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Abstract

Logistic Regression (LR) has been widely
used in statistics for many years, and has
received extensive study in machine learning
community recently due to its close relations
to Support Vector Machines (SVM) and Ad-
aBoost. In this paper, we use a modified
version of LR to approximate the optimiza-
tion of SVM by a sequence of unconstrained
optimization problems. We prove that our
approximation will converge to SVM, and
propose an iterative algorithm called “MLR-
CG” which uses Conjugate Gradient as its in-
ner loop. Multiclass version “MMLR-CG” is
also obtained after simple modifications. We
compare the MLR-CG with SVMlight over
different text categorization collections, and
show that our algorithm is much more ef-
ficient than SVMlight when the number of
training examples is very large. Results of
the multiclass version MMLR-CG is also re-
ported.

1. Introduction

Logistic Regression is a traditional statistical tool, and
gained popularity recently in machine learning due to
its close relations to SVM (Vapnik, 1999) and Ad-
aBoost (Freund, 1996), which can be called “large mar-
gin classifiers” since they pursue the concept of margin
either explicitly or implicitly. Large margin classifiers
are not only supported by theoretical analysis, but also
proved to be promising in practice.

Vapnik (1999) compared LR and SVM in terms of min-
imizing loss functional, and showed that the loss func-
tion of LR can be very well approximated by SVM loss
with multiple knots (SVMn). Friedman et al. (1998)
discussed SVM, LR and boosting on top of their differ-

ent loss functions. Collins et al. (2000) gave a general
framework of boosting and LR in which each learning
problem is cast in terms of optimization of Bregman
distances. Lebanon et al. (2002) showed that the only
difference between AdaBoost and LR is that the latter
requires the model to be normalized to a probability
distribution.

Here we show that by simple modifications, LR can
also be used to approximate SVM. Specifically, we use
a modified version of LR to approximate SVM by in-
troducing a sequence of smooth functions, which can
be shown to converge uniformly to the SVM objective
function. Based on that, we further prove that the
sequence of their solutions will converge to the solu-
tion of SVM. As a result, we can use simple uncon-
strained convex optimization techniques to solve the
SVM optimization problem. Specifically, we propose
a new algorithm named “MLR-CG” that is more effi-
cient than SVMlight in case of large-scale text catego-
rization collections. We also show that the MLR-CG
algorithm can be easily extended to its multiclass 1

version “MMLR-CG”.

The rest of this paper is arranged as follows: Section
2 briefly reviews LR and SVM, and discusses some
related works. Section 3 introduces the modified ver-
sion of LR, proves the convergence of our approxima-
tion, and proposes the MLR-CG algorithm. Section 4
extends our algorithm to a multiclass version, which
shows that the multiclass SVM can be achieved with
a simple algorithm. Section 5 introduces our datasets,
and section 6 reports the experimental results on sev-
eral text categorization collections. Section 7 con-
cludes.

1In this paper, “multiclass” means that each data in-
stance belongs to one and only one class.
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2. Reviews and Related Works

2.1. Logistic Regression

Logistic Regression can be applied to both real and bi-
nary responses, and its output posterior probabilities
can be conveniently processed and fed to other sys-
tems. It tries to model the conditional probability of
the class label give its observation:

p(y|x) =
1

1 + exp(−y(wT x + b))

where x = (x1, x2, . . . , xm) is the data vector2, m is
the number of features, y ∈ {+1,−1} is the class label.
w = (w1, w2, . . . , wm) and b are the weight vector and
intercept of the decision hyperplane respectively.

The Regularized LR is trained by computing

ŵ=argmin
w

{

1

n

n
∑

i=1

log(1 + exp(−yi(w
T xi + b)))+λwT w

}

Note the Hessian matrix of the above objective func-
tion O(w) is:

H =
d2O(w)

dwdwT
=

1

n

n
∑

i=1

exp(−yiw
T xi)

(1 + exp(−yiwT xi))2
xix

T
i +2λI

where I is the identity matrix. Since λ > 0, the above
Hessian matrix is positive definite, which implies the
strict convexity of the objective function of regular-
ized LR, and thus the uniqueness and globalness of its
solution (Luenberger, 1973).

