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2 11 RAPIDLY GROWING AMOUNT
ol clectronically available information threat-
cns o overwhelin human attention, raising
new challenges lor information retrieval (IR}
technology. Traditional query-driven retricval
is useful for content-focused queries but defi-
cient Tor generic queries such as “What hap-
pened?” or “What’s new?”

Consider, for example, a person who has
just returned from an extended vacation and
needs 1o find out quickly what happened in
the world during her absence. Reading the
cntire news collection is a daunting task,

while generating specilic querices without any :

knowledge of recent events is rather unreal:
istic, Or consider a forcign-policy specialist
who wints to study he Asian cconomic cri-
sis, including precursor and consequent
events. A keyword-hased search on the query
“Asian ceconomy crisis” would most likely
miss many relevant storics about the stock
market crashes in Indonesia or Korea, bank-

ing-scetor insolvency in Japan, or Jusul

Habibi’s rise 1o power in [ndonesia.

In other words, query-based retrieval is
uselul when you know more precisely the
nature of the events or lacls you're secking.
Itis less uselul when you want specilic inlor-
mation but can only formulate a larger cate~
eory sharing lew il any terms with the poten-
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DOCUMENT CLASSIFICATTON BASED ON TIIE INFORMATION
CONTENT AND TEMPORAL ASPECTS OF NEWS EVENTS,

tially most usclul texts. In short, retricval
based on immediate-conient-lTocused queries
is often insullicient for obtaining a variely ol
relevant stories and tracking the graduoal evo-
lution ol events through lime.

In the examples above, the user would

have equal difficulty Tormulating the “right

query™ or “right level of abstraction,” or
checking all the potentially relevant stories.
What would be desirable is an intelligent sys-
tem that automatically

= detects significant events from large vol-
uies ol news storics,

= presents the main content of the events to
the user as summarics with multiple lev-
cls ol abstraction,

e alerts the user (o the onsel ol novel events,
and

o racks events ol interest based on user-
eiven sample stories.
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This is the poal of a new line of rescarch, fopic
detection and tracking. (Topic in this conlex(
means dynamically changing events. Through-
oul this article, we use the erm evert instead,
and use fopic in its more conventional sense, as
we'll discuss later) TDT works with chrono-
logically ordered news stories rom multiple
channels of TV and radio broadcasts or
newswire sowrees. 'FThe input data cun be the
original or transcribed text, orit can be the out-
put ol automaled specch recognition, which
typically suflers approximately 25% o 50%
word-recognition error,
TDT comprises three main subtasks:

b Segimenting speech-recognized TV and
raclio broadcasts into news stoncs,

2. Detecting events from unscgmented or
segmented news streams, and

3. lracking stories for particular events
based on user-identilied sample stories.
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We've adapted several IR and machine-
learning techniques for effective eveni detee-
tion! and tracking. This article discusses our
rescarch using manually segmented docu-
ments; Carnegic Mellon’s rescarch on auto-
matic segmentation has been reported clse-
where,*

Event analysis

Before exploring the solution space, let’s
observe (he propetrtics ol events in news sto-
ries, which will shed light on what makes cvent
detection and tracking a challenge o traditional
IR and machine-learning technology.

The DT corpus, developed by the re-
searchers in the TDT Pilot Research Project,
1s the [irst benchmark cvaluation corpus for
TDT research. (For more information on the
TDT program, sce the related sidebar, The
TDT! corpus is available through the Fin-
guistic Data Congortium, Larger and richer
corpora (TIY1'2 and TDT3) have been and
continue to be developed by the [.DC—sec
www.de.upenn.eduw/TDT. In this article, we
report our experiments on the TDT1 corpus

The TDT program

Tahle 1. The manually identified events in the TDT1 corpus.

Evenr ID Counr START TIME Name
1 8 94-02-22 Aldrich Ames
2 10 94-08-15 Carlos the Jackal (his capture)
3 34 94-12-25 Carter in Bosnia
4 14 94-09-12 Cessna on White House
5 41 94-12-30 Clinie murders (Salvi)
6 45 94-07-16 Comet into Jupiter
7 2 94-12-08 Cuban riot in Panama
8 58 94-07-08 Death of Kim Jong ! (N. Korea)
9 114 94-07-27 DNA in OJ trial
10 12 94-07-11 Haiti ousts observers
" 97 94-12-17 Halt's copier (N, Korea)
12 22 94-10-19 Humble, TX, flooding
13 8 94-07-12 Justice-to-be Broyer
14 2 94-01-06 Kerrigan/Harding
15 84 95-01-17 Kobe Japan quake
16 44 95-03-13 Lost in Irag
17 24 94-12-21 NYC subway bombing
18 273 95-04-19 OK City bombing
19 4 94-11-22 Pentium chip flaw
20 12 94-11-29 Quayie lung clot
21 85 95-06-02 Serbians down F-16
22 91 94-11-11 Serbs violate Bihac
23 7 94-07-22 Shannon Faulkner
24 39 94-09-08 USAir-427 crash
25 22 95-01-09 WTC bombing trial

only.) Table | shows the 25 events manually

identificd in this corpus. TDTI consisis of

15,863 chronologically ordered news stories
spanning (rom 1 July, 1994, 10 30 June, 1993,
Roughly one-hall of these stories are ran-

domly sampled Reuters articles: the rest are
CNN broadcasts that were manually tran-
seribed by the Journal Graphics Institute.
Livent identilication consists ol randomly
sampling (rom the corpus, defining the events
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The U.S. Government initiated the Topic Detection and Tracking 2.

research in 1996 and has supported it since. Three rescarch groups par-
ticipated the TDT Pifot Research Project from 1996 to 1997, including
Carnegie Mellon University, the University of Massachusetts at Am-
herst, and Dragon Systems, Many more rescarch groups participate in
the current TDT Praject, Phase 2, including CMU, UMass, Dragon, the
University of Pennsylvania, IBM, BBN, and SRI.

