Incor porating Timing Constraints in the Efficient Memory Model
for Symbolic Ternary Simulation?*

Miroslav N. Velev" Randal E. Bryarit
mvel ev@ce. cnu. edu randy. bryant @s. crmu. edu
http://ww. ece. cnmu. edu/ ~nvel ev http://ww. cs. cnu. edu/ ~br yant

“Department of Electrical and Computer Engineering
*school of Computer Science
Carngjie Mellon Unversity, Pittsturgh, FA 15213, U.S.A.

Abstract accept symbolic ternaryalues, instead of the scalalwes 0, 1,
and X. Each symbolic ternaryalue is represented by a pair of
symbolic Boolean xpressions, definedver a set of symbolic
Boolean wariables, that encode the cases when the sigmaldw
evaluate to 0, 1, or X. The adntage of symbolic ternary simula-
tion is that it eficiently covers a wide range of circuit operating
conditions with a single symbolic simulation pattern that
involves fr fawver variables than wuld be required for a com-
plete binary symbolic simulation. In addition talidation, sym-
bolic ternary simulation has pren to be wery paverful for
formal \erification, as demonstrated by the Symboligjdctory
Evaluation (STE) technique [12][7]. Furthermore, symbolic ter-
nary simulation can be combined withfdient delay models.
This has been achied by Sger and Bryant [11] by assuming
that cates hae zero delays and are connected in series with delay
boxes that model inertial delay bounded by a minimum and a
maximum \alue. Havever, the application of symbolic simula-
tion has been traditionally restricted to circuits with small mem-

This paper intoduces the four timing conatnts of setup
time, hold time minimum delayand maximum delay in thefief
cient Memory Model (EMM). The EMM is a behagiomodel,
whee the number of symbolic variables usedttaracterize the
initial state of the memory is @portional to the number of dis-
tinct symbolic memory locations accessed. The betwviordel
provides a conservative appdmation of the eplaced memory
array, while allowing the adarss and contd inputs of the mem-
ory to accept symbolic ternary values. If accit has been for-
mally verified with the behaviakr model, the system is
guaranteed to function coectly with any memory implementa-
tion whose timing pametes are bounded by the ones used in
the verification.

1. Intr oduction ory arrays.
)))] The normal simulation models for memory arrays at the
Decreasing feature sizes inmeemiconductor technolo- ansistor gate, and behdoral levels eplicitly represent each

gies increase the wire delays and mandate that simulation andmemory bit. This is not a problem for e@mtional simulation
verification with accounting for timing requirements become the \yhich uses a single logiiue to denote the state of a memory
norm in the near future. efnary simulation, where the pit However, symbolic simulation wuld require a symbolic
“unknown” value X is used to indicate that a signal can be either y4riaple for gery bit of the memoryFurthermore, bit-leel sym-
0or 1, has long been used wistate digital circuits and to detect pgjic model checking [4][5] wuld need tw symbolic \ariables
timing errors in them [8]. Namelyhe \alue X has been used o per memory bit, in order tould the transition relation. There-

represent a signal in transition from one binaaug to another fore, in both methods the number @friables is proportional to
Additionally, X’s can be used to model uninitialized nets or ine size of the memanand is prohibitie for lage memory
“don’'t-care” conditions. The ffcts of the X$ are propaafed arrays.
through the circuit by the simulatéFhe use of X8 to represent This limitation is @ercome in our préous work [13] by
transitions allass the simulator to detect combinational hazards, replacing each memory array with arfigient Memory Model
critical races, and feedback oscillationsvési that the simula- (EMM). The EMM is a behaoral model, which allas the num-
tion algorithm satisfies a monotonicity properyy binary \al- ber of symbolic wriables used to be proportional to the number
ues resulting when simulating patterns witis Xould also result o gistinct symbolic memory locations accessed rather than to the
when the Xs are replaced by grcombination of & and 15 size of the memoryit is based on the obsation that a single
[12]. Hence, emplging X's reduces the number of simulation evecution sequence typically accesses only a limited number of
patterns, often dramaticallHowever, ternary simulators will distinct symbolic locations. While the EMM presented in [13]
sometimes produce aalue X, when anxhaustie analysis assumes simulatiorver symbolic binary alues, our later vrk
would determine thealue to be binary (i.e., 0 or 1). [14] allows the EMM to accept symbolic ternarglves at its
This problem has been resetl/by combining ternary mod- address and control inputs, while yiding a consemtive

eling with symbolic simulation [1], such that the signals can approximation of the replaced memory arrayonserative
approximation means thaalée positie \erification results are
guaranteed not to occgualthough &lse neative \erification

