
Copyright 1998 IEEE. Published in the Proceedings of ICCD’98, 5-7 October 1998 in Austin, Texas. Personal use of this material is per-
mitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 732-562-3966.

Incorporating Timing Constraints in the Efficient Memory Model
for Symbolic Ternary Simulation1

Miroslav N. Velev*

mvelev@ece.cmu.edu
http://www.ece.cmu.edu/~mvelev

Randal E. Bryant‡, *

randy.bryant@cs.cmu.edu
http://www.cs.cmu.edu/~bryant

*Department of Electrical and Computer Engineering
‡School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Abstract

This paper introduces the four timing constraints of setup
time, hold time, minimum delay, and maximum delay in the Effi-
cient Memory Model (EMM). The EMM is a behavioral model,
where the number of symbolic variables used to characterize the
initial state of the memory is proportional to the number of dis-
tinct symbolic memory locations accessed. The behavioral model
provides a conservative approximation of the replaced memory
array, while allowing the address and control inputs of the mem-
ory to accept symbolic ternary values. If a circuit has been for-
mally verified with the behavioral model, the system is
guaranteed to function correctly with any memory implementa-
tion whose timing parameters are bounded by the ones used in
the verification.

1. Intr oduction
Decreasing feature sizes in new semiconductor technolo-

gies increase the wire delays and mandate that simulation and
verification with accounting for timing requirements become the
norm in the near future. Ternary simulation, where the
“unknown” value X is used to indicate that a signal can be either
0 or 1, has long been used to validate digital circuits and to detect
timing errors in them [8]. Namely, the value X has been used to
represent a signal in transition from one binary value to another.
Additionally, X’s can be used to model uninitialized nets or
“don’t-care” conditions. The effects of the X’s are propagated
through the circuit by the simulator. The use of X’s to represent
transitions allows the simulator to detect combinational hazards,
critical races, and feedback oscillations. Given that the simula-
tion algorithm satisfies a monotonicity property, any binary val-
ues resulting when simulating patterns with X’s would also result
when the X’s are replaced by any combination of 0’s and 1’s
[12]. Hence, employing X’s reduces the number of simulation
patterns, often dramatically. However, ternary simulators will
sometimes produce a value X, when an exhaustive analysis
would determine the value to be binary (i.e., 0 or 1).

This problem has been resolved by combining ternary mod-
eling with symbolic simulation [1], such that the signals can

1. This research was supported in part by the SRC under
contract 98-DC-068.

accept symbolic ternary values, instead of the scalar values 0, 1,
and X. Each symbolic ternary value is represented by a pair of
symbolic Boolean expressions, defined over a set of symbolic
Boolean variables, that encode the cases when the signal would
evaluate to 0, 1, or X. The advantage of symbolic ternary simula-
tion is that it efficiently covers a wide range of circuit operating
conditions with a single symbolic simulation pattern that
involves far fewer variables than would be required for a com-
plete binary symbolic simulation. In addition to validation, sym-
bolic ternary simulation has proven to be very powerful for
formal verification, as demonstrated by the Symbolic Trajectory
Evaluation (STE) technique [12][7]. Furthermore, symbolic ter-
nary simulation can be combined with different delay models.
This has been achieved by Seger and Bryant [11] by assuming
that gates have zero delays and are connected in series with delay
boxes that model inertial delay bounded by a minimum and a
maximum value. However, the application of symbolic simula-
tion has been traditionally restricted to circuits with small mem-
ory arrays.

The normal simulation models for memory arrays at the
transistor, gate, and behavioral levels explicitly represent each
memory bit. This is not a problem for conventional simulation
which uses a single logic value to denote the state of a memory
bit. However, symbolic simulation would require a symbolic
variable for every bit of the memory. Furthermore, bit-level sym-
bolic model checking [4][5] would need two symbolic variables
per memory bit, in order to build the transition relation. There-
fore, in both methods the number of variables is proportional to
the size of the memory, and is prohibitive for large memory
arrays.