2.2. SVM

Support Vector Machine is a new generation learning
system based on Structural Risk Minimization instead
of Empirical Risk Minimization (Vapnik, 1999). It
is not only theoretically well-founded, but also prac-
tically effective. It achieves very good performance
in many real-world applications including text catego-
rization (Joachims, 1998a), which is our research focus
here.

The primal form of Support Vector Machine with lin-
ear kernel can be described as follows:

min

{

C

n
∑

i=1

ξi +
1

2
wT w

}

subject to : yi(w
T xi + b) ≥ 1− ξi; ξi ≥ 0

By using implicit constraints, we can transform the
above objective function into:

ŵ = arg min
w

{

1

n

n
∑

i=1

max{0, 1− yi(w
T xi + b)}+ λwT w

}

2We use column vector by default.

where max{0, 1− yi(w
T x + b)} can be thought as the

SVM loss for one instance, and the second term λwT w

is the regularization term.

Due to the non-differentiable of its loss function, the
fitting of SVM is usually solved in its dual form:

max







n
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjx
T
i xj







subject to : 0 ≤ αi ≤ C;

n
∑

i=1

αiyi = 0

2.3. Related Works

Our approach is similar in spirit to penalty al-
gorithms in optimization literature, especially to
the “Exponential-Penalty” algorithm proposed by
Cominetti & Dussault (1994). The focus is to solve
the constrained optimization problem with a sequence
of unconstrained ones.

For a general optimization problem

min
x∈C

f(x)

where the feasible set C is defined in terms of func-
tional inequalities

C = {x ∈ Rn : ci(x) ≤ 0, i = 1, . . . , m},

the exponential penalty method tries to solve the un-
constrained problems

min

{

f(x) + rk

m
∑

i=1

exp[
ci(x)

rk

]

}

as rk → 0, and it has been shown that the sequence of
the unconstrained solutions will converge to the solu-
tion of the original constrained problem under certain
conditions. Applying their method to the SVM primal
problem, we need to minimize the following functional:

E(rk) = C

n
∑

i=1

ξi +
1

2
wT w + rk

n
∑

i=1

exp(−
ξi

rk

)

+ rk

n
∑

i=1

exp(
1− yi(w

T xi + b)− ξi

rk

)

By setting ∂E(rk)
∂ξi

= 0 (Rätsch et al., 2000), we will
get similar formula as equation 1. However, as we will
show later, our algorithm does not need those expo-
nential penalty terms, which may cause overflow prob-
lem when rk → 0, as pointed out by Cominetti &
Dussault. Though this issue can be addressed in some
ad-hoc way, it is considered as one drawback of their
method. To sum up, we will show that our algorithm
is very simple and suitable for SVM-like optimization
problems, and its convergence is guaranteed.



3. Modified Logistic Regression

In this section we first show that by constructing a se-
quence of optimization problems whose solutions con-
verge to the solution of SVM. Thus, SVM can be
solved with simple unconstrained optimization tech-
niques. Then we propose our simple MLR-CG algo-
rithm which uses CG as its inner loop.

In order to simplify our derivations, we use the aug-
mented weight vector w = (b, w1, w2, . . . , wm) and
augmented data vector x = (1, x1, x2, . . . , xm) from
now on unless otherwise specified. To keep the SVM
optimization problem unchanged, its form becomes

ŵ = arg min
w







1

n

n
∑

i=1

max{0, 1− yiw
T xi}+ λ

m
∑

j=1

w2
j







so that the intercept w0 = b is not included in the
regularization term. We also intend not to penalize
the intercept w0 in the regularized LR to approximate
SVM:

ŵ=argmin
w







1

n

n
∑

i=1

log(1 + exp(−yiw
T xi))+λ

m
∑

j=1

w2
j







3.1. Approximating SVM Loss Function

From previous discussions we can see that loss func-
tions play an important role in the SVM and LR.
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Figure 1. Approximation to SVM Loss (z = ywT
x)

Figure 1 shows the SVM loss function can be approx-
imated by the loss of the following “modified LR”
(Zhang, 2001):

gγ(x, y,w) =
1

γ
ln(1 + exp(−γ(ywT x− 1))) (1)

If we can approximate the SVM loss function

gsvm(x, y,w) = max{0, 1− ywT x}

with the above sequence of functions {gγ}, then the
problem can be solved with simple unconstrained op-
timization techniques.

