailed 
analysis of the problems in the proposed implementation and suggest solutions for some of the problems. The 
results presented in this paper will guide our real implementation of production systems on a message-passing 
computer. 
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1. Introduction 

Production systems (or rule-based systems) occupy a prominent place in the field of AI. They have been used 

extensively in efforts to develop expert systems spanning a wide variety of applications (e.g. Rl/XCON [28], 

SPAM [29], Weaver [20]), as well as to understand and model the nature of intelligence (e.g. ACT* [1], Soar [25]). 

However, production system programs are extremely computation intensive and slow. This limits the utility of these 

systems both in research and application environments. Further research and development in production systems 

will require enlarging the production-memory (knowledge bases) in these systems [3,31], which will only 

exacerbate the problem of long run times. Therefore, efficient implementations are critical for continued research in 

production systems. 

This paper focuses on the use of parallelism for speeding up production systems. To obtain significant speed-up 

from parallelism in production systems it is necessary to exploit parallelism at a very fine granularity. For example, 

the average number of instructions executed by subtasks in the implementation suggested in [13] is about 100. The 

early message-passing computers (MPCs), such as the Cosmic Cube [34], had high network latencies of ~ 2 

millisecond (ms) and high message-handling overheads of « 300 microseconds Qis). This made it impossible to use 

them for the purpose of exploiting.fine grained parallelism. As a consequence, researchers have concentrated on 

evaluating special-purpose architectures and shared memory multiprocessors as production system engines 

[6, 13,17,30,32,33,36]. However, recent developments such as worm-hole routing [ 78 ] , have reduced the 

network latencies to 2-3 (is and special-purpose message-handling hardware such as the Message Driven Processor 

[9] will potentially reduce the message-handling overhead by an order of magnitude. As a result, MPCs have 

become a suitable target architecture for implementing production systems. As an additional motivation, we expect 

that, in near future, production systems for perceptual and sensory tasks will be built [31]. This, in conjunction with 

new applications in fields such as robotics [24], is expected to cause a significant increase in the available 

parallelism. Also, researchers are investigating formalisms that permit more explicit expression of parallelism in 

production systems [18,19]. These formalisms are expected to increase the available parallelism. Therefore, it is 

necessary to evaluate easily scalable architectures. These considerations have prompted us to investigate the use of 

MPCs as production system engines. 

In this paper, we first present a mapping of production systems on MPCs 1. We show that using a distributed 

hash-table, it is possible to exploit parallelism at a very fine granularity. We then present simulation results for this 

mapping, which show that the mapping can provide good speedups. The particular simulator used is based on the 

lrThis paper is an extended version of [14]. 
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implementation of Nectar [2]. Nectar is a MPC with low network latencies and low message processing overheads 

under development in the Computer Science Department at CMU. We intend to use these results to guide our actual 

implementation on the Nectar. 

The paper is organized as follows: Section 2 provides background information on production systems. Section 3 

describes the proposed implementation. Section 4 describes the assumptions made about the execution times. 

Section 5 presents the simulation results and their analysis. Finally, Section 6 concludes the paper with a summary 

of the results and comments about future work. 

2. Background 

In this paper, we concentrate on the parallelism available in OPS5 [5] and OPS5-like languages [23]. These 

languages are widely available and are extensively used by AI researchers. All the systems mentioned in the 

previous section are implemented in OPS5-like languages. Section 2.1 describes the basics of OPS5 production 

systems. Section 2.2 describes the Rete matching algorithm. Rete is the standard algorithm used for existing 

uniprocessor and parallel processor implementations of OPS5 and Soar. It also forms the basis for the 

implementation proposed in this paper. 

2.1. OPS5 

An OPS 5 production system is composed of a set of if-then rules, or productions, that constitute the production 

memory (PM) and a set of data-items, called the working memory (WM). The data-items in WM, called working 

memory elements (wmes), are structures with a fixed set of named access functions, called attributes, much like 

Pascal records. Each production is composed of a set of patterns or condition elements (CEs), corresponding to the 

if part of the rule (the left-hand side or LHS), and a set of actions corresponding to the then part of the rule (the 

right-hand side or RHS). Figure 2-1 shows an OPS5 production and its instantiation (defined later). The production 

has three CEs and one action element. (In the figure, only the text in lower case is part of the OPS 5 syntax; the rest 

are our comments to help the reader understand OPS5 syntax.) 

A CE is composed of a set of tests for a wme's attribute-value pairs. These tests are of two types: constant tests 

and equality tests. A constant test checks whether a particular attribute of the wme has a given constant value which 

is either a symbol or a number. For instance, the test ^color blue in the production in Figure 2-1 is a constant test. 