This limitation is overcome in our previous work [13] by
replacing each memory array with an Efficient Memory Model
(EMM). The EMM is a behavioral model, which allows the num-
ber of symbolic variables used to be proportional to the number
of distinct symbolic memory locations accessed rather than to the
size of the memory. It is based on the observation that a single
execution sequence typically accesses only a limited number of
distinct symbolic locations. While the EMM presented in [13]
assumes simulation over symbolic binary values, our later work
[14] allows the EMM to accept symbolic ternary values at its
address and control inputs, while providing a conservative
approximation of the replaced memory array. Conservative
approximation means that false positive verification results are
guaranteed not to occur, although false negative verification

2

results are possible.
The contributions of this paper are that it incorporates the

timing parameters of setup time (Tsetup), hold time (Thold), mini-

mum delay (TDmin), and maximum delay (TDmax) into the ter-

nary EMM [14]. Experimental results were obtained using the
STE technique.

A symbolic representation of memory arrays has been used
by Burch and Dill [6]. They apply uninterpreted functions with
equality, which abstract away the details of the data path and
allow them to introduce only a single symbolic variable to denote
the initial state of the entire memory. EachWrite or Read opera-
tion results in building a formula over the current memory state,
so that the latest memory state is a formula reflecting the
sequence of memory writes. In our method, the memory state is
represented with a list of entries encoding the sequence of
updates of symbolic addresses with symbolic data. OurWrite
operation modifies this list. However, we perform the verification
at the circuit level of the implementation and need bit-level data
for symbolic word-level memory locations in order to verify the
data path. This requires the user to introduce symbolic variables
proportional to both the number of distinct symbolic memory
locations accessed and the number of data bits per location.

The introduction of minimum and maximum delays for
memory read ports in our model is conceptually similar to the
way that Seger and Bryant [11] model inertial delay bounded by
a minimum and a maximum value, although implemented within
the software interface that links the EMM and the rest of the cir-
cuit. However, our treatment of setup and hold times for memory
ports is tailored to the specifics of the EMM in the context of
symbolic ternary simulation. Namely, setup and hold times are
accounted for by means of an auxiliary circuit that translates tim-
ing violations into ambiguity expressed by the value X at the
control input of the corresponding memory port. The design of
the auxiliary circuit, the EMM, and its software interface guaran-
tee a conservative approximation of the replaced memory array.

This paper advocates a two step approach for the verifica-
tion of circuits with large embedded memories. The first step is
to use STE to verify the transistor level memory arrays indepen-
dently from the rest of the circuit. Pandey and Bryant have com-
bined symmetry reductions and STE to enable the verification of
very large memory arrays at the transistor level [9][10]. The sec-
ond step is to use STE to verify the circuit after the memory
arrays are replaced by EMMs and is the focus of the present
work.

In the remainder of the paper, Section 2 describes the sym-
bolic domains used in our algorithms. Section 3 presents the
EMM and a way to incorporate minimum and maximum delays
in the model. Section 4 explains the EMM algorithms. Section 5
shows how to incorporate setup and hold times in the model.
Experimental results and conclusions are presented in Section 6,
and plans for future work are outlined in Section 7.

2. Symbolic Domains

We will consider three different domains - control, address,
and data - corresponding to the three different types of informa-
tion that can be applied at the inputs of a memory array. A con-

trol expressionc will represent the value of a node in ternary
symbolic simulation and will have a high encodingc.h and a low
encodingc.l, each of which is a Boolean expression. The ternary
values that can be represented by a control expressionc are
shown in Table 1. We would write [c.h, c.l] to denotec. It will be
assumed thatc.h and c.l cannot be simultaneouslyfalse. The
typesBExpr, CExpr will denote respectively Boolean and con-
trol expressions in the algorithms to be presented.