1. This research as supported in part by the SRC under
contract 98-DC-068.

Copyright 1998 IEEE. Published in the Proceedings of ICCD’98, 5-7 October 1998 in Austin, Texas. Personal use of this material is per-
mitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 732-562-3966.

results are possible.

The contrilutions of this paper are that it incorporates the
timing parameters of setup times{,,), hold time (F,o), Mini-
mum delay (bmin), and maximum delay gna into the ter-
nary EMM [14]. Experimental results were obtained using the
STE technique.

A symbolic representation of memory arrays has been used
by Burch and Dill [6]. The apply uninterpreted functions with
equality which abstractway the details of the data path and

trol expressionc will represent the alue of a node in ternary
symbolic simulation and will hee a high encoding.hand a lav
encodinge.l, each of which is a Booleawession. The ternary
values that can be represented by a contxplessionc are
shavn in Table 1. V¢ would write [c.h, c.l] to denotec. It will be
assumed that.h andc.l cannot be simultaneousfalse. The
typesBExpr, CExpr will denote respeately Boolean and con-
trol expressions in the algorithms to be presented.

allow them to introduce only a single symbolariable to denote
the initial state of the entire memoByachWrite or Readopera-

tion results in bilding a formula wer the current memory state,
so that the latest memory state is a formula reflecting the

sequence of memory writes. In our method, the memory state is
represented with a list of entries encoding the sequence of

Ternary alue c.h cl
0 false true
1 true false
X true true

updates of symbolic addresses with symbolic data. \@rite

operation modifies this list. keever, we perform the erification
at the circuit lgel of the implementation and need bitdédata
for symbolic word-level memory locations in order terify the
data path. This requires the user to introduce symbaliales
proportional to both the number of distinct symbolic memory
locations accessed and the number of data bits per location.

The introduction of minimum and maximum delays for
memory read ports in our model is conceptually similar to the
way that Sger and Bryant [11] model inertial delay bounded by
a minimum and a maximunaiue, although implemented within
the softvare interéce that links the EMM and the rest of the cir-
cuit. Howvever, our treatment of setup and hold times for memory
ports is tailored to the specifics of the EMM in the cointd
symbolic ternary simulation. Namelgetup and hold times are
accounted for by means of an auxiliary circuit that translates tim-
ing violations into ambiguity xpressed by thealue X at the
control input of the corresponding memory port. The design of
the auxiliary circuit, the EMM, and its sofare interce guaran-
tee a conseative approximation of the replaced memory array

This paper adwcates a tw step approach for theerifica-
tion of circuits with lage embedded memories. The first step is
to use STE to erify the transistor kel memory arrays indepen-
dently from the rest of the circuitaRde and Bryant hae com-
bined symmetry reductions and STE to enable éhiication of
very lage memory arrays at the transistoreligf9][10]. The sec-
ond step is to use STE t@nfy the circuit after the memory
arrays are replaced by EMMs and is the focus of the present
work.

In the remainder of the pap&ection 2 describes the sym-
bolic domains used in our algorithms. Section 3 presents the
EMM and a vay to incorporate minimum and maximum delays
in the model. Section 4plains the EMM algorithms. Section 5
shavs hav to incorporate setup and hold times in the model.
Experimental results and conclusions are presented in Section 6,
and plans for future ark are outlined in Section 7.

2. Symbolic Domains

We will consider three dérent domains - control, address,
and data - corresponding to the threéedént types of informa-
tion that can be applied at the inputs of a memory akaon-

Table 1. 2-bit encoding of ternary logic.