Some of the ongoing research in other T T-member groups is di-
reetly related to our work, particularly approaches developed by UMass
and Dragon.'? UMass adapted its benchmark [R systems (InQuery and
InRoute) 1o the TDT problems, using a combination of statistical phrase
finding, part-of-speech tagging, TD-IDF term weighting, single-pass
clustering, and a Rocchio classification method.? Dragon applied
speech-recognition technigues, including unigram (and later bigram)
language modeling for event representation and a k-means clustering
method for document classification. Indircetly related work includes
document-clustering methods applicd o retrieval and corpus-navigation
prohlcms,z’x ahd supcrvised-leamning algorithms applied to text catego-
rization.” Those results provide a rich background to our research, but
do not directly address the problems ol event detection and event track-
ing in temporal texi and audio streams,
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discussed in the sampled stories, and making
exhaustive relevance judgments {or cach of
those cvents, Each story received a label of
Yes, No, or Brief with respect to each of the 25
events. Yes indicates that the article focuses
ona patticular event, while Brief indicates that
the article mentions the cvent in passing but
does nol discuss it as a major focus. This
process produced a subsct of the events in the
corpus. The random sampling made larger
events (those reported more often) more likely
to be included than smaller events.

An event as specified in the TDT problems
is different [rom a fopic in the conventional
sense, An event identifies something (non-
trivial) happening in a certain place at a cor-
tain time. For example, USAir-427 crash is
an event but not a topic, and “airplane acei-
dents™ is a topic but not an event. Basically,
events are instances of topics, associated with
certain actions. In event detection and track-
ing, the system must make these distinctions
automatically. Lveunts arc often associated
with bursts (many oceurrences in a short time
period} of news stories. Figure | illustrates
histograms ol several events, Figure 2 shows
the histograms of all 25 manually identificd
events in TDTI.

Several patterns emerged from our obser-
vations of temporal event distributions:

«  News slorics discussing the same event
tend to be temporally proximate. This

suggests using a combined measure of

lexical similarity and temporal proximity
as a criterion for document clustering.

*  Atime gap between bursts ol topically
similar stories often indicates different
events (Tor example, different earth-
quakes, airplane accidents, or political
crises). This suggests that monitoring
cluster evolution over time is necessary
and that using a time window to restrict
the temporal extent ol an event would be
beneficial.

* A significant vocabulary shift and rapid
changes in term frequency distribution
are typical of storics reporting a new
event. This indicates the importance of
dynamically updating the corpus vocab-
ulary and statistical term weights. Timely
recognition of new patterns, including
previously unscen proper names and
proximity phrases, in the streams of sto-
ries is potentially useful for delecting a
new evenl’s onsel,

* Hvents are typically reported in a rela-
tively brief time window (for example,
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Figure 1. Hislogrhlﬁg of evens related fo (a) Serbias ond (b) bombag,?rnm 1 July 1994 10 30 June 1995.

one to four weeks) and contain fewer
reports than topics contain. So, we need
learning methods that require only a few
positive training examples to achieve sat-
isfactory tracking performance, and that
can exploit the temporal decay inherent
in event reporting.

Event detection

Event detection is an unsupervised learning
task, subdivided into two forms. Retrospective
detection discovers previously unidentified
events in a chronologically ordered accumu-
lation of docwiments (storics), Online detection
identitics the onset of new events from live
news feeds in real time. Both forms intention-
ally lack advance knowledge of novel events
but might have access to unlabelled historical
news stories [or use as contrast sets.

Methods. Given that each cvent usually
involves mulliple news storics, document
clustering appeats to be a natural approach to
event discovery, We implemented two clus-
tering methods: GAC, a divide-and-conquer
version ol a group-average clustering algo-
rithm,? and INCR, a single-pass incremental
clustering algorithm, GAC performs agglom-
erative clustering, producing hicrarchicalty
organized document clusters. 1t 1s designed
lor batch processing and has been used for
retrospective detection. INCR produces a
nonhicrarchical partition of the input collec-
tion. It is designed for sequential processing
and has been used for both retrospective and
online detection,

Cluster representation. Our clusicring algo-
rithms are rooted in the conventional vec-
tot-space model and in traditional cluster-
ing techaiques in IR Bach document is
represented by a vector of weighted terms
that can be cither words or phrases. lor
term weighting, we use a standard version

(ttcy of the TE-IDI scheme:

(1+log, 1f (r,d)) > log, | (N/n,)
(]

w(r,d)=

where

o w(t, o) is the weight of term £ in document
d;

« ({1, d) is the within-document term fre-
quency (TH);

o logs(N/n,) is the inverted document fre-
quency (IDH);

= Nis the sive ol the training corpus used
to compute the IDIY

e p(f) is the number of training documents
where f occurs; and

o Jdl= \/E, w(t.dd)® s the 2-norm of vector d.

{TH-1IDP-basced term weighting has been
intensively studicd in the IR literature. The
Smart benchmark retrieval system, devel-
oped at Cornell, provides the implemeunta-
tion of the [more than a dozen] standard ver-
sions. We tested a few common options and
found that ltc yiclded the best detection
results in our limited experiments. This doeg
not mean that ltc is the best possible term-
weighting scheme for document clustering
or for cvent detection. Uinding the best
scheme is an open rescarch question.)

For cluster representation, we obtain a pro-
totype vector (also called the cluster’s centioid)
by summing the vectors of the member docu-
ments and sclecting the & most significant
terms per prototype. Hach document is treated
as an initial cluster with a single member. To
measure the distance between two clusters, we
use the standard cosine similarity—that is, the
cosine value of the two prototype vectors.