An equality test binds a variable (syntactically any symbol enclosed in angled brackets: e.g <var>) to the value of a 

particular attribute and checks whether the bound value is consistent with all other values bound to the same variable 

within the scope of the production. A CE may be optionally negated, i.e., preceded with a dash ( — ) . To satisfy a 

non-negated CE, a wme must satisfy all the tests specified in the CE. A negated CE is staisfied, if there is no wme 
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AN 0PS5 PRODUCTION 

(production-name clear-the-blue-block 
(block Aname <blockl> "color blue) 

LHS I (block "name <block2> A o n <blockl>) 
(hand "state free^) 

L 
ATTR.TEST 

I CE 
— > 

RHS J (remove 2)) 

INSTANTIATION FOR THE 0PS5 PRODUCTION 
( 
(block "name bl "color blue) 
(block "name b2 "on bl) 
(hand "state free "name robot-l-hand) 

) 

Figure 2-1: An OPS5 production and its instantiation. 

that satisfies all its test. If each of the non-negated CEs of a production, matches a wme and none of its negated CEs 

matches a wme, then the production is satisfied. The set of wmes that conjunctively satisfy a production is referred 

to as an instantiation of the production. Figure 2-1 shows an instantiation. The set of all instantiations, active at any 

given time, is called the conflict set. 

An OPS5 program is executed by an interpreter that cycles through three phases: match, resolve and act (the 

MRA cycle). The match phase of the MRA cycle updates the conflict set with all the new instantiations. The 

resolve phase uses a selection procedure called conflict resolution to choose a single instantiation from the conflict 

set, which is then fired. When a production instantiation fires, the RHS actions associated with the production are 

executed and the instantiation is removed from the conflict set RHS actions may add wmes to WM, delete wmes 

from WM, perform input/output, or call a user-defined function. 

2.2. Rete 

The Rete matching algorithm [10] is a highly efficient algorithm for the match phase that has been shown to be 

suitable for parallel implementation [13,16,36]. The algorithm gains its efficiency from two sources. First, it 

stores the partial results of match from previous cycles for use in subsequent cycles, exploiting the fact that only a 

small fraction of WM changes on each cycle. Second, it attempts to perform tests that are common to CEs of 

multiple productions only once, by sharing them in a directed acyclic graph structure, called the Rete network. 

The algorithm performs match using a special kind of data-flow network that is compiled from the LHS of 

productions, before the production system is actually executed. An example production and the network for this 

production is shown in Figure 2-2. 
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(production-name clear-the-blue-block 
(block A n a m e <blockl> ~color blue) 
(block A n a m e <block2> A o n <blockl>) 
(hand Astate free) 

— > 
(remove 2)) 

Root 

color 

Eq (CEl.name, CE2.on) 

I [ Two input 
nodes 

Memory nodes 

Constant-test 
nodes 

free 

M / p 

Figure 2-2: An example production and its network. 

This data-flow network passes items called tokens across its arcs between its nodes. Tokens are partial 

instantiations of productions. They consist of a tag, a list of wme IDs} and a list of variable bindings. The tag is 

either a + (plus) or a - (minus) indicating the addition or deletion of the token. The list of wme IDs identifies the 

wmes matching a subsequence of the CEs of the production. The list of variable bindings associated with a token 

corresponds to the bindings for the variables in those CEs that the algorithm has already matched. 

There are primarily three types of nodes in the network that use the tokens described previously to perform match: 

1. ConstanMest nodes: These are used to perform the constant tests of the CEs and always appear in the 

top part of the network. 

2. Memory nodes: These store the results of the match phase from previous cycles as state. This state 

consists of a list of the tokens that match a part of the LHS of the associated production. This way only 

changes made to the WM by the most recent production firing have to be processed every cycle. As 

shown in Figure 2-2, memory nodes appear on both the inputs of a two-input node. 

3. Two-input nodes: These test for joint satisfaction of CEs in the LHS of a production. Both inputs of a 

two-input node come from memory nodes. When a token arrives from the left memory, i.e., on the left 

input of a two-input node, it is compared to each token stored in the right memory (and vice versa 

when a token arrives from the right memory). All token pairs that have consistent variable bindings 

are bound into new tokens and flow down the link to the left-inputs of successors of the node. 

2Each wme has a unique ID assigned to iL 
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At the beginning of the MRA cycle, the changes to WM flow down the network from the root (see Figure 2-2). 

They match the constant-test nodes, generating tokens that get stored in memory nodes. These tokens then flow into 

the two-input nodes. The combined activity of storing a token in a memory node and performing the following 

two-input node test to generate successor tokens is referred to as a two-input node activation (or just an activation). 

An activation can be left or right depending on the memory in which the token is stored. 

3. Proposed Mapping on MPCs 

In general, the match phase of the MRA cycle is the fundamental computational bottleneck in a production 

system. So, concentrating our effort on speeding up match is critical. Therefore, our mapping focuses on the match 

phase. The first subsection presents our base mapping. The second subsection presents some variations of the base 

mapping. One of these variations is used in our simulations. 

3.1. The Base Mapping 

One possible, perhaps intuitive, scheme for implementing production systems on thè MPCs arises from viewing 

the Rete match algorithm in an object-oriented manner where the nodes of Rete are objects and tokens are messages. 