The memory address and data inputs, since connected with
circuit nodes, will recee ternary alues represented as control
expressions. Hence, addresses and data will be represented by
vectors of controlhressions hang widthn andw, respectiely,
for a memory wittN = 2" locations, each holding aond consist-
ing of w bits. Obserg that an X at a gén bit position represents
the “unknavn” value, i.e., the bit can be either 0 or 1, so that
mary distinct addresses or data will be representedcapture
this property of ternary simulation, we introduce the type
ASExpr (address setxpression) to denote a set of addresses.
Similarly, the typeDSExpr (data set gression) will denote a
set of data. Note that in both cases, a set will be represented by a
single \ector of ternary alues. V¢ will use the notatiofy, ...
a,0to explicitly represent the address s&peessiona, whereg;
is the control rpression for the corresponding bit positionaof
Data set ®pressions will hee a similar gplicit representation,
but with w bits. Symbolic ariables will be introduced in each of
the domains and will be used irpeession generation.

The symbolti,, will designate the umérsal data set. It will
represent the most general information about a set of data. In ter-
nary logic, U, can be modeled by aetor of control gpressions
consisting entirely of >§.

We will use the terntontet to refer to an assignment of
values to the symbolicaviables. A Booleanx@ression can be
viewed as defining a set of corte, namely those for which the
expression ealuates tdrue.

A symbolic predicate is a function which &sksymbolic
amguments and returns a symbolic Booleapression. The fol-
lowing symbolic predicates will be used in our algorithms, where
cis of typeCExpr, anda is of typeASEXxpr:

Zem(c) = ~c.hOcll,
Hard(c) = c.hO-c.l,
Sof(c) = C'hDCr'\I' 3)
Unique(a) = | A - Sof(a). (4)

The predicateZero, Hard, and Soft define the conditions for
their aguments to be the ternary 0, 1, and X, respelgti The

1)
)

—D »f Address
— Dat a READ
— »|Enable PORTO

T» Addr ess
<—~—— Data
— »|Enable PORT Q

MEMORY ARRAY

(N =2" addresses
READ of w bits each)

n
WRITE Addr ess <T
PORT 0 Dat a |4—F—
Enabl e j¢——

<—n,_

WRITE AderZtSZ m
PORT P Enabl e [——

Figure 1. View of a memory array, according to our model.

predicate Unique defines the condition for the address set expres-
sion a to represent a unique or single address.

The selection operator ITE (“If-Then-Else”), when applied
on three Boolean expressions, is defined as:

ITE(D, t, € = (bOt) O(-bOe). (5)

Address set comparison with another address set is implemented
as:
n

y=a = ~ \/ [(aphOaxhy) O(alOal)], (6)

where a;.h; and a, I, rlepresent the high and low encodings of the
control expression for bit i of address set expression a;. Address
set selection a; — ITE(b, a,, ag) isimplemented by selecting
the corresponding bits:

al.hi - |TE(b, a2.hi, a3.hi),
arli « ITE(b, asl;, agly), i=1,..,n)

Checking whether address set a; is a subset of address set a, is

done by: N

a0a, = - \/ (aphiO-ahy O aplyO-auly), (8
i=1
and checking address sets a; and a, for overlap is implemented
by: N
Overlap(as, ap) = /\ (apliDapli O agh Oayh). (9)

The definition of wmbolicI prédi cates over data set expressionsis
similar, but over vectors of width w.

Note that all of the above predicates are symboalic, i.e., they
return a symbolic Boolean expression and will be true in some
contexts and false in others. Therefore, a symbolic predicate can-
not be used as a control decision in agorithms. The function
Valid, when applied to a symbolic Boolean expression, will
return true if the expressionisvalid or equal to true (i.e., truefor
all contexts), and will return false otherwise. We can make con-
trol decisions based on whether or not an expression isvalid.

