
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Minimum Cost Aspect Classification:
a Module of a Vision Algorithm Compiler

Ki Sang Hong Katsushi Ikeuchi
Keith D. Gremban

April 1990
CMU-CS-90-124 3

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported by the Defense Advanced Research Projects Agency (DOD) and monitored
by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems Division
(AFSC), Wright-Patterson AFB, Ohio45433-6543 under ContractF33615-87-C-1499, ARPA Order No. 4976,
Amendment 20. K.S. Hong was supported by KOSEF: Korea Science and Engineering Foundation.

Hie views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of DARPA, KOSEF or the U.S.
government

Keywords : computer vision, vision and scene understanding, automatic programming

Abstract

An important issue in building a model-based vision system is how to extract and organize
the relevant knowledge of an object, and systematically turn this knowledge into a working
vision system. One approach is to use a vision algorithm compiler, which utilizes stored
models of objects, sensors, and processing operations to automatically generate a working
vision system. In this paper, we discuss the design of one module of an optimizing vision
algorithm compiler which determines the minimum-cost sequence of operations needed to
classify an object into an aspect Given the costs of various feature extraction operations,
the module searches over the space of possible classification strategies for the combination
of operations that minimizes the expected cos t The optimal strategy is compiled in the
form of an aspect classification tree. The classification tree may be expensive to compile,
but this cost is incurred off-line, and may result in significant savings at run-time. The
performance of the module is illustrated with several examples.

Contents
1 In t roduct ion 2

1.1 Background 3
1.2 Organization 4

2 St ra tegy Generat ion 5
2.1 Aspect Classification and Object Localization 5
2.2 Features and Costs 6
2.3 Searching Possible Strategies 9

2.3.1 Determining the Cost of Aspect Classification 9
2.3.2 Strategy Trees and Branch-and-Bound Search 12

3 Object Demonstra t ions 17
3.1 Polyhedron Demonstration 17
3.2 House Demonstration 19
3.3 Airplane Demonstration 19

4 S u m m a r y 23

5 Acknowledgements 24

References 25

A Computa t iona l Costs of Features 27

1

1 Introduction
A critical issue in building a model-based vision system is how to extract and organize
the relevant knowledge of an object, and systematically turn that knowledge into a vision
program. Traditionally, vision systems have been developed based on the implementors ,

insight into the specific problem. Although the resulting system may be effective and effi
cient, this hand-coding method requires large amounts of time, experimentation, and deep
vision expertise for building application systems. For complex applications, a prohibitive
amount of resources may be required for development.

A vision algorithm compiler (VAC) represents a potential alternative to the resource
intensive hand-coding method of vision system development. A VAC utilizes stored object
models, sensor models, and analytic models of processing operations to construct programs
to perform specific vision tasks.

It is unlikely that a single VAC can be built to compile programs for any arbitrary
vision task. The range of possible vision applications, as well as the current state of the
art, forces the development of specialized VACs that compile programs for fairly specific
tasks. In particular, we are working on a VAC to perform object localization tasks, in which
the object is known, but its configuration (position and orientation) must be determined.
Our compiler is therefore specialized, and we refer to it as a VACL (Vision Algorithm
Compiler for Localization). Many of the components of a VACL have been demonstrated.
In particular, [15] discusses a geometric modeler developed for use in computer vision.
Sensor models are discussed in [13], while the compilation of vision programs has been
demonstrated by [9, 5, 11].

Although the programs generated by existing VACLs correctly solve the intended
tasks, they are not guaranteed to do so efficiently. Yet, most applications are required
to be cost-effective. Efficiency is particularly important in vision applications, which are
computation-intensive to begin with. The computational costs of vision operations can vary
dramatically; for example, the cost of computing the Gaussian curvature at every pixel in an
image is several orders of magnitude more costly than computing the intensity gradient at
every pixel. A practical VACL must be an optimizing compiler, and select the combination
of operations that can perform the task for the minimum computational cost.

In this paper, we present the design of a VACL module that is used to construct efficient
vision programs for a subtask of object localization, called aspect classification. An aspect
is a class of topologically equivalent object appearances [16]. Intuitively, an aspect can be
associated with a range of viewing positions. To perform object localization, we first classify
an object into an aspect in order to obtain a rough estimate of an object's configuration; this
is followed by a numerical minimization procedure to precisely locate the object [12]. Our
compiler module generates an optimal strategy for aspect classification, in the sense that
the average cost of classification is minimal.

Given the costs of various primitive operations, the module searches over the space
of possible strategies for the combination of operations that minimizes the expected cost.
The optimal strategy is stored in the form of a tree of operations, the aspect classification
tree. Classification of an object into an aspect starts at the root node and works down to a
leaf. At each node, a test on a feature is indicated - the feature is computed and the next
node is selected based on the outcome of the test. The classification tree may be expensive

2

to compile, but this cost is incurred off-line, and results in significant savings at run-time,
assuming that the application is performed much more frequently than compilation.

1.1 Background
A model-based vision system requires that the relevant knowledge about the task, envi
ronment, sensors, and objects be determined and programmed into the system as models.
Traditionally, the process of extracting and programming models has depended on the
insight of the implementor into the specific problem. Representative examples include
systems built by Oshima and Shirai [17], Perkins [19], and Dceuchi and Horn [14]. While
the final system may be both effective and efficient, the construction of such hand-coded
systems requires extensive investments of time from expert implementors.