This scheme maps a single object (node) of Rete onto a single processor of the MPC. However, there are two 

serious problems: 

1. The mapping requires one processor per node of the Rete net, and the processor utilization of such a 

scheme is expected to be very low 

2. Often, the processing of a WM change generates multiple activations of the same node of the Rete 

network resulting in a serialization of their processing. As a consequence, the processor handling 

these activations becomes a bottleneck. 

To overcome these limitations, we propose an alternative mapping based on a distributed hash-table [7]. To be 

able to adequately describe this mapping, we need to briefly digress into a discussion of the role of hash-tables in the 

Rete match algorithm. 

The Rete algorithm spends most of its time in processing two-input node activations [13]. Therefore, its 

performance can be effectively improved by reducing the computation performed during a two-input node 

activation. A major time-consuming factor in this computation is the comparison of an incoming token with the 

tokens in the opposite memory (the right memory is the opposite memory of a left-token, and vice versa). If the 

tokens in the memory nodes are stored in a hash-table, instead of a linear list, the number of comparisons performed 

during a two-input node activation is reduced, greatly improving the Rete performance. 
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Our proposed implementation is based on two global hash-tables — one for all the left memories and the other for 

all the right memories. Instead of being stored in linear lists at individual memory nodes, tokens are hashed and 

stored in (or deleted from) buckets of these hash-tables. The hash function applied to the tokens uses (as 

parameters), the node-id of the destination two-input node, and the values bound to the variables that are tested for 

equality at the destination node. Therefore, tokens flowing into a two-input node with the same values bound to the 

variables hash to the same index. For a left (right) token with a hash-bucket index of K, the two-input node needs to 

search only the right (left) hash-table bucket with index K, eliminating the need for a search through its entire right 

(left) memory. Thus, when processing a node activation, the left and right buckets at only one index need to be 

accessed. 

At an abstract level, the computation in the two-input nodes of the Rete network can now be described as 

operations on the two global hash-tables. Tokens are generated from a pair of corresponding left-right hash-buckets 

and sent to some other pair(s) of hash-buckets. Tokens keep moving from bucket to bucket, until the end of the 

match phase. Hashing may reduce the number of token comparisons (at two-input nodes) by as much as a factor of 

10 [17]. Therefore, hashed memories are the data-structure of choice for Rete implementations.3 

A high-level picture of our mapping is presented in Figure 3-1. As shown in the figure 3-1, the parallel mapping 

partitions the available processors into one control processor, a small set of constant-test processors, a small set of 

conflict-set processors, and a large set of match processors. The constant-test processors perform the constant tests 

specified by the Rete net The constant nodes of the Rete net are partitioned and assigned to the constant-test 

processors. The match processors perform the variable tests. The conflict-set is partitioned and assigned to the 

conflict-set processors. They select the best instantiation and send it to the control processor. The control processor 

is responsible for performing conflict-resolution among the best instantiations, evaluating the RHS and performing 

other functions of the interpreter. 

The match processors perform the function of Rete's two-input nodes using the hash-table described previously. 

The range of hash indices is partitioned among the match processors (both left and right hash-buckets with the same 

index are assigned to the same processor). Tokens destined for different hash-buckets can be processed in parallel, 

therefore, distributing the hash-table among processors allows parallel processing of tokens detsined for the same 

two-input node as well as tokens destined for different two-input nodes. 

In particular, the partitions of the hash-tables are assigned to a processor pair: the left buckets to the left processor 

discrimination trees might be an alternative 
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control processor 

Match 
processors 
implement 
a concurrent 
hash-table 

I I ^ > I I 
4 constant ' 4 conflict 
node processors set processors 

Figure 3-1: A high level view of the Mapping on the MPCs. 

and the right buckets to the right processor. This mapping is shown in Figure 3-2. The communication with the 

processor pair is restricted to the left processor. Allowing communication with both the left and the right processors 

can result in creation of duplicate tokens leading to incorrect behavior, and it does not gain as much in concurrency4. 

token-structure 

+/- 1/r nodeid varbl varb2 wtagl wtag2 — 

Some bits of 
dest nodeid 
unchanged 
(partitioning) 

variables involved in 
equality tests at the destination 
node 

Tokens in memory 
nodes stored in 
concurrent 
hash-tables 

IALU 1 1 Router I 

Rete 

Left Hash Buckets 

4 Tokens 

lALV I I R o u t e r 1 

Rete 
code 

Right Hash Buckets 

A processor-pair (shown above) performs the activity of a 
single node-activation. While the token is being stored in 
hash-table by one processor, it is concurrently compared to 
tokens in opposite memory by the second processor. 

Figure 3-2: The micro-task mapping of Rete on the MPC. 