We will also need to form adata set expression which isthe
union of two data set expressions, d; and d,. If these differ in
exactly one bit position, i.e., one of them has a 0 and the other a
1, then the ternary result will have an X in that bit position and
will be an exact computation. However, if d; and d, differ in
many bit positions, these will be represented as X’sin the ternary
result and that will not always yield an exact computation. For
example, if d; = [0, 10and d, = [1, OC] the result will be X, XO
and will not be exact, as it will aso contain the data set expres-
sions [0, OOand [, 1[] which are not subsets of d; or dy. We

define the operation approximate union d; E d, of two data set
expressions as:

[dy G dy]; = [dph Odphy, dyli Odpl, i= 1, ..., w (10)

We have used Ordered Binary Decision Diagrams (BDDs)
[3] to represent the Boolean expressions in our implementation.
However, there is nothing about this work that intrinsically
requires it to be BDD based. Any canonical representation of
Boolean expressions can be substituted.

3. Efficient Modeling of Memory Arrays

The main assumption of our approach is that every memory
array can be represented, possibly after the introduction of some
extra logic, as a memory with only write and read ports, all of
which have the same numbers of address and data bits, as shown
inFigure 1.

Theinteraction of the memory array with the rest of the cir-
cuit is assumed to take place when a port Enabl e signal is not
0. In case of multiple port Enabl esnot being 0 simultaneously,
the resulting accesses to the memory array will be ordered
according to the priority of the ports.

Write ports can have requirements for Teg, and Thgg,
while read ports can additionally have requirements for Tpmin
and Tppya- The port inputs must be stable from Ty, units of
time before the rising edge of the port Enabl e until Ty q units
of time after that in order for the memory operation to take place
correctly. For the same reason, we require that the port Enabl e
be stable for Ty g Units of time after its rising edge. Tyq is the
time necessary to correctly access the memory location, specified
by the port address inputs, after the port Enabl e signal goes
high. In the case of read ports, Tpmin and Tpmax give the min.
and max. delays, respectively, needed for the data to propagate
from the memory storage cells to the port data outputs. These
four timing parameters can take only non-negative integer values
with TDmin < TDmax-

During symbolic simulation, the memory state is repre-
sented by alist containing entries of the form [, s, a, dC]where
h and s are Boolean expressions denoting the set of contexts for
which the entry is defined, a is an address expression dencting a
memory location, and d is a data expression representing the con-
tents of this location. The context information is included for
modeling memory systems where the Write operation may be
performed conditionally on the value of a control signal c. The
Boolean expression h represents the contexts
Hard(c) O Unique(a), when the control signal was 1 and the

Dat a outputs

Soft(c) rd 5 fd Dat a outputs
Hard(c) rd (5 fd rd__ pat aoutputs
Tomi n
: TDmax -

¢

Figure 2. Timing dia grams f or the data that will appear at the Data outputs of a read por

time point of Read operation

t, under the three possib le

conte xts for the v alue c of the por t's Enable signal. rd is the data set e xpression retrie ved from memor y by the Read

operation. fd is the data that will appear at the Data outputs T

if the Read did not take place .

address a was unique. Under contexts h the location a is defi-
nitely overwritten with data d. The Boolean expression s repre-
sents the contexts Soft(c) O Hard(c) O -Unique(a), when the
control signal was an X, or it was a 1 and the address was not
unique. Under contexts sthelocation a is uncertainly overwritten
with data d. Initialy the list is empty. The type List will be used
to denote such memory lists.

The list interacts with the rest of the circuit by means of a
software interface developed as part of the symbolic simulation
engine. The interface monitors the memory input lines. Should a
memory input value change, given that its corresponding port
Enabl e value cisnot 0, aWrite or a Read operation will result,
as determined by the type of the port. The Addr ess and Dat a
lines of the port will be scanned in order to form the address set
expression a and the data set expression d, respectively. A Write
operation takes as arguments both a and d, while a Read opera-
tion takes only a. Both of these operations will be presented in
the next section.

A Read operation retrieves from the list a data set expres-
sion rd that represents the data contents of address a. The soft-
ware interface completes the read by scheduling the Dat a lines
of the port to be updated with the data set expression
ITE(Hard(c), rd, ITE(Soft(c), (rd | fd), fd)) at Tpmayx Units of
time ahead of the current simulation time. The data set expres-
sion fd is the one that the Dat a lines will otherwise have in that
future simulation time interval. Additionally, in the case when
Tomin < Tomax the software interface schedules the Dat a lines
of the read port to be updated with the data set expression
ITE(Zero(c), fd, (rd 5 fd)) a Tpy, Units of time ahead of the
current simulation time. Again, the data set expression fd is the
one that will otherwise appear at the Dat a outputs in that future
simulation time. This implementation of minimum and maxi-
mum delays in the EMM preserves its behavior as a conservative
approximation of the replaced memory array.