We madified standard TU-IDF term weight-
ing o use adaptive 1D in addition to static
IDE Because new storics arrive continu-
ously, how should we deal with the new
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Figure 2. Histograms of the 25 TDT events.
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vocabulary from incoming documents and | already been processed.® Tor online event | each incoming document. The incremental
update the corpus-level IDE statistics (which | detection (and tracking), we usc a retrospec- | version of 117 is

affect term weighting and vector nortatiza- | tve corpus (for example, a six-month col-

tion)? Related work sliows that incremental | lection of CNN news storics betore the TIYTL IDE(, pYy = logy (NP R, p)),

1DT works effectively for documentretricval | corpus) to compute the initial IDF values,

after a sutficient number of documents have | and then incrementally update them with | where pis the current time point, M(p) is the
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, [1 - —) x sim(x,¢) if ¢ has any member document in the time wind

sim(x,¢) if ¢ has any member document in the time window;

7’
sim(x,¢) = .
0 otherwise
{a)
sim(x,e) = m
0 otherwise
(b)

Figure 3. Determining the modified similarity between a document x and any cluster ¢in the past: {a) the basic for-
mulo; {h) the formula with an added linear decaying-weight function. 7is the number of documents between x and the

most recent member document in c.

nunber of accumulated documents up to the
current point (including the retrospective cor-
pus il used), and a4, p) is the document fre-
quency ol term ¢ at time p. Vor retrospective
detection, we usc static [DF trained on the
entire TDT corpus.

Group-average clusiering. This approach
maximizes the average similarity between
document pairs in the resulting clusters by
merging clusters in a groedy, bottom-up fash-
ion 37 Straightforward group-average clus-
tering algorithms typically have a complex-
ity in time and space quadratic o the number
of inputl documenis. So, they are less eco-
nomical or tractable for large applications
than arc simpler methods such as single-link
clustering or single-pass k-means clustering,

To address this problem, Doug Cutting and
his colleagues developed fractionation, a
divide-and-conquer stralegy that compro-
miises between cluster quality and computa-
tional cfficiency.” This stralegy grows clus-
ters iteratively. Tn cach iteration, it first divides
the current pool of clusters into cvenly sized
buckets. Then it applics group-average clus-
tering to cach bucket locally, merging smaller
clusters into larger ones. The [ractionation
algorithm has a time complexity of OGnn),
where 1 is the number of documents in the
mput corpus, i is the bucket sive, and e < .

The bucketing strategy is particularly well-
suited for event detection. We lound that
bucketing storics based on the order in which
they are reported increases not only compu-
tational efficiency but also cluster quality and
detection effectiveness. In other words, this
strategy gives a higher priority to grouping
temporally proximate stories than to tempo-
rally disparale ones.

We implemented a modified version of
this algorithm; we call our version “GAC”
throughout the article. The input to GAC is a
collection ol documents sorted chronologi-
cally and a sct of user-specified parameters.
The output is a forest of binary irees of clus-
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ters. The algorithin consists of these steps:

I, Treat each document in the input col-
lection as a singleton cluster, and set the
initial partition to be the full set of the
singleton clusters,

2. Divide the current partition into nonover-
lapping and consecutive buckets ol size
1 (2 user-speeified parameter).

3. Apply GAC to cach bucket, which re-
peatcdly combines the two closest
lower-level clusters into a higher-level

cluster, This occurs until the number of

clusters in the bucket has decreased by
a [actor of p (a user-specified parame-
ter) or until all the similarity scores
hetween two clusters are below a pre-
selected clustering threshold (another
user-specified parameter).

4. Remove the bucket boundaries (assem-
ble all the GAC clusters) while pre-
serving the time order of the clusters.
Use the resulting cluster series as the
updated partition ol the corpus,

5. Repeat Steps 2 o 4, until the partition
is no larger than #i or stops decreasing
because of the minimum similarity
consteaint.

6. Periodically (once per & iterations in
Step 5) recluster the stories within each
of the top-level clusters, by flattening
the component clusiers and regrowing
clusters internally from the leal nodes.

The temporal bucketing and reclustering
are our modlifications to Cutting’s algorithm.
Reclustering is useful when events straddle
the initial temporal-bucket boundaries or
when the bucketing causes undesirable group-
ings of stories about different cvents. Reclus-
tering reduces the initial bucketing’s system-
atie bius but increases computation time.

Single-pasy incremental clustering. The INCR
algorithm is straightforward, It sequentially
processes the input documents, one at a time,

and grows clusters incrementally, A new doc-
ument is absorbed by the most similar cluster
in the past if the similarity between the docu-
ment and the cluster is above a preselected
clustering threshold (1), Otherwise, the doc-
ument becomes the sced ol a new cluster. By
adjusting the threshold, we can obtain ¢lus-
ters at different levels of granularity. Choosing
a suitable clustering threshold, therefore, is
important for the clfectiveness of retrospec-
tive cvent detection, where the granularity lev-
els of document clusters should match the
cvenl concepts,

To apply INCR to online cvent detection,
we introduced the novelty threshold (¢,). 1F the
maximal similarity score between the current
docwment and any cluster in the past are below
this threshold, INCR labels this document
New. That is, the document is the firststory of
anew event. Otherwise, INCR labels it Old.
By tuning the novelty threshold, we can adjust
online detection’s sensitivity to novelty.

Both the clustering and novelty thresholds
are uscr-specified parameters. The choice for
one threshold is independent of the choice
for the other. Using both thresholds permits
better empirical optimization for different
tasks. For instance, we found that setling f,
=1, (that is, £, is not needed) is appropriate
for retrospective clustering, but for online
detection, choosing £, = oo (that is, not grow-
ing any clusters) is better.