The memory address and data inputs, since connected with
circuit nodes, will receive ternary values represented as control
expressions. Hence, addresses and data will be represented by
vectors of control expressions having widthn andw, respectively,
for a memory withN = 2n locations, each holding a word consist-
ing of w bits. Observe that an X at a given bit position represents
the “unknown” value, i.e., the bit can be either 0 or 1, so that
many distinct addresses or data will be represented. To capture
this property of ternary simulation, we introduce the type
ASExpr (address set expression) to denote a set of addresses.
Similarly, the typeDSExpr (data set expression) will denote a
set of data. Note that in both cases, a set will be represented by a
single vector of ternary values. We will use the notation〈a1, ... ,
an〉 to explicitly represent the address set expressiona, whereai
is the control expression for the corresponding bit position ofa.
Data set expressions will have a similar explicit representation,
but with w bits. Symbolic variables will be introduced in each of
the domains and will be used in expression generation.

The symbolUD will designate the universal data set. It will
represent the most general information about a set of data. In ter-
nary logic,UD can be modeled by a vector of control expressions
consisting entirely of X’s.

We will use the termcontext to refer to an assignment of
values to the symbolic variables. A Boolean expression can be
viewed as defining a set of contexts, namely those for which the
expression evaluates totrue.

A symbolic predicate is a function which takes symbolic
arguments and returns a symbolic Boolean expression. The fol-
lowing symbolic predicates will be used in our algorithms, where
c is of typeCExpr, anda is of typeASExpr:

Zero(c) =̇ ¬c.h∧ c.l, (1)

Hard(c) =̇ c.h∧ ¬c.l, (2)

Soft(c) =̇ c.h∧ c.l, (3)

Unique(a) =̇ ¬ Soft(ai). (4)

The predicatesZero, Hard, and Soft define the conditions for
their arguments to be the ternary 0, 1, and X, respectively. The

Ternary value c.h c.l

0 false true

1 true false

X true true

Table 1. 2-bit encoding of ternary logic.

n

i = 1

3

predicate Unique defines the condition for the address set expres-
sion a to represent a unique or single address.

The selection operator ITE (“If-Then-Else”), when applied
on three Boolean expressions, is defined as:

ITE(b, t, e) =̇ (b ∧ t) ∨ (¬b ∧ e). (5)

Address set comparison with another address set is implemented
as:

a1 = a2 =̇ ¬ [(a1.hi ⊕ a2.hi) ∨ (a1.li ⊕ a2.li)], (6)

where a1.hi and a1.li represent the high and low encodings of the
control expression for bit i of address set expression a1. Address
set selection a1 ← ITE(b, a2, a3) is implemented by selecting
the corresponding bits:

a1.hi ← ITE(b, a2.hi, a3.hi),

a1.li ← ITE(b, a2.li, a3.li), i = 1, ... , n. (7)

Checking whether address set a1 is a subset of address set a2 is
done by:

a1 ⊆ a2 =̇ ¬ (a1.hi ∧ ¬a2.hi ∨ a1.li ∧ ¬a2.li), (8)

and checking address sets a1 and a2 for overlap is implemented
by:

Overlap(a1, a2) =̇ (a1.li ∧ a2.li ∨ a1.hi ∧ a2.hi). (9)

The definition of symbolic predicates over data set expressions is
similar, but over vectors of width w.

Note that all of the above predicates are symbolic, i.e., they
return a symbolic Boolean expression and will be true in some
contexts and false in others. Therefore, a symbolic predicate can-
not be used as a control decision in algorithms. The function
Valid, when applied to a symbolic Boolean expression, will
return true if the expression is valid or equal to true (i.e., true for
all contexts), and will return false otherwise. We can make con-
trol decisions based on whether or not an expression is valid.

We will also need to form a data set expression which is the
union of two data set expressions, d1 and d2. If these differ in
exactly one bit position, i.e., one of them has a 0 and the other a
1, then the ternary result will have an X in that bit position and
will be an exact computation. However, if d1 and d2 differ in
many bit positions, these will be represented as X’s in the ternary
result and that will not always yield an exact computation. For
example, if d1 = 〈0, 1〉 and d2 = 〈1, 0〉, the result will be 〈X, X〉
and will not be exact, as it will also contain the data set expres-
sions 〈0, 0〉 and 〈1, 1〉, which are not subsets of d1 or d2. We

n

i = 1

n

i = 1

n

i = 1

define the operation approximate union d1 ∪∼ d2 of two data set
expressions as:

[d1 ∪∼ d2]i =̇ [d1.hi ∨ d2.hi, d1.li ∨ d2.li], i = 1, ... , w. (10)

We have used Ordered Binary Decision Diagrams (BDDs)
[3] to represent the Boolean expressions in our implementation.
However, there is nothing about this work that intrinsically
requires it to be BDD based. Any canonical representation of
Boolean expressions can be substituted.

