
Language Modeling for Dialog System

Wei Xu, Alex Rudnicky
School of Compueter Science, Carnegie Mellon University

Pittsburgh, Pennsylvania, 15213, USA
xw@cs.cmu.edu, air@cs.cmu.edu

Abstract

Language modeling for speech recognizer in dialog systems can
take two forms. Human input can be constrained through a
directed dialog, allowing the decoder to use a state-specific
language model to improve recognition accuracy. Mixed-
initiative systems allow for human input that while domain-
specific might not be state-specific. Nevertheless, for the most
part human input to a mixed-initiative system is predictable,
particularly when given information about the immediately
preceding system prompt. The work reported in this paper
addresses the problem of balancing state-specific and general
language modeling in a mixed-initiative dialog system. By
incorporating dialog state adaptation of the language model, we
have reduced the recognition error rate by 11.5%.

1. Introduction

Recent advances in speech recognition technologies and
computer hardware have made it possible to build human-
computer spoken dialogue systems for a wide variety of
application. However, the performance of speech recognition is
still a bottleneck of these systems [7]. A lot of research effort
has been devoted to detecting and recovering from recognition
errors.

In this work, we have tried to improve the recognition
performance of Carnegie Mellon Communicator [11], a
telephone based automated travel agent system, by
incorporating dialogue state adaptation of the language model.
Language modeling for speech recognizer in dialog systems can
take two forms. Human input can be constrained through a
directed dialog, allowing the decoder to use a state-specific
language model to improve recognition accuracy [6] [9]. In this
way, dialog states have been used to partition the whole set of
utterances into subsets and then train standard n-gram language
models from each partitioned set. Mixed-initiative dialog
systems allow for human input that while domain-specific might
not be state-specific. Nevertheless, for the most part, human
input to a mixed-initiative system is predictable, particularly
when given information about the immediately preceding
system prompt. In [10], the state-specific language models were
interpolated with a general language model using Viterbi
algorithm.

The work reported in this paper addresses the problem of
balancing state-specific and general language modeling in a
mixed-initiative dialog system. We have shown that by our
approach, we can improve the system performance. The
performance is reported in terms of perplexity and actual
recognition word accuracy.

2. System overview

The dialogue system we do our experiment on is CMU
Communicator, a telephone based automated travel planning
system. Communicator is a mixed-initiative spoken dialog
system. In this system, Sphinx-2 speech recognizer transcribes
user’s speech into text and passes to Phoenix parser to generate
semantic interpretation. Then dialog manager decides how to
interact with user and database. At different state of a dialog, the
dialog manager will give different prompt to the user and the
user’s response may or may not relate to system’s prompt.

3. Building state dependent language model

Because user's response depends on what is heard by the user,
we can define state as preceding system prompt (i.e. the natural
language generation frame). User's utterances are classified into
16 states (Table 1) according to its preceding natural language
generation frames. We take the following procedures to build
the state dependent language model.

• A general language model is built from the whole corpus,
using Katz backoff with Good-Turing discount. We use
CMU-Cambridge toolkit [1] to build the language model.

• We build a trigram back-off language model for each state.
The unigram probabilities are back-off to the unigram
probability of the general model:

() ()
()

 ∈

=
otherwise

 if ˆ
wP

VwwP
wP

G

SS
S λ

Where
SV is the vocabulary from the corpus of each state,

λ is a normalization factor in order to make ()wPŜ
 sum to

1.

• Then each state dependent language model is linearly
interpolated with the general language model. The
interpolation weights are optimally determined by EM
(Expectation-Maximization [2]) algorithm using separate
holdout data. The interpolated probability of a word is
given by:

() () ()WPWPWP GS βα +=
where the interpolation weights α and β
satisfy 1=+ βα

Our corpus is drawn from data collected using the CMU
Communicator. The log file of the system contains every system
output and user input. Data collected from June 1998 to May
1999 is used as development data, which has 182K words, 42K
utterances. Test data is from the recording in June 1999, which
has 6289 words, 1750 utterances.

State Test
size

 PerpG PerpS Perp
Reduction

WERRG WERRS WERR
Reduction

need_car 169 7.04 4.74 32.7 12.4 13.0 -4.8
need_hotel 161 9.00 6.71 25.5 19.9 19.3 3.1
hotel_where 202 9.31 6.82 26.8 18.3 15.8 13.5
Epilogue 138 360 205 43.2 73.9 67.4 8.8
arrive_city 1131 6.14 4.93 19.6 24.8 22.6 8.6
Confirm 222 9.38 8.69 7.4 18.0 16.7 7.5
Confirm_flight 1412 9.51 8.25 13.2 22.5 21.3 5.1
depart_date 937 8.83 7.11 19.4 15.7 14.7 6.1
query_go_on 72 9.94 7.06 28.9 16.7 12.5 25.0
query_name 958 8.42 7.11 15.5 30.8 23.7 23.1
query_pay_by_card 29 85.5 55.1 35.6 75.9 69.0 9.1
preferred_airport 69 10.4 7.11 31.9 42.0 39.1 6.9
query_return 706 5.85 4.31 26.3 14.2 11.1 22.0
query_summary 23 5.04 3.55 29.6 17.4 4.4 75.0
Remaining 51 4.87 4.93 -1.2 13.7 13.7 0.0
excuse_me 9 5.37 4.93 8.02 22.2 22.2 0.0
Overall 6289 8.70 6.98 19.69 23.0 20.4 11.5