4 For a discussion of the problem of duplicate token generation, see [13]. 
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A processor pair together performs the activity of a single node activation. Consider the case when a token 

corresponding to the left-activation of a two-input node arrives at a processor-pair. The left processor immediately 

transmits the token to the right processor. The left processor then copies the token into a data-structure and adds it to 

the appropriate hash-table bucket Meanwhile, the right processor compares the token with contents of the 

appropriate right bucket to generate tokens required for successor node activations. The right-processor then 

calculates the hash value for the newly created tokens, and sends each token to the processor pair that owns- the 

buckets to which it hashed. The activities performed by the individual processors of the processor pair are called 

micro-tasks, and all the micro-tasks on the various processor pairs are performed in parallel. 

The code for the Rete net is to be encoded in the OPS83 [11] software technology. With this encoding, large 

OPS5 programs (with « 1000 productions) require about 1-2 Mbytes of memory, a potential problem, since a 

message-passing processor may have only 10-20 kbytes of local memory [8]. Two strategies can therefore be used 

to save space in the actual implementation: 

• Partition the nodes of Rete such that each processor evaluates nodes from only one partition. This 

partitioning is easily achieved if the hash function preserves some bits from the node-id. To avoid 

contention, nodes belonging to a single production are put into different partitions. 

• One cause of the large memory requirement is the in-line expansion of procedures. We can instead 

encode the two-input nodes into structures of 14 bytes, indexed by the node-id. A small performance 

penalty of loading the required information into registers is then paid in the beginning of the 

computation. 

3.2. Variations of the Base Mapping 

Depending on the communication overheads and the number of processors available, some variation of the 

scheme presented in the previous subsection may turn out to be more suitable for a particular MPC. Three such 

variations are described below: 

1. Processor-pairs: In our mappings we have employed a processor-pair to evaluate a single node-

activation. If the number of processors is small and the processor utilization is important, it is possible 

to allocate both the left and right buckets to a single processor instead. 

2. Constant-node processors: The control processor in the mapping presented above broadcasts wmes to 

some designated constant-node processors. However, these processors could become bottlenecks, if 

the communication overheads are comparatively high. If so, broadcasting wmes to all processors at 

the beginning of the MRA cycle would be preferable. All the processors then evaluate the constant 

test nodes and generate all the initial tokens in a match phase. 
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3. Conflict-set processors: If the number of processors available is limited, the control processor could be 

used to process the conflict-set as well. The instantiations could be directly sent to the control 

processor. The contol processor would then be in charge of both the resolve and the act phases. 

Initially the Nectar architecture [2] 5 will have only a limited number of processors (32). Consequently, for our 

simulation studies we assume the following variation (see Figure 3-3) of the mapping presented previously. 

The figure shows a control processor, responsible for performing conflict-resolution on the instantiations, 

evaluating the RHS, and performing other functions of the OPS5 interpreter. The match processors implement the 

distributed hash-table described previously. The match procedure proceeds as follows: 

•Working Memory Elements 
Instantiations -

Working 
Memory 

Conflict 
Set 

Fire Actions 

Constant-tests 
of Rete 

-oa 

Left Right 
Hash-table 

Left Tokens 

Constant-tests 
of Rete 

-oa 
Tokens — = •a 

Left Right 
Hash-table 

Control Processor Match Processors 

Figure 3-3: Modified version of the mapping used for the simulations. 

1. At the beginning of MRA cycle, the control processor broadcasts one packet (containing all the wmes 

generated in the previous cycle) to all match processors. 

2. All the match processors perform all constant tests. The tokens generated from the constant tests 

generate node-activations, most of which are right-activations (see Figure 2.2). These tokens are then 

hashed; if the required hash-bucket is not resident in the processor's local memory, then no further 

processing is done on the token (Recall that the range of hash indices is partitioned and assigned to the 

match processors). Else, the processor moves on to step 3. 

3. For each hash-table activation for a bucket in the match processor's local memory, the token is added 

'Nectar is the target of our real implementation 
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to (or deleted from) the bucket. The token is then matched with tokens in the corresponding hash-

bucket in the opposite hash-table. If new tokens are generated, they are hashed and sent to the 

processor that owns the corresponding bucket. Recall from Section 2.2 that the tokens generated at 

two-input nodes result only in left activations. 

4. Tokens received by a processor are processed exactly as in step 3. 

5. All production instantiations are sent back to the control processor. The control processor starts the 

match phase of a new cycle when the current cycle ends. 

In step 2, work is duplicated across the match processors — all the processors evaluate all the constant tests. 

However, since the constant tests take a very small amount of time, this duplication of effort is not a significant 

problem. Further reduction in proportion of time spent in constant tests is also possible [13], e.g., implementing 

constant-tests using hashing can speed up the constant-tests by a factor of 5. 

It has been shown [36] that while the right activations are evenly hashed, left activations can be fairly unevenly 

distributed. To balance the computation, the mapping used in the simulation employs two different granularities: 

1. The tokens generated directly by the wmes (mostly right-activations) on a processor are grouped 

together and processed as a single unit (see step 3 previously). 