3. Efficient Modeling of Memory Arrays

The main assumption of our approach is that every memory
array can be represented, possibly after the introduction of some
extra logic, as a memory with only write and read ports, all of
which have the same numbers of address and data bits, as shown
in Figure 1.

The interaction of the memory array with the rest of the cir-
cuit is assumed to take place when a port Enable signal is not
0. In case of multiple port Enables not being 0 simultaneously,
the resulting accesses to the memory array will be ordered
according to the priority of the ports.

Write ports can have requirements for Tsetup and Thold,
while read ports can additionally have requirements for TDmin
and TDmax. The port inputs must be stable from Tsetup units of
time before the rising edge of the port Enable until Thold units
of time after that in order for the memory operation to take place
correctly. For the same reason, we require that the port Enable
be stable for Thold units of time after its rising edge. Thold is the
time necessary to correctly access the memory location, specified
by the port address inputs, after the port Enable signal goes
high. In the case of read ports, TDmin and TDmax give the min.
and max. delays, respectively, needed for the data to propagate
from the memory storage cells to the port data outputs. These
four timing parameters can take only non-negative integer values
with TDmin ≤ TDmax.

During symbolic simulation, the memory state is repre-
sented by a list containing entries of the form 〈h, s, a, d〉, where
h and s are Boolean expressions denoting the set of contexts for
which the entry is defined, a is an address expression denoting a
memory location, and d is a data expression representing the con-
tents of this location. The context information is included for
modeling memory systems where the Write operation may be
performed conditionally on the value of a control signal c. The
Boolean expression h represents the contexts
Hard(c) ∧ Unique(a), when the control signal was 1 and the

Figure 1. View of a memory array, according to our model.

WRITE
PORT 0

READ
PORT 0

Address
Data

Enable

Address
Data
Enable MEMORY ARRAY

(N = 2n addresses
of w bits each)READ

PORT Q

Address
Data
Enable

WRITE
PORT P

Address
Data

Enable

n
w

n
w

n
w

n
w

4

address a was unique. Under contexts h the location a is defi-
nitely overwritten with data d. The Boolean expression s repre-
sents the contexts Soft(c) ∨ Hard(c) ∧ ¬Unique(a), when the
control signal was an X, or it was a 1 and the address was not
unique. Under contexts s the location a is uncertainly overwritten
with data d. Initially the list is empty. The type List will be used
to denote such memory lists.

The list interacts with the rest of the circuit by means of a
software interface developed as part of the symbolic simulation
engine. The interface monitors the memory input lines. Should a
memory input value change, given that its corresponding port
Enable value c is not 0, a Write or a Read operation will result,
as determined by the type of the port. The Address and Data
lines of the port will be scanned in order to form the address set
expression a and the data set expression d, respectively. A Write
operation takes as arguments both a and d, while a Read opera-
tion takes only a. Both of these operations will be presented in
the next section.

A Read operation retrieves from the list a data set expres-
sion rd that represents the data contents of address a. The soft-
ware interface completes the read by scheduling the Data lines
of the port to be updated with the data set expression
ITE(Hard(c), rd, ITE(Soft(c), (rd ∪∼ fd), fd)) at TDmax units of
time ahead of the current simulation time. The data set expres-
sion fd is the one that the Data lines will otherwise have in that
future simulation time interval. Additionally, in the case when
TDmin < TDmax, the software interface schedules the Data lines
of the read port to be updated with the data set expression
ITE(Zero(c) , fd, (rd ∪∼ fd)) at TDmin units of time ahead of the
current simulation time. Again, the data set expression fd is the
one that will otherwise appear at the Data outputs in that future
simulation time. This implementation of minimum and maxi-
mum delays in the EMM preserves its behavior as a conservative
approximation of the replaced memory array.