Figure 2 illustrates how a Read operation will affect the val-
ues of the port Dat a outputs. Under the contexts where the value
c of the port Enabl e isO, the data at the port Dat a lineswill be

pmin Units of time ahead fr om the Read operation time ,

unchanged and will be fd. Under the contexts when c isa 1, the
approximate union rd H fd, whererd is the data set expression
retrieved by the Read operation, will be the value of the Dat a
outputs in the interval from Tpin t0 Tpmax @head from the read
time, to be followed by avalue of rd after that. Finally, under the
contexts when cisan X, rd H fd will appear at the Dat a lines
after adelay of Tpmin-

After completing a Write operation, the software interface
checks every read port of the same memory for a possible on-
going read (as determined by the read port Enabl e value being
different from 0) from an address that overlaps the one of the
recent write. For any such port, a Read operation is invoked
immediately and the Dat a lines of the read port are updated with
rd E d whererd isthe data set expression returned by the Read,
and d is the data set expression that would otherwise appear on
the Dat a lines at that time. This guarantees that the EMM would
behave as a conservative approximation of the replaced memory

array.
4. Implementation of Memory Operations

4.1 Support Operations

The list entries are kept in order from head (low priority) to
tail (high priority). The initial state of every memory location is
assumed to contain arbitrary data and is represented with the uni-
versal data set U, Entries in the list from low to high priority
model the sequence of memory writes with the tail entry being
the result of the latest memory update. Entries may be inserted at
the tail end only, using procedure InsertTail, and may be deleted
using procedure Delete.

4.2 Implementation of Memory Read and
Write Oper ations

The Write operation, shown as a procedure in Figure 3,
takes as arguments a memory list, a control expression denoting

Enable Iny In,

Yy Y A

Stability j| Stability Stability
Checker | Checker Checker
~3 ~3 ~3
m_' g m_' g m_| g
e o e o e =
c % ~HllE 5 ~ £ % ~
T e e T ekE
[—
[

Stable_setup
#1

Stable_hold

#(Thola-1)

Rising_edge

arEb,

@)

> Stability Checker:
>
‘ In
|
| #1 #1 #1
|
I
I
| To the
| EMM -
| Circuit
\ Interface
k-
1
(
! @ @ |2
| <) @ <)
o o o
|) ® |®
| g |z |2
I @ o
I £ g
#1 | 1 'ﬁ
| & «
!
Enablegyym

(b)

Figure 5. (a) The auxiliary circuit incorporating setup and hold times for one port of an EMM-modeled memory
array; (b) implementation of the stability checker for Tgeryp = 2 and Tpgq = 4. The buffers have integer delays

denoted by the numbers after the # sign.

the contexts for which the write should be performed, and
address set and data set expressions denoting the memory loca-
tion and its desired contents, respectively. As the code shows, the
write isimplemented by simply inserting an element into the tail
(high priority) end of the list, indicating that this entry should
overwrite any other entries for this address.

procedure Write(List mem, CExpr ¢, ASExpr a, DSExpr d)
/* Write datad to location a under control ¢ */

h — Hard(c) OUnique(a)

s « Soft(c) O Hard(c) O-Unique(a)

InsertTail(mem, [, s, a, d)

Figure 3. Implementation of the Write operation.

The Read operation is shown in Figure 4 as a function
which, given amemory list and an address set expression, returns
a data set expression indicating the contents of this location. It
does so by scanning through the list from lowest to highest prior-
ity. For each list entry, a Boolean expression hard_match is built
that indicates the contexts under which the entry is hard (definite)
and its (unique) address equals the read address a. Under these
contexts, that element’s data ed is selected. Else, under the con-
texts expressed by the Boolean expression soft_match, the
approximate union of the element’'s data and the previously
formed data is selected. Finally, under the contexts when both
hard_match and soft_match are false, the previously formed data
iskept.

function Read(List mem, ASExpr a) : DSExpr
[* Attempt to read from location a */
rd — Uy,
if =Valid(-Unique(a)) then
for each [&h, es, ea, eddin mem from head to tail do
hard_match — ehO(ea= a)
soft_match — (es O eh 0= (ea=a)) OOverlap(ea, a)
rd — ITE(hard_match, ed, I TE(soft_match, (ed 5 rd), rd))
returnrd

Figure 4. Implementation of the Read operation.