We also added a time penalty. The simplest
way 18 to use a uniformly weighted time win-
dow. Given the current document x in the
input stream o INCR, we impose a time win-
dow of m documents before x. We deline the
modificd similarity between x and any clus-
ter ¢ in the past as shown in Figure 3a. Alter-
natively, we can introduce a linear decaying-
weight function in the formula (sec ligure
3b), where 7 is the number of documents
between x and the most recent member doc-
ument in ¢. The decaying-weight function
mote smoothly uses the lemporal proximity,
compared to using a uniformly weighted win-
dow. (For simplicity, we define a linear func-
tion only for the decay weighting. However,
if necessary, we can easily generalize this del-
inition to a morc claboratc Torm, such as the
interpolated decay profile extracted from an
carlier development or training corpus.)
Thesc windowing strategies yiclded measur-
able and consistent improvements in our
evenl-detection experiments, enhancing pre-
cision with only a small sacrifice in recall,
compared to not using a time penalty. Recall
is the ratio ol correct assignments (of cvent
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labels to documents) by the system divided
by the total number of correct assignments by
human judgments. Precision is the ratio of
correct assignments by the system divided by
the total number of the system’s assignments.

In addition to the binary (New or Old) pre-
diction, for cach incoming document INCR
compultes a score indicating how new the
document is. This score iy

score(x) = | —arg lnax{.\‘hn(/\‘.(')’ }

¢

’

where v is the current!y new document and ¢
18 any clustler in the past. We usc these scores
to evaluate the potential trade-of between dif-
ferenttypes of errors. That is, by adjusting the
threshold on these scores for binary decistons,
we can abtain the trade-off curve belween
recall and precision or between miss and False
alarm (for more details, see “Online-detection
results” in the next section),

Evaluation. Table 2 shows a corpus summiary
obtained by applying GAC to a lew thousand
news stories (CNN news and Reuters arlicles
from January to February 1995) and by pre-
senting a fow top-ranking terms for each clus-
ter, As the table shows, domestic politics
reigned supreme as usual, the Q.J. Sitmpson
trial received media attention in carly 1995,
and so on. However, the table also reveals that
disasters struck Kobe, Japan, and Malibu,
California, and unrest in Chechnya flared up
again—cvents that were not present the
months before. The key terms provide content
information, and the story counts imply sig-
nificance, as measured by media attention.
New multidocument summarization meth-
ods® applied to the clusters provide additional
information as to the nature of the events, And,
if we desire further detail, we can examine the
clusters, subclusters, and individual docu-
ments through query-driven retricval. The util-
ity of summarization and cluster-based brows-
ing tools is evident from our prototypes, cven
though some clusters might be imperfect and
the current user interface is rudimentary.
Figure 4 shows the temporal disteibutions
ot two events. [iach graph’s apper half is the
histogram of human-labeled documents for an
cvent; its lower half is the histogram of the sys-
tem-generated cluster for the same cvent. The
absolute value on the y-axis is the story count
for the event or cluster in 4 particular day. If an
event and a cluster are a perfcet match, their
histograms will perfeetly mirror each other,
As the figure shows, GAC and INCR have
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complementary strengths and weaknesses.
GAC shows almost symmetric graphs for
most evenls, except those with significant
temporal extent, so it is particularly suitable
for recognizing news bursts. INCR, on the
other hand, has less symmetric performance
but is better at tracking long-lasting cvents
(Tor cxample, DNA in OJ tricl and OK Ciry
hombing). The observed behavior might
come partly {rom the different biases in these
algorithms and partly from the parameter sct-
tings in the particular experiments.

Retrospective-detection results. The 1998
TDTI cvaluation was the first controlled study®
where comparative results are available, There-
fore, we used it as 4 reference for our results
here. We used the entire TDT! corpus as the
test set for cvaluating detection systems,
although we’d prefer o have an additional
cross-validation corpus available for setling
global system parameters. [However, deteetion
is an unsupervised classification task that docs
not involve labeled training data. So, there was
no contamination of the test data in that sense,
except possibly with respect to selling a hand-
ful of system paramelers.

(Subsecuent rescarch in progress on an

OK City bombing )

i
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Figure 4. Temporal distributions for group-uverage dustering

(b)

{d)

Table 2. Clusters generated by group-uverage clustering
on the TDTT carpus, Jan.—Feb. 1995 subset.

Documents
INCLUDED  TOP-RANKING WORDS (STEMMED)
330 republ clinton congress hous amend
217 simpson o prosecut trial jury

98 israel palestin gaza peac arafat

97 japan kohe earthquak quak toky

93 russian chech chechny grozn yeltsin
56 somal u mogadishu irag marin

55 flood rain californ malibu rive

48 serh besnian bosnia croat u

35 game leagu play basebal season

33 crashairlin flight airport passeng

28 clinic sav abort massachuset narfolk
27 shuttl spac astronaut mir discov

26 patient drug virus holtz infect

24 chin beij deng trad copyright

independently developed TDT2 corpus indi-
cates that the parameter valucs can be elfec-
tively chosen using a retrospective corpus
and cross-validation. For example, we found
that the clustering threshold optimal on the
TDTI corpus lor online cvent detection is
nearly optimal on the TIYT2 corpus.)