The problem is made somewhat easier when a geometric model of an object is available.
Such a model, as generated by a CAD system for instance, represents the 3D shape of an
object by means of polyhedra, generalized cylinders, or other primitives. Given such a
model, an object can be localized in space by matching features of the model to features
found in an image. The abstract method for performing the match consists of minimizing
a difference measure between the features of the model projected into the image, and
the features extracted from the image [2]. The pioneering vision system by Roberts [20]
can be viewed as an instance of such a method. Roberts reduced the problem of object
matching to that of estimating the parameters of transformation (rotation, translation, size,
and projection) by minimizing a matching error between model vertices and image joints.

Grimson and Lozano-Perez [10] formulated the problem of object localization measure
ments within a generic hypothesize-and-test search paradigm. Given a set of observations
and a set of polyhedral object models, the possible matches of observations to model
surfaces are expanded as a search tree. The matcher prunes the tree by using relational
constraints between pairs of measurements which are imposed by the object models. For
example, if the distance between two observations is inconsistent with an hypothesized
match to an object, then that portion of the tree is pruned. The method has been applied to
2d and 3d object recognition using sparse range, touch, and orientation sensory inputs.

Faugeras and Hebert [8] proposed the recognizing-while-positioning paradigm, a general
paradigm which combines the processes of object recognition and object localization. Given
an input image, a standard set of operations is performed to extract linear primitives, and
matching is performed between model and image primitives using a rigidity constraint
to reduce the size of the search space. A tree search technique consisting of hypothesis
formation, prediction, and verification phases is used to explore the search space.

The ACRONYM system by Brooks [6] modeled objects as generalized cylinders and
their spatial relationships. Recognition or matching of the models to an input image is
performed by using a symbolic algebraic reasoning system which reasons about projection
and relational constraints on geometry. ACRONYM succeeded in recognizing airplanes in
aerial images.

The systems cited above used geometric models of objects in conjunction with some
generic reasoning mechanism: numerical optimization, tree search, or symbolic constraint
satisfaction. A common characteristic is that each system uses the object model inter-
pretively; that is, the knowledge is extracted from the model and used to formulate the

3

execution strategy at run time- The systems are general, but not necessarily efficient, even
for specific objects.

One way to increase efficiency is to compile an execution strategy. That is, the relevant
knowledge is extracted from the object models and compiled into an object recognition
strategy off-line so that as little computation as possible is performed at run time. In
terestingly enough, some early vision work can be viewed as examples of compilation.
The generalized Hough transform of Ballard [1] and the direction coding method of Yoda,
Motoike, and Ejiri [21] can be regarded as compiling the object shape in the appropriate
transform so that the recognition reduces to peak finding in a histogram. However, these
methods have limited applicability.

Goad [9] presented one of the first and most systematic methods for automatic generation
and compilation of object localization programs. His basic localization procedure is to pick
a model edge and try a match to an image edge. Based on that match, estimate the
configuration of the object to constrain the search for additional matching edges, and iterate
until the object configuration has been determined. The system compiles in advance the
sequence of matches, and also pre-computes various conditions and data structures to be
used at run time. However, the sequence of matches is specified by hand, and the system is
not fully optimized for speed.

Bolles and Houraud [4] noted that one of the most important features of an industrial
vision system is speed. To achieve high speed parts orientation, they proposed a compiled
system using the local-feature-focus strategy [3]. A focus feature is any feature which is
relatively distinct and easy to recognize. Matching begins with a focus feature. Once a
hypothetical localization is established based on focus features, the localization is verified
using other features. By compiling the choice of focus features and the features to be used
in verification, the system is able to perform localization quickly. However, both focus
features and secondary features are selected by hand.

We have been developing a completely automatic system that can compile a strategy for
object localization [12]. Given a CAD model of the object, the system generates apparent
shapes of the object and classifies these shapes into groups. A set of computable features is
analyzed to generate an interpretation tree that can be used on-line to classify an object into
one of the groups. A second interpretation tree, using an additional set of features is also
generated to determine the attitude of an object within each group. No attempt was made
to optimize the processing, however.

The current paper extends on the system of [12] by compiling a minimum-cost strategy
for the first stage of object localization.

1.2 Organization
The organization of the paper is as follows. Section 2 presents the details of our method.
We discuss our procedure for aspect classification and object localization, the available
features and their associated costs, and the method used to generate a program for aspect
classification. The method has been implemented in a VACL module, and section 3 presents
the results for generation of minimum cost aspect classification trees on several example
objects. A discussion and recommendations for further research conclude the paper.

4

2 Strategy Generation

Our goal is to automate the process of generating an aspect classification strategy that
minimizes the expected computational cost of classification. Minimizing the computational
cost has the effect of increasing the speed with which aspect classification can be performed.
In order to proceed, certain information must be available. In specific, the following
information must be available to the VACL:

• a definition of the aspects to be discriminated;

• the features available for classification;

• the costs to compute each feature.

In this section, we will discuss each of the points above. We begin by describing
the problem of aspect classification and explain its role in the larger context of object
localization. We describe a collection of features which can be extracted from images
for use in aspect classification, and determine the computational cost of each feature. We
conclude this section by presenting the method used in our VACL for generating minimum
cost classification strategies. A VACL module has been implemented using the method
discussed here; the performance of this module on several different objects is presented in
section 3.

2.1 Aspect Classification and Object Localization
Aspects are defined to be topologically distinct classes of object appearances [16]. Less
formally, we can consider an aspect to be a collection of similar views of an object. For
example, consider the case of a convex polyhedron. As the polyhedron rotates with respect
to the viewer, different faces appear and disappear. There will be ranges of viewing
positions within which a particular collection of faces will be visible, and within which
the polyhedron looks roughly the same. Such a collection of faces or views constitutes an
aspect.