3.2. Convergence

Let

Osvm(w) =
1

n

n
∑

i=1

gsvm(xi, yi,w) + λ

m
∑

j=1

w2
j

Oγ(w) =
1

n

n
∑

i=1

gγ(xi, yi,w) + λ

m
∑

j=1

w2
j

represent optimization objective functions for SVM
and modified LR respectively, we now prove that by
computing the optimal solutions of Oγ=k(w) (k =
1, 2, . . .), we are able to find the solution of Osvm(w).

In the following we use gk(x, y,w) and Ok(w) to de-
note gγ=k(x, y,w) and Oγ=k(w), and use ŵk and w̄

to denote optimal solutions of Osvm(w) and Ok(w)
respectively.

Proposition 1 The sequence of functions
{gk(x, y,w)} (k = 1, 2, . . .) is monotonically de-
creasing and converges uniformly to the SVM loss
gsvm(x, y,w); the sequence of functions {Ok(w)}
also monotonically converges to the SVM objective
function Osvm(w). Furthermore, for any γ > 0, we
have

ln 2/γ = max
x,y,w

{gγ(x, y,w)− gsvm(x, y,w)} and

ln 2/γ ≥ max
w

{Oγ(w)−Osvm(w)}

The proof is provided in Appendix.

Theorem 2 (1) Solutions of objective functions
{Ok(w)} are unique. (2) Suppose {ŵk} are the so-
lutions of objective functions {Ok(w)}, then the se-
quence {Ok(ŵk)} converges to the minimum of objec-
tive function Osvm(w).

Sketch of Proof

(1) The Hessian matrix of the objective function
Ok(w) is:

H(w) =
1

n

n
∑

i=1

γ exp(−γ(yiw
T xi − 1))

(1 + exp(−γ(yiwT xi − 1)))2
xix

T
i + 2λI∗

where I∗ is the same as (m + 1) × (m + 1) identity
matrix except that its element at the first row and first
column is zero, which results from the non-regularized
intercept w0. For any given non-zero column vector
v = (v0, v1, . . . , vm), it is easy to show that vT Hv > 0
since xi = (1, xi1, xi2, . . . , xim) is an augmented vector



with the first element constant 1. Thus, the Hessian
matrix is positive definite given λ > 0, which implies
the strict convexity of the objective function Ok(w).
As a result, the solution will be both global and unique.

(2) Suppose w̄ is a solution of Osvm(w), then by the
uniform convergence of {Ok(w)} to Osvm(w) (Propo-
sition 1) it directly follows that the sequence {Ok(w̄)}
converges to Osvm(w̄). Since

Ok(w̄) ≥ Ok(ŵk) ≥ Osvm(ŵk) ≥ Osvm(w̄)

we conclude that

lim
k→∞

Ok(ŵk) ≤ lim
k→∞

Ok(w̄) = Osvm(w̄) and

lim
k→∞

Ok(ŵk) ≥ Osvm(w̄)

Thus limk→∞ Ok(ŵk) = Osvm(w̄).
�

In the following theorem, we will use the unaugmented
weight vector ŵu

k and w̄u. That is, ŵk = (b̂k, ŵu
k ) and

w̄ = (b̄, w̄u).

Theorem 3 The (unaugmented) vector sequence {ŵu
k}

converges to the unique w̄u.

