
IEEE INFOCOM 2002 1

Locality in Search Engine Queries and Its
Implications for Caching

Yinglian Xie and David O’Hallaron

Abstract— Caching is a popular technique for reducing
both server load and user response time in distributed sys-
tems. In this paper, we are interested in the question of
whether caching might be effective for search engines as
well. We study two real search engine traces by examining
query locality and its implications for caching. Our trace
analysis results show that: (1) Queries have significant local-
ity, with query frequency following a Zipf distribution. Very
popular queries are shared among different users and can
be cached at servers or proxies, while 16% to 22% of the
queries are from the same users and should be cached at the
user side. Multiple-word queries are shared less and should
be cached mainly at the user side. (2) If caching is to be done
at the user side, short-term caching for hours will be enough
to cover query temporal locality, while server/proxy caching
should be based on longer periods such as days. (3) Most
users have small lexicons when submitting queries. Fre-
quent users who submit many search requests tend to reuse
a small subset of words to form queries. Thus, with proxy
or user side caching, prefetching based on user lexicon looks
promising.

I. INTRODUCTION

ACHING is an important technique to reduce server
workload and user response time. For example,

clients can send requests to proxies, which then respond
using locally cached data. By caching frequently accessed
objects in the proxy cache, the transmission delays of these
objects are minimized because they are served from nearby
caches instead of remote servers. In addition, by absorbing
a portion of the workload, proxy caches can increase the
capacity of both servers and networks, thereby enabling
them to service a potentially larger clientele.

We are interested in the question of whether caching
might be effective for search engines as well. Because
serving a search request also requires a significant amount
of computation as well as I/O and network bandwidth,
caching search results could improve performance in three
ways. First, repeated query results are fetched without re-
dundant processing to minimize the access latency. Sec-
ond, because of the reduction in server workload, scarce
computing cycles in the server are saved, allowing these
cycles to be applied to more advanced algorithms and po-
tentially better results. Finally, by disseminating user re-

�
ylxie, droh � @cs.cmu.edu

quests among proxy caches, we can distribute part of the
computational tasks and customize search results based on
user contextual information.

Although Web caching has been widely studied, few re-
searchers have tackled the problem of caching search en-
gine results. While it is already known that search engine
queries have significant locality, several important ques-
tions are still open:

� Where should we cache search engine results? Should
we cache them at the server’s machine, at the user’s ma-
chine, or in intermediate proxies? To determine which
type of caching would result in the best hit rates, we need
to look at the degree of query popularity at each level and
the “shareness” of the queries.1

� How long should we keep a query in cache before it be-
comes stale? That is, do queries have strong temporal lo-
cality?

� What other benefits might accrue from caching? Since
both proxy and client side caching are more distributed
ways of serving search requests, can we prefetch or rerank
query results based on individual user requirements?

In this paper, we study two real search engine traces and
investigate their implications for caching search engine re-
sults with respect to the above questions. Our analysis
yielded the following key results:

� Queries have significant locality. About 30% to 40%
of queries are repeated queries that have been submitted
before. Query repetition frequency follows a Zipf distri-
bution. The popular queries with high repetition frequen-
cies are shared among different users and can be cached
at servers or proxies. Queries are also frequently repeated
by the same users. About 16% to 22% of all queries are
repeated queries from the same users, which should be
cached at the user side. Multiple-word queries have less
shareness and thus can also be cached mainly at the user
side.

� The majority of the repeated queries are referenced again
within short time intervals. But there remains a signifi-
cant portion of queries that are repeated within relatively
longer time intervals, which are largely shared by different

�
The shareness of a query A is computed as the number of distinct

users who submitted A over some time period. Thus, shareness is a
measure of a query’s popularity across multiple users.

IEEE INFOCOM 2002 2

users. So if caching is to be done at the user side, short-
term caching for hours will be enough to cover query tem-
poral locality, while server/proxy caching should be based
on longer periods, on the order of days.

� Most users have small lexicons when submitting queries.
Frequent users who submit many search requests tend to
reuse a small subset of words to form queries. Thus, with
proxy or user side caching, prefetching based on the user’s
lexicon is promising. Proxy or user side caching also pro-
vide us with opportunities to improve query results based
on individual user preferences, which is an important fu-
ture research direction.

In the rest of the paper, we first discuss related works
in Section I-A. We then describe the traces we analyzed
and summarize the general statistics of the data in Section
II. In Section III, we focus on repeated queries and dis-
cuss query locality in both traces. Section IV presents our
findings about user lexicon analysis and its implications.
Finally, we review analysis results and discuss possible fu-
ture research directions.

A. Related works

Due to the exponential growth of the Web, there has
been much research on the impact of Web caching and how
to maximize its performance benefits. Most Web browsers
support caching documents in the client’s memory or local
disk to reduce the response time of the client. Deploy-
ing proxies between clients and servers yields a number
of performance benefits. It reduces server load, network
bandwidth usage as well as user access latency [5], [8],
[11], [12]. Prefetching documents to proxies or clients has
also been studied for further performance improvement by
utilizing user access patterns [4], [7].