2. The left-tokens are processed as separate units (see step 4 previously). 

Thus, the low variance section (tokens directly generated by wmes) is processed at a coarser granularity for 

lowering communication overheads, while the high variance section (left-tokens) is processed at a finer granularity 

for load balancing. In general, parallel programs tend to work with fixed granularity (for instance, Kruskal and 

Smith [22] assume fixedness in their definition of granularity). Thus, this modification illustrates an alternative 

strategy with multiple granularities. 

4. Simulator Details 

The simulator used was developed by the Nectar group [4]. A detailed trace of the activity of the hash-table used 

for the Rete network, corresponding to the actual production system runs, is input to the simulator. Figure 4-1 

shows a small fragment of the trace that is fed as an input to the simulator. 

Given this input, the simulator builds a big hash-table like data-structure. Each processor gets its partition of the 

hash-table. Using this data structure, the algorithm from the previous section is simulated. The simulator uses the 

following estimates for the cost of node-activations: 
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Hash bucket = 27 

input token: nodeid = 27, node type = AND, direction = add, left 

output token: nodeid = 121, hash bucket = 77 

nodeid = 121, hash bucket = 143 

Hash bucket = 10 

input token: nodeid = 15, node type = AND, direction = delete, right 
output token: — 

Hash bucket = 25 

input token: nodeid = 150, node type = NOT, direction = add, right 
output token: nodeid = 75, hash bucket = 77 

Figure 4-1: Trace input to the simulator. 

• The time to evaluate all of the constant test nodes: 30 jis 

• The time to add or delete one left token: 32 jis 

• The time to add or delete one right token: 16 jis 

• The time spent to compare a token with tokens in opposite memory (per new token generated): 16 jis 

The particular times mentioned above were obtained using the profile data from our previous 

implementations [16, 36]. (We also experimented with some variations in the ratio of the time to process the left 

and right tokens. These variations did not make more than 5 -10% difference in the results.) The cost of processing 

the constant-test nodes is obtained using estimates from [13] — assuming that the constant-test nodes are 

implemented using hashing. 

Like any other simulation, ours has its share of inaccuracies. First, tokens could be generated in different orders 

in parallel and serial implementations. The trace driving the simulator is obtained from a uniprocessor, and thus 

does not always accurately model the activity of a parallel processor. However, this problem is not expected to be 

serious, since in our previous implementations [16,36], a change in the order of token generation has not been a 

problem (a maximum variation of 10%). Second, we do not simulate termination detection. In distributed systems, 

termination detection has been widely studied (for instance, see [27]). Investigations of the impacts of the various 

termination detection schemes on our implementation and the selection of the most suitable scheme will be the 

subject of future work. 
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5. Results and Analysis 

This section reports on the results and analysis of our experiments. Previous research has analyzed parallelism in 

production systems in detail at the levels of complete programs and individual MRA cycles. We used the results 

from this research to structure our experiments. Thus, rather than determining speedups available for some 

particular production systems, we simulated several characteristic sections of production system execution. These 

sections were identified on the basis of previously reported research. This allows us to focus our attention on known 

and suspected botdenecks. Moreover, concentrating on small sections allowed us to analyze the behavior of the 

production systems at a finer intra-cycle level. For the purposes of the simulation, three traces were chosen. The 

traces are from the production systems used in [16]. The traces we used are: 

• Good speedups (Rubik): This section was taken from the execution trace of Rubik, a program to solve 

the Rubik's cube. The section represents four consecutive cycles. 

• Small cycles (Weaver): This section was taken from the execution trace of Weaver, a program to 

perform VLSI routing. Small cycles are those with few (100 or less) tokens in them. As shown in [36], 

small cycles are special cause of concern, since they limit speedups. The section represents four 

consecutive small cycles. 

• Cross-product (Tourney): This section was taken from the execution trace of Tourney, a program to do 

scheduling for a tournament (A cross-product is generated when a token arriving at a two-input node 

finds a large number of matching token in the opposite memory; thus generating a large number of 

successor tokens.) One cycle with a heavy cross-product was chosen from this program. This 

particular cycle has a large number of non-randomized tokens, tokens that hash to the same bucket. This 

uneven distribution of tokens is a major problem for parallelization [16]. Four small cycles that 

surround the cross-product cycle were also included in the section to provide some points of comparison 

for the cross-product cycle. 

In the rest of this paper, we refer to these sections by the name of the programs from which they were taken — 

this should not be construed to mean that the numbers presented are for the entire programs. Approximately 200 

runs were simulated. Each simulation run required from half an hour to six hours on a SUN 3/260. The parameters 

for the simulations were the number of processors employed and the communication delays. 
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5.1. Speedups Obtained and the Impact of Overheads 
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Figure 5-1: Speedups with zero message-passing overheads. 

Figure 5-1 shows the speedups obtained for the three systems with zero interconnection network latency and zero 

message-processing overhead. The buckets were distributed to the processors in a round robin manner. This graph 

shows the best possible speedup, given the proposed implementation. As expected, Rubik has the largest overall 

speedup. The results from runs simulating a single match processor with zero communication overheads are used as 

the base cases for calculating all the speedups presented in the paper. 