Sketch of Proof 3

Suppose w̄u is the unaugmented part of a SVM so-
lution. Given that the gradient of Ok(w) at ŵk is
zero, by the multivariate Taylor’s Theorem, there is
a 0 ≤ θ ≤ 1 such that

Ok(w̄)−Ok(ŵk)

=
1

2
(w̄ − ŵk)T H(θŵk + (1− θ)w̄)(w̄ − ŵk)

≥
1

2
(w̄ − ŵk)T (2λI∗)(w̄ − ŵk)

= λ(w̄u − ŵu
k)T (w̄u − ŵu

k )

If we take limit on both ends, we get

lim
k→∞

‖w̄u − ŵu
k‖

2 ≤ lim
k→∞

(Ok(w̄)−Ok(ŵk))

λ
= 0

Thus limk→∞ ŵu
k = w̄u, which also implies the unique-

ness of w̄u.
�

Note the b̄ of SVM solutions may not be unique, and
Burges and Crisp (1999) gave more detailed discus-
sions about the uniqueness of SVM solutions. We can
see that the regularization coefficient λ also influences
the convergence speed of our approximation.

3General results about the convergence of convex func-
tion’s solutions can be found in Rochafellar (1970), such
as theorem 27.2. Specifically, the minimum distance be-
tween ŵk and the set of SVM solutions (which is convex)
converges to zero.

3.3. MLR-CG Algorithm

Our MLR-CG algorithm exactly follows the above con-
vergence proof. That is, we compute the solution of
SVM by solving a sequence of sub-optimization prob-
lems. In particular, we use the Conjugate Gradient
(CG) to solve each sub-optimization problem Oγ(w).

CG (Nocedal & Wright, 1999) is one of the most popu-
lar methods for solving large-scale nonlinear optimiza-
tion problems. More importantly, Minka (2001) com-
pared it with other methods in fitting LR, and found
that it is more efficient than others.

Three best known conjugate directions are Fletcher-
Reeves (FR), Polak-Rbiere (PR), and Hestenes-Stiefel
(HS). In our experiment we found that HS direction is
more efficient than the other two directions.

We list our MLR-CG algorithm below, which is an
iterative algorithm with CG as its inner loop.

Algorithm 1 : MLR-CG

1. Start with w = 0, γ = 1.0, l = 10 and δ = 10

2. Repeat until convergence:

(a) (Re-)Initialize CG by setting its search direc-
tion to minus gradient

(b) Minimize Oγ with l steps CG

(c) Increase γ ← γ + δ

In practice, we should start from small γ and do not
increase γ to infinity for a couple of reasons. One rea-
son is that when γ is big the Hessian matrix is ill-
conditioned, which will lead to the unsuitability of our
algorithm. Starting from small γ and increase it gradu-
ally will lead to stable solution. Another reason is that,
based on Proposition 1, |Oγ(w)−Osvm(w)| ≤ ln 2

γ
for

any w. So we have |Oγ(ŵγ)− Osvm(w̄)| ≤ |Oγ(w̄)−
Osvm(w̄)| ≤ ln 2

γ
. For example, when γ = 200, it is

at most 0.003, which is already not influential for our
problems. And later we will show in our experiments
that this approximation will not degrade the perfor-
mance of our trained classifier. We do not increase γ
after each CG step because we should let CG run at
least several steps to fully utilize its power in finding
conjugate directions; and also we do not need to wait
until the Oγ(.) converged before we change γ. In our
experiments, we set both δ and l to be 10. And every
time when γ is changed, CG should be re-initialized.

In our experiments, we use 200 CG steps (that is,
200/l = 20 iterations for the outer loop) as the stop-
ping criteria. Other criteria like the change of weight



vector or objective value can also be used.

4. Multiclass Version

Real world applications often require the classification
of C > 2 classes. One way is to consider the multiclass
classification problem as a set of binary classification
problem, using 1-versus-rest method (or more compli-
cated, like ECOC) to construct C classifiers. Alterna-
tively, we can construct a C-way classifier directly by
choosing the appropriate model. The latter is usually
regarded as more natural, and it can be solved within
a single optimization. For SVM, there are cases (We-
ston & Watkins, 1999) where multiclass SVM can per-
fectly classify the training data, while the 1-versus-rest
method cannot classify without error.