There are also studies of search engine traces. Jasen et al
analyzed the Excite search engine trace to determine how
users search the Web and what they search for [6]. Silver-
stein et al analyzed the Altavista search engine trace [13],
studying the interaction of terms within queries and pre-
senting results of a correlation analysis of the log entries.
Although these studies have not focused on caching search
engine results, all of them suggest queries have significant
locality, which particularly motivates our work.

Query result caching has also been investigated as
a way to reduce the cost of query execution in dis-
tributed database systems by caching the results of ’sim-
ilar’ queries [3], [14]. Recently, Markatos has studied the
query locality based on the Excite trace and shown that�������������

of the queries are repeated ones [9], [10]. He
suggests a server-side query result cache and has mainly
focused on leveraging different cache replacement algo-
rithms. Our work builds on this by systematically studying

query locality and deriving the implications for caching
search engine results.

II. THE SEARCH ENGINE QUERY TRACES

The two traces we analyzed are from the Vivisimo
search engine [2] and the Excite search engine [1] re-
spectively. In this section, we briefly take a look at the two
search engines and review their trace data.

A. The Vivisimo and the Excite search engines

Vivisimo is a clustering meta-search engine that orga-
nizes the combined outputs of multiple search engines.
Upon reception of each user query, Vivisimo combines the
results from other search engines and organizes these doc-
uments into meaningful groups. The groupings are gen-
erated dynamically based on extracts from the documents,
such as titles, URLs, and short descriptions. By default,
Vivisimo refers to one or multiple major search engines,
including (ca. Feb. 2001) Yahoo, Altavista, Lycos, Excite,
and returns 200 combined results using logic operation
’ALL’. Vivisimo also supports advanced search options
where users can specify which search engines to query, the
number of results to be returned, and which logic operation
to be performed on the query, including ANY, PHRASE
and BOOLEAN.

Excite is a basic search engine that automatically pro-
duces search results by listing relevant web sites and infor-
mation upon reception of each user query. Capitalization
of the query is disregarded and the default logic operation
to be performed is ’ALL’. It also supports other logic op-
erations like ’AND’, ’OR’, ’AND NOT’. More advanced
searching features of Excite include wide card matching,
’PHRASE’ searching and relevance feedbacks.

B. The query trace descriptions

The Vivisimo query trace was collected from January
14, 2001 to February 17, 2001, soon after the Vivisimo
launch in early January, 2001. The trace captures the be-
havior of early adopters who may not be representative of
a steady state user group. The Excite trace was collected
on December 20, 1999. In both traces, each entry contains
the following fields of interest:

� an anonymous ID identifying the user IP address. For
privacy reasons, we do not have actual user IP addresses.
Each IP address in the original trace is replaced by a
unique anonymous ID.

� a timestamp specifying when the user request is re-
ceived. The timestamp is recorded as the wall clock time
with a 1 second resolution.

� a query string submitted by the user. If any advanced
query operations are selected, they will also be specified in

IEEE INFOCOM 2002 3

this string.
� a number indicating whether the request is for next page
results or a new user query.

C. Statistical summaries of the traces

After extracting a query string from each trace entry,
we transform the string to a uniform format for easy pro-
cessing. We remove stopwords from the query because
most search engines discard them anyway. We convert all
query terms to lower case and the query is thus case insen-
sitive, which is also typical for search engines. However,
the removal of the stopwords and the upper-to-lower case
conversion actually have little impact on our analysis re-
sults. It affects our statistics by about 1% and the effect
could be ignored. In the rest of the paper, we use ’query’
to denote all the words as a whole entered by the user in
a query submission, and ’words’ or ’terms’ to denote the
individual words contained in a user query. Because we
cannot distinguish users who used multiple IP addresses or
users who shared IP addresses in the trace, we uniformly
use ’user’ to denote the IP address where the query came
from.

Table I summarizes the statistics about the traces. The
Excite trace lasts for 8 hours in a single day and the
Vivisimo trace was collected more recently over a period
of 35 days. Thus, the two traces provide us with both long-
term and short-term views to user queries since they stand
for different time scales. Several facts are obvious from
this summary for both traces. First, users do not issue
many next-page requests. Less than two pages on aver-
age are examined for each query. Second, users do repeat
queries a lot. Over 32% of the queries in the Vivisimo
trace are repeated ones that have been submitted before
by either the same user or a different user, while more
than 42% of the queries are repeated queries in the Ex-
cite trace. Third, the majority of users do not use advanced
query options: 97% of the queries from the Vivisimo trace
and 93% of the queries from the Excite trace use the de-
fault logic operation offered by the corresponding search
engines. Fourth, users on average do not submit a lot of
queries. The average numbers of queries submitted by a
user are 5.48 and 3.69 respectively. Finally, about 70% of
the queries consist of more than one word, although the av-
erage query length is less than three terms, which is short.
Figures 1 shows the query length distributions of the two
traces. We can observe that most of the queries are less
than five terms long. Overall, these results are consistent
with those reported in [6] and [13] and thus are not sur-
prising.