Table 1 The comparison of the perplexity and recognition word error rate between general language model
and state dependent language model factorized by dialog state.

The language model for Communicator is a class based
language model. The total vocabulary size is about 2500. There
are 1354 classes in the language model, among which 20 classes
correspond to word classes such as [city] and [airport], etc,
while each of the other 1334 classes corresponds to a single
word. The perplexities reported in this paper do not take the
within-class probability into account.

Perplexity and recognition word error rate of general language
model and state dependent language model for each dialog state
are shown in Table 1. The result shows a high correlation
between dialog states and the responses from user. The word
error rate has a significant reduction of 11.5% after using state
dependent language model.

4. Clustering of Utterances

The improvement in section 3 is encouraging. However it
should be possible to further improve the predictive ability of
the language model. The following observations can be made
about users' language in a particular state:

• Users tend to talk about a number of different topics and
will naturally use different language for each topic. If we
know the topic of the utterance (within the state), we can
more precisely model the language.

• There are some patterns in user's utterances. Within each
utterance cluster, word sequence is more predictable.

Given an utterance, its cluster is not known a priori. So we have
a probability distribution of the clusters. The probability of an
utterance is the weighted sum of the conditional probability that
the utterance is generated from each cluster:

() () ()∑=
c

cPcPP |WW

 () ()∏=
i

ii cWPcP ,|| hW

Where W is an utterance, c is a cluster,
iW is the ith word in

utterance W ,
ih is the history words for

iW .

[3][5][8][12] also proposed similar clustering idea. However,
our approach is different from previous work in that we directly
use trigram instead of unigram to do the clustering. Using
unigram for clustering cannot model the local regularities of
language, while it is possible to find out some local regularities
by using n-gram (2≥n).

In different dialog state, the distribution of cluster is different.
This can be modeled by conditioning the cluster probability on
the dialog state:

() () ()∑=
c

cPscPsP ||| WW

We want to classify user's utterances into different clusters such
that the utterances within each cluster are similar. This can be
done using likelihood as the measure of similarity among the
utterances within a cluster. We build c trigram language

models for each cluster such that the likelihood of the whole
data is maximized. EM algorithm can be used to find the
optimal parameters that maximize the likelihood. Here, the
parameters that need to be optimized are the trigram
probabilities ()cvuwP ,,| in each language model and the

cluster probabilities given dialog state ()scP | .

Specifically, first we calculated the expected counts of the
trigram-class pair and state-class pair using current parameters:

() () ()
()()

∑
=

=
sSn

n

n

n P
cPscP

sccount
W W

W

:

||
,

()
() ()

() ()
()
∑

=

=

sSn

n
n

n

n

wvucount
P

cPscP

cwvucount

W

W
W

W

:

,,,
||

,,,

Where ()nS W is the state of the utterance nW

Then update parameters by normalizing the counts to
probabilities.

() ()
()∑

=

s

sccount
sccount

scP
,

,
|

() ()
()∑

=

w

cwvucount
cwvucount

cvuwP
,,,

,,,
,,|

Iterate above two steps until convergence.

Figure 1 shows the distribution of ()scP | obtained through
above algorithm. Each block in the picture represents a
particular value of ()scP | , where darker block indicates higher
probability. The figure clearly shows that different dialog state
has very different cluster distribution. In some states, most
utterances belong to only one cluster; while in some other state,
user’s language tend to distribute over many clusters.

After above algorithm, we can get the probability of an
utterance belonging to a cluster given its dialog state:

() () ()
()sP

cPscP
scP

|
||

,|
W

W
W =

Thus each utterance can be labeled with the most probable
cluster that it belongs to. Then all the utterances are partitioned
into different clusters and a Katz back-off trigram language
model is built for each cluster using CMU-Cambridge Toolkit.
These trigram language models need to be smoothed since they
do not have enough training data. We can do the smoothing by
interpolating the cluster model with a general language model.
There can be two ways of interpolation.

One way is to interpolate at the utterance level. The probability
of an utterance is the weighted sum of the probability calculated
using cluster model and the general model.