The multiclass SVM (Weston & Watkins, 1999; Vap-
nik, 1998) tries to model the C-way classification
problem directly with the same margin concept. For
the kth class, it tries to construct a linear function
fk(x) = wT

k x so that for a given data vector x

the prediction is made by choosing the class corre-
sponding to the maximal value of functions {fk(x)}:
y = arg maxk{fk(x)}, (k=1,2,. . . ,C).

Follow the notations by Weston & Watkins, we can get
the primal form of multiclass SVM as follows:

min







C

n
∑

i=1

∑

k 6=yi

ξk
i +

1

2

C
∑

k=1

m
∑

j=1

(wk,j)
2







subject to : wT
yi

xi ≥ wT
k xi + 2− ξk

i

ξk
i ≥ 0(i = 1, 2, . . . , n; k 6= yi)

And as we did before, it can be transformed into

Om−svm =
1

n

n
∑

i=1

∑

k 6=yi

max{0, 2− (wT
yi

xi −wT
k xi)}

+ λ

C
∑

k=1

m
∑

j=1

(wk,j)
2

Similar to what we did in Section 3, we use the follow-
ing to approximate SVM:

Om−γ = λ

C
∑

k=1

m
∑

j=1

(wk,j)
2 +

1

n

n
∑

i=1

∑

k 6=yi

1

γ

× ln(1 + exp(−γ((wT
yi

x−wT
k x)− 2)))

It can be shown that the above objective function
is convex w.r.t. its variable W = (w1, . . . ,wC) ∈
RC(m+1)×1. It is not strict convex, i.e., if a constant is

added to the intercepts of all classes, its value will not
be changed. This is also true for the multiclass SVM.
However, Theorem 2.2 and 3 still hold, and thus our
MLR-CG algorithm is extended to its multiclass ver-
sion “MMLR-CG”.

5. Datasets and Preprocessing

Our research focus here is the task of text categoriza-
tion. For binary classification, We use two benchmark
datasets in text categorization, namely the Reuters-
21578 4 (ModApte split) and the Reuters Corpus Vol-
ume I (RCV1) (Lewis et al., 2003) in our experiments.
The size of training set and test set of the former are
7,769 and 3,019 respectively; while the latter is an
archive of over 800,000 documents. In order to ex-
amine how efficient MLR-CG is in case of very large
collections, we use the same split as Lewis did, but
exchange the training set and test set. So our result-
ing collection contains 781,265 training documents and
23,149 test documents. For the Reuters-21578 collec-
tion, we report the training time and test errors of four
categories (“earn”, “acq”, “money-fx” and “grain”),
and F1 performance of the whole collection. For the
RCV1 we choose the highest four topic codes (CCAT,
ECAT, GCAT, and MCAT) in the “Topic Codes” hi-
erarchy and report their training time and test errors.

For multiclass classification, we use three webpage col-
lections (see Yang et al., 2002 for details about those
collections), namely Hoovers28, Hoovers255 and Univ6
(aka WebKB). We only use the words appeared on
pages, which correspond to the “Page Only” in Yang’s
work. For all three collections, we split them into 5
equal-sized subsets, and every time 4 of them are used
as training set and the remaining one as test set. Our
results in table 3 are the combination of the five runs.

Descriptions of all datasets are listed in table 1. We
use binary-valued features for all datasets mentioned
above, and 500 features are selected with Information
Gain. The regularization coefficient λ is choosen from
cross validation, and we use λ = 0.001 for all algo-
rithms. Note that for SVMlight, its parameter c = 1

2λn
.

6. Experimental Results

In this section we mainly examine two things for text
categorization tasks: First, how efficient is the MLR-
CG algorithm compared with the existing SVM al-
gorithm; Second, whether our resulting model (with
finite γ) performs similarly to SVM.

4A formatted version of this col-
lection is electronically available at
http://moscow.mt.cs.cmu.edu:8081/reuters 21578/.