 1 2 3 4 5 6 7 8 9 10 >10
0

5

10

15

20

25

30

35

40

Number of words in a query

(%
)

P
er

ce
nt

ag
e

of
 th

e
tr

ac
e

(a) The Vivisimo trace

 1 2 3 4 5 6 7 8 9 10 >10
0

5

10

15

20

25

30

35

Number of words in a query

(%
)

P
er

ce
nt

ag
e

of
 th

e
tr

ac
e

(b) The Excite trace

Fig. 1. User query distribution according to the number of
words in each query

III. QUERY LOCALITY AND ITS IMPLICATIONS

As mentioned in Section II-C, 32% to 42% of the
queries in the trace are repeated queries, which suggests
caching as a way to reduce server workload and network
traffic. In this section, we focus on the study of repeated
queries, and discuss how the locality in these queries mo-
tivates different kinds of caching.

A. Query repetition distribution

Among the 35,538 queries that are repeated ones in the
Vivisimo trace, there are 16,162 distinct queries. This
means on average, each repeated query was submitted 3.20
times. Similarly, each repeated query in the Excite trace
was submitted 4.49 times, with 235,607 distinct queries
among 821,315 repeated ones. Interestingly, we found
that the query repetition frequencies can be characterized
by Zipf distributions. Figure 2 plots the distributions of
the repeated query frequencies for the traces. Each data
point represents one repeated query, with X axis showing
queries sorted by the repetition frequency: the first query
is the most popular one, the second query is the second-
most repeated query, and so on until we reach the query
number 16,162 and 235,607 which were only repeated a
single time.

IEEE INFOCOM 2002 4

Trace Vivisimo trace Excite trace
Start-time 14/Jan/2001:04:02 20/Dec/1999:09:00
Stop-time 17/Feb/2001:00:00 20/Dec/1999:16:59
Number of bytes 657,623,865 118,318,788
Number of HTTP requests 2,588,827 not known
Number of user queries (including next page requests) 205,342 2,477,283
Number of user queries (excluding next page requests) 110,881 1,920,997
Number of distinct user queries 75,343 1,099,682
Number of multiple word queries 77,181 1,429,618
Number of queries using default logic operation(ALL) 107,880 1,792,174
Number of users 20,220 520,883
Average queries submitted per user 5.48 3.69
Average number of terms in a query 2.22 2.63

TABLE I. Trace statistical summary. The number of HTTP requests cannot be inferred from the Excite trace since the trace did
not contain information about HTTP requests from users.

Type of queries Queries repeated
�

10 times Queries repeated � 10 times
shared not shared shared not shared

Number of appearances 319 85 5356 10402
Percentage 78.96% 21.04% 33.99% 66.01%

Table II (a) Shareness of the queries from the Vivisimo trace

Type of queries Queries repeated
�

10 times Queries repeated � 10 times
shared not shared shared not shared

Number of appearances 11,960 111 123,060 100,476
Percentage 99.08% 0.92% 55.05% 45.95%

Table II (b) Shareness of the queries from the Excite trace

TABLE II. Shareness of the queries based on their repetition frequencies. A query was shared if it was submitted by more than
one user in the exact same form. Otherwise, a query was only submitted by a single user and was not shared

We are also interested in whether the repeated queries
were from the same users or shared by different users.
Out of the 32.05% of the repeated queries in the Vivisimo
trace, 70.58% are from the same users. In the Excite trace,
we have 42.75% of the repeated queries, of which 37.35%
are repeated by the same users. Therefore, about 22%
and 16% of all queries are repeated queries from the same
users in the Vivisimo trace and the Excite trace respec-
tively.

We then counted the number of distinct queries that
were repeated by more than one user. There are 5,675
such queries from the Vivisimo trace and 135,020 such
queries from the Excite trace. The distributions of these
queries, however, are non-uniform according to the fre-
quency of the repetitions. Table II shows that queries re-
peated at least 10 times are more likely to be shared by
multiple users than queries repeated less than 10 times. In
the Vivisimo trace, among the 404 queries that were re-
peated at least 10 times, 78.96% were shared by differ-
ent users. For the queries that were repeated less than 10
times, only 33.99% were shared. The same trend holds

for the Excite trace. Among the 12,071 queries repeated at
least 10 times, as many as 99.08% are shared, while only
55.05% are shared over the queries repeated less than 10
times. Given the Zipf distribution followed by the query
repetition frequency, there are a small number of queries
that were repeated very frequently, which were both shared
by different users and repeated by the same users. There
also exist a large number of queries that were repeated only
a few times, which were mostly from the same users.

These results suggest that we should cache query results
in different ways. For the small number of queries that
were very popular, we could cache them at search engine
servers to exploit the high degree of shareness among dif-
ferent users. We could also cache them at the user side,
which would reduce the server processing overheads due
to their high repetition frequencies. For the other type of
queries that are only repeated by the same users, caching
them at servers is not very effective, considering the lim-
ited server resources and the diverse requirements from the
large number of users. Instead, we could consider caching
these queries at the user side according to the unique re-

IEEE INFOCOM 2002 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Query ID(10 based log)

N
um

be
r

of
 ti

m
es

 r
ep

ea
te

d(
10

 b
as

ed
 lo

g)

(a) The Vivisimo trace

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Query ID(10 based log)

N
um

be
r

of
 ti

m
es

 r
ep

ea
te

d(
10

 b
as

ed
 lo

g)

(b) The Excite trace

Fig. 2. Distribution of the query repetition frequency (loga-
rithmic scales on both axes). Query IDs are sorted by the
number of times being repeated.

quirement of each individual user.