Lach detection system ran on the entire
TDTI corpus, procducing system-generated
clusters that arc cither a partition of the cor-
pus (that is, no overlapping storics between
clusters) or a forest of hicrarchics (overlap-

0K City bombing

N
o o

o
=

INCR
300 350

=40
0 50 100 150 200 250
Days
DNA_ in _OJ t_riql_ _

6 INCR
0 50 100 150 200 250 300 350
Days

and incremental dustering for two events (fram 1 July

1994 10 30 June 1995): (u) OK City hombing, GAC, (b} OK City bombing, INCR; {c) DNA in 0J triaf, GAC; {d) DNA in 0J

riod) INCR.
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Table 3. Per-event contingency table.

In eveNT  NoT IN EvENT
In cluster a b
Not in cluster ¢ d

ping stories hetween clusters are allowed).
We evaiualed each system using the 235 clus-
ters that best matched the 25 manually
labeled events (consisting of [,13 1 stories—
about 7% of the total stories),

(The T corpus includes more than
the 25 labeled events, and cach detection
system generates mote than 25 clusters.
However, the evaluation did not measure the
match between clusters and events beyond
the 25 cluster-cvent pairs, That is, the sys-
tem detected many potential events, but we
only cvaluated it on the subset of the sys-
tem-generated clusters that best matched the
manually labeled events. The correspon-
dence of many clusters to other polential
events suggests that a detection system
could provide browsing support to the uscr
for navigation through the cvent space. Al-
though we expect hierarchical clustering to
be a suitable choice for navigation support,
determining how to evaluate the practical
impact of various kinds of navigation sup-
port requires luture research.)

To cvaluate the goodness of matching
between each cluster/labeled-event pair, we
uscd the contingency tuble in Luble 3. With that
table, we deline these perlormance measures:

o Miss:m=c/(a+c)ila+c>0,otherwise
undefined.

e Talse alarm: f=b/Ab+d) it b+ d >0, oth-
erwise undeflined.

¢ Recall: ¥ = al(a + ¢}y if a + ¢ >}, other-
wise undefined.

«  DPrecision: p=a/(a+bh) it a + b >0, oth-
crwisc undefined.

o AN =2plr+ ) =20 /QRa+ b+ )il (a+
b+ ¢) >0, otherwisc undefined.”

[7), originally defined by Keith van Rijs-
bergen, is the harmonic mean of recall and
precision.”

To measure global performance, we use
two averaging methods. We obtain the
microaverage by merging the contingency
tables of the 25 events (by summing the cor-
respording cellsy and then using the merged
table to produce global performance mea-
sures. We obtain the macroaverage by lirst
producing per-event performance measures,
then averaging the corresponding measuies,
The former measures introduce a scoring bias
toward frequently reported events, and the lat-
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Table 4. Retrospective-detedion results.

PARTITION REQUIRED

CLUSTER OVERLAP ALLOWED

CMU UMass Dracon Cmu UMass
(INCR) (NobuPL)  (MuLTiasS) (GAC) (oupL)
Microaverage
Recall (%) 62 34 61 75 73
Precision (%) 82 53 68 90 78
Miss (%) 38 66 39 25 27
False alarm {%) 0.04 0.09 0.08 0.02 0.06
A 0.71 0.42 0.65 0.82 0.75
Macroaverage £ 0.79 0.60 0,75 0.84 0.81

ter toward less reported ones. So, we usc both
lo minimize the ellect of hidden bias.
The GAC parameter settings were

¢ Buckel size =400

* Clustering threshold = 0.2

+ Terms pet vector = 100

«  Term weighting = ltc

* Reduction factor p=0.5

+ Number ol iterations between recluster-
ing=>5

The INCR parameter settings were

*  Window sive = 2,000

*  Clustering threshold = 0.23

¢ Terms per document vector = 125
*  Term weighting = ltc

Table 4 summarizes the retrospective-
detection results. lor comparison, we
include the results for approaches devel-
oped at the University ol Massachusctls
(temporal-TF-based event detection and
agglomerative clustering) and by Dragon
Systems (multipass k-means clustering).”
(See the sidebar “The "I'DT program™ for
more on the other participants.) Algorithms
that permit cluster hierarchies (GAC) or
potentially overlapping clusters (dupi) per-
formed better than nonhicrarchical algo-
rithms that adhere to the strict partition
requirciment,

For the partition-producing algorithms, we
were surprised that the simplest approach—
INCR’s single-pass clustering- —worked as
well as Dragon’s multipass k-means cluster-
ing. This might be partly because of the tem-
poral proximity ol events, which simplilies
the clustering problem. Time windowing was
highly effective for INCR. With other para-
meters lixed, a time window of 2,000 docu-
ments (covering about 1.5 months) increased
the F) performance score from 0.04 (with no
time window) to 0.70.

The better results obtained by hicrarchi-
cal clustering (GAC) or overlapping cluster-

ing (dupl) are less surprising. We belicve the
main reason lor GAC’s better results is the
multileveled clusters, which enable the de-
tection of cvents at any degree of granular-
ity. GAC achieves this representational
power at the cost of producing more clusters
(approximately 12,000 in this particular run)
than the INCR partition produces {5,907).
The increase in the number of clusters might
not add a signilicant burden to the endt user in
scatter-gather navigation or query-driven
retrieval,” where only a small subset of the
clusters would actually be visited by the user
via selected paths on the hicrarchy.

Online-detection resufts. To evaluate online-
detection performance, we usced the contin-
geney table in ‘Table 5. Because only 25
events are delined, and each event has only
one first story, the total number ol true New
stories is 25 for the entire corpus. This num-
ber is too small for i statistically reliable csti-
mation of performance. To improve the reli-
ability, we conducted an 1 1-pass cvaluation.
The first pass used the entire corpus; the sce-
ond used the modificd corpus after remov-
ing (“skipping™) the first story ol cach cvent,
the third used the maodified corpus after
removing the first two stories of each event,
and so on. The cleven passes are labeled as
Nyip = 0, 1, .., 10, We computed a contin-
gency Lable for cach value of Ny, and then
obtained a global contingency table by sum-
ming the corresponding cells in the per-Ny,
contingency tables. We derived performance
scores [rom those contingency tables the
same way we did for retrospective-detection

cvaluation.
The paramcters uscd in online INCR were

* Window size = 2,500 linear decay

¢ Clustering threshold = eo

«  Novelty threshold = 0. 16

»  Terms per document vector = no limit

* lerm weighting = lte

* IDF = static from retrospective corpus
plus adaplive
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Table 6 summarizes the official TDTI
results, including those [or UMass’s and
Dragon’s approaches. Both Carnegic Mcellon
University (INCR) and UMass conducted
multiple runs with different parameter sei-
tings in the TI'I workshop;” the table shows
the best result for cach site for #7). A possible
reason why the CMU and UMass approaches
have significantly higher [ scores than that
ol Dragon is that they both used individual
documents to represent the past in online
detection; Dragon’s approach grew clusters
instead. (UMass used a single-pass algorithm
to compare a new document with all the past
documents, which is similar to our INCR.
Dragon used a single-pass version of its k-
means clustering method for onfine detecetion,
Multipass clustering cannot be used for online

detection because, by the task definition,

future knowledge ts not available at the deci-
sion-making point.) Keeping individual doc-
uments without clustering them makes pass-
ing the novelty rest (that is, scoring at or above
the novelty threshold) more difficult for the
current story. This is because the story must
be sufficiently dillerent from all past stories,
a stronger condition compared to being dif-
ferent from an average of past storics,

In addition to the scores in Table 6, we also
uscd a delection-ervor trade-off cirve' to
cvaluale cach online-detection system in the
TPT evaluation. A DET curve is the sequence
ol interpolated values in the falsc-alarm/niss
space. It is obtained by retrospectively thresh-
olding on the system-gencrated scores for
individual documents. Any docurnent with a
score above a particular threshold is labeled
New or Old. This process produces a set of
performance scores such as those in Table 6
for cach threshold value. By changing the
threshold value and interpolating the corre-
sponding miss and falsc-alarm values, we can
observe the trade-off between them (see fig-
ure 5). Kach DET curve axis (imiss and false
alarm) is scaled to a Gaussian (thereby com-
pressing the midrange and expanding the
extremes) such that a “random”-decision plot
is a straight line passing through the 50%-
50% error point.

As an alternative to DET curves, we can
plot the corresponding recall and precision
(sce Figure 6). These recall-precision curves
show that the CMU approach performs bet-
ter at the high-precision area. As is especially
evident in ligure 6, the CMU, UMass, and
Dragon approaches behave very differently,
inviting further detailed investigation. The
recall-precision curves are, in IR terminol-
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ogy,'! noninterpolated and cxhibit typical
nonmonotonic bekavior,?

Event-tracking

Fvent tracking is a supervised-learning
task. It aims to automatically assign event
labels to news stories when they arrive, based
on a small number of previously identified
past stories that deline the event. Adaptive
learning is nceded because of the dynamic
nature of events; that is, they start at certain
time points and cventually trail off. Making
fine distinctions belween topicaily related
cvents is another task-specilic requirement;
for example, NYC subway bombing and OK
City bombing should be identified as differ-
ent events. Moreover, quick learning is highly
desirable. This means that the classifier should
need only a few positive training examples per
cvent to achieve satisfactory tracking perfor-
mance, as we mentioned before,

Methods. We lound that two well-known
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Figure 5., Onfine-detection Detection-Error Trade-off curves.
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Table 5. Online-detection contingency table.

New 1s TRuE OLD 1S TRUE

Predicted New a

Predicted Old ¢ d

Tuble 6. Online event-detection resulis for micro-
averaging. The UMass approuch used a single-pass
algorithm without clustering, and Dragon’s approach
used u single-pass version of ifs k-means clustering,

CMU

(INCR) UMass Dracon
Recall (%) 50 49 42
Precision (%) 37 45 21
Miss (%) 50 51 58
False alarm (%) 1.89 1.31 3.47
f 0.42 0.47 0.28

learning methods—k-nrearest neighbor clas-
sification and decivion-tree induction- -are
well-suited to this task, aller sonie extensions
to the standard algorithms. The ANN algorithm
uses the same document representation used
for event detection—that is, a document is rep-
resented as a bag of terms with statistical
weights, The decision-tree algorithin, on the
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other hand, uses binary term weighting only
{1 for terms present and O for erms absent).

k-nearest neighbor classification. kNN is an
instance-based classification method well-
known in pattern recognition and machine
lcarning. It has been applied to text catego-
rization since the early stages of TC re-
search.'™'3 We chose kNN for event (racking
because, in addition to its generally good per-
formance, it makes the fewest assumptions
about terms, stories, and optimal decision
surfaces for tracking, compared to other
methods (see the sidebar, *“Text categoriza-
tion approaches™).

Official TDT evaluations require that cach
event be tracked independently, without any
knowledge about other events, That is, for
each particular event, the training stories arce
labeled cither Yes, No, or Brief. According to
this constraint, we adapted our conventional
M-ary-classification kNN (developed for text
categorization in general)'? to the binary-
classification problem of event racking,

We trained a specilic ANN classifier [or
each cvent, As an input story arrives, the sys-
tem converts it into a vector, compates it to
the training stories (sce the scction “Hvent
Tracking Results” for the training-set con-
struction), and selects the & nearest neighbors
based on the cosine similarity betwecn the
input story and the training storics. The sys-

tem computes the confidence score fora Yes
prediction on the input story by summing the
similarity scores for the positive and the neg-
ative storics in the £-ncighborhood, and tak-
ing the difference between the two sums:

sI(YESx) =
Z(m,(_\,,k)ct)s((l,x) —de\,@’“cos((l,x) s

positive training storics in the k-neighbor-
hood, and N(x, k) is the negative training sto-
rics in the k-neighborhood.