Figure 2 illustrates how a Read operation will affect the val-
ues of the port Data outputs. Under the contexts where the value
c of the port Enable is 0, the data at the port Data lines will be

unchanged and will be fd. Under the contexts when c is a 1, the
approximate union rd ∪∼ fd, where rd is the data set expression
retrieved by the Read operation, will be the value of the Data
outputs in the interval from TDmin to TDmax ahead from the read
time, to be followed by a value of rd after that. Finally, under the
contexts when c is an X, rd ∪∼ fd will appear at the Data lines
after a delay of TDmin.

After completing a Write operation, the software interface
checks every read port of the same memory for a possible on-
going read (as determined by the read port Enable value being
different from 0) from an address that overlaps the one of the
recent write. For any such port, a Read operation is invoked
immediately and the Data lines of the read port are updated with
rd ∪∼ d where rd is the data set expression returned by the Read,
and d is the data set expression that would otherwise appear on
the Data lines at that time. This guarantees that the EMM would
behave as a conservative approximation of the replaced memory
array.

4. Implementation of Memory Operations

4.1 Support Operations

The list entries are kept in order from head (low priority) to
tail (high priority). The initial state of every memory location is
assumed to contain arbitrary data and is represented with the uni-
versal data set UD. Entries in the list from low to high priority
model the sequence of memory writes with the tail entry being
the result of the latest memory update. Entries may be inserted at
the tail end only, using procedure InsertTail, and may be deleted
using procedure Delete.

4.2 Implementation of Memory Read and
Write Operations

The Write operation, shown as a procedure in Figure 3,
takes as arguments a memory list, a control expression denoting

Figure 2. Timing dia grams f or the data that will appear at the Data outputs of a read por t, under the three possib le
conte xts f or the v alue c of the por t’s Enab le signal. rd is the data set e xpression retrie ved fr om memor y by the Read
operation. fd is the data that will appear at the Data outputs T Dmin units of time ahead fr om the Read operation time ,
if the Read did not take place .

Zero(c):

Soft(c):

Hard(c):

Data outputs

TDmax

time point of Read operation

TDmin

Data outputs

Data outputsrd ∪∼ fd

fd

rd ∪∼ fd

rd

5

the contexts for which the write should be performed, and
address set and data set expressions denoting the memory loca-
tion and its desired contents, respectively. As the code shows, the
write is implemented by simply inserting an element into the tail
(high priority) end of the list, indicating that this entry should
overwrite any other entries for this address.

procedure Write(List mem, CExpr c, ASExpr a, DSExpr d)

/* Write data d to location a under control c */

h ← Hard(c) ∧ Unique(a)

s ← Soft(c) ∨ Hard(c) ∧ ¬Unique(a)

InsertTail(mem, 〈h, s, a, d〉)

Figure 3. Implementation of the Write operation.

The Read operation is shown in Figure 4 as a function
which, given a memory list and an address set expression, returns
a data set expression indicating the contents of this location. It
does so by scanning through the list from lowest to highest prior-
ity. For each list entry, a Boolean expression hard_match is built
that indicates the contexts under which the entry is hard (definite)
and its (unique) address equals the read address a. Under these
contexts, that element’s data ed is selected. Else, under the con-
texts expressed by the Boolean expression soft_match, the
approximate union of the element’s data and the previously
formed data is selected. Finally, under the contexts when both
hard_match and soft_match are false, the previously formed data
is kept.

function Read(List mem, ASExpr a) : DSExpr

/* Attempt to read from location a */

rd ← UD
if ¬Valid(¬Unique(a)) then

for each 〈eh, es, ea, ed〉 in mem from head to tail do

hard_match ← eh ∧ (ea = a)

soft_match ← (es ∨ eh ∧ ¬(ea = a)) ∧ Overlap(ea, a)

rd ← ITE(hard_match, ed, ITE(soft_match, (ed ∪∼ rd), rd))

return rd

Figure 4. Implementation of the Read operation.