B. Query locality based on individual user

The query shareness distribution indicates that query
locality exists with respect to the same users as well as
among different users. More specifically, most of the
queries at the long tail were repeated by the same users.
Therefore, we further explore query locality based on each
individual user.

There are 20,220 users recorded in the Vivisimo trace,
of whom 6,628 repeated queries at least once. Each user
on average repeated 5.36 queries. In the Excite trace, there
are 520,883 users who submitted queries. Among them,
136,626 users repeated queries, with each user repeating
6.01 queries on average. Figure 3 plots the percentage of
the repeated queries over the total number of queries sub-
mitted by each user. For example, if a user submitted 10
queries in total, and out of the 10 queries, 5 were repeated
ones that had been submitted before, then the user has 50%
of the repeated queries. From both traces, we observe that,
80% to 90% of the users who repeated queries had at least
20% of the repeated queries, and around half of these users
had at least 50% of the repeated queries.

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

100

User ID

(%
)P

er
ce

nt
ag

e
of

 th
e

re
pe

at
ed

 q
ue

rie
s

(a) The Vivisimo trace

0 2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User ID

(%
)P

er
ce

nt
ag

e
of

 th
e

re
pe

at
ed

 q
ue

rie
s

(b) The Excite trace

Fig. 3. The percentage of the repeated queries over the number
of queries submitted by each user (Only those users who
repeated queries are plotted here).

From these results, we can see that not only a lot of
users repeated queries, but each user also repeated queries
a lot. Considering that 16% to 22% of all queries were re-
peated by the same users and that search engine servers
can cache only limited data, caching these queries and
query results based on individual user requirements in a
more distributed way is thus important. It reduces user
query submission overheads and access latencies as well
as server load. By caching queries at the user side, we
also have the opportunity to improve query results based
on individual user context, which cannot be achieved by
caching queries at a centralized server.

C. Temporal query locality

In this section, we quantify the notion of temporal query
locality, that is, the tendency of users to repeat queries
within a short time interval. Figure 4 shows the number of
queries repeated within different time intervals. Overall,
queries were repeated within short periods of time. In the
Vivisimo trace, about 65% of the queries were repeated
within an hour. Since the Excite trace lasts for only 8
hours, as many as 83% of the queries were repeated within
an hour.

IEEE INFOCOM 2002 6

 < 1 min 1−5 mins 5−10 mins 10−30mins 30−60mins 1h − 1day > 1 day
0

5

10

15

20

25

time intervals

(%
)P

er
ce

nt
ag

e
of

 r
ep

ea
te

d
qu

er
ie

s

number of queries repeated overall
number of queries repeated by the same users

(a) The Vivisimo trace

 < 1 min 1−5 mins 5−10 mins 10−30mins 30−60mins 1h − 8h
0

5

10

15

20

25

30

time intervals

(%
)P

er
ce

nt
ag

e
of

 r
ep

ea
te

d
qu

er
ie

s

number of queries repeated overall
number of queries repeated by the same users

(b) The Excite trace

Fig. 4. Repeated query distribution within different time inter-
vals

In the Vivisimo trace, these queries were mostly from
the same users. More specifically, 45.5% of the queries
were repeated by the same users within 5 minutes, which
is very short. There are also many queries that were
repeated over relatively longer time intervals; they are
largely shared by different users. Out of the 21.98% of
the queries that were repeated over a day, only 5.09%
came from the same users. The Excite trace generally has
a smaller percentage of the queries repeated by the same
users. But we still observe the same pattern: the shorter
the time interval, the more likely a query will be repeated
by the same user.

These statistics suggest that if caching query results is
to be done at servers or proxies, then we should consider
longer period of caching in order to exploit maximum
shareness among different users. Usually, caching query
results for a long time is more likely to result in stale data.
Since this is to be performed by the server, the stale data
can be removed in time whenever the server updates the
results. If caching is to be performed at the user side, then
short period of caching would be enough to cover most
of the temporal query locality, which is also less likely to
result in stale data.

D. Multiple-word query locality

Multiple-word queries are important because they ac-
count for about 70% of the queries. Multiple-word queries
also have significant locality, which will be discussed in
this section.

Table III summarizes the statistics about multiple-word
queries. The Excite trace has a larger portion of multiple-
word queries than the Vivisimo trace, but both traces have
as many as 62% of the multiple-word queries over the re-
peated ones. We observe that multiple-word queries are re-
peated less frequently compared with single-word queries.
In the Vivisimo trace, each repeated multiple-word query
was submitted 3.00 times on average, compared with 3.63
times for single-word cases. In the Excite trace, each
repeated multiple-word query was submitted 3.77 times,
compared with 7.12 times for single-word cases.

We also observe that multiple-word query locality
mostly exists among the same users, that is, multiple-word
queries have less degree of shareness. Table IV shows
the comparison between multiple-word queries and single-
word queries with respect to their degrees of shareness.
From both traces, we can see that multiple-word queries
are less likely to be shared by different users. Each shared
multiple-word query also tends to be shared by fewer
users. This is easily explained because the chances for dif-
ferent users to submit the same multiple-word queries are
much smaller than those for single-word queries.