In our VACL, we are not concerned with having a fine partition of the set of object
appearances. Instead, we combine distinct aspects into larger sets that still maintain the
property of "looking roughly the same". In particular, we select a group of significant faces,
and then choose our aspects from a set of images distributed uniformly around the unit
sphere based on the visibility of the selected faces. (See [11].) Each aspect is represented
by the average of the features extracted from the images within the aspect. The image
generated from the average view position is used to illustrate an aspect.

Figure 1 illustrates a collection of aspects for a simple polyhedral object.
Object localization is the process of determining the precise position and orientation of

an object. Our VACL generates a two step strategy for object localization:

1. classify an image of an object into an aspect (aspect classification);

2. using aspect information as a starting point, determine the precise position and attitude
of the object (configuration determination).

5

a 2 ™
P

4

"3 £0

Figure 1: Aspects of a Simple Polyhedral Object

Aspects are topologically distinct classes of object appearances. An aspect is
represented by a single image corresponding to the average view within the
aspect. Objects are depicted as wire frame drawings. Dark lines distinguish
detectable faces.

Aspect classification provides a rough guess of an object's configuration. By classifying
the image of an object as an instance of a specific aspect, the object is constrained to lie
within a relatively small range of configurations. Since an average view is associated with
each aspect, the configuration of the object in the average view can be used as an initial
estimate of the true configuration.

To perform configuration determination, the configuration parameters from the initial
estimate are used as the starting parameters for a numerical optimization procedure that
determines the precise attitude of the object [12]. Classifying an image of an object into an
aspect limits the range of possible attitudes of the object, and makes the optimization more
efficient, as well as reducing the likelihood of a converging to a false minimum.

2.2 Features and Costs
To determine the value of any feature, a certain amount of preprocessing is necessary. The
cost of the preprocessing common to all features has not been included in the overall cost
computation. Instead, we assume that a minimum amount of processing takes place prior
to classification. In particular, the input image has been broken down into components,
which are the visible regions in the image, and the following arrays have been computed:

• the needle map which contains the gradient space (/?, q) values at each pixel, and

• the label map which indicates the region to which each pixel belongs.

The computational cost of each feature can be obtained by analyzing the number of
operations required to compute the feature value. We denote the largest visible region
in the image as the target region; neighboring regions are brother regions. Our current
implementation prepares the following collection of features for aspect classification:

6

F l : the area of the target region

The area of the target region is simply the number of pixels with that region label.

F 2 : the dominant eigenvalue of the target region

The inertia matrix of a region characterizes the distribution of the region in the image.
The dominant eigenvalue of the inertia matrix is a measure of the spatial extent of
the region.

F 3 : the eigenvalue ratio of the target region

The ratio of the eigenvalues of the inertia matrix of a region is a measure of the
elongation of the region.

F4 : the number of brother regions

F 5 : the distance between the largest brother region and the target region

The distance is defined to be the distance between the centroids of the regions.

F6 : the angle between the principal axes of the largest brother region and the target region

The principle axes of a region are the eigenvectors of the inertia matrix of the region.

F 7 : the surface orientation difference between the largest brother region and the target
region

The difference between the average surface orientation of the target region and that
of the largest brother region is used.

F 8 : the area of the largest brother region

F 9 : the dominant eigenvalue of the largest brother region

FIO: the eigenvalue ratio of the largest brother region

F l l : the surface characteristics of the target region

The surface characteristics of a region are the average Gaussian and mean curvatures.

F12: the surface characteristics of the largest brother region

F 1 3 : the surface characteristic distribution of the target region

At each pixel, the surface characteristics are used to classify the local surface as being
one of the following: hyperbolic, positive elliptic, negative elliptic, cylindrical, or
planar. Comparing surface characteristic distributions requires comparing surface
types pixel by pixel across matching regions.

F14: the surface characteristic distribution of the largest brother region

We examine the computational cost of the above features in terms of the number of
operations involved. In order to calculate computational costs features, we use the following
notation:

7

Feature Array Ref Test Add/Sub Mult/div Square Trigonometry

Number R X Y Z S T

F l A A a 0 0 0

F2 A A 6a 3a 0 0

F3 A A 6a 3a 0 0

F4 B B 0 0 0 0

F5 B B 3a+3b 0 0 0

F6 B B 6a+6b 3a+3b 0 0

F7 B+2a+2b B 3a+3b 0 0 0

F8 B B b 0 0 0

F9 B B 6b 3b 0 0

F10 B B 6b 3b 0 0

F l l A+5a A 19a 25a 3a 0

F12 B+5b B 19b 25b 3b 0

F13 2A+8a 2A+3a 28a 32a 3a 4a

F14 2B+8b 2B+3b 28b 32b 3b 4b

Table 1: Computat ional Costs of Features

A= the rectangular search area size of the target region

5 = the rectangular search area size of the brother region

a= the area size of the target region

6= the area size of the brother region

X= unit computational cost of one test

7= unit computational cost of one add/subtract operation

Z= unit computational cost of one multiply/divide operation

/?= unit computational cost of one array reference operation

5= unit computational cost of one square root operation

7= unit computational cost of one trigonometric operation

Using these notations, the computational costs of the features are presented in table
Please refer to Appendix A for a detailed derivation of the costs.