For the rest of the runs, we kept the interconnection network latencies set to the value provided by the Nectar 

group (0.5 \xs) and varied the value of the message-processing overhead to study the impact of communication 

overhead on the speedups. The settings that we used are listed in Table 5-1. 

Runs Send 
overhead 

Receive 
overhead 

Total 
overhead 

Run 1 0 n s Oils Ojus 
Run 2 5 jxs 3 [is 8ms 
Run3 10 )LLS 6 [IS 16 |IS 

Run 4 20 |is 12 [is 32 b|is 

Table 5-1: Breakdown of message-processing overheads into 
send and receive times. 

Figure 5-2 shows the impact of increasing the message-passing overheads in the three sections of Rubik, Tourney 

and Weaver. The (0 [is) graphs are the ones shown in Figure 5-1 with zero overheads. The impact of message-

passing overheads are comparatively low in Rubik (loss of 30% of speedup), somewhat higher in Tourney (loss of 
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about 45% of speedup), and even higher in Weaver (loss of up to 50% of speedup)6. This difference is explained by 

Table 5-2, which shows the right and left activations for each trace. Recall that only the left activations need to be 

communicated to other processors. Since Rubik has a smaller percentage of left activations (of all activations), it is 

not affected as much as Tourney and Weaver which have much larger percentages of their activations as left 

activations. 

Interestingly, there are dips in the speedup graphs showing a decrease in the speedup with an increase in the 

number of processors employed. This shows that the partitioning of the hash-tables could result in an uneven 

distribution of the processing load. Section 5.2 analyzes this effect in detail. 

Given the large number of tokens generated, it is interesting to note that the interconnection network was mostly 

(97-98% time) idle. This is explained by the small delay (0.5 ]±s) associated with the interconnection network. Thus, 

for our mapping, the interconnection network is not a bottleneck. 

5.2. Increasing the Obtained Speedups 

The simulations in the previous section have shown that up to 8-12 fold speedups are available in the three 

characteristic sections. These speedups are comparable to those achieved in these sections on our shared-bus 

implementation [21]. However, the large number of tokens and low contention in the interconnection network 

suggests that a larger amount of parallelism should be available. This is a problem that the earlier analyses have not 

been able to explain completely. In this subsection, we investigate some of these problems and present some 

methods of improving the speedups. 

5,2.1. Small Cycles 

We had chosen the traces from Weaver to investigate the phenomenon small cycles [16]. One problem that we 

identified in these cycles is the slow generation of successor tokens. There are very few right activations in these 

cycles, as seen from Table 5-2. However, there are only three left-activations that generate a majority (120 out of 

about 150) of the activations in one of the cycles. A processor that generates such large number of successors 

becomes a bottleneck, since it takes about 16 jis to generate every successor. It is possible to avoid this multiple 

successor problem by transforming the Rete network node that generates the successors7. The transformation splits 

the bottleneck node so that the generation of the successors can proceed in parallel. This can be achieved by one or 

more of the following methods. 

6 The speedups for Tourney are somewhat overestimated. Due to the poor hashing discrimination, a large number of tokens hash to a few 
buckets. Token deletion therefore requires more time to search through these buckets than the constant time assumed by the simulator. 

7 W e have assigned 16 |is to all successors, irrespective of how these were produced. This may exaggerate some of the results, since in general, 
some successors may be produced much faster than others, especially if the successors share tests at the two-input node. However, the techniques 
shown here are applicable whenever a large number of successors are generated from a single hash-bucket site. 
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Program Left 
activations 

Right 
activations 

Total 
activations 

Rubik 2388 (28%) 6114(72%) 8502 
Tourney 10667 (99%) 83 (1%) 10750 
Weaver 338 (81%) 78 (19%) 416 

Table 5-2: Tokens in the sections of the three programs. 

1. Unsharing the Rete network nodes where multiple tokens are generated. For instance, in Figure 5-3, 

the two outputs Ol and 0 2 share the two-input node formed by joining conditions II and 12. If we 

unshare in the manner shown, the outputs for Ol and 0 2 are generated independently, thus removing 

the bottleneck of generating a large number of tokens from one site. Some work is duplicated; but, 

given the limited number of tokens generated in a small cycle, this duplication should not be a 

problem. The effect of sharing in general is quite limited (a factor of 1.1 to 1.6 in the running 

time) [13, 30]. Therefore, such unsharing should not be a problem in general. 

2. Introducing one or more dummy nodes in the Rete network. This is quite similar to the introduction of 

dummy-nodes in ([13], Chapter 4). These dummy elements can divide the successors into 2-4 parts. 

3. Applying copy and constraint [35] on the node that generates a large number of successors. Multiple 

copies of the given node are made, each of which generates part of the activations generated by the 

original node. 

Figure 5-4 shows the impact of using the first scheme on speedup achieved for Weaver. As might be seen, there 

is a substantial improvement. 

Figure 5-3: Unsharing nodes of the Rete network. 