From the above results, we can see that multiple-
word query locality is significant. Caching multiple-word
queries is more promising because it takes more time
to compute multiple-word query results. Since multiple-
word queries have less degree of shareness, we could cache
them mainly at the user side.

E. Users with shared IP addresses

Some users use dial up services such as AOL to access
the Internet. For those users, their IP addresses are dynam-
ically allocated by DHCP servers. Unfortunately, there is
no common way to identify these kinds of users. This im-
pacts our analysis in two ways. First, because different
users can share the same IP address at different times, their
queries seem like they come from the same user, leading to
an overestimate of the query locality from the same users.
Second, because the same users can use different IP ad-
dresses at different times, it is also possible for us to un-
derestimate the query locality from the same users. But
since AOL clients will have keyword ’AOL’ in their user-
agent fields, which was recorded in the Vivisimo trace, we
are able to identify AOL users who might have shared IP
addresses in the Vivisimo trace. We found that among the

IEEE INFOCOM 2002 7

Number of appearance Percentage
Vivisimo Excite Vivisimo Excite

Multiple word queries 77,181 1,429,618 69.61% 74.42%
(over the number of the queries)

Unique multiple word queries 55,193 924,546 73.26% 84.07%
(over the number of the unique queries)

Multiple word queries that were 21,995 505,249 61.89% 61.52%
repeated (over the number of the repeated queries)
Unique multiple word queries that 11,020 182,335 68.18% 77.39%
were repeated (over the number of unique repeated queries)
Unique multiple word queries that 3,181 101,098 5.76% 11%
were submitted by more than one user (over the number of unique multiple word queries)

TABLE III. Multiple-word query summary

Type of queries Shared multiple-word queries Shared single-word queries
Vivisimo Excite Vivisimo Excite

Percentage 5.76% 10.93% 12.28% 19.37%
Number of users 2.53 3.95 3.24 7.38

TABLE IV. The comparison between multiple-word queries and single-word queries with respect to the degrees of the shareness
in both traces. ’Percentage’ means the portion of shared multiple-word or single-word queries over the total number of
multiple-word or single-word queries. ’Number of users’ means the average number of users sharing each such query.

110,881 queries received, there are only 2,949 queries sub-
mitted by 749 AOL clients. And only three of them are fre-
quent users who submitted more than 70 queries. There-
fore, we believe our results about the Vivisimo trace are
not biased by these users.

IV. USER LEXICON ANALYSIS AND ITS IMPLICATIONS

In this section, we analyze the user query lexicons. We
also propose possible ways to prefetch query results for
each individual user, by recognizing their most frequently
used terms.

A. Distribution of the user lexicon size

We noticed that the word frequency in the trace cannot
be characterized by a Zipf distribution, which was also no-
ticed in [6]. The graph falls steeply at the beginning and
has an unusually long tail.

Instead of looking at the overall lexicons used in the
trace, we group all the words used by each user in-
dividually, and examine the user lexicon size distribu-
tion. Among the 249,541 words in the queries from the
Vivisimo trace, there are 51,895 distinct words. In the
Excite trace, there are 350,879 distinct words among the
5,095,189 words from the queries. We notice that some
users in the Excite trace submitted a large number of
queries, for example, one user submitted 130,220 queries
during the 8 hours. These users are very likely to be meta-
search engines instead of normal users. Thus we ignore
the 60 users who submitted more than 100 queries in the

Excite trace and examine the remaining users on their lex-
icon sizes. Compared with the overall lexicon size, the
user lexicon sizes are much smaller. The largest user lexi-
cons in the two traces have only 885 words and 202 words
respectively. We also find that the user lexicon size does
not follow a Zipf distribution. Figure 5 plots the distribu-
tions of the user lexicon size. The graphs have heavy tails,
meaning the majority of the users have small lexicons.

We also looked at the relationship between the number
of queries submitted by each user and the corresponding
lexicon size. For both traces, the more queries submitted
by a user, the larger the user’s lexicon. Figure 6 shows the
relationship between the number of queries submitted by a
user and the corresponding user lexicon size based on the
Vivisimo trace. The user lexicon sizes are in proportion to
the number of queries submitted by the users. But there
are also a few exceptions, where the users submitted a lot
of queries out of small lexicons. The Excite trace shows
the same pattern and is thus not plotted here.

B. Analysis of frequent users and their lexicons

Though some users have large lexicons, they do not use
all of the words uniformly. We are interested in how many
words are most frequently used in the queries for each user.
For the users in the Vivisimo trace who submitted only a
few queries over the 35 days, calculating their frequently
used words is not meaningful. Similarly, we do not look at
the users in the Excite trace either because the trace lasts
for too short a period. So we only focus on those frequent

IEEE INFOCOM 2002 8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

User ID(sorted by lexicon size)(10 based log)

Le
xi

co
n

S
iz

e(
10

 b
as

ed
 lo

g)

(a) The Vivisimo trace

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

User ID(sorted by lexicon size)(10 based log)

Le
xi

co
n

S
iz

e(
10

 b
as

ed
 lo

g)

(b) The Excite trace

Fig. 5. Distribution of the user lexicon sizes with logarithmic
scales on both axes. X axis denotes the user IDs sorted by
the lexicon sizes. When plotting the Excite trace, we remove
those users who submitted more than 100 queries over the
8-hour period. Those users are very likely to be meta-search
engines or robots instead of normal users.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

User ID (sorted by lexicon size)

User lexicon size
Number of queries submitted by the user

The user with a small lexicon size but
submitted many queries

Fig. 6. User lexicon sizes and the number of the queries they
submitted in the Vivisimo trace. Solid line plots the sorted
user lexicon sizes. Dashed line plots the numbers of the
queries submitted by the corresponding users. For scale rea-
sons, this figure is a zoomed in part from a complete figure,
but the pattern shown here is general for the complete figure
as well.