8

2.3 Searching Possible Strategies
2.3.1 Determining the Cost of Aspect Classification

A classification tree, sometimes called a decision tree, is a tree in which each node represents
a collection of classes and an associated test, and arcs represent the possible results of a test
Leaf nodes represent the final results of classification. A classification tree is a convenient
framework for optimizing aspect classification, since using a classification tree permits
comparisons (and hence feature extraction operations) to be performed sequentially. Using
an aspect classification tree, each classification is a traversal of a path from the root to a leaf.
Intermediate nodes specify features to be computed and tests to be performed, while leaf
nodes represent the final aspect classification. Each path will in general contain a different
sequence of tests, each of which requires a different feature to be computed.

We utilize aspect classification trees in the following way. In compile mode, the set
of possible aspect classification trees are examined systematically, and the minimum cost
classification tree is saved; this tree stores feature identifiers and threshold values at each
node. At run time, the classification process is repeated by following the tree and comparing
image features to threshold values. When a terminal node is reached, the image has been
classified as an instance of a particular aspect.

Figure 2 is a simple example of a classification tree. In the figure, we have start with 4
possible classes. At the root node, all 4 classes are grouped together, and a test is indicated.
The test partitions the classes into two sets. The set at the left child consists of a single
class; if we reach this node, we are done after having performed only a single test. The set
at the right child consists of three classes, and an additional test is needed to discriminate
between these possibilities.

As shown in section 2.2, features vary in their computational costs. Hence, different
paths through a tree will, in general, have different costs. Our goal is to construct classi
fication trees in which the average cost of a classification (the average cost of a path from
the root to a leaf) is minimal.

Computing the cost of a given path is straightforward. Each test requires a feature to
be computed, and each such computation incurs a computational cost. Therefore, each
node in the classification tree is assigned the cost of computing the feature needed for the
associated test. The cost of a path from the root to a leaf is then the sum of the costs of the
intermediate nodes.

For example, figure 3 illustrates the method for computing costs. Each node in the
classification tree is labeled with the set of classes to be discriminated at the node and the
feature to be used in the discrimination test. In addition, each node is marked with the cost
of computing the feature. The darkened path through the tree has a cost of 35 units.

We define the cost of a given classification tree as the expected cost of a classification,
or, equivalently, the average cost taken over all possible inputs. The expected cost can be
computed by weighting the cost at each node by the proportion of the sample population
that will pass through the node. The cost of every node in the tree is summed and divided
by the population size to yield the expected cost of the tree.

Figure 4 illustrates the method for computing the expected cost of a classification tree.
Each node is labeled with the set of classes and the associated feature. The cost of each
node is the product of the feature cost and the node population. The expected cost of the

9

Figure 2: Classification Tree

In a classification tree, each node represents a collection of classes and an
associated test. Arcs represent the possible results of tests.

10

pop (CI) = 2
pop (C2) = 2
pop (C3) = 3
pop (C4) = 3

cost(n) = 5
cost (t2) = 10
cost (f3) = 20

Figure 3: Cost of Classification

Each node is labeled with the classes to be discriminated and the cost of the
associated test. The darkened path through the tree has a cost of 35 units.

11

tree is the sum of all the node costs divided by the population size. In comparing trees over
the same population, the normalization factor can be deleted.

2 3 . 2 Stra tegy Trees and Branch-and-Bound Search

The brute force approach to finding the optimal classification tree would consist of gen
erating all possible trees, and then selecting the one which minimizes the expected cos t
However, for a complex object and many features, there are potentially a huge number
of possible classification trees. Alternatively, finding a minimum cost classification tree
can be formalized as a search problem over another kind of tree, which we call a strategy
tree. A strategy tree for classification is a tree in which each path from the root to a leaf
represents a complete strategy for classification (that is, each path can be expanded into a
classification tree). We will formulate our strategy trees such that the search for an optimal
classification strategy can be performed by searching for the leaf node of lowest cost.

In our strategy trees, nodes contain the results of applying a feature test, while arc
represent feature tests. Each arc is labeled with the product of the feature cost and the
expected number of samples to which the test will be applied. An arc is present when a
feature can be used to break up a set of classes into smaller sets. The goal is to find a leaf
node in which all the sets are singletons (containing a single class), and the cost of the path
to the node is minimal. Each path from the root to a leaf represents a complete strategy for
classification. The cost of the path is simply the sum of the costs of the constituent arcs.

Figure 5 illustrates a strategy tree for a simple case consisting of 4 classes, (c l , c2, c3, c4),
and 3 features, (f l , / 2 , / 3). The classes have populations of sizes (2 ,2 ,3 ,3) respectively,
while the features have costs (5,10,20) respectively. At the root, all the classes are grouped
into a single set. An arc is present for every computable feature which can reduce the set
size, so there are three arcs in this example. Since every sample must be tested at the root,
the arc costs are the feature costs multiplied by 1; At the first child of the root, there are
two sets: { c l } , and {c2, c3, c4}. The first set is a singleton, and the second set can only
be subdivided by using fea tu res /2 o r / 3 . Application o f / 2 leads to a node having three
sets: { c l } , {c2}, and {c3,c4}. The cost of the arc is the cost o f / 2 multiplied by the
expected number of samples tested (the sum of the population sizes of c2, c3, and c4) or
10*8 = 80. The darkened path is the minimum cost classification strategy, and is expanded
into a classification tree as the tree of figure 4.