The problem of small cycles could possibly be solved in yet another way, especially for systems with high 

communication overheads. It is possible to identify the productions affected in small cycles and process all the 

tokens associated with matching the production on a single processor. Since such cycles do not possess much 
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Figure 5-4: Speedups with the unsharing. 
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parallelism, avoiding the communication overheads seems to be a useful strategy. This would add another level of 

granularity to the mapping. Though the different granularities are decided a priori, the mapping would seem to 

converge to the variable granularities approach promoted in [15]. 

5.2.2. Uneven Distribution-of Tokens 

The simulation results show that the average idle time of the processors increases with increasing number of 

processors. This suggests an uneven distribution of tokens. Figure 5-5 shows the distribution of left tokens in two 

cycles for Rubik. The x-axis marks the processor number and the y-axis marks the number of activations processed 

by a processor in a cycle (for instance, processor number 1 processed « 20 tokens in both cycles). The aggregated 

distribution of the tokens, even within the four MRA cycle sections used, is more or less even; however, the 

distribution of tokens at the level of an individual MRA cycle is quite uneven. 

In addition to uneven distributions across the processors in both the cycles, we see a peculiar behavior viz. the 

processors busy in one cycle are seen to be idle in the next cycle and vice versa. The graphs for Tourney are quite 

similar. The distribution in Weaver is much more even. 

The uneven distribution of tokens to processors occurs in two different ways: 

1. Poor distribution of active buckets to processors: Although buckets are distributed equally among all 

processors, only some of these buckets are active, i.e., process any tokens. These active buckets get 

distributed poorly among processors: multiple buckets on a single processor together process a high 

number of tokens, while all the buckets assigned to some other processor are inactive. Both Rubik and 
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Figure 5-5: Distribution of tokens in two independent cycles for Rubik. 

Tourney seem to suffer from this problem. Typically, this problem occurs for the buckets belonging to 

the left hash-table. 

2. Poor distribution of tokens to buckets: A single bucket on a processor processes a high number of 

tokens. This is in turn caused by: 

• Cross-products with no hashing: A cross-product refers to a large number of activations of the 

same two-input node from its left input [13]. If there is no variable tested at the two-input node 

(as happens in the trace taken from Tourney), then the hashing scheme cannot discriminate 

between any of the tokens and all the tokens hash to the same bucket. 

• Multiple-modify-effect: This refers to the tokens generated in Rete when multiple wmes 

matching a single production are modified all at once. A modify action is implemented as a 

delete action followed by an add action. Due to the state-saving nature of the Rete-net, when a 

wme is deleted, all the successor left-tokens (containing the wme) have to be deleted. The add 

action then regenerates all the tokens — these tokens are identical to the earlier tokens, except 

that they differ in the value of the newly added wme. With multiple-modify actions, the delete-

add cycle continues; generating multiple tokens headed for the same bucket, half of which are 

adds and half are deletes. This is a hitherto unsuspected effect and was uncovered by the detailed 

nature of the analysis performed. 

The poor active-bucket distribution suggests a redistribution of the hash-table buckets so that the active buckets 
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are distributed evenly among processors. In assigning buckets to processors, we had originally assumed a round 

robin strategy. The distribution in Figure 5-5 indicates the failure of this strategy to distribute active buckets evenly 

among processors. A random distribution of the buckets to the processors was tried as an alternative, but failed to 

provide a significant improvement 

The failure of the random distribution of buckets to improve the performance led us to build a simple probabilistic 

model of this distribution. The model assumed that only a fraction of the total number of buckets are active, and that 

each active bucket gets only a single activation. This models allowed us verify some (perhaps intuitive) conclusions 

about the distribution. These conclusions are: 

1. The probability of getting a completely even or totally uneven active bucket distribution is very low (< 

1%). It is more likely for the bucket distribution to be somewhere in between. 

2. Increasing the proportion of active buckets for the same total number of buckets increases the 

probability of even distributions. Typically, a large proportion of right buckets is active; hence, they 

get distributed evenly. 

3. With an increasing number of processors, the probability of uneven distribution increases, i.e., the 

probability of the bucket distribution allowing linear or near-linear speedup decreases. This is part of 

the reason why the speedups seen in the previous section do not scale well with an increase in the 

number of processors. 

What is the impact of the uneven distribution? To answer this question, we used an off-line greedy algorithm to 

distribute buckets among processors. This algorithm was provided a detailed trace of the activity in each bucket, 

(this would not be available to the actual distribution algorithm). A greedy algorithm was chosen since determining 

the optimal distribution of buckets to processors is a version of the multi-processor scheduling problem, a well-

known NP-complete8 problem [12]. Therefore, computing an optimal distribution (given 100 or more active 

buckets) could be time consuming. The greedy algorithm provided us a series of distributions, one per cycle. These 

distributions have a very low variance and hence should be close to the optimal distribution. 