Table 1. Dataset Descriptions

Collection # of training examples # of test examples # of classes used # of features

Reuters-21578 7,769 3,019 4 & 90 (binary) 500
RCV1 781,265 23,149 4 (binary) 500
Univ-6 4,165 4,165 6 (multiclass) 500

Hoovers-28 4,285 4,285 28 (multiclass) 500
Hoovers-255 4,285 4,285 255 (multiclass) 500

Table 2. Reuters-21578 and RCV1 Datasets: Training Time & Test Error Rate

Class SVMlight Training MLR-CG Training (200 CG steps) SVMlight Test Error MLR-CG Test Error

earn 0.88 sec 7 sec (795%) 1.66% 1.72% (103%)
acq 0.45 sec 6 sec (1333%) 2.45% 2.42% (98.7%)

money-fx 0.33 sec 6 sec (1818%) 3.01% 3.01% (100%)
grain 0.24 sec 5 sec (2083%) 0.762% 0.762% (100%)
CCAT 24,662 sec 3,696 sec (14.9%) 13.63% 13.62% (99.9%)
ECAT 13,953 sec 2,136 sec (15.3%) 8.92% 8.93% (100.1%)
GCAT∗ 2,356 sec 2,602 sec (110%) 29.01% 7.15% (24.6%)
MCAT 16,131 sec 3,244 sec (20.1%) 8.07% 8.07% (100%)

Note: SVMlight stops its training for GCAT class due to some error, which is also reflected by its abnormal test error.

For binary text categorization, we compare our MLR-
CG algorithm with the SVMlight 5.00 package5 since
it is one of the most popular and efficient SVM im-
plementation used in text categorization, and it also
supports the sparse matrix representation, which is an
advantage of processing text collections. Besides, pre-
vious studies (Joachims, 1998b) show that algorithms
like SMO (Platt, 1999) appears to share the similar
scaling pattern with SVMlight in terms of number of
training examples.

All our algorithms are implemented with C++, STL
data structure “vector¡double¿”, which is about two
times slower in our setting than standard C array op-
erations, as is done in SVMlight. For multiclass text
categorization, we report the results of the MMLR-CG
algorithm over those webpage collections.

Our machine is Pentium 4 Xeon with 2GB RAM and
200GB harddisk, Redhat Linux 7.0.

6.1. Binary Classification

Here we mainly compare the training time and test
errors between our MLR-CG and SVMlight over the
eight categories of two different text collections. Since
during the training phase both algorithms use the ob-
jective Osvm as their final goals, we plot the Osvm(wt)
versus training time t of our algorithm MLR-CG in
figure 2. From the graph we can see that our MLR-
CG converges very fast to its final goal. In figure 2
we also plot the final objective value of SVMlight as

5http://svmlight.joachims.org.

a straight line6 , and its actual training time can be
found in table 2.

From table 2 we can infer that SVMlight is very ef-
ficient compared with our MLR-CG algorithm when
the size of training set is limited, like Reuters-21578.
However, our MLR-CG algorithm catches up SVMlight

when the training set becomes very large, like RCV1.
Though our algorithm is much slower than SVMlight

in the former case, its training time is still the same
magnitude as needed by preprocessing (tokenization,
feature selection, etc). Their classification error rates
(over eight categories) are also reported, which fur-
ther show that 200 CG steps are enough for our text
collections.

Besides, we run SVM and MLR-CG on the whole
Reuter-21578 collection, and our results are7 : For
SVM, Micro-F1 and Macro-F1 are 87.21% and 56.74%
respectively; for MLR-CG, Micro-F1 and Macro-F1
are 87.17% and 56.89%. Our SVM results are com-
parable to previous ones (Yang & Liu, 1999).

6.2. Multiclass Classification

We report the performance of the MMLR-CG algo-
rithm over those multiclass webpage collections in ta-
ble 3. In particular, for collection with small number of
categories, MMLR-CG performs well, while for collec-
tions with more categories it overfits poorly, since we

6We did not plot the Osvm of SVMlight mainly because
it is not always decreasing, and sometimes fluctuates a lot.