Uy is used as the default data set expression. The contexts
for which Read does not find a matching address in the list are
those for which the addressed memory location has never been
accessed by awrite. The data set expression U, is then returned
to indicate that the location may contain arbitrary data.

The Read operation is designed to be precise only in the
contexts when the argument address set expression is unique, and
to return U, otherwise. The expression soft_match is defined so
that for any list entry, whose address intersects the read address
a, the approximate union of the entry’s data set expression and
the previously formed data set expression is selected. Note that in
the contexts when the currently examined list element is hard, as
determined by eh, we require that the element’s address does not
equal the read address (so that it is a proper subset of it). This
ensures that the Boolean expressions for hard match and
soft_match will not be true simultaneously. For an implementa-
tion of the Read operation that yields more precise results, and

— 1

| Enabl e

(@) setup or hold KX X X X X X Enabl egyy
violation ‘ ‘

(b) stable setup and X X X X]| Enabl egy
hald, followed I Thold At_ Coint of
b stablei t - ime p0|n. [0}
yun einpu } unstable input

(c) ideal case X X |‘ Enabl egyy

Thold _

Figure 6. Timing diagrams for signal Enablegy in the case of three scenarios for the inputs of the auxiliary circuit:
(a) setup or hold violation; (b) stable setup and hold, followed by an unstable input, including Enable; (c) stable
setup and hold, followed by stable inputs until the falling edge of Enable - the ideal case.

for an optimized grsion of theWrite operation, the reader is
referred to [14].

5. Incorporation of Setup and Hold Times

intothe EMM

To detect errors due to timing violations we adopt the fol-
lowing philosoply. Rather than flag the violation asexification
failure, we model the potential data corruption caused by the vio-
lation with patterns containing Xalues. Subsequent operations
will further propagte these corruptedalies, causingerifica-
tion failures when the final state is chedk By this means we
avoid “false negative” verification filures, e.g., when a timing
violation occurs under a “dartare” condition.

Setup and hold times can be introduced for each port of the
EMM-modeled memory array by means of the auxiliary circuit
shawvn in Figure 5. Enabl egyy is the port enable signal sup-
plied to the EMM-circuit intedce. This circuit detects potential
timing violations and translates them into Xlwes onEnabl -
egmw The inputsl nq throughl ny, in the figure include all the
port inputs &cept for theEnabl e, i.e., both theAddr ess and
Dat a lines in the case of a write port, and only Addr ess
lines in the case of a read port. The auxiliary circuit assumes
level-sensitve memory operations, so thajfy is required to be
greater than or equal to 1. If only one of the conditiapg,J= 0
or Thoig = 1 is satisfied, the corresponding output of the stability
checler can be a wire connected to 1. If botly],= 0 and Fqiq
= 1, thenEnabl egyy,can be connected directly Emabl e.

Obsenre thatEnabl egyy,goes to 0 or to X together with
Enabl e. However, whenEnabl e goes from 0 to 1Enabl -
egnuWill become an X, which will be replaced by a 1 as soon as

Enabl egyyin the case of seral scenarios for the inputs of the
auxiliary circuit. If the setup or hold requirements are violated,
then Enabl egyy, will stay at X for the entire period when
Enabl e is high - see Figure 6.(a). If the setup and hold require-
ments are satisfied, so tltatabl ey, is already 1, bt then one

of the port inputs (includindgEnabl e) is unstable, the signal
Enabl egyy, will go to an X, as shen in Figure 6.(b). In the
ideal case (see Figure 6.(c)) the auxiliary circuit will triggey tw
memory operations - the first one due to theX0transition, and

the second one due to the-X transition ofEnabl egy
The definition of signaEnabl egyyaccording to the auxil-

iary circuit of Figure 5, together with the implementation of the
EMM and the EMM-circuit intedce, guarantees that the EMM
will behare as a conseative approximation of the replaced
memory array