() () ()WWW generalslmclusters PPsP βα += _|

() () ()∑=
c

lmcluster cPscPsP |||_ WW

where 1=+ ss βα

The other way is to interpolate at word level. The probability of
a word is the weighted sum of the probability calculated using
cluster model and the general model.

() () ()()∏ +=
i

iigeneralciic WPcWPcP hhW |,||
~ βα

() () ()∑=
c

cPscPP |~| WW

where 1=+ cc βα

Again, EM algorithm is used to estimate the optimal
interpolation weights on holdout data.

Table 2 compares the perplexity of cluster language model with
the language model without clustering. Using word level
clustering, the perplexity reduces to 6.85 from 6.98. This
improvement is not so significant as reported in [3][5][8] [12],
since dialog state has already cluster user utterances in a very
good way.

cluster

st
at

e

 Figure 1 Distribution of cluster for each dialog state

Perp. WER
General 8.70 27.0
State 6.98 24.7
Cluster no inter 7.51
Cluster utt. inter. 7.04
Cluster word inter. 6.85 24.8

Table 2. Comparison of cluster model with
state dependent model1

Perplexity
Base state model 6.975
Clustering using unigram 6.972
Clustering using bigram 6.937
Clustering using trigram 6.853

Table 3 Difference when clustering using
different n-gram

To compare the recognition result, first we generate word lattice
using the state dependent language model. Then we use state
dependent language model and cluster language model to
rescore the lattice respectively. It turns out that that the cluster
language model slightly increases the word error rate. [3][4][12]
also reported that using clustering technique either deteriorates

1 The word error rate is greater than that reported in Table 1. In
Table 1, we do not use lattice rescoring. For some unknown
reason, lattice rescoring increases the error rate. But for the
purpose of evaluating the recognition performance of cluster
language model we need use lattice rescoring.

or slightly improves the recognition performance. [12]
suggested that better smoothing method (e.g. Kneser-Ney
smoothing) need to be applied to cluster language models in
order to get good performance.

We have also compared the effect of different length of gram on
clustering. We cluster the utterances using unigram, bigram, and
trigram respectively and build different cluster language models.
Table 3 shows the different performance when clustering
utterances using different n-gram. Using trigram for clustering
gives better performance for the cluster language model.

5. Conclustions

Using state dependent language models, both perplexity and
word error rate of speech recognition can be improved
significantly and the dynamic switching between different state
dependent language models has been implemented in the
Communicator system to benefit from the reduced recognition
error rate.

Utterance cluster language model does not improve the
recognition performance. However, better smoothing techniques
are expected to improve the performance of cluster model.
Using trigram to cluster utterances is better than using unigram
for the purpose of language modeling.

Acknowledgement

This research was sponsored by the Space and Naval Warfare
Systems Center, San Diego, under Grant No. N66001-99-1-
8905. The content of the information in this publication does not
necessarily reflect the position or the policy of the US
Government, and no official endorsement should be inferred.

References

[1] P.R. Clarkson and R. Rosenfeld. “Statistical Language
Modeling Using the CMU-Cambridge Toolkit”
Proceedings ESCA Eurospeech 1997

[2] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm”,
Journal of the Royal Statistical Society B, 39:1-38, 1977

[3] D. Gildea and T. Hofmann, “Topic-based Language
Models Using EM” in Proc. Eurospeech-99, 1999

[4] J. Goodman, “Putting It All Together: Language Model
Combination”, in Proc. IEEE ICASSP-2000, Istanbul, June
2000.

[5] R. Kneser and J. Peters, “Semantic Clustering for Adaptive
Language Modeling”, in Proc. IEEE ICASSP-95, pp. 191-
184, 1995

[6] A. Kurematsu and A. Sukenori, “ Language Model
Selection based on the Analysis of Japanese Spontaneous
Speech on Travel Arrangement” in Proc. Eurospeech-99,
1999

[7] D.J. Litman and S. Pan, “Empirically evaluating an
adaptable spoken dialogue system” In Proceedings of the

7th International conference on User Modeling (UM), June
1999.

[8] M. Mahajan, D Beeferman and X. D. Huang, “Improved
Topic-dependent Language Modeling Using Information
Retrieval Techniques” in Proc. IEEE ICASSP-99, 1999

[9] C. Popovici and P. Baggia, “Specialized Language Models
Using Dialogue Predictions”, in Proc ICASSP-97, pp. 815-
818, Munich, 1997

[10] G. Riccardi, A. Potamianos and S. Narayanan, “Language
Model Adaptation for Spoken Language Systems” Proc. of
ICSLP-98, 1998

[11] A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R.
Shern, K. Lenzo, W. Xu, A. Oh, “Creating Natural
Dialogs in the Carnegie Mellon Communicator System”.
Proceedings of Eurospeech’99

[12] K. Seymore and R. Rosenfield, “Using Story Topics for
Language Model Adaptation” in Proc. Eurospeech-97,
1997