7Thresholds are tuned by 5-fold cross-validation.
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Figure 2. Convergence of MLR-CG algorithm over RCV1 collection in 200 CG steps (We only plot the training time of
MLR-CG for category GCAT due to SVMlight’s failure on that category.)

observed that its training Micro-F1 and Macro-F1 are
both above 90% even for Hoovers-255. We also report
the results of SVMlight using 1-versus-rest method in
table 3 under the same condition as the MMLR-CG
algorithm.

Table 3. Performance of MMLR-CG and SVMlight with 1-
versus-rest

(Micro− F1,Macro− F1)
Collection MMLR-CG SVM

Univ-6 (86.04%, 57.27%) (85.84%, 57.56%)
Hoovers-28 (46.58%, 44.26%) (44.02%, 42.59%)
Hoovers-255 (16.91%, 11.08%) (19.57%, 12.36%)

7. Concluding Remarks

In this paper we use a modified version of LR to ap-
proximate the optimization of SVM, and prove that
it will converge to SVM. Meanwhile, we propose an
iterative algorithm called “MLR-CG” which is very
simple and robust. We compare the MLR-CG algo-
rithm with the algorithm implemented in SVMlight on
several text categorization collections, and our results
show that our algorithm is particularly efficient when
the training set is very large, and it can have very close
objective values as obtained by SVMlight. Our method
can be easily extended to multiclass version, and the
resulting MMLR-CG is tested over several webpage
collections.

The time complexity of one step CG is O(nm) (n and
m are the numbers of training examples and features
respectively). Theoretically, it is hard to get the time
complexity of both MLR-CG and SVMlight. But em-
pirically, if the number of CG steps is constant (which
is true for all our experiments), the total time com-
plexity of our MLR-CG algorithm will also be O(nm).
For SVMlight the number of iterations vary quite a lot,
and empirically it has been shown to be super linear

in terms of number of training examples n (Joachims,
1998b).

We should point out that since the dual form of LR
does exist, and our methods can be modified to non-
linear kernel version. We did not investigate it in this
paper since linear kernel SVM is one of the state-of-
the-art classifiers in text categorization, and has been
shown to be at least as effective as other kernel SVMs
for this task.

To sum up, the MLR-CG algorithm is very efficient in
case of very large training collection, which makes the
training of millions of documents (like Yahoo! web-
pages) more applicable. Further investigations are
needed to explore the application of multiclass SVM
to text categorization.
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Appendix

Proof of Proposition 1:

For any given x, y,w, let z = ywT x. First, we prove
that gγ(z) ≥ gsvm(z), ∀z, γ. Since

gγ(z) ≥ 0 and

gγ(z) =
1

γ
ln(1 + exp(−γ(z − 1)))

≥
1

γ
ln(exp(−γ(z − 1)))

= 1− z

Thus, gγ(z) ≥ max{0, 1− z} = gsvm(z).
Second, for any fixed z ≤ 1

∂gγ

∂γ
= −

1

γ2
ln(1 + exp(−γ(z − 1)))

+
1

γ

(1− z) exp(−γ(z − 1))

1 + exp(−γ(z − 1))

< −
1

γ2
(−γ(z − 1)) +

1

γ

(1− z) exp(−γ(z − 1))

1 + exp(−γ(z − 1))

≤ 0

and for any fixed z > 1

∂gγ

∂γ
= −

1

γ2
ln(1 + exp(−γ(z − 1)))

+
1

γ

(1− z) exp(−γ(z − 1))

1 + exp(−γ(z − 1))

< 0

Then we conclude that the set of functions {gk(z)}
(k = 1, 2, . . .) is monotonically decreasing.
Finally, it is not hard to show (for z ≤ 1 and z > 1)
that ln 2

γ
= maxz {gγ(z)− gsvm(z)}. Thus, for any

given ε > 0, we can make γ sufficiently large (in-
dependent on z) such that |gγ(z) − gsvm(z)| < ε.
This finishes the uniform convergence proof. If we
sum over all data points, we will get the inequality
ln 2/γ ≥ maxw{Oγ(w) − Osvm(w)}, which again im-
plies the uniform convergence of Ok(.) to Osvm(.). �


