
Learning to Play Stackelberg Security Games

Avrim Blum Nika Haghtalab Ariel D. Procaccia

As discussed in previous chapters, algorithmic research on Stackelberg Security Games has
had a striking real-world impact. But an algorithm that computes an optimal strategy for the
defender can only be as good as the game it receives as input, and if that game is an inaccurate
model of reality then the output of the algorithm will likewise be flawed. Consequently, researchers
have introduced Bayesian frameworks that capture uncertainty using a probability distribution over
possible games. Others have assumed that the unknown parameters of the game lie within known
intervals. These approaches are discussed in Chapter 17 of this book [17].

In this chapter, we present an alternative, learning-theoretic approach for dealing with uncer-
tainty in Stackelberg security games. In order to paint a cohesive picture, we focus on one type of
uncertainty: unknown attacker utilities. Learning will take place in a repeated Stackelberg security
game, where the defender gathers information about the attacker purely by observing the attacker’s
responses to mixed strategies played by the defender.

In more detail, we wish to learn a good strategy for the defender without any initial information
about the utility function of the attacker (Section 1); when given a distribution over attacker types
(Section 2); and when faced with an unknown sequence of attackers (Section 3). In each section we
present, in some generality, the relevant learning-theoretic techniques: optimization with member-
ship queries, Monte Carlo tree search, and no-regret learning, respectively. In Section 4 we briefly
discuss additional work at the intersection of machine learning and Stackelberg security games.

1 Single Unknown Attacker
In this section, we describe a setting introduced by Letchford et al. [19], and present a method
designed by Blum et al. [7] for using best response queries to learn the optimal strategy against a
single attacker with unknown utilities. The main result discussed in this section involves learning
the optimal strategy of the defender with a number of best-response observations that is polynomial
in the parameters of the game.

Consider a Stackelberg Security Game (SSG) denoted by a 3-tuple (N,U,M) where N is the
set of n targets, U indicates the utilities associated with the defender and attacker, and M indicates
all the possible subsets of targets that can be simultaneously defended in valid deployments of
resources. More precisely, M is determined by the set of targets N , set of resources R, a set
D ⊆ 2N of schedules where each D ∈ D represents a set of targets that can be simultaneously
defended by one resource, and function A : R→ 2D that indicates the set of all schedules that can
be defended by a given resource. Let there bem pure strategies, thenM is a zero-one n×mmatrix,

1

Resource Targets

1

2

Utilities
Targets Defender Attacker Type θ1 Attacker Type θ2

i ucd(·) uud(·) uca(·) uua(·) uca(·) uua(·)
1 0 −1 0 1 0 1
2 0 −1 0 1 0 0

Figure 1: An example of a security game with one resource and two targets, with two possible
utilities for the attacker.

with rows that represent targets and columns that represent pure strategies, such that Mij = 1 if
and only if target i is covered by some resource in pure strategy j.

A mixed strategy of the defender is a distribution over pure strategies and is represented by a
probability vector s ∈ <m. The coverage probability vector of a strategy s is a vector p ∈ [0, 1]n

such that for all i ∈ N , pi is the probability with which target i is defended under s. The coverage
probability vector of s is given by p = Ms.

Let ucd(i) and uud(i) indicate the defender’s payoffs when target i is attacked and is, respectively,
covered or not covered by the defender. Similarly, uca(i) and uua(i) are the attacker’s payoffs from
attacking target i when it is, respectively, covered or not covered by the defender. Then under
coverage probability vector p, the expected utility of the defender when target i is attacked is
given by Ud(i,p) = ucd(i)pi + uud(i)(1 − pi) and the expected utility of the attacker is Ua(i,p) =
uca(i)pi + uua(i)(1− pi). Note that U(i,p) is a linear function in pi. Since U(i,p) only depends on
pi, with a slight abuse of notation, we use U(i, pi) when it is convenient.

Let p be the coverage probability vector of strategy s. The attacker best-responds to s by
attacking target b(s) ∈ arg maxi∈N Ua(i,p). Note that given a coverage probability vector and
the attacker’s utilities, the attacker’s best response is invariant to the mixed strategy that is used to
implement that coverage probability vector. Therefore, we can work directly in the space of valid
coverage probability vectors.

WhenUa(·) is unknown, one cannot find the optimal strategy of the defender directly. However,
observing the attacker’s response to some carefully chosen strategies can help fill in the missing
information required for finding the optimal strategy. As a warmup, consider a security game with
two targets and one resource that can defend only one of the targets at a time. The defender’s payoff
for either of the targets is −1 when they are attacked and are left unprotected, and 0 otherwise.
Consider two possible utilities for the attacker. In the first case (type θ1), the attacker values both
targets equally, with utility 1 for attacking a target that is not protected and 0 for attacking a target
that is protected. In the second case (type θ2), the attacker’s utility for target 1 is the same as in case
1, however, there is 0 payoff for attacking target 2 whether or not it is protected (See Figure 1). The
attacker’s type is not known a priori. Consider the strategy where the resource covers target 1 with
probability 2

3
and target 2 with probability 1

3
; it induces the coverage probability vector p = (2

3
, 1

3
).

An attacker of type θ1 would respond to p by attacking target 2, whereas an attacker of type θ2

would respond to p by attacking target 1. So, by observing the attacker’s response to p, we can
detect the type of the attacker in play and use the optimal strategy for that attacker type.

In the above example, we demonstrated how the uncertainty about two possible discrete types

2

of attackers was resolved by observing the best response of the attacker. However, the results
discussed in this section are more general, as we can pinpoint the optimal strategy with no prior
knowledge regarding the possible types of the attackers. To describe these methods, we first review
how the optimal strategy can be computed when Ua(·) is known.

One of the methods used for computing the optimal strategy in SSGs is the Multiple LPs
approach [12]. In this formulation, we solve one linear program (LP) for every target i ∈ N . This
LP, as shown in Equation (1), finds the optimal defender mixed strategy among all strategies that
cause an attack on target i. The optimal defender’s strategy is the best strategy among the solutions
to these LPs; the one with the highest payoff to the defender.

maximize Ud(i,
∑

j:Mij=1

sj)

s.t. ∀i′, Ua(i′,
∑

j:Mi′j=1

sj) ≤ Ua(i,
∑

j:Mij=1

sj)

∀j, sj ≥ 0
m∑
j=1

sj = 1

(1)

When Ua(·) is unknown, one cannot explicitly write down these LPs. However, the attacker’s
best response to s tells us which of the n feasible regions s belongs to. Therefore, in a repeated
Stackelberg game against a single attacker, the defender can hope to construct the hidden LPs via
best-response queries, that is, by observing the attacker’s responses to a sequence of strategies.
This is indeed the approach taken by Letchford et al. [19], but the number of observations they
require is polynomial in the number of pure leader strategies in a Stackelberg game, which, in the
case of SSGs, could be exponential in the representation of the game.

Here we focus on the approach of Blum et al. [7], which learns the optimal strategy using only a
polynomial number of best-response queries in SSGs. This improvement in the number of queries
is mainly based on the observation that the defender’s utility can be optimized in the feasible region
of a given LP without actually reconstructing these feasible regions. Formally:

Theorem 1 (Blum et al. [7]). Consider an SSG with n targets. For any ε, δ > 0, with probability
1− δ, it is possible to learn a defender strategy that is optimal up to an additive term of ε, using a
number of best response queries that is polynomial in n and logarithmic in 1/ε and 1/δ.

In the remainder of this section, we first provide an overview of some learning-theoretic tech-
niques for optimizing linear programs without explicit knowledge of the constraints, and then
provide an outline of the algorithm of Blum et al. [7] based on these techniques.

To perform optimization over a region, we need to find at least one point in that region. Con-
ceptually, a key challenge here is that it could be that the optimal defender strategy involves getting
the attacker to attack a particular target i, and yet random allocation of resources might have a tiny
chance of getting the attacker to do so; thus, some form of intelligent search through the strategy
space will be needed. We first describe how to optimize over a region given an initial point in that
region, and then discuss how we can perform this intelligent search.

3

1.1 Optimization With Membership Queries
A classic result of Khachiyan [15] shows that one can solve linear programs in polynomial time
using the ellipsoid algorithm. This algorithm has the additional property that it does not need
to know the constraints of the linear program explicitly so long as it has access to a separation
oracle. This is an oracle for the feasible region P ∈ <n that given a proposed solution x will either
answer “yes” if x ∈ P or else will produce a violated constraint (a halfspace that contains P but
does not contain x) if x 6∈ P . However, sometimes one has only a weaker capability: the ability to
answer whether a proposed point x belongs to a given convex regionP or not, without being able to
produce a violated constraint when answer is “no”. Such a capability is called a membership oracle.
A specialized version of the ellipsoid algorithm is shown in Grötschel, Lovász, and Schrijver [13]
to be able to solve optimization problems of this form — that is, optimizing a linear function over
a convex region, where the convex region is given a membership oracle — when one is given an
initial starting point xinit ∈ P such that a ball of sufficiently large radius r about xinit is also
contained in P . However, the algorithm is quite complex and slow. More recently, Bertsimas and
Vempala [6] and Tauman Kalai and Vempala [24] have shown how simpler and faster random-walk
based algorithms can be applied to solve this problem as well, with the fastest being the algorithm
of [24]. This algorithm overall makes Õ(n4.5) calls to the given membership oracle, where the Õ
notation hides polylogarithmic factors.

The algorithm of Tauman Kalai and Vempala [24] can be viewed as a form of simulated an-
nealing. Given an initial point xinit such that a ball of radius r about xinit is contained inside P , it
maintains a “temperature” parameter T that begins initially at a radius R such that we are guaran-
teed that P is contained within a ball of radiusR. (All these algorithms will have a polylogarithmic
dependence on the ratio R/r.) This temperature is then slowly lowered over time. If c · x is the
objective we are aiming to minimize, the algorithm’s goal on each round is to select a random point
inside the convex body according to a probability distribution where the probability of some point
x is proportional to e−c·x/T . This is an easier (though still nontrivial!) task to perform for large
values of T . What Tauman Kalai and Vempala [24] show is how to use a solution for one value of
T to help solve for an answer for the next lower value of T .

The selection of a random point inside P from the distribution for a given value of T is done
via the following random walk procedure. Starting from the output of the previous value of T ,
a random vector is drawn through the current point with a distribution that depends on an esti-
mated covariance matrix for the distribution for the previous value of T (this covariance matrix
is estimated by taking several samples from the previous value of T). Then the point is updated
to a random point inside P along that line, with probability density proportional to the objective
function e−c·x/T . This process has a stationary distribution that equals the distribution we would
like to be sampling from for this value of T , and what is proven in [24] is that the walk quickly
approaches this distribution. Finally, once T is sufficiently small, nearly all the probability mass
of the stationary distribution is close to the optimum value of the objective. Putting this together,
we have the following:

Theorem 2 (Tauman Kalai and Vempala [24]). For any convex set P ∈ Rn, suppose we are given
a linear objective c, an accuracy parameter ε, a starting point xinit ∈ P , and values r, R such that
a ball of radius r about xinit is contained in P and a ball of radius R about xinit contains P . Then,

4

using Õ(n4.5) calls to a membership oracle for P , the algorithm will with high probability output
a point x∗ ∈ P such that c · x∗ ≤ minx∈P c · x + ε, where the Õ notation hides terms logarithmic
in n, R/r, and 1/ε.

1.2 Using Membership Queries to Learn SSGs
In order to understand the connection between SSGs and optimization using membership queries,
we make two changes to the LP in Equation (1). First, since the attacker’s best response is inde-
pendent of the strategy that is used to implement a given coverage probability, we restate the LP to
use variables that represent the coverage probability vector rather than the mixed strategy used to
implement it. Second, since Ua(·) is unknown, we change the constraints to implicitly determine
whether a given target i is attacked as a best response to a strategy.

maximize Ud(i,p)

s.t. i is attacked under p
p is implementable

(2)

To use the results from Section 1.1, we need to establish four properties regarding the above
LP:

1. The objective function is linear in p.
2. The optimization region is convex.
3. There is a membership oracle for the optimization region.
4. We have access to a well-centered initial feasible point in the optimization region.

Below we briefly explain how each of these four properties is satisfied.
For the first requirement, note that by the definition of the utility function, the objective function

Ud(i,p) is linear in p. For the second requirement, for any i, let Pi denote the optimization region
in Equation (2), i.e., Pi is the set of all coverage probabilities that can be implemented by some
mixed strategy and lead to target i being attacked. Pi corresponds to a linear transformation of the
optimization region in LP (1), which is itself the intersection of halfspaces defined by the linear
constraints and, as a result, is convex. So, Pi is also convex.

For the third requirement, a natural membership oracle for Pi involves a two step procedure:
For every p, first solve the linear system Ms = p to find out whether p can be implemented by
some mixed strategy s, and then play s and observe the attacker’s response to learn whether s
causes an attack on target i.

The last requirement for using the results in Section 1.1 is having an initial feasible point in
the region of optimization. A natural first attempt for finding an initial point in region Pi involves
an algorithm that repeatedly plays a randomly chosen coverage probability vector and observes
the attacker’s response until one of the strategies induces an attack on target i. However, hitting
a region with randomly chosen points in a high-dimensional space requires exponentially many
attempts. So, this algorithm requires exponentially many best response queries just to find initial
feasible points.

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

p
2

P1

P2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

p
2

P1

P2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

p
2

P1

P2

Figure 2: Three major steps of the algorithm for finding initial points in all regions. In the first
step, one strategy is queried at random and is found to be in P1. In the subsequent steps, the
optimization process only considers targets that are revealed so far, i.e., target 1. In the last figure,
a strategy in region P2 is revealed, acting as an initial point in the newly discovered region P2.

Blum et al. [7] take an entirely different approach for finding initial feasible points. The method
is based on an intuitive observation that, if a target is left unprotected at all times and yet never
attacked even as the defender increases his probability of covering other targets, then the defender
cannot possibly achieve a better payoff by defending that target. This insight motivates a proce-
dure that, at every major step, only considers the optimization tasks for the targets that have been
observed so far. Moreover, we will explicitly set coverage probabilities on targets never attacked
so far to 0 even if the strategies output by the optimization happen as a by-product to give them
non-zero coverage. If in this process, we observe that a strategy induces an attack on a target that
has not been already seen, e.g. target i, then we have an initial point for this new region, Pi. Oth-
erwise, we have reached the optimal strategy (See Figure 2). Additional caution must be taken to
ensure that these initial points are “well-centered”. We leave it to the interested reader to refer to
[7] for the details of this procedure.

2 Single Attacker Drawn from a Distribution
In Section 1 we discussed the case of a single attacker who is completely unknown initially. While
the method given therein eventually converges to an almost optimal strategy for the defender, the
learning process itself can lead to significant inefficiencies. The purpose of the approach described
in this section is to trade off exploration and exploitation, that is, take advantage of useful knowl-
edge about the attacker as it is obtained, while also taking appropriate actions to learn more about
the attacker.

Taking a Bayesian viewpoint, suppose there is a set of possible attacker types Θ, where each
attacker type θ ∈ Θ is defined by that attacker’s utility function. In this section it is assumed that
a single attacker type θ is drawn from a known distribution D over Θ, and the defender plays a
repeated Stackelberg security game with T rounds against an attacker of type θ. Importantly, the

6

Resource Targets

1

2

Utilities
Targets Defender Attacker Type θ1 Attacker Type θ2

i ucd(·) uud(·) uca(·) uua(·) uca(·) uua(·)
1 0 −L 0 2 0 1
2 0 −1 0 1 0 1

Figure 3: An example of a security game with one resource and two targets, with two possible
attacker types.

assumption that the defender has a prior over attacker types was not made in Section 1, that is, in
this section the defender has more information upfront.

To gain some intuition about how the current setting differs from the one of Section 1, consider
the game given in Figure 3, which is a slight variant of our previous example. In this game, Θ
includes only two attacker types, and the attacker’s identity can be determined in a single round by
playing (3/5, 2/5): if target 1 is attacked then the attacker is of type θ1, and if target 2 is attacked
then he is of type θ2.

Now, suppose that D gives probability 1/2 to each attacker type, and L is a large number such
that T � L. Then under an optimal policy, the defender would always cover target 1 with prob-
ability 2/3, because otherwise the defender would incur a huge loss in the event (which happens
with probability 1/2) that the attacker is of type θ1. Indeed, in that case the attacker would attack
target 1, causing the defender to incur a huge expected loss (at least L/3). In other words, an
optimal policy would essentially instruct the defender to play it safe by assuming the attacker is of
type θ1, instead of using a single best response query to learn the attacker’s type and play optimally
thereafter.

So how does one compute such an optimal policy, given a known distribution over attacker
types? Below we present an approach due to Marecki et al. [21], which relies on Monte Carlo Tree
Search.

2.1 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a popular search algorithm that tries to pinpoint optimal
actions in a sequential decision making process. Its central idea is to iteratively build a search tree
by using random sampling in order to evaluate each new node and update the evaluations of its
ancestors. MCTS is becoming increasingly popular in artificial intelligence research, in part due to
its successful applications to computer Go. Below we briefly present some of the algorithm’s most
salient features; for a detailed presentation, we refer the reader to the survey by Browne et al. [9].

For now, we will think of the sequential decision making process as being represented by a tree
that is gradually uncovered. In its most abstract form, MCTS has two components. First, given
the currently explored tree and statistics about its nodes, a tree policy traverses the current tree and
pinpoints a node to be expanded, and an unexplored action to take at that node. This leads to the
discovery of a new child of the expanded node, which is added to the tree. Second, a default policy
is used to run a simulation — sample a path from the newly discovered node to a leaf. The value

7

1/5

0/2 1/2 0/1

0/1 0/1

1/5

0/2 1/2 0/1

0/1 0/1 0/0

1/5

0/2 1/2 0/1

0/1 0/1 0/0

1

2/6

0/2 2/3 0/1

0/1 0/1 1/1

Selection Expansion Simulation Backpropagation

Figure 4: An illustration of one iteration of MCTS. In this example, the values of leaves are in
{0, 1}. Each node is labeled by Qv/Nv.

of this leaf is then used to update the evaluations of the new node as well as its ancestors.
In more detail, each node v in the search tree has a counter Nv, which counts the total number

of simulations that involve v or its descendants, and a total value Qv, which represents the sum of
values of these simulations. The evaluation of v is Q̄v = Qv/Nv. The main loop of MCTS has four
distinct steps (illustrated in Figure 4):

1. Selection: Select a node to expand by traversing the tree according to the tree policy. This
node must be an internal node that has unexplored children.

2. Expansion: Expand an unexplored child v, and add it to the search tree. The choice of
specific child to expand is also governed by the tree policy. Set Nv = 0, Qv = 0.

3. Simulation: Use the default policy to sample a path from v to a leaf node `. For the purposes
of this chapter, we will assume that the default policy simply selects an action uniformly at
random at each node, that is, the sampled path proceeds to a uniformly random child at each
step, until a leaf node is reached.

4. Backpropagation: Use the value of ` to update the evaluation of v and each of its ancestors.
Specifically, for each such node v′, increase Nv by 1 and Qv by the value of `.

The basic ideas behind MCTS are, therefore, quite simple. But the key to its success lies in
the design of an effective tree policy. In particular, a good tree policy should strike a balance
between exploration — in this case, learning more about the value of underexplored nodes — and
exploitation — extracting more value from the most promising nodes.

To this end, Kocsis and Szepesvári [18] propose using the UCB1 policy [1], originally designed
for the (stochastic) multi-armed bandit problem (UCB stands for “upper confidence bound”). In
this problem, each arm is associated with an unknown distribution over rewards. Playing an arm

8

gives a reward drawn from its distribution, and also contributes an observation that can be used to
better estimate potential rewards from that arm. The UCB1 policy pulls arm j with probability

X̄j +

√
2 ln r

rj
, (3)

where X̄j is the average reward from arm j so far, r is the total number of observations of all arms,
and rj is the number of observations of arm j. The theoretical guarantees given by the UCB1
formula are beyond the scope of this chapter, but the high-level idea is clear: the first term in
Equation (3) encourages exploitation, whereas the second term drives exploration — it is larger
the less explored arm j is compared to other arms.

The variant of MCTS that uses UCB1 as the tree policy is known as the Upper Confidence
Bounds for Trees (UCT) algorithm. Analogously to Equation (3), UCT’s tree policy approaches
the exploration vs. exploitation dilemma by selecting the child v′ of v that maximizes

Qv′

Nv′
+ C

√
2 lnNv

Nv′
, (4)

where C > 0 is a parameter that determines the priority given to exploration. Nv′ = 0 is taken
to mean that the value of the expression is ∞, that is, unexplored children are prioritized above
explored children.

UCT ultimately selects the action at the root that maximizes Q̄v.1As the number of iterations
of UCT grows, the evaluations Q̄v become more accurate, and approach their true values. In
particular, the failure probability at the root — the probability that a suboptimal action seems
optimal — goes to zero. Specifically, Kocsis and Szepesvári [18, Theorem 6] show:

Theorem 3. With an appropriate choice of C in Equation (4), the failure probability at the root
under UCT coverges to 0 at a polynomial rate (which depends on the maximum number of actions
per state and the depth of the tree) as the number of iterations grows.

To be a bit more precise, it could be the case that the UCB1 policy guides the search towards
nodes that have no unexplored children, all the way down to a leaf node. In that case, the expansion
and simulation steps do not take place; values are still updated via backpropagation. This is why
Q̄v is gradually refined even when the entire subtree rooted at v has been expanded.

2.2 Applying MCTS to Repeated SSGs
In order to understand the relation between repeated SSGs and MCTS, we present a slightly dif-
ferent formulation of the sequential decision making domain to which MCTS (specifically, UCT)
is applied; this is, in fact, the formalism used by Kocsis and Szepesvári [18]. A Markov Deci-
sion Process (MDP) consists of states, available actions in each state, and a stochastic transition
function T , where T (s, a, s′) is the probability of transitioning from state s to state s′ when the

1There are alternative approaches, e.g., selecting the action that maximizes Nv .

9

action a is taken at state s. In addition, each possible transition is associated with a reward. We are
interested in a finite-horizon MDP: the process ends after T steps, and the objective is to maximize
the total accumulated reward.

An MDP with horizon T can be represented by a tree where every path from the root to a leaf
is of length T . The reward at a leaf is simply the sum of rewards associated with the transitions
along the path. Under this interpretation, the results of Section 2.1 — in particular, Theorem 3 —
still hold.

Marecki et al. [21] represent a repeated SSG with a prior P over types and T rounds as an MDP
with horizon T . Defender mixed strategies are discretized to ensure finite state and action spaces.
Each state corresponds to the history of play so far, which is a sequence of pairs — the mixed
strategy of the defender, and corresponding best response of the attacker. Given such a history h
of observations, let Θh be the set of attacker types consistent with the history. Then the posterior
distribution Dh over attacker types is given by

Dh(θ) =

{ D(θ)∑
θ′∈Θh

D(θ′)
θ ∈ Θh

0 θ /∈ Θh

Dh straightforwardly determines the transition function: for action p and each θ ∈ Θ, the pair
(p, bθ(p)) is appended to the history h with probability Dh(θ). When this transition takes place,
the reward Ud(bθ(p),p) is obtained.

Crucially, the UCT implementation of Marecki et al. [21] does not actually compute the pos-
terior distributions at each step. Instead, in each iteration of the algorithm, they sample θ ∼ D
upfront, and use θ to compute the attacker’s best response at each step — this is equivalent to
sampling the (unknown) posterior distribution at each step. In particular, Marecki et al. [21] obtain
the following corollary of Theorem 3:

Corollary 4. When the Marecki et al. [21] implementation of UCT is applied to a repeated SSG,
the failure probability at the root converges to 0 at a polynomial rate (which depends on T and the
number of discretized defender mixed strategies) as the number of iterations grows.

The experiments of Marecki et al. [21] show that the approach scales well with respect to
number of rounds T . The experiments also suggest that trees with a large branching factor —
which is the product of the number of discretized mixed strategies available to the defender, and
the number of targets — may be hard to deal with, but additional heuristics provide encouraging
results.

3 Sequence of Attackers
The methods discussed in Sections 1 and 2 are designed to use repeated interactions with a single
attacker to learn the missing payoff information. Settings involving multiple attackers, however,
give rise to additional, fundamentally different sources of uncertainty. For example, it might not
be possible to observe which attacker carried out the latest attack, or the distribution over attackers
might be unknown or changing. In this section, we address some of these issues. In particular, we

10

describe a method introduced by Balcan et al. [5] for defending against an adversarial sequence of
attackers, when attackers are chosen from a known set of types but with no distributional assump-
tions. Additionally, this method can be adapted to work even when the identity of the attacker
remains unknown after the attack.

As in the previous section, consider a set of k known attacker types Θ = {θ1, . . . , θk} and Uθi
for all i ∈ [k], such that Uθi represents the utilities of attacker type θi. We assume that all utilities
are scaled such that the defender’s payoff is in the range [−1, 1]. Consider playing a repeated
Stackelberg game for T rounds, such that at round t, an unknown attacker at ∈ Θ is chosen to
attack the targets by best-responding to the mixed strategy of the defender at time t, denoted by pt.
The defender’s goal is to maximize his payoff over a period of time, even when the sequence of
attackers is unknown. That is, without knowing the sequence ahead of the time, at each round the
defender must commit to a mixed strategy based on the history of play so far. The defender then
receives some “feedback” regarding the attacker at that round (either the attacker type or merely
which target was attacked), and adjusts the mixed strategy for future rounds.

In more detail, in this online setting, the expected payoff of the defender over T time steps is

E

[
T∑
t=1

Ud(bat(pt),pt)

]
,

where the expectation is taken only over the internal randomness of the defender’s online algo-
rithm, and bat(·) indicates the best response of attacker at. In contrast, if the sequence of attack-
ers, or merely the frequency of each attacker type in the sequence, is known to the defender, the
defender can pre-compute a fixed mixed strategy with the best payoff against that sequence of at-
tackers and play it at every time step. Such a strategy is called the best mixed strategy in hindsight
and denoted by

p∗ = arg max
p

T∑
t=1

Ud(bat(p),p).

The goal is to design online algorithms for the defender with payoff that is almost as good as the
payoff of the best mixed strategy in hindsight. This difference in utilities is termed regret and is
equal to

RT =
T∑
t=1

Ud(bat(p
∗),p∗)− E

[
T∑
t=1

Ud(bat(pt),pt)

]
.

The results in this section show that, even when faced with this (relatively extreme) type of
uncertainty, one can compete with the best fixed mixed strategy in hindsight. In particular, the
algorithms introduced here are no-regret algorithms: the expected regret goes to zero as T goes to
infinity. This indicates that the longer the algorithm runs the better the guarantees are in terms of
the regret. In addition, the regret depends only polynomially on the number of types and targets.
That is

RT ≤ o(T) · poly(n, k).

The feedback the defender receives at each time step plays a major role in the design of the
algorithm. We consider two types of feedback, full information and partial information. In the full

11

information case, the identity of the attacker is revealed after each attack (e.g., through surveil-
lance). An upper bound on the regret under full information feedback is as follows.

Theorem 5 (Balcan et al. [5]). Given a repeated SSG with full information feedback, there is an
algorithm that for any unknown sequence of attackers has regret

RT ≤ O
(√

Tn2k log nk
)
.

On the other hand, in the partial information case, even after the attack occurs the identity of
the attacker remains unknown — only the attacked target is observed. Note that full information
is indeed strictly more informative, as knowing the attacker at is sufficient to compute the target
attacked at that round.

Theorem 6. Given a repeated SSG with partial information feedback, there is an algorithm that
for any unknown sequence of attackers has regret

RT ≤ O
(
T 2/3 nk log1/3(nk)

)
.

In the remainder of this section, we first provide a brief overview of basic no-regret algorithms,
and then apply these techniques to repeated SSGs.

3.1 Background on Regret Minimization
Consider the following online scenario. Suppose we have a set M of possible actions to take
each day (e.g., a collection of different possible ways to get to work). At each time step t, we
probabilistically select some action jt according to a probability distribution of our choice qt over
the actions. An adversary (who may observe our previous actions j1, . . . , jt−1, and may even know
our current distribution qt but does not get to observe our selection jt from qt) simultaneously
chooses a loss vector `t over the actions, where let us assume all losses are in the range [0, 1] (i.e.,
`t ∈ [0, 1]|M|). For instance, these might be the travel times of our different options for getting to
work. We then incur an expected loss of qt · `t.

Let Lalg,T =
∑T

t=1 qt · `t denote the expected total loss of the algorithm in T time steps, and
let Lmin,T = minj∈M

∑T
t=1 `t(j) denote the total loss of the best fixed action under the sequence

of loss vectors `1, . . . , `T . That is, Lmin,T is the loss of the best fixed action in hindsight. The
difference, RT = Lalg,T − Lmin,T , is called the regret of the algorithm.

As noted above, algorithms with regret sublinear in T are often called no-regret algorithms
because a sublinear regret implies that the average per-day cost of the algorithm is approaching (or
even less than) the average per-day cost of the best fixed action in hindsight. That is, the per-day
regret RT/T is approaching 0. So, one does not regret very much having not known initially what
the best fixed action in hindsight is.

Hannan in 1957 [14] was the first to develop algorithms with a no-regret guarantee. In the
1990s, motivated by machine learning settings in whichM can be quite large (e.g., corresponding
to all possible prediction rules in some class), algorithms were developed whose regret furthermore
has only a logarithmic dependence on the size |M| of the action space. The following theorem
formalizes these results.

12

Theorem 7 (e.g., [20]). There is an efficient algorithm (running time per stage linear in |M|) with
the guarantee that for any adversary,

RT = O(
√
T log |M|).

There are by now many algorithms known to achieve the guarantees of Theorem 7. One canoni-
cal class of such algorithms are “multiplicative weights” or “randomized weighted majority” meth-
ods. Here is one such algorithm, called “polynomial weights” [10]:

Polynomial Weights algorithm (given an input ε ∈ (0, 1))

1. Initialize weights w(j) = 1 for each j ∈M.

2. Choose distribution qt proportional to w. That is, qt(j) = w(j)/W where W =∑
iw(i).

3. Given `t, update w(j)← w(j)(1− ε`t(j)).

The intuition behind this algorithm is that actions that are far from optimal quickly become highly
penalized and so the algorithm gives them negligible probability mass. At a formal level, at each
step, the total weight in the system drops by an amount that is directly related to the expected loss
of the algorithm; specifically, one can verify that at each step we have W ← W (1− εqt · `t). On
the other hand, any low-loss actions will have high weight (ensuring that W remains high), and so
if there are any low-loss actions this means the algorithm’s total expected loss cannot be too great.
The overall guarantee is that Lalg,T ≤ (1 + ε)Lmin,T + ln |M|

ε
(in fact, the algorithm has a stronger

guarantee but this suffices for our purposes here), and setting ε = min(
√

(ln |M|)/T , 1/2) gives
the bound of Theorem 7. For further discussion of this and related algorithms, see [8].

The discussion so far assumes the algorithm has the ability to observe the entire loss vector `t;
indeed, this feedback is used in Step 3 of the Polynomial Weights algorithm. However, often one
receives a more impoverished form of feedback. For example, one may learn only the loss `t(jt) of
the action one specifically chose: this is called the (adversarial) multi-armed bandit problem [2].
Or one may receive partial information about multiple actions: e.g., in choosing a route to drive
to work, one would learn about traffic congestion along the roads used in that route, which might
provide partial information about other routes that also include some of those roads.

One way to tackle these partial information settings is to use the fact that algorithms for the
full information setting really need only a bounded unbiased estimate of the loss of each action
[2, 4]. For example, if one breaks the overall T time steps into windows, and within each window
samples each action once at a random time, then these “exploratory samples” will give an unbiased
estimate of the losses of each action in the window; this approach was introduced and analyzed by
Awerbuch and Mansour [4]. In the case of actions that provide partial information, an improved
method proposed by Awerbuch and Kleinberg [3] is to identify an “exploratory basis” S ⊆ M of
actions, whose feedback can be used to reconstruct unbiased estimates for all the actions, and then
just perform exploration over those. For example, in the case of routes to drive to work, this might
correspond to a small set of routes that together include all roads of interest. Using this approach
and combining with bounds for the full information setting yields the following theorem (see [5]
for details):

13

Theorem 8. Suppose that S ⊆ M is such that for any time-window τ , sampling the actions in S
at random times in τ will produce estimates ˆ̀

τ (j) for each j ∈M such that:

1. E[ˆ̀τ (j)] = `τ (j), where `τ (j) = 1
|τ |
∑

t∈τ `t(j), and

2. `τ (j) ∈ [−κ, κ].

Then there is an algorithm with regret guarantee RT = O(T 2/3|S|1/3κ1/3 log1/3 |M|) for all T >
κ.

3.2 Applying Regret Minimization Techniques to Repeated SSGs
To use the results from Section 3.1, we first need to define what constitutes actions and loss func-
tions in our setting. Indeed, each valid coverage probability vector p in a security game corre-
sponds to one action and the loss associated with this action at time t is simply the negation of
its utility to the defender, −Ud(bat(p),p). However, this creates an infinitely large set of actions,
which renders the guarantees in Theorem 7 meaningless. Instead we show that a carefully chosen
subset of the strategy space that is representative of the set of all strategies can be used with the
algorithms from Section 3.1.

To this end, we first show that the set of attacker types, Θ, partitions the space of all strategies to
convex regions where the attackers’ best response remains fixed. As an extension to the definition
of Pi from Section 1.2, let Pji indicate the set of all valid coverage probabilities where an attacker
of type θj attacks target i. Then for a given set Θ and any function σ : Θ → N , let Pσ indicate
the set of all valid coverage probability vectors such that for all θj ∈ Θ, θj attacks σ(j). In other
words, Pσ =

⋂
θj∈ΘP

j
σ(j). Since Pσ is the intersection of finitely many convex polytopes, it is

itself a convex polytope. Figure 5 illustrates these regions.
Consider the set E of all extreme points of convex polytopes Pσ for all σ. It is easy to show

that |E| ∈ O((2n + kn2)2n). Balcan et al. [5] show that a regret minimization algorithm incurs no
additional loss when the set of actions is restricted to only those strategies that are in E . Together
with the bound on |E|, the proof of Theorem 5 follows directly from Theorem 7.

Next, consider the partial information feedback model. As discussed in Section 3.1, we only
need a mechanism to produce bounded unbiased estimators for the loss of all actions. As a naı̈ve
approach, first consider sampling each mixed strategy in E once at random in a window of time
and observing its loss. The loss created this way is clearly bounded and unbiased. However, at
every time step in which we sample a random strategy, we are left open to experiencing significant
regret. As shown in Theorem 8, sampling each strategy individually once at random adds a regret
that is polynomial in the number of mixed strategies sampled, which — based on the size of |E|
— is exponential in the number of targets. Therefore a more refined mechanism for estimating the
loss is needed.

Notice that the loss incurred by different mixed strategies is not independent, rather they all
depend on the number of times each target is attacked in a window of time, which in turn depends
on the frequency of attacker types. In order to estimate the type frequency, it is sufficient to
distinguish between types based on their response to a number of mixed strategies. As an example,
assume that there is a mixed strategy where each attacker type responds differently (See Figure 5).

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p
2

P1
2

P1
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p
2

P2
2

P2
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p 2

P(2,2)

P(1,1) P(2,1)

×

rr

r
r

r

Figure 5: Best response regions in the space of coverage probability vectors. The first two figures
define Pji in a game where one resource can cover one of two targets, and with two attacker types.
The third figure illustrates Pσ for the intersection of the best response regions of the two attackers.
The red points indicate the extreme points, and the black cross is a coverage probability vector
where the two attackers respond differently.

Then sampling such a mixed strategy even once at random in a window of time allows us to
construct an unbiased estimator of the frequency of all attacker types, and, as a result, create
an unbiased estimator of the loss of all actions. In general, such a mixed strategy, where each
attacker responds differently, may not exists. Instead, Balcan et al. [5] show how to choose k mixed
strategies that construct a loss estimator for all actions, such that the loss is in the range [−nk, nk].
The guarantee of Theorem 6 then follows from Theorem 8. We leave it to the interested reader to
refer to [5] for the details of this procedure.

4 Further Reading
In this chapter we have focused on a single, relatively cohesive, line of work on learning in SSGs. A
number of other learning-based approaches have been proposed to deal with uncertainty in SSGs.
Below we briefly outline some of them.

A fundamentally different approach for handling payoff uncertainty assumes that the utilities
uca(i) and uua(i) — the utility to the attacker when target i is attacked and it is covered and un-
covered, respectively — are not exactly known, but lie in a known interval [16]. Given such a set
of uncertainty intervals, two per target, it is possible to reason about the maximum regret of the
defender strategy p: it is the maximum difference between the defender’s utility when playing the
optimal strategy and when playing p, where the maximum is taken over all possible utility func-
tions that are consistent with the given uncertainty intervals. From this viewpoint, the defender’s
strategy should minimize the maximum regret.

Nguyen et al. [22] reduce minimax regret by eliciting information about utilities. This is done
via bound queries, which ask an expert (say, a risk analyst) whether a given utility is above or
below a given threshold. Nguyen et al. introduce three heuristic elicitation strategies, which aim

15

to achieve the best possible minimax regret under a query budget.
Another type of uncertainty that can be addressed using machine learning is uncertainty about

the attacker’s behavioral model. We have focused on perfectly rational attackers who best-respond
to the defender’s strategy, but studies suggest that more nuanced behavioral models give better
predictions [23].

Yang et al. [25] adopt the subjective utility quantal response model [23], which stipulates that
the attacker’s probability of choosing an action increases with his subjective utility for that action.
The subjective utility is induced by three parameters that weight the relative importance of pi,
uca(i), and uua(i). Yang et al. learn a 3-dimensional normal distribution of these parameters (that is,
they estimate its mean and covariance matrix).

Finally, we mention work by Chakraborty et al. [11], which deals with learning to play against
memory-bounded agents. While their framework is more general, let us describe its application to
mass transit security. The goal in this domain is to deter passengers who may not buy a ticket, by
deploying patrol officers. Each passenger has a fixed route, so the passenger’s decision amounts
to whether to buy a ticket or not; a risk neutral passenger would buy a ticket if and only if the
expected cost of not buying a ticket (probability of getting caught times fine) is larger than the
fare. A passenger estimates his probability of being caught based on patrol strategies in the last L
days, where L can be different for different passengers. Given the number of passengers on each
route, but not the distribution over their memory size L (which is assumed to be in {2, 3, 4} in the
experiments), Chakraborty et al. [11] use their TOMMBA algorithm to play against these forgetful
passengers.

Acknowledgments
The authors thank Leandro Soriano Marcolino for helpful feedback. The authors were partially
supported by the NSF under grants IIS-1350598, CCF-1215883, CCF-1116892, IIS-1065251, and
CCF-1415460, and by a Sloan Research Fellowship.

References
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit prob-

lem. Machine Learning, 47(2):235–256, 2002.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[3] B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing. Journal of
Computer and System Sciences, 74(1):97–114, 2008.

[4] B. Awerbuch and Y. Mansour. Adapting to a reliable network path. In Proceedings of the
22nd ACM Symposium on Principles of Distributed Computing (PODC), pages 360–367,
2003.

16

[5] M.-F. Balcan, A. Blum, N. Haghtalab, and A. D. Procaccia. Commitment without regrets:
Online learning in Stackelberg security games. In Proceedings of the 16th ACM Conference
on Economics and Computation (EC), 2015. Forthcoming.

[6] D. Bertsimas and S. Vempala. Solving convex programs by random walks. Journal of the
ACM, 51(4):540–556, 2004.

[7] A. Blum, N. Haghtalab, and A. D. Procaccia. Learning optimal commitment to overcome
insecurity. In Proceedings of the 28th Annual Conference on Neural Information Processing
Systems (NIPS), pages 1826–1834, 2014.

[8] A. Blum and Y. Mansour. Learning, regret minimization, and equilibria. In N. Nisan,
T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 4.
Cambridge University Press, 2007.

[9] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,
2012.

[10] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction
with expert advice. In Proceedings of the 18th Conference on Computational Learning The-
ory (COLT), pages 217–232, 2005.

[11] D. Chakraborty, N. Agmon, and P. Stone. Targeted opponent modeling of memory-bounded
agents. In Proceedings of the Adaptive Learning Agents Workshop (ALA), 2013.

[12] V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In Proceedings
of the 7th ACM Conference on Economics and Computation (EC), pages 82–90, 2006.

[13] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer, 1988.

[14] J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher, A. Tucker, and
P. Wolfe, editors, Contributions to the Theory of Games, volume 3, pages 97–139. Princeton
University Press, 1957.

[15] L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Dok-
lady, 20:191–194, 1979.

[16] C. Kiekintveld, T. Islam, and V. Kreinovich. Security games with interval uncertainty. In
Proceedings of the 12th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 231–238, 2013.

[17] C. Kiekintveld and M. Jain. Basic solution concepts and algorithms for Stackelberg secu-
rity games. In Ali Abbas, Milind Tambe, and Detlof von Winterfeldt, editors, Improving
Homeland Security Decisions, chapter 17. 2015.

17

[18] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of the 17th
European Conference on Machine Learning (ECML), pages 282–293, 2006.

[19] J. Letchford, V. Conitzer, and K. Munagala. Learning and approximating the optimal strategy
to commit to. In Proceedings of the 2nd International Symposium on Algorithmic Game
Theory (SAGT), pages 250–262, 2009.

[20] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, pages 212–261, 1994.

[21] J. Marecki, G. Tesauro, and R. Segal. Playing repeated Stackelberg games with unknown
opponents. In Proceedings of the 11th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 821–828, 2012.

[22] T. H. Nguyen, A. Yadav, B. An, M. Tambe, and C. Boutilier. Regret-based optimization and
preference elicitation for Stackelberg security games with uncertainty. In Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI), pages 756–762, 2014.

[23] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, and M. Tambe. Analyzing the effectiveness
of adversary modeling in security games. In Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI), pages 718–724, 2013.

[24] A. Tauman Kalai and S. Vempala. Simulated annealing for convex optimization. Mathematics
of Operations Research, 31(2):253–266, 2006.

[25] R. Yang, B. J. Ford, M. Tambe, and A. Lemieux. Adaptive resource allocation for wildlife
protection against illegal poachers. In Proceedings of the 13th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 453–460, 2014.

18