We obtain binary decisions by threshold-
ing locally on the confidence scores generated
by each event-specific classifier. Our experi-
ments showed good resulls (sce Table 7) for
ANN when the threshold was at the zero value
of the confidencee score. [owever, when mov-
ing the threshold beyond that point, we found
that it resulted in a somewhat unsatisfactory
DET curve. More specifically, it has difficulty
gaining a high recall without sacrificing pre-
cision significantly, The reason, we belicve,
is that the positive examples are extremely
sparse (formost events) in the training set and
are therefore olten “blocked away” by densely
populated negative cxamples. One solution Lo

negative examples by sampling a small por-
tion in the k-neighborhood and ignoring the
remaining negative examples.
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Figure 6. Online-detection recall-pracision curves.
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where x is the input story, P(x, ) is the set of

this problem is to discount the influence of

This idea leads to a moditied version of
kNN; we call the original version ANN-a and
the modified version ANN-b. In the modified
version, we take the &1 (£ &) nearest positive
examples (£(x, k1)) and £2 (£ k) ncarest neg-
ative examples (N(y, £2)) from the k-neigh-
borhood, and average the similarity scores of
the two subsets. The conlidence score {or a
Yes prediction on the input story is

2(Visix) =

1 |
S cos((l,x)fk— >

- cos(d,x) .
kl deP(x k1) deN(x4k2)

By adding the parameters 4| and 2 and by
suitably choosing the parameter values, we
can eftectively adjust the tracking system’s
DET behavior. In principle, these paramelters
can be empirically tuned based on the opti-
mization of event tracking on a validation col-
lection of storics. In reality, when only a very
small number of positive examples are iden-
tified for an cvent, we would not want to use
these positive examples {for validation instead
of training. The official event-tracking cvalu-
ation restricted the number (V) of positive
training examples perevent to 1, 2, 4, 8, and
16 (see “Event Tracking Results™). Under
such a condition, we used this rule of thumb
to determine the parameter valucs:

¢ Vor kNN-a, k= min{N, 5}.
¢ TFor kNN-b, k1 = min{P(x, 100}, N,}; k2
=min{N(x, 100), 16},

Another heurtstic we used in event track-
ing is a time window. That is, any test story
that is k storics away from the last positive
training example is labeled No. We set the
window size from 1,800 to 2,000 stories
(about 1.5 months of data). We based this on
the commonsense conclusion that most
cvents last no longer than onc or two months,
and on the observation that a 1.5-month win-
dow is close to optimal for online detection.

Decision-nree induction. Decision trecs are
classificrs based on the principle of a sequen-
tial greedy algorithm that at each step sirives
to maximally reduce system entropy.'* Their
construction follows these steps:

I. Select the [cature with maximal infor-
mation gain as the root node.

2. Divide the training data according (o the
value of this featurc. The partitioned
subsets thus created form the branches.

3. For cach branch, find the feature that
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INN and other text-cutegorization approaches

k-nearest neighbor classilication has been used as a baseline inre-
cent TC comparative research on the benchmark Reuters corpus of
newswire stories, where the top-performing methods inchude ANN and
the Linear Least Squares Fit mapping by Yiming Yang,' Generalized
Instance Scts by Wai Lam and C.Y. Ho.2 decision trees with hoosting
by Sholom M. Weiss and his colleagues, Support Veetor Machines by
Thorsten Joachims and Susan Dul1mis,“'S
Wicner and his colicagues.® Other methods that performed kess well in
TC nclude Naive Bayes classifiers, decision trees without boosting,
and rule-induction algorithms. "7
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maximizes information gain over the
training instances on that branch.
4. Repeat Steps 2 and 3 recursively.

We chose d-trees as analternative to ANN for
T'DT tracking because they represent a very
differcnt technology, one with relatively rea-
sonable performance in text-categorization
cvaluations on the benchmark Reuters col-
lection. One potential disadvantage is that,
unlike kNN, d-trces cannot generate a con-
tinuously varying trade-olT between miss and
false alarm or between recall and precision.

We developed our own d-tree method
rather than using the standard C4.5 algo-
rithm.'* We wanted a version that is fast, scal-
able, and easily tunable for text categoriza-
tion, although not necessarily oplimized for
other machine-lcarning tasks. We also did
not want extra features such as C4.5’s rules-
from-trees option. Training 25 decision trees
(one per event tracked), cach with up to
15,000 storics, requires less than two min-
utes on a standard 300-M1I1z Sun Ultra 11 We
use the same information-gain metric (min-
imizing total entropy} and greedy root-to-
leaves d-tree construction as in C4.5.

The primary tunablc parameters arc

e The minimal number of (raining instances
at a leaf node,

¢ The percentage of positive instances al a
leat node,

e Whether or not to use word roots or stems
instead of surface forms,

+  Whether or not to distinguish between
single and multiple occurrences of a word
in a document,

* T'he size of the time window lor training
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data (fixed or adaptive),

¢ Thelimiton positive or negalive training
cxamples, and

= The limiting ol features to the top N (for
cexample, top 1,000) by global informa-
tion gain.

These parameters are tuncd by cross-
validation. Some parameters, such as the time
window, make a significant difference. We
optimize performance by using only the most
recent 1.5 to 2 months’ training data. Other
parameters such as stemming (using stemmed
words as features—for example, “bomb”
instead of “bombing™) make only a small dif-
ference in overall performance.