If a circuit has been formallyevified with the EMM, the
definition of the EMM and the EMM-circuit intexe guarantee
that the system will function correctly withyamemory imple-
mentation whose timing parameters are bounded by the ones
used in the erification. This result means that for a write port
with parameters Jyp and Thog Used in the erification, ay
memory implementation, where the port has parametggg,J
and Th0|d, such that Tgetups Tsetup and Thold < Thold' will be
correct. Similarly for a read port with parametergefyy Thold:
Tomin: @Nd Tmax ary implementation where the patnav
parameters satisfy '&wp < Tsetup Thod < Thole @nd
Tomin< T'bmin < T'bmaxS Tomax Will function correctly

6. Experimental Results

Experiments were performed on the pipelined addressable

the setup and hold requirements are satisfied. By this means we@ccumulator - a pipelined data path witheEation and Write-

can detect an error caused by a read thedaps the time period
between the kggnning of the write operation, as determined by
the Enabl e of the write port making a 91 transition, and
before T,44 for the write has elapsed.

The timing diagrams in Figure 6 illustrate the signal

Back stages. ¢fwarding of the result in Write-Back is &k
place, if needed. Dataalues and results are stored in a dual-
ported rgister file, which we replaced with an EMM (assuming
it has been erified separately). Experimental results were
obtained using the Symbolicrdjectory Ewaluation technique

[12] for formal \erification. For a description of the circuit and circuit can adance the state of its delay chains within the stabil-
its specifications, the reader is referred to [13]. ity checlers instantly Before that, the EMM inteate needs to

The experiments were performed on an IBM RS/6000 43P- communicate to thevent scheduler the maximum number of
140 with a 233MHz PowerPC 604e microprocessor, having 512 time steps it can adwce. This will enable thevent scheduler to
MB of physical memory, and running AIX 4.1.5. Results for the coordinate EMMs with dferent setup and hold times that xoe
influence of Teypand Tgq ON the CPU time and memory ?st in the same _circuit, by_ gﬂo’ng gll EMMs to adance their
needed for the verification of the pipelined addressable accumu- internal state with the minimum intetvchosen among those
lator are presented in Table 2. Incorporation of these two timing time intenals and the time to the xtesvent on the eent queue.
requirements resulted in a severe penalty, which is partly an arti- One can alsoxplore ways that wuld give the user fibil-
fact of the not very efficient simulation engine in our tool. ity to define wariations of the EMM-circuit integice, according
Namely, the simulation algorithm has a quadratic complexity in t0 the timing constraints of a particular memory circuit.
terms of the number of circuit nets when processing the events
for a single time interval, while an optimal algorithm would have Refer ences
a linear complexity. The difference becomes pronounced when
simulating circuits with long dependence chains of gates, as is
the case for the stability checkers in the auxiliary circuit that we

[1] D.L. Beatty R.E. Bryant, and C.-J.H. §exr, “Synchronous Circuit
Verification by Symbolic Simulation: An lllustratignSixth MIT
Confeence on Advanced Reseain VLS| 1990, pp. 98-112.

propose. [2] R.E. Bryant, D.E. Beattyand C.-J.H. Sger, “Formal Hardvare
Verification by Symbolic &rnary Tajectory Ewaluation; 28th
CPU Time [s] Memory [MB] Design Aitomation Confance June, 1991, pp. 297-402.
[3] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered
Tsetup Thold Thold Binary-Decision Diagran’s,ACM Computing Serys \ol. 24,

No. 3 (September 1992), pp. 293-318.

0 1 10 100 0 1 10 | 100 [4] J.R. Burch, E.M. Cla K.L. McMillan, and D.L. Dill, “Sequen-
tial Circuit \erification Using Symbolic Model Checkifig27th

207 | 261 | 312 986|| 38| 39| 41| 69 Design Aitomation Confance June, 1990, pp. 46-51.