Many different tree search algorithms exist in the literature. (See, for example, [18]) In
our system, search is performed using a branch-and-bound method. The intuition behind
the method is easily stated. Consider the process of exploring the strategy tree step by step.
At each step, an arc is traversed and the cost of the path is increased. Rather than completely
exploring one path before trying another, keep track of incomplete paths, and only explore
an additional step along the path that is currently the cheapest. When a leaf node has
been reached, continue exploring until all incomplete paths are at least as expensive as the
minimum cost path to a leaf. The minimum cost path then represents the optimal strategy.
In some cases, a node will be generated that has the same collection of sets as a previously
generated node. In this case, the minimum-cost node is preserved, while the other node is
pruned from the tree. The algorithm for branch-and-bound search is presented in figure 6.

There will be cases in which it is not possible, given the selection of features, to

12

pop (CI) = 2
pop(C2) = 2 cost(fl) = 5
pop (C3) s 3 coat (12) s 10
pop (C4) = 3 cost (13) = 20

Expected Cost = (50 + 80 +100) /10 = 23

Figure 4: Expected Cost of a Classification Tree

The classification tree has been weighted to compute the expected cost. Each
node is weighted by the cost of the feature times the population at the node.

13

{Cl t CLC3 f C4}

<C1>
{C2,CJ,C4>

C2}

230 260 240 240 285

<C1>
<C2>
{C3}
{C4}

290

f l : { C l , C 2 , C 3 , C 4 } - > { C l } {C2,C3,C4}
f2 :{Cl , C2,C3,C4}->{C1,C2}{C3,C4>
f3:{Cl , C2, C3,C3}->{C1,C2,C3}{C4}

pop (C I) = 2
pop(C2) = 2
pop (C3) = 3
pop (C4) = 3

cost (f l) = 5
cost ((2) = 10
cost (f3) = 20

Figure 5: Strategy Tree

A strategy tree for a classification problem consisting of 4 classes, CI, C2,
C3, C4y and 3 features,/ / , J2,f3. pop(Ci) represents the population of class
C7, while cost(fi) represents the computational cost of computing feature
fi. The darkened path is the minimum cost path, and is expanded into the
classification tree of figure 4.

14

Place the root node on OPEN.
* If (empty(OPEN)) then

Failure
else {

Select a minimum cost node, n, from OPEN
Place n on CLOSED
If (leaf(n)) then

Exit, with the path from root to n as the solution
Else {

Generate all children, m, of n
For each child, m, of n {

Compute the cost of m
If (not(member(m, OPEN))

or not(member(m, CLOSED))) then
Place m on OPEN, with a pointer back to n

Else if (member(m, OPEN)) then
Redirect pointers along path of least cost

Else if (member(m, CLOSED)) then {
Redirect pointers along path of least cost
If (pointers change) then

Place m on OPEN
}

}
}

}
Go to *

Figure 6: Branch-and-bound Search Algori thm

15

Figure 7: Parallel Classes

The aspects illustrated here cannot be distinguished using the available
features. Objects are depicted as wire frame drawings. Dark lines distinguish
detectable faces.

distinguish two classes. We refer to the corresponding classes as parallel classes, and the
corresponding nodes in the classification tree as parallel nodes. For example, figure 7 shows
the representative images from two classes that cannot be distinguished using available
geometric features. This is not a failure of the search strategy, but represents a fundamental
limitation of the features available. In our method for object localization, the configuration
determination step corrects for ambiguous aspect classification and determines the correct
object configuration. For purposes of search, parallel nodes are considered leaf nodes, and
are simply assigned a large value for cost.

16

"0 (3>
- * - '

r~| i0
__ 4

Figure 8: Polyhedron Aspects

3 Object Demonstrations
We have implemented a module of a VACL that generates minimum cost classification
trees for aspect classification. The module uses a CAD object model, a model of a range
sensor, and the cost and discrimination information for each of the features listed in section
2.2 to determine the optimal classification strategy for a given object. The range sensor
modeled is incapable of detecting surfaces that are sloped more than 45 degrees from the
line-of-sight.

In each of the demonstrations discussed below, the aspects were determined systemati
cally (see [11]) and provided as input to the system. The aspects were not determined over
the entire Gaussian sphere, but only over one hemisphere. The aspects are illustrated, along
with the resulting classification tree. In each of the illustrations, the objects are depicted
with wire frame drawings in which the boundaries of faces detectable by the sensor are
darkened. Each classification tree is labeled with the expected cost relative to a 128 by 128
image. Each decision node in a tree contains the number of the feature on which a test is
performed. Parallel nodes are labeled N-PAR.

3.1 Polyhedron Demonstration

In the first demonstration, a simple polyhedron was used. The aspects selected for the
polyhedron are illustrated in figure 8. It can be immediately seen that aspects 2 and 3 will
be impossible to ambiguate, since only a single face is visible in each aspect, and the faces
are the same size and shape.

The corresponding classification tree is presented in figure 9. Note the presence of a
parallel node; as predicted, aspects 2 and 3 are not distinguishable.

The polyhedron classification tree is used as follows. At the root node, RCH, the area
of the largest brother region is computed and used to separate aspects 4 and 5 from each
other, as well as from the aspects that have only a single region. At the next decision node,
BHO, the dominant eigenvalue of the largest region (the only region, in this case) is tested;
this is sufficient to distinguish aspect 1 from the rest. At node BH3, the area of the largest
region is used to distinguish aspects 0 and 6 from the rest. Node BH7 is a parallel node
combining aspects 2 and 3.

17

18

Figure 10: House Aspects

3.2 House Demonstration

In this demonstration, a simple model of a house was used. The aspects selected for the
house are illustrated in figure 10.

The corresponding classification tree is presented in figure 11. There are two parallel
nodes visible in this tree. The first parallel node, BH3, combines aspects 4 and 5, while
node BHO combines aspects 4 and 0. The interpretation here is that the area of the largest
region (feature F l , used at the root node) is capable of distinguishing aspects 0 and 5, but
the area of the largest region in aspect 4 lies somewhere between the values of the other two
aspects, and the sensor is not sufficiently accurate to make the distinction. For example, the
sensor might yield areas that are accurate to ± 1 0 units, while the areas of the largest faces
might be 100, 110, and 120 units.

3.3 Airplane Demonstration

In this d e m o n s t r a t e ^ a much more complicated model was used. The model is that of
a stylized airplane. The aspects selected for the airplane are illustrated in figure 12 The
corresponding classification tree is presented in figure 13

19

Figure 11: House Aspect Classification Tree

20

Figure 12: Airplane Aspects

21

Figure 13: Airplane Aspect Classification Tree

22

4 Summary
Generating programs for model-based vision applications has traditionally involved hand-
coding of the relevant object, sensor, and task knowledge. The process is therefore expen
sive due to the requirement for highly skilled individuals to extract and code the knowledge.
An alternative to hand-coding is the use of a vision algorithm compiler (VAC), which uses
stored object, sensor, and processing models to automatically construct programs.

The expense of development is only one of the cost considerations that must be met by
a vision application program. It is also important for an application to execute quickly and
efficiently. Therefore, a practical VAC must also be an optimizing compiler, and select the
set of operations that can perform the given task for the minimum computational cost.

In this paper, we addressed part of the problem of constructing an optimizing compiler
for vision tasks. In particular, we discussed a method used to optimize the process of
aspect classification, which is one step in the process of object localization; we defined
optimization to be minimizing the expected cost of classifying an image into an aspect.

We represented a strategy for aspect classification as a classification tree, in which
nodes represent classes and tests, and arcs denote the results of the tests. Classification
is performed by starting at the root of the tree, and proceeding from the root to a leaf,
extracting the features and performing the tests indicated at each node. The cost at each
node is therefore the cost of the operations required to extract the feature specified at the
node. The cost of a classification is the sum of the costs of the nodes along the path.
We determined the computational cost of the feature extraction operations for a specific
collection of features.

The space of possible classification strategies was represented in the form of a strategy
tree, in which each path from the root to a leaf corresponds to a complete classification
strategy (and hence to a classification tree). Hence, the optimal classification strategy can
be obtained using standard tree search procedures. We performed a variation of branch-
and-bound search over the strategy tree to find the minimum cost path from the root to any
leaf, and converted this path to a classification tree.

We demonstrated the feasibility of our approach by implementing a module for gener
ating minimum cost aspect classification trees within an existing VACL (Vision Algorithm
Compiler for object Localization). The performance of the module was illustrated on
several example objects.

23

5 Acknowledgements
Takeo Kanade provided many useful comments and encouragements. The authors also
thank the members of the Intelligent Modeling Laboratory of the Robotics Institute of
Carnegie Mellon University for their valuable comments and discussions.

24

References
[1] Ballard, D. H. Generalizing the Hough transform to detect arbitrary shapes. Pa t te rn

Recognition, vol. 13 (1981), pp. 111-122.

[2] Besl, P. Geometric modeling and computer vision. P r o c of the IEEE, vol. 76 (1988),
pp. 936-958.

[3] Bolles, R. and Cain, R. A. Recognizing and locating partially visible objects: the
local-feature-focus method. The Internat ional J o u r n a l on Robotics Research, vol.
1 (1982), pp. 57-82.

[4] Bolles, R. C. and Horaud, P. 3DPO: A three-dimensional part orientation system, in:
Three-Dimensional Machine Vision, edited by T. Kanade. Kluwer, Boston, MA,
1987, pp. 399-450.

[5] Bolles, R. and Horaud, P. 3DPO: A three-dimensional part orientation system. The
In ternat ional Jou rna l of Robotics Research, vol. 5 (1986), pp. 3-26.

[6] Brooks, R. Symbolic reasoning among 3-D models and 2-D images. Artificial
Intelligence, vol. 17 (1981), pp. 285-348.

[7] doCarmo M. P. Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1976.

[8] Faugeras, O. D. and Hebert, M. The representation, recognition, and locating of 3-D
objects. The Internat ional Journa l of Robotics Research, vol. 5 (1986), pp. 27-52.

[9] Goad, C. Special purpose automatic programming for 3D model-based vision, in:
P r o c of DARPA Image Unders tanding Workshop, DARPA. 1983, pp. 94-104.

[10] Grimson, W. E. L. and Lozano-Perez, T. Model-based recognition and localization
from sparse range or tactile data. The Internat ional Jou rna l of Robotics Research,
vol. 3 (1984).

[11] Ikeuchi, K. Generating an Interpretation Tree from a CAD Model for 3-D Object
Recognition in Bin-Picking Tasks. In ternat ional Jou rna l of Compute r Vision, vol.
1 (1987), pp. 145-165.

[12] Ikeuchi, K. and Hong, K. S. Determining Linear Shape Change: Toward Automatic
Generation of Object Recognition Program, in: Proc. of I E E E Conf. on Computer
Vision and Pa t te rn Recognition. San Diego, 1989. a longer version, containing
programs, is avaiable as CMU-CS-88-188.

[13] Ikeuchi, K. and Kanade, T. Modeling Sensors: Toward automatic generation of object
recognition program. Computer Vision, Graphics , and Image Processing, 1989.
(Accepted for publication).

25

[14] Dceuchi, K., Nishihara, H. K., Horn, B. K. R, Sobalvarro, R, and Nagata, S. Deter
mining grasp points using photometric stereo and the PRISM binocular stereo system.
T h e Internat ional Journa l of Robotics Research, vol. 5 (1986), pp. 46-65.

[15] Kanade, T., Balakumar, R, Robert, J., Hoffman, R., and Ikeuchi, K. Overview of
geometric!sensor modeler VANTAGE, in: Proc. the In ternat ional Symposium and
Exposition on Robots. The Australian Robot Association, Sydney, Australia, 1988.

[16] Koenderink, J. J. and Van Doom, A. J. Internal representation of solid shape with
respect to vision. Biological Cybernetics, vol. 32 (1979), pp. 211-216.

[17] Oshima, M. and Shirai, Y. An Object Recognition System Using Three-Dimensional
Information, in: Three-Dimensional Machine Vision, edited by T. Kanade. Kluwer
Academic Publishers, 1987, pp. 355-397.

[18] Pearl, J. Heuristics: Intelligent Search Strategies for Compute r Problem Solving.
Addison-Wesley, 1984.

[19] Perkins, W. A. Model-based vision system for scene containing multiple parts, in:
Proc . 5th Internat ional Joint Conference on Artificial Intelligence. 1977, pp. 6 7 8 -
684.

[20] Roberts, L. G. Machine perception of three-dimensional solids, in: Optical and
Electro-Optical Information Processing, edited by J. Tipplett. MIT Press, Cam
bridge, MA, 1965, pp. 159-197.

[21] Yoda, H., Motoike, J., and Ejiri, M. Direction Coding Method and its Applica
tion to Scene Analysis, in: Proc. 4th Joint Conference on Artificial Intelligence.
International Joint Conf. on Artificial Intelligence, 1975.

26

A Computational Costs of Features
This appendix calculates the computational costs of features for aspect classification. In
this appendix, for simplicity's sake, we calculate the computational cost of 2D features
derived from the image rather than 3D features derived from the 3D face. Namely, we
ignore the operational cost of the affine transformation which is applied to each pixel value
for converting 2D to 3D.

We will assume that the basic vision modules provide the following arrays.

• the needle map which contains gradient space (p, q) values at each pixel, and

• the label map which indicates the region to which each pixel belongs.

We will also use the following notations for computational costs.

A= the rectangular search area size of the target region

5 = the rectangular search area size of the brother region

a= the area size of the target region

b= the area size of the brother region

X= unit computational cost of test

y= unit computational cost of one add/subtract operation

Z= unit computational cost of one multiply/divide operation

/?= unit computational cost of one array reference operation

5= unit computational cost of one square root operation

r= unit computational cost of one trigonometric operation

In what follows, the largest visible region is referred to as the target region, while
surrounding regions are brother regions. When the singular term brother region is used, it
refers to the largest of the brothers.

Fl: the area of the target region

In order to calculate the area of the target region, we have to scan pixels over the
possible existence area of the target region and examine whether or not a pixel belongs
to the target region.

This operation requires:

• AR - array access to the label map

• AX - test as to whether the region label is the target region label

Once a pixel is determined to belong to the target region, we will add one to an
accumulator for the area size. This operation occurs a times. Thus , .

27

• aY - add one to accumulator

As the result we obtain AR + AX + aY.

F 2 : the dominant eigenvalue of the target region

Similar to the case of region area, AR +AX units are needed to find the pixels belonging
to the target region.

The inertia matrix can be obtained using these formulae:

a = £
hi = £ / 2 - i (£ 0 2

/* = E v - i (E 0 (E J)
ijj = £ y 2 - i (£ y) 2

These requires the following operations over a pixels of the target region.

£ i 2 — a(Y + Z)
Z? — a(Y + Z)
Zij — a{Y + Z)
E ' — aY
ZJ — aY
E ~ aY

As the result we obtain AR + AX + 6ay + 3aZ.

F 3 : rA^ eigenvalue ratio of the target region

This feature requires the same operations as those of F2. AR + AY + 6aK + 3aZ.

F4 : r/*£ number of brother regions

In order to find the surrounding regions, we have to search for pixels over the possible
existence area of the surrounding regions, (BR), and examine whether or not these
pixels belong to the new region, (BX). BR +BX.

F 5 : the distance between the largest brother region and the target region

This distance is the distance between the centroids of the regions. The scanning and
examining operations for the target and brother region cost (BR +BX).

We can obtain the centroid of a region with area n as

n = £ nY
I'O = \Hi nY
jo - JEy — nY

The cost to find the centroid of the target region is 3aY; the cost for the brother region
is 3bY.

Thus, a total cost of BX + BR + (3a + 3b)Y is necessary for this feature.

28

F6: the angle between the principal axes of the largest brother region and the target region

The scanning and examining operations for the target and brother regions cost£/?+BX.

At each region, we will calculate the inertia moment direction. This yields 6aY+ 3aZ
for the target region and 6bY + 3bZ for the brother region.

The total cost is BR+BX + (6a + 6b)Y + (3a + 3b)Z for this feature.

F7: the surface orientation difference between the largest brother region and the target

The scanning and examining operations for the target and brother region costBR+BX.

The average surface orientation of a region can be obtained as:

Note that two array reference operations qi are required for each summing oper
ation. 2aR + 3aY and 2bR + 3bY operations are necessary for the target and brother
region, respectively.

(B + 2a + 2b)R + BX + (3a + 3b)Y is the total cost for this feature.

F8 : the area of the largest brother region

The scanning and examining operations for the brother region cost BR + BX.

The area of the brother region can be obtained using the same method as the area
of the target region (Fl) , and thus it requires bY. This feature therefore requires
BR+BX + bY.

F9: the dominant eigenvalue of the largest brother region

The inertia matrix of the brother region can be obtained using the same method as
the inertia matrix of the target region (F2). Thus, BR +BX + 6bY + 3bZ is the cost for
this feature.

F10: the eigenvalue ratio of the largest brother region

Again, this can be obtained using the same method as the inertia ratio of the target
region (F3). Thus, BR+BX + 6bY + 3bZ is the cost.

F l l : the surface characteristics of the target region

The surface characteristics of a region are the average Gaussian and mean curvatures.
Therefore, we must compute the Gaussian and mean curvature at each pixel and
average over the entire region.

The scanning and examining operations for the target region cost AR + AX.

The average Gaussian and mean curvature can be obtained from the needle map via
the first and the second fundamental form of the surface [7]. Let us denote £ , F , G as

region

n = £ —
Po = l-ZPi —

<7o = [Hqi

nY
n(R + Y)
n(R + Y)

29

the first fundamental form, e,f, g as the second fundamental form, and K,H as the
Gaussian and mean curvature. The following operations are executed at each pixel
which belongs to the target region.

We will calculate the first fundamental forms.

E = l+p(i,j)2 — Y + Z
F = p(i,f)q(i,J) — Z
G = l+q(i,j)2 — Y + Z

This requires 2Y + 3Z + 2R, where we assume that we refer p(i,j), once, store
them at somewhere, and use that stored value in the later operations (2R).

We will also calculate the second fundamental forms. e = , frfift
f - Py('J)

Since we have to referp(i — l,j),p(i,j — 1),q(i,j — 1), we need extra 3R, and thus,
3R + 9Y + 9Z + 3S.

Using the first and the second fundamental forms, we can obtain the Gaussian and
mean curvature.

K = — 2F+5Z
H = i ^ i B ^ - - 3r+8Z

Thus, 5R + 16Y + 25Z + 35 is the computational cost for calculating the Gaussian and
mean curvature at each pixel.

The average Gaussian and mean curvature for a region of n pixels are obtained by:

n = £ — nY
K = J2K — nY
// = £// — nY

Thus, (A + 5a)R + AX + 19ay + 25aZ + 3aS is the computational cost of this feature.

F12: the surface characteristics of the largest brother region

The same operations as those of the target region are applied (F l l) and incur a
computational cost of (B + 5b)R + BX + \9bY + 25bZ + 365.

F13 : r/ze surface characteristic distribution of the target region

For this feature, we classify the surface type at every pixel in the target region, and
compare the surface types of the image and model target regions.

The surface characteristic at a pixel is one of the following: hyperbolic, positive
elliptic, negative elliptic, cylindrical, and planar. These features are obtained as the
combination of the sign of the Gaussian and mean curvature at each pixel. For each

p(ij+l)-p(hi)

<rt/./+l)-<70./)

- 3 F + 3 Z + 5

- 3 7 + 3 Z + 5

- 3 7 + 3 Z + 5

30

aspect region, a prototypical distribution, calculated at its representative attitude, is
stored. The observed distribution will be rotated and translated so that it is nearly
aligned with the model distribution. Then, the observed and model distributions are
compared.
generating the surface characteristics distribution
Scanning and examining the target region requires AR +AX total computational cost.

Calculating the Gaussian and mean curvature at each pixel for the target region
requires 5R + 167 + 25Z + 35 computational cost per pixel.

Calculating the mass center and the moment direction for the alignment requires
6 7 + 3 Z per pixel.
The assignment of the surface description can be determined using:

(if ((> K 0 . 0) (if ((>= H 0 . 0) positive elliptic)
(t negative elliptic)

((= K 0 . 0) (if ((= H 0 . 0) planar)
(t cylindrical))

(t hypabolic))

and requires 2X per pixel.

Finally, storing this result on an array requires an extra R per pixel. Taking all the
costs over a region af area a yields (A + 2a)X + 22aY + 28aZ + 3aS + (A + 6a)R to
obtain the surface characteristics distribution.

Comparison
Scanning and examining the target region requires computational cost of AR + AX.

The translation and rotation can be represented as:

X = icosd-jsind-im — 2Y + 2Z + 2T
Y = i s i n f l + y c o s f l - y m — 2 7 + 2Z + 2T

The entire region is translated and rotated, so a such operations are necessary.

Comparing the model description with the observed one requires two array reference
operations (one each for the model array and the observed array) and one comparison
operation, or 2R + X per pixel. If they are the same, the confidence measure will be
increased, which requires Y. The resulting confidence measure will be divided by
the area size. Thus, the area size is necessary, and it requires Y. As the result, this
second part needs (A + a)X + 6aY + 4aZ + 4aT + (A + 2a)R.

The total required computational cost for this feature can be obtained to add the cost
of the first part to those of the second part and is (2A + 3a)X + 2SaY + 32aZ + 3aS +
4ar + (2A + 8tf)/?.

F14: the surface characteristic distribution of the largest brother region

The same operations as for the target region are applicable (F13), and the cost is
(25 + 3b)X + 2%bY + 32bZ + 3bS + 4bT + (2B + 9b)R.

31