The new uniform distribution improved the speedups by a factor of 1.4. Thus, with a better distribution 

algorithm, we could obtain an improvement of a factor of up to 1.4 in performance. A potential solution for this 

distribution problem is dynamic (run-time) load balancing. However, our problem is complicated by the presence of 

state of the Rete net, i.e., the presence of tokens in the hash-buckets. A token cannot be sent to an arbitrary 

t h e

8 ^ S S U m e S * * ' * % l C * e n S ™ f f e r c n t b u c k e t s a r c ^ p e n d e n t of each other. If we also lake into account the dependence of tokens then 
the problem is a verston of the precedence-constrained scheduling problem with unequal length tasks, which is a NP-hard^roble^ 
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processor, as its target hash-bucket is present only on a particular processor. Also, moving hash-buckets around to 

change the token distribution is too costly. Thus, it appears that we cannot take advantage of the existing dynamic 

load balancing schemes; and possibly, better static load distribution by source-level transformation of the production 

systems may be the only method for improving the performance. 

The second problem for uneven token distribution was the poor distribution of tokens to buckets. The problem of 

poor token distribution occurs due to inability of the hashing function to discriminate between tokens going to the 

same two-input node. This can be solved by the copy and constraint mechanism. This is a source-level 

transformation which splits the culprit productions into multiple copies, each matching only a part of the data the 

original production matched. This allows additional discrimination to be introduced in the hashing function: the 

tokens belong to different productions and hence different destination node-ids, and hence hash to different buckets. 

Figure 5-6 shows the speedups achieved with this mechanism9. 

Although uniform distribution of tokens to processors will improve the performance of the system, it cannot 

completely alleviate the problem of sublinear speedups in the system. In particular, the even distribution does not 

take into account the precedence constraints among the tokens, caused by the structure of the Rete net Methods for 

eliminating some of the precedence constraints appear in [13,36], and we plan to adopt one of these methods in our 

final implementation. However, not all the constraints can be eliminated — since they arise from the structure of the 

Rete algorithm. 

9 A s noted earlier, the speedups without copy-and-constraint are somewhat overestimated. Therefore, we do not see a big increase in the 
speedup. 
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The discussion above can be summarized in terms of some of the tradeoffs involved in message-passing and 

shared-bus mappings of production systems. The shared-bus mapping maintains some centralized task-queues and 

the hash-tables in the shared memory. The principle advantage of the the distributed mapping is the absence of these 

centralized task-queues, which can be a potential bottleneck. However, the distributed mapping suffers from static 

partitioning of the hash-table; this may lead to a poor distribution of active buckets to processors. We saw that 

distinct tokens, heading for distinct hash-buckets may be routed to the same processor, this causes the tokens to be 

processed sequentially. The problem does not arise in the shared-memory implementation, since the hash-table is 

not partitioned among processors. However, the problem shown in Tourney, of uneven distribution of tokens to 

buckets, is a serious problem even for shared-memory implementations, i.e., if multiple tokens are hashed to the 

same bucket, they are executed sequentially both on the distributed memory and the shared-memory implementation 

(to process a token, the entire hash-bucket needs to be accessed exclusively). 

6. Summary and Future Work 

Recent advances in interconnection network technology and processing node design have reduced the latency and 

message-handling overheads in MPCs to a few microseconds. In this paper we addressed the issue of efficiently 

implementing production systems on these new-generation MPCs. We showed that using a concurrent distributed 

hash-table data structure, it is possible to exploit parallelism at a very fine granularity and to obtain significant 

speedups from parallelism. We presented simulation results and showed that MPCs can successfully be used as 

production system engines. For a number of processors, comparable to our shared-bus implementation [16], the 

MPCs provide a comparable speedup in the simulated sections of the production systems. But since the speedups on 

the MPCs are obtained with substantially faster processors than the shared-bus implementation, the total execution 

time has been speeded up by a much larger factor. 

Before concluding, we would like to reiterate the importance of mapping production systems on the MPCs. First, 

we expect that in the near future, production systems for perceptual and sensory tasks will be built [31]. This, in 

conjunction with new applications in the fields such as robotics [26], is expected to cause a significant increase in 

the available parallelism. Second, researchers are exploring methods of developing formalisms that permit more 

explicit (or implicit) expression of parallelism in production systems [18,19,25]. These formalisms are also 

expected to increase the amount of available parallelism. Hence, it is necessary to analyze easily scalable 

architectures such as the MPCs for implementing production systems. 

The mapping presented in this paper may be thought of as being near the center of a continuum of mappings. At 

one extreme, we have the mapping of hash-tables replicated on all processors. These copies of the hash-tables need 
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to be consistent with each other, which would require continuous updates among the various copies. At the other 

extreme is a mapping with a single master-copy of the hash-table (on a single processor). All the remaining 

processors perform match using this single hash-table, generating contention for the processor owning the hash-

table. To address some of the load-balancing issues associated with our current mapping, we intend to investigate 

the possibility of moving toward one or the other end of this continuum. 

We plan to use these results to guide our implementation of OPS5 on Nectar. Nectar is scheduled to be 

operational in early 1989 and we expect to complete the first cut implementation by Fall 1989. 
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