UD is used as the default data set expression. The contexts
for which Read does not find a matching address in the list are
those for which the addressed memory location has never been
accessed by a write. The data set expression UD is then returned
to indicate that the location may contain arbitrary data.

The Read operation is designed to be precise only in the
contexts when the argument address set expression is unique, and
to return UD otherwise. The expression soft_match is defined so
that for any list entry, whose address intersects the read address
a, the approximate union of the entry’s data set expression and
the previously formed data set expression is selected. Note that in
the contexts when the currently examined list element is hard, as
determined by eh, we require that the element’s address does not
equal the read address (so that it is a proper subset of it). This
ensures that the Boolean expressions for hard_match and
soft_match will not be true simultaneously. For an implementa-
tion of the Read operation that yields more precise results, and

 Figure 5. (a) The auxiliary circuit incorporating setup and hold times for one port of an EMM-modeled memory
array; (b) implementation of the stability checker for Tsetup = 2 and Thold = 4. The buffers have integer delays
denoted by the numbers after the # sign.

Stability

Checker

(T
setu

p)

(T
h

o
ld -1)

(1)

 (a) (b)

In1 Inn

In

S
table for (T

h
o

ld -1= 3)

Stability Checker:

#(Thold-1)

X

Enable

 EnableEMM

To the
EMM -
Circuit

#1 #1 #1
Stability

Checker

(T
setu

p)

Stable_setup Stable_hold

Interface

#1

Rising_edge

(T
h

o
ld -1)

S
table for (T

setu
p = 2)

S
table for

(1)

(1)

Stability

Checker

(T
setu

p)

(T
h

o
ld -1)

(1)

#1

Stable_1

6

for an optimized version of theWrite operation, the reader is
referred to [14].

5. Incorporation of Setup and Hold Times
into the EMM

To detect errors due to timing violations we adopt the fol-
lowing philosophy. Rather than flag the violation as a verification
failure, we model the potential data corruption caused by the vio-
lation with patterns containing X values. Subsequent operations
will further propagate these corrupted values, causing verifica-
tion failures when the final state is checked. By this means we
avoid “false negative” verification failures, e.g., when a timing
violation occurs under a “don’t-care” condition.

Setup and hold times can be introduced for each port of the
EMM-modeled memory array by means of the auxiliary circuit
shown in Figure 5. EnableEMM is the port enable signal sup-
plied to the EMM-circuit interface. This circuit detects potential
timing violations and translates them into X values onEnabl-
eEMM. The inputsIn1 throughInn in the figure include all the
port inputs except for theEnable, i.e., both theAddress and
Data lines in the case of a write port, and only theAddress
lines in the case of a read port. The auxiliary circuit assumes
level-sensitive memory operations, so that Thold is required to be
greater than or equal to 1. If only one of the conditions Tsetup = 0
or Thold = 1 is satisfied, the corresponding output of the stability
checker can be a wire connected to 1. If both Tsetup = 0 and Thold
= 1, thenEnableEMM can be connected directly toEnable.

Observe thatEnableEMM goes to 0 or to X together with
Enable. However, whenEnable goes from 0 to 1,Enabl-
eEMM will become an X, which will be replaced by a 1 as soon as
the setup and hold requirements are satisfied. By this means we
can detect an error caused by a read that overlaps the time period
between the beginning of the write operation, as determined by
the Enable of the write port making a 0→1 transition, and
before Thold for the write has elapsed.

The timing diagrams in Figure 6 illustrate the signal

EnableEMM in the case of several scenarios for the inputs of the
auxiliary circuit. If the setup or hold requirements are violated,
then EnableEMM will stay at X for the entire period when
Enable is high - see Figure 6.(a). If the setup and hold require-
ments are satisfied, so thatEnableEMM is already 1, but then one
of the port inputs (includingEnable) is unstable, the signal
EnableEMM will go to an X, as shown in Figure 6.(b). In the
ideal case (see Figure 6.(c)) the auxiliary circuit will trigger two
memory operations - the first one due to the 0→X transition, and
the second one due to the X→1 transition ofEnableEMM.