Number of fre-users 157
Number of queries submitted by fre-users 25,722
Number of fre-users with fre-lexicon size

�
1 153

Number of fre-users with fre-lexicon size � 20 128

TABLE V. Fre-users statistics in the Vivisimo trace. Fre-
users are defined as those users who submitted at least
70 queries over the 35 days. Those users visited Vivisimo
frequently and submitted at least 2 queries each day on av-
erage. Fre-lexicon is defined as the set of terms that were
used by the corresponding user for at least five times.

users in the Vivisimo trace. We call a user a fre-user if
the user submitted at least 70 queries. The fre-users thus
submitted at least 2 queries each day on average. We also
define a fre-lexicon for each fre-user. The fre-lexicon con-
sists of the words that were used at least five times by the
corresponding users

Table V shows the statistical summary about the fre-
users in the Vivisimo trace. There are 157 fre-users, among
whom, 153 fre-users have non-empty fre-lexicons. Al-
though fre-users account for less than 1% of the users,
they submitted 25,722 queries in total, which account for
23.20%, a significant portion over the total number of
queries. Since these users are non-trivial, caching and
improving query results based on their individual require-
ment looks promising.

We also observe from the table that most of the fre-
users had small fre-lexicons. Thus we are interested in
how many queries were generated purely by the words
from fre-lexicons. If the users tend to re-use a small num-
ber of words very often to form queries, then we can pre-
dict queries and prefetch query results by simply enumer-
ating all the word combinations. Figure 7 (a) plots the
number of queries generated from fre-lexicons. There
are a small number of fre-users with relatively larger fre-
lexicons, from which they submitted a lot of queries. So
prefetching based on fre-lexicons for these users will help
reduce the number of queries to be submitted dramatically.
But we also need a large cache size to store all the possible
word combinations due to the relatively large fre-lexicon
size. There are also quite a few users who generated a
lot of queries from small fre-lexicons. For example, the
user specified in the figure generated 106 queries from an
8 word fre-lexicon. For these users, prefetching according
to fre-lexicons would be most effective.

Since the majority of queries have fewer than five terms,
it is interesting to see how many queries with fewer than
five terms were generated from fre-lexicons. Figure 7 (b)
shows both the percentage of the queries from fre-lexicons
and the percentage of the queries from fre-lexicons with

IEEE INFOCOM 2002 9

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

Fre−User ID(sorted by lexicon size)

Fre−lexicon size
Number of queries generated from fre−lexicon

The user who generated a lot of
queries out of a small fre−lexicon

(a) Queries and Fre-lexico

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

Fre−User ID

(%
)P

er
ce

nt
ag

e
of

 th
e

qu
er

ie
s

Queries generated from fre−lexicon
Quereies generated from fre−lexicon with <= 4 terms

(b) Percentage of the queries generated from fre-lexicons

Fig. 7. (a) The number of queries generated from fre-lexicon
and the corresponding fre-lexicon size. Fre-user IDs are
sorted by the lexicon sizes. (b) The percentage of the queries
generated by the fre-lexicon for each fre-user. The fre-user
IDs are sorted by the percentages.

less than five terms. The addition of the extra constraints
imposed on the number of terms does not affect the results
for most of the fre-users. Therefore, we could just enumer-
ate the word combinations using no more than four terms,
which would greatly reduce the number of queries to be
prefetched.

V. DISCUSSIONS ON RESEARCH DIRECTIONS

Although the Vivisimo trace and the Excite trace were
collected independently at different times, over different
temporal periods, and with different user populations, their
statistical results are similar. In this section, we review
these results and discuss their implications on future re-
search directions. We focus on three aspects: caching
search engine results, prefetching search engine results,
and improving query result rankings.

A. Caching search engine results

With
����� � � ���

of repeated queries, caching search
engine results is a non-trivial problem. Cache placement
is one of the key aspects of the effectiveness of caching.
Query results can be cached on the servers, the proxies,

and the clients. For optimal performance, we should make
decisions based on the following aspects:
1. Scalability. A cache scheme should scale well with the
increasing size and the density of the Internet.
2. Performance improvement. This includes the amount
of reduction in server workload, user access latency, and
network traffic.
3. Hit rate and shareness. The higher the hit rate, the more
efficient the caching. We would also like cached query re-
sults to be shared among different users of common inter-
ests.
4. Overhead. The overheads include the system resources
devoted for caching and the extra network traffic induced.
5. Opportunity for other benefits. By disseminating user
requests among caches, what other benefits can we achieve
with the existence of caching?