Results, We cvaluated the event-tracking sys-
tems using N, positive training examples pius
all available negative examiples, wherce &, is
1,2,4, 8, and 16. For cach event and partic-
ular N, value, we split the TDT | corpus at the
point right aller the Nth positive example of
that event. We used the stories before that
point lor training, and the remaining storics
for testing. Fifteen of the 25 events have more
than 16 Yes storics; we used those for event-
tracking evaluation. (The storics judged as
Brict were used for training but excluded
rom testing.) We tested cach system on all
the pairs (15 % 3) of training/test sels, resul(-
ing in 75 two-by-two contingency tables (for
the predicted Yes or No versus the true Yes or
No for an cvent). ‘The microaveraged and
macroaveraged performance scores were
computed from the 75 contingency tables.
Table 7 shows the resullts.

To illustrate the learning behavior of ANN-

a and d-trees with respect to the number of

positive training examples, Figure 7 presents
the interpolated curves for microaverage and
macroaverage . Both methods work rea-
sonably well with the small N, values. d-trees
are not as goad as kNN when N, = | or 2;
also, their curve asymptotes at N, = 8. Our
interpretation of this belavior is that d-trees
select only a few “good” features, but they
(over)gencralize quickly. This proves to be
problematic when the input data is noisy, as
evidenced by the speech-recognition-result
discussed below. On the other hand, ANN is
bused on the local training examples sur-
rounding a test story but uses all the terms in
those stories as catures.

To investigate the trade-olf polential, we
evaluated the False-alarm and miss rates ol
&NN-a and ANN-b when varying the decision
thresholds on their confidence scores. We
applied decision thresholding locally within
cach event-specific kNN in the experiment
with a fixed value of &,. This produced 75
local DET curves per system [or the L5
cvents and five &, values in total. To observe
the trade-ofl in average, we divided the false-
alarm range into 5,000 evenly sized intervals,
We then computed the average miss rate in
cach interval on a per-cvent and per-, basis
and averaged these averages over the events.,
Finally, we interpolated the resulting points
inall the intervals.

ligure 8 shows the average DET curves of
kNN-a, kNN-b, and d-trees for N, = 8. The
comparison indicaies that ANN-a performs
hest for high-precision (or low lalsc-alarm)
event tracking, while ANN-b is best for high-
recall-oriented applications. This compari-
son is under the {crocial) condition of very
small &, and is not necessarily generalizable
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Table 7. Event-tracking results: performance

averaged over oll evenis, ¥, = 1,2, 4, 8 ond 16,

task-specitic constraint, and we found that
KNN-b effectively smoothes the detection
error trade-oft in event tracking better than
KNN-a or d-trees.

VLENT DETECTION AND TRACK-
ing represent a new family of tasks for
information retrieval and machinc learn-
ing. We studied a sct of retrieval techniques
and learning algorithms addressing these
challenges:

* Analyzing the nature of events in news
stories,

* ldentifying suitable learning algorithms
for event detection and tracking,

* Suggesting special-purpose changes to
standard learning algorithms, and
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to different conditions. In other words, our ‘
focus here is 1o evaluale our systems under a |

CLASSIFIER KNN-a D-TREE UMass (RF-10T) DrngoN
Microaverage
Recall (%) 89 80 64 69
Precision (%) 44 50 51 30
Miss (%) 56 50 36 70
False Alarm (%) 0.04 0.08 0.39 0.10
A 0.59 0.61 0.57 0.41
Macroaverage F 0.62 0.53 0.63 0.42

« Bvaluating the suggested techniques and
comparing the results to those by other
research groups using different techniques,

Our empirical evaluations suggest these
points:

¢ lorrelrospective detection, conventional
document representation and relatively
simple clustering algorithms (GAC and
INCR) can be highly effective, especially
when they are adapted to use both con-
text similarity and temporal proximity in
document clustering,

¢ Online novel-event detection is somewhat
more difficult than retrospective detec-
tion, Nonclustering approaches appear to
have better detection accuracy than clus-
tering. However, this requires further
investigation.

¢ Yor cvent tracking, both ANN and d-trees
exhibit encouraging performance in
quick learning, with their performance
curve approaching a platcau after a very
small number (4 or 8) of positive (rain-

‘ ing cxamples.
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Figure 7. Learning curves of event-tracking systems: {a) microaveruge; {h) macroaverage. Ny is the number of positive fraining examples,

¢ Incventtracking, the detection-error trade-
off flexibility of KNN-b increases signili-
cantly with a suitable ncarest-neighbor
sampling and score normalization.

Important rescarch questions for further
investigation include,

* Arc there belter learning algorithms for
the TDT problems?

+ How can we model event evolution over
time morc accurately than through time
windowing or simple linear decay?

*  How can we combine document cluster-
ing and text summarization for user sup-
port in event detection and tracking?

TDT research and evaluations have not
thoroughly addressed how to optimally usc
system-generated clusters and how to best
malch these clusters to the “truc cvents.” In
principle, finding a meaningful mapping
without any information (for example, posi-
tive and negative cxamples given an event)
or knowledge about the target cvents (for
example, event descriptions) is unrcalistic.
Document clustering can be uscful only it
cvent identification takes user input (or inter-

o action) into account. Lurthermore, users

should receive suggested browsing strategics
along with the system-generated clusters.
[nvestigating potential strategics for travers-
ing through cluster hictarchies or corpus pag-
titions, and measuring their practical impact
for cnd users in terms of time saving and

d-trees——
kNN-g ------

At ' ' o '

6 8 10
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Figure 8. Detection Frror Trede-off curves of kN and d-trees.

error reduction, will be a crucial part of fulure
rescarch in event detection and tracking. ™
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