The definition of signalEnableEMM according to the auxil-
iary circuit of Figure 5, together with the implementation of the
EMM and the EMM-circuit interface, guarantees that the EMM
will behave as a conservative approximation of the replaced
memory array.

If a circuit has been formally verified with the EMM, the
definition of the EMM and the EMM-circuit interface guarantee
that the system will function correctly with any memory imple-
mentation whose timing parameters are bounded by the ones
used in the verification. This result means that for a write port
with parameters Tsetup and Thold used in the verification, any
memory implementation, where the port has parameters T′setup
and T′hold, such that T′setup≤ Tsetup, and T′hold ≤ Thold, will be
correct. Similarly, for a read port with parameters Tsetup, Thold,
TDmin, and TDmax, any implementation where the port’s new
parameters satisfy T′setup ≤ Tsetup, T′hold ≤ Thold, and
TDmin ≤ T′Dmin ≤ T′Dmax≤ TDmax, will function correctly.

6. Experimental Results

Experiments were performed on the pipelined addressable
accumulator - a pipelined data path with Execution and Write-
Back stages. Forwarding of the result in Write-Back is takes
place, if needed. Data values and results are stored in a dual-
ported register file, which we replaced with an EMM (assuming
it has been verified separately). Experimental results were
obtained using the Symbolic Trajectory Evaluation technique

Figure 6. Timing diagrams for signal EnableEMM in the case of three scenarios for the inputs of the auxiliary circuit:
(a) setup or hold violation; (b) stable setup and hold, followed by an unstable input, including Enable; (c) stable
setup and hold, followed by stable inputs until the falling edge of Enable - the ideal case.

(a) setup or hold

(b) stable setup and

Enable

(c) ideal case

EnableEMM

EnableEMM

EnableEMM

Thold time point of

Thold

 violation

 hold, followed
by unstable input

X X X X X X X

X X X

X X X

unstable input

X X

7

[12] for formal verification. For a description of the circuit and
its specifications, the reader is referred to [13].

The experiments were performed on an IBM RS/6000 43P-
140 with a 233MHz PowerPC 604e microprocessor, having 512
MB of physical memory, and running AIX 4.1.5. Results for the
influence of Tsetup and Thold on the CPU time and memory
needed for the verification of the pipelined addressable accumu-
lator are presented in Table 2. Incorporation of these two timing
requirements resulted in a severe penalty, which is partly an arti-
fact of the not very efficient simulation engine in our tool.
Namely, the simulation algorithm has a quadratic complexity in
terms of the number of circuit nets when processing the events
for a single time interval, while an optimal algorithm would have
a linear complexity. The difference becomes pronounced when
simulating circuits with long dependence chains of gates, as is
the case for the stability checkers in the auxiliary circuit that we
propose.

We also performed experiments for determining the effect
of TDmin and TDmax on the CPU time and memory needed for the
verification of the pipelined addressable accumulator. Choosing
Tsetup = Thold = 0, N = w = 64, while varying TDmin in the range
of 0 to 1000, and TDmax in the range of TDmin to 1000, resulted in
a CPU time overhead of less than 4.5% and a memory require-
ment overhead of less than 0.3%. The extra events processed
were negligible in number and made no difference for the event-
driven simulation engine, which handles efficiently consecutive
events that are widely separated in time. Therefore, incorporation
of minimum and maximum delays for read ports of the EMM
comes at no extra cost, given a correctly functioning circuit,
while enabling simulation and formal verification under timing
requirements.

7. Future Work

The efficiency of modeling setup and hold times can be
increased significantly if the auxiliary circuit that monitors them
is implemented behaviorally, as part of the EMM. Particularly, if
ways are provided for the event scheduler to inform the EMM
interface that there are no events on the event queue for a certain
period ahead, then the behavioral implementation of the auxiliary

Tsetup

CPU Time [s] Memory [MB]