Table VI compares the pros and cons of different cache
placement schemes in the general case. (1) Server caching
has only limited system resource available, so it does not
scale well with the increasing size of the Internet. In ad-
dition, though we can save the redundant computation, we
cannot reduce the number of requests received by servers
and the reduction in user access latency is also very lim-
ited. However, server caching has small overhead. More-
over, it allows maximum query shareness among differ-
ent users and the hit rate would be high by caching popu-
lar queries. (2) Proxy caching is effective to reduce both
server workload and network traffic. In the case of caching
query results, this assumes that the users nearby a proxy
would share queries to result in large hit rate. However,
one of the main disadvantages of proxy caching is the sig-
nificant overhead of placing dedicated proxies among the
Internet. (3) User side caching has the best performance
improvement in case of a cache hit because the redundant
user requests will not be sent out at all. Compared with the
limited system resources at servers, the sum of each indi-
vidual user resource is almost infinite. So user side caching
also achieves the best scalability. Because the overhead of
caching can be amortized to a large number of users, the
overhead at each user side is small. More importantly, with
user side caching, it is now possible to prefetch or improve
query results based on individual user requirement. How-
ever, no shareness will be exploited with user side caching.
Thus if queries are mostly shared instead of being repeated
by the same users, we would have low hit rate in such case.

The above discussion indicates that the degree of share-
ness is important to decide where we should cache query
results. In one extreme case where users never repeat their
own queries, we reach the maximum degree of shareness.
In such case, we should cache query results at servers or
proxies because user side caching would result in zero hit

IEEE INFOCOM 2002 10

Level of caching Server caching Proxy caching User side caching
Scalability worst medium best
Performance improvement worst medium best
Hit rate and shareness best medium worst
Overhead small large small
Opportunity for other benefits least medium most

TABLE VI. Comparisons between different cache placement schemes.

rate. In another extreme case where users never share
queries, caching query results at user side would be most
helpful.

Our trace analysis results show that, among all queries,
repeated queries account for 32% to 42%, while repeated
queries from the same users account for 16% to 22%. The
significant portion of the queries repeated by the same
users and the non-trivial difference between the above two
percentages suggest both server/proxy caching and user
side caching. For the queries repeated only by the same
users, we can cache them at user side for efficiency, while
the rest of the repeated queries can be cached at either
servers or proxies. Since we do not know the actual IP
addresses of the users in both traces, we cannot further dis-
tinguish the queries that can be shared by nearby users and
thus can be cached at proxies. But it is clear from the traces
that the percentage of such queries would be between 16%
and 42%. Therefore, we leave proxy caching as a future
work for search engines themselves to determine whether
and where to place such proxies.

Since multiple-word queries have less degree of share-
ness, we also suggest caching multiple-word queries
mainly at the user side. Therefore, by caching only popu-
lar single-word queries at servers/proxies, we can achieve
larger hit rates and greatly reduce the required system
space.

Another important question about caching is how long
we should cache query results. Temporal query locality in-
dicates that most of the queries are repeated within short
time intervals. So in general, caching query results for
short periods should work well. More detailed analysis
in Section III-C shows that the shorter time interval, the
more likely for a query to be repeated by the same users.
Thus for user side caching, caching query results for hours
will be enough to cover the query locality existing on the
same users. This also helps to remove or update stale query
results in time. There also exist a non-trivial portion of
queries repeated over relatively longer time intervals and
these queries are mainly shared among different users. So
if caching is to be done at servers or proxies, we can con-
sider longer-term caching such as a couple of days.

B. Prefetching search engine results

Our user lexicon analysis in Section IV suggests that
prefetching query results based on user fre-lexicons is
promising. Prefetching has always been an important
method to reduce user access latency. In the case of
prefetching search engine results, it can be performed at
both user side or proxies.

Caching query results at user side provides useful in-
formation about user interest. For this reason, user side
prefetching is natural and worth looking at. From the
user lexicon analysis, we observe that the majority of the
user lexicon sizes are small. Frequent users who submit-
ted a lot of queries usually use a small subset of words
more often than other words. So a straightforward way
of prefetching is to enumerate all the word combinations
from fre-lexicons and prefetch the corresponding query re-
sults. Since queries are usually short, we can skip queries
longer than four terms to reduce the prefetching overhead
while achieving approximately the same performance im-
provement. For example, a 10 word fre-lexicon needs
to prefetch 385 queries using the above naive algorithm,
which will cost less than 20 minutes network download
time using 56Kbps modem and about 8M disk for storage.
These overheads are trivial considering that a normal PC
today is idle about 70% of the time on average and the
normal disk size is tens of Gigabytes.

Prefetching can also be performed at proxies. In such
cases, server’s global knowledge about user query patterns
can be utilized to decide what to prefetch and when to
prefetch. Since proxies allow query shareness among dif-
ferent users, exploring how to achieve maximum hit rate in
such case would also be an interesting problem for future
research.

C. Improving query result rankings

Although today’s search engines often return tens of
thousands of results for a user query, only a few results
will be actually reviewed by the users. Section II-C shows
that each user on average reviews less than two pages of
results. Thus improving query result rankings based on in-
dividual user requirement is more important than ever. The
personal nature of ’relevance’ requires incorporating user

IEEE INFOCOM 2002 11

context to find desired information. Because centralized
search engines provide services to millions of users, it is
impractical to customize results for each user. Some spe-
cialized search engines do offer search results which are
different than standard for some specialized user require-
ments. But none of them allows users to define their own
requirements at will. With user side/proxy caching, it is
now possible to re-rank the returned search engine results
based on the unique interest of individual user. For ex-
ample, a naive algorithm would be to increase the ranks
of the Web pages visited by the user among the next query
results. We can also explore other algorithms and integrate
them with caching to customize search engine results for
individual user.

VI. CONCLUSIONS

Caching is an important technique for reducing server
workload and user access latency. In this paper, we inves-
tigated the issue of whether caching might work in the case
of search engines, as it does in many other areas. We stud-
ied two real search engine traces and investigated the fol-
lowing three questions: (1) Where should we cache search
engine results? At servers, proxies, or user side? (2) How
long should we cache search results? Or do queries have
strong temporal query locality? (3) What are the other ben-
efits of caching search engine results?

Our analysis of both the Vivisimo search engine trace
and the Excite search engine trace indicate that: (1)
Queries have significant locality. Query repetition fre-
quency follows a Zipf distribution. The popular queries
with high repetition frequencies are shared among differ-
ent users and can be cached at servers or proxies. There
are also about 16% to 22% of the queries repeated by the
same users, which should be cached at user side. Multiple-
word queries have less degree of shareness and should
be cached mainly at user side. (2) The majority of the
repeated queries are referenced again within short time
intervals. There is also a significant portion of queries
that are repeated within relatively longer time intervals,
which are largely shared by different users. So if caching
is to be done at user side, short-term caching for hours
will be enough to cover query temporal locality, while
server/proxy caching should base on longer periods such
as days. (3) Most of the users have small lexicons when
submitting queries. Frequent users who submitted a lot
of search requests tend to re-use a small subset of words
to form queries. Thus with proxy or user side caching,
prefetching based on user lexicon is promising. Proxy or
user side caching also provide us with opportunities to im-
prove query results based on individual user requirement,
which is an important future research direction.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance of Raul
Valdes-Perez and the Vivisimo search engine team for pro-
viding us with a trace. Thanks also to the Excite team for
making their trace available. Without the generous sharing
of the trace data by Vivisimo and Excite, this work would
not be possible. We also thank Jamie Callan for his helpful
comments and suggestions.

REFERENCES

[1] Excite. http://www.excite.com.
[2] Vivisimo. http://www.vivisimo.com.
[3] S. Adali, K.S. Candan, Y. Papakonstantinou, and V.S. Subrahma-

nian. Query Caching and Optimization in Distributed Mediator
Systems. In H. V. Jagadish and Inderpal Singh Mumick, editors,
Proc. of the 1996 ACM SIGMOD Conf. on Management of Data,,
pages 137–148. ACM Press, 1996.

[4] P. Cao, L. Fan, and Q. Jacobson. Web Prefetching Between Low-
Bandwidth Clients and Proxies:Potential and Performance. In
Proceedings of the ACM SIGMETRICS Conference, Atlanta, GE,
May 1999.

[5] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabi-
novich. Performance of Web Proxy Caching in Heterogenous En-
vironments. In Proceedings of the IEEE infocomm’99, New York,
NY, March 1999.

[6] B.J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life in-
formation retrieval: a study of user queries on the Web. In SIGIR
Forum, Vol. 32. No. 1, pages 5–17, 1998.

[7] T. Kroeger, D. Long, and J. Mogul. Exploring the Bounds of Web
Latency Reduction from Caching and Prefetching. In Proceedings
of the USENIX Symposium on Internet Technologies and Systems,
December 1997.

[8] C. Maltzahn, K. Richardson, and D. Grunwald. Performance Is-
sues of Enterprise Level Web Proxies. In Proceedings of the SIG-
METRICS Conference on Measurement and Modeling of Com-
puter Systems, June 1997.

[9] Evangelos P. Markatos. On Caching Search Engine Results. Tech-
nical Report 241, Institute of Computer Science, Foundation for
Research & Technology - Hellas (FORTH), 1999.

[10] Evangelos P. Markatos. On Caching Search Engine Query Re-
sults. In Proceedings of the 5th International Web Caching and
Content Delivery Workshop, May 2000.

[11] M.S. Raunak, P. Shenoy, P. Goyal, and K. Ramamritham. Impli-
cations of Proxy Caching for Provisioning Networks and Servers.
In Proceedings of the ACM SIGMETRICS Conference, Santa
Clara, CA, June 2000.

[12] A. Rousskov and V. Soloviev. On Performance of Caching Prox-
ies. In Proceedings of the ACM SIGMETRICS Conference, Madi-
son, WI, June 1998.

[13] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis
of a Very Large AltaVista Query log. Technical Report 1998-014,
Digital System Research Center, October 1998.

[14] M. Taylor, K. Stoffel, J. Saltz, and J. Hendler. Using Distributed
Query Result Caching to Evaluate Queries for Parallel Data Min-
ing Algorithms. In Proc. of the Int. Conf. on Parallel and Dis-
tributed Techniques and Applications, 1998.