1| 234 | 271 | 313 977 || 39| 39| 41| 6.9 [5] J.R. Burch, E.M. Clas and D.E. Long, “Representing Circuits
10 2781 3211 331 [1009l] 41| 21| 21| 69 Morg Eficiently in Symbolic Model Checking28th Design Ato-
mation Confegnce June, 1991, pp. 403-407.
100 || 899] 943 | 966 | 1188|| 6.8| 6.8| 6.9 | 6.9 [6] J.R. Burch, and D.L. Dill, Automated ¥rification of Pipelined

Microprocessor Contrdl, CAY ‘94, D.L. Dill, ed., LNCS 818,
SpringerVerlag, June, 1994, pp. 68-80.

[7]1 A. Jain, “Formal Hardvare \érification by Symbolic fajectory
Evaluation; Ph.D. thesis, Department of Electrical and Computer
Engineering, Carrgge Mellon Unversity, August 1997.

Table 2. Experimental results f or the influence of

Tsetup @nd Thoig ON the CPU time and memor y required
for the verification of the pipelined ad dressab le
accum ulator with a 64 x64 Register File , modeled b y an

EMM. [8] J.S. Jephson, R.McQuarrie, and R.E. dgelsbeg, “A Three-

. o Value Computer Designevification Systeri,IBM Systemsalr-
We also performedxperiments for determining thefeft nal, Vol. 8, No. 3 (1969), pp. 178-188.

of Tpmin and Tomax 0N the CPU time and memory needed for the [9] M. Pandey, “Formal \érification of Memory ArraysPh.D. thesis,

verification of the pipelined addressable accumula@bioosing School of Computer Science, Cagiee Mellon University, May

Tsetup= Thold = 0, N=w = 64, while arying Tpp, in the range 1997.

of 0 to 1000, and gmaxin the range of g,y to 1000, resulted in [10] M. Pandg, and R.E. Bryant, “Exploiting Symmetry Wheerify-

a CPU time verhead of less than 4.5% and a memory require- ing TransistotLevel Circuits by Symbolic fajectory Ewaluation,

CAVY ‘97, O. Grumbeg, ed., LNCS 1254, Spring&erlag, June,
1997, pp. 244-255.

[11] C.-J.H. Sger, and R.E. Bryant, “Modeling of Circuit Delays in
Symbolic Simulatiori, Formal VLSI Corectness #&fification:

ment werhead of less than 0.3%. Thetra events processed
were ngligible in number and made no féifence for theent-
driven simulation engine, which handledi@éntly consecutie

events that are widely separated in time. Therefore, incorporation VLS Design Methods, ,IL.J.M. Claesen, ed., Eler Science
of minimum and maximum delays for read ports of the EMM Publishers B.\ 1990, pp. 23-37.

comes at noxra cost, gien a correctly functioning circuit, [12] C.-J.H. Sger, and R.E. Bryant, “6rmal \&rification by Symbolic
while enabling simulation and formaésfication under timing Evaluation of Rrtially-Ordered Tajectories, Formal Methods in
requirements. System Designvol. 6, No. 2 (March 1995), pp. 147-190.

[13] M.N. Veley, R.E. Bryant, and A. Jain, “Bfient Modeling of
Memory Arrays in Symbolic Simulatioif, CAV ‘97, O. Grumbey,

7. FutureWork ed., LNCS 1254, Springaferlag, June, 1997, pp. 388-399.
[14] M.N. Veley, and R.E. Bryant, “Hicient Modeling of Memory
The eficiengy of modeling setup and hold times can be Arrays in Symbolic €rnary Simulatiori? International Confer-
increased significantly if the auxiliary circuit that monitors them ence on dols and Algorithms for the Construction and Analysis of
is implemented behiorally, as part of the EMM. dticularly, if Systems (ACAS '98) B. Stefen, ed., LNCS 1384, Spring¥fer-

ways are preided for the eent scheduler to inform the EMM lag, March-April, 1998, pp. 136-150.

interface that there are ngents on theent queue for a certain
period ahead, then the befaal implementation of the auxiliary 2. Available from: htt p: // www. ece. cmu. edu/ ~nvel ev