Thold Thold

0 1 10 100 0 1 10 100

0 207 261 312 986 3.8 3.9 4.1 6.9

1 234 271 313 977 3.9 3.9 4.1 6.9
10 278 321 331 1 009 4.1 4.1 4.1 6.9

100 899 943 966 1 188 6.8 6.8 6.9 6.9

Table 2. Experimental results f or the influence of
Tsetup and Thold on the CPU time and memor y required
for the verification of the pipelined ad dressab le
accum ulator with a 64 ×64 Register File , modeled b y an
EMM.

circuit can advance the state of its delay chains within the stabil-
ity checkers instantly. Before that, the EMM interface needs to
communicate to the event scheduler the maximum number of
time steps it can advance. This will enable the event scheduler to
coordinate EMMs with different setup and hold times that coex-
ist in the same circuit, by allowing all EMMs to advance their
internal state with the minimum interval chosen among those
time intervals and the time to the next event on the event queue.

One can also explore ways that would give the user flexibil-
ity to define variations of the EMM-circuit interface, according
to the timing constraints of a particular memory circuit.

References

[1] D.L. Beatty, R.E. Bryant, and C.-J.H. Seger, “Synchronous Circuit
Verification by Symbolic Simulation: An Illustration,” Sixth MIT
Conference on Advanced Research in VLSI, 1990, pp. 98-112.

[2] R.E. Bryant, D.E. Beatty, and C.-J.H. Seger, “Formal Hardware
Verification by Symbolic Ternary Trajectory Evaluation,” 28th
Design Automation Conference, June, 1991, pp. 297-402.

[3] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered
Binary-Decision Diagrams,” ACM Computing Serveys, Vol. 24,
No. 3 (September 1992), pp. 293-318.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill, “Sequen-
tial Circuit Verification Using Symbolic Model Checking,” 27th
Design Automation Conference, June, 1990, pp. 46-51.

[5] J.R. Burch, E.M. Clarke, and D.E. Long, “Representing Circuits
More Efficiently in Symbolic Model Checking,” 28th Design Auto-
mation Conference, June, 1991, pp. 403-407.

[6] J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined
Microprocessor Control,” CAV ‘94, D.L. Dill, ed., LNCS 818,
Springer-Verlag, June, 1994, pp. 68-80.

[7] A. Jain, “Formal Hardware Verification by Symbolic Trajectory
Evaluation,” Ph.D. thesis, Department of Electrical and Computer
Engineering, Carnegie Mellon University, August 1997.

[8] J.S. Jephson, R.P. McQuarrie, and R.E. Vogelsberg, “A Three-
Value Computer Design Verification System,” IBM Systems Jour-
nal, Vol. 8, No. 3 (1969), pp. 178-188.

[9] M. Pandey, “Formal Verification of Memory Arrays,” Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, May
1997.

[10] M. Pandey, and R.E. Bryant, “Exploiting Symmetry When Verify-
ing Transistor-Level Circuits by Symbolic Trajectory Evaluation,”
CAV ‘97, O. Grumberg, ed., LNCS 1254, Springer-Verlag, June,
1997, pp. 244-255.

[11] C.-J.H. Seger, and R.E. Bryant, “Modeling of Circuit Delays in
Symbolic Simulation,” Formal VLSI Correctness Verification:
VLSI Design Methods, II, L.J.M. Claesen, ed., Elsevier Science
Publishers B.V., 1990, pp. 23-37.

[12] C.-J.H. Seger, and R.E. Bryant, “Formal Verification by Symbolic
Evaluation of Partially-Ordered Trajectories,” Formal Methods in
System Design, Vol. 6, No. 2 (March 1995), pp. 147-190.

[13] M.N. Velev, R.E. Bryant, and A. Jain, “Efficient Modeling of
Memory Arrays in Symbolic Simulation,”2 CAV ‘97, O. Grumberg,
ed., LNCS 1254, Springer-Verlag, June, 1997, pp. 388-399.

[14] M.N. Velev, and R.E. Bryant, “Efficient Modeling of Memory
Arrays in Symbolic Ternary Simulation,”2 International Confer-
ence on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’98), B. Steffen, ed., LNCS 1384, Springer-Ver-
lag, March-April, 1998, pp. 136-150.

2. Available from: http://www.ece.cmu.edu/~mvelev

