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ABSTRACT 

We consider methods for finding high-precision approxim
ations to simple zeros of .smooth functions. As an application, 
we give fast methods for evaluating the elementary functions 
log(x), exp(x), sin(x) etc. to high precision. For example, 
if x is a positive floating-point number with an n-bit frac
tion, then (under rather weak assumptions) an n-bit approxim
ation to log(x) or exp(x) may be computed in time asymptot
ically equal to 13M(n)log2n as n -* °°, where M(n) is the 
time required to multiply floating-point numbers with n-bit 
fractions. Similar results are given for the other elementary 
functions, and some analogies with operations on formal power 
series are mentioned. 

1. INTRODUCTION 

When comparing methods for solving nonlinear equations or 
evaluating functions, it is customary to assume that the basic 
arithmetic operations (addition, multiplication, etc.) are 
performed with some fixed precision. However, an irrational 
number can only be approximated to arbitrary accuracy if the 
precision is allowed to increase indefinitely. Thus, we shall 
consider iterative processes using variable precision. Usually 
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2. 

the precision will increase as the computation proceeds, and 
the final result will be obtained to high precision. Of 
course, we could use the same (high) precision throughout, but 
then the computation would take longer than with variable pre
cision, and the final result would be no more accurate. 

Assumptions 

For simplicity we assume that a standard multiple-
precision floating-point number representation is used, with a 
binary fraction of n bits, where n is large. The exponent 
length is fixed, or may grow as o(n) if necessary. To avoid 
table-lookup methods, we assume a machine with a finite random-
access memory and a fixed number of sequential tape units. 
Formally, the results hold for multitape Turing machines. 

Precision n Operations 

An operation is performed with precision n if the operands 
and result are floating-point numbers as above (i.e., precision 
n numbers), and the relative error in the result is 0(2 n ) . 

Precision n Multiplication 

Let M(n) be the time required to perforine precision n 
multiplication. (Time may be regarded as the number of single-
precision operations, or the number of bit operations, if 

2 
desired.) The classical method gives M(n) = 0(n ) , but 
methods which are faster for large n are known. Asymptotic
ally the fastest method known is that of Schonhage and Strassen 
[71], which gives 
(1.1) M(n) = 0(n.log(n)loglog(n)) as n «. 

Our results do not depend on the algorithm used for 
multiplication, provided M(n) satisfies the following two 
conditions. 
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(1.2) n = o(M(n)) , i.e., lim n/M(n) = 0 ; 

and, for any a > 0 , 

(1.3) M(an) - aM(n) , i.e., lim ^ 1 = 1 . 

Condition (1.2) enables us to neglect additions, since 
the time for an addition is 0(n) , which is asymptotically 
negligible compared to the time for a multiplication. Condi
tion (1.3) certainly holds if 

M(n) ~ cn[log(n)]3[loglog(n)]Y , 
though it does not hold for some implementations of the 
Schonhage-Strassen method. We need (1.3) to estimate the con
stants in the asymptotic "0 M results: if the constants are 
not required then much weaker assumptions suffice, as in Brent 
[75a,b]. 

The following lemma follows easily from (1.3). 
Lemma 1.1 

If 0 < a < 1 , M(n) = 0 for n < 1 , and c- < —^- < c 0, 
v ' 1 1-a 2 

then oo , 
c-M(n) < I M(a n) < c9M(n) 

1 k=0 1 

for all sufficiently large n . 

2. BASIC MULTIPLE-PRECISION OPERATIONS 

In this section we summarize some results on the time 
required to perform the multiple-precision operations of div
ision, extraction of*'square roots, etc. Additional results are 
given in Brent [75a]. 

Reciprocals 

Suppose a ^ 0 is given and we want to evaluate a pre
cision n approximation to 1/a . Applying Newton's method to 
the equation 



f(x) = a - 1/x = 0 
gives the well-known iteration 

x. - = x. - x.e. , l+l 1 I I 9 

where 
ei = a x i - 1 • 

Since the order of convergence is two, only k ~ l°&2n ^ t e r " 

ations are required if x^ is a reasonable approximation to 
1/a , e.g., a single-precision approximation. 

If e k = 0(2~ n) , then e k_ x = 0(2~ n / 2) , so at the last 
iteration it is sufficient to perform the multiplication of 
xk 1 ^ ek 1 u s ^ n § precision n/2 , even though ax^ ^ must 
be evaluated with precision n . Thus, the time required for 
the last iteration is M(n) + M(n/2) + 0(n) . The time for 
the next to last iteration is M(n/2) + M(n/4) + 0(n/2) , since 
this iteration need only give an approximation accurate to 
0(2~ n /^) , and soon. Thus, using Lemma 1.1, the total time 
required is 

100 ~ (1 + + y + j + ...)M(n) ~ 3M(n) 

as n -> 0 0 . 

Division 

Since b/a = b(l/a) , precision n division may be done in 
time 

D(n) - 4M(n) 
as n 0 0 . 

Inverse Square Roots 
-k 

Asymptotically the fastest known method for evaluating a 
to precision n is to use the third-order iteration 

1 3 Jl^ 
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where 
2 

2 
At the last iteration it is sufficient to evaluate ax^ to 2 3 2 precision n , to precision n/3 , and x ^ ( e ^ - j t 0 

precision 2n/3 . Thus, using Lemma 1.1 as above, the total 
time required is 

Q(n) ~ (2 + | + + | + | + ...)M(n) - 4±M(n) 

as n 0 0 . 

Square Roots 

Since 
'a.a 2 if a > 0 , 

[0 if a = 0 , 
% 

we can evaluate a to precision n in time 

R(n) ~ 5^M(n) 

as n <». Note that the direct use of Newton's method in the 
form 
(2.D x. + 1 = I(x. + a/x.) 

or r 2 

|a - x 
(2.2) x 4 . ̂  = x_. + l+l i 2x. l 
is asymptotically slower, requiring time - 8M(n) or ~ 6M(n) 
respectively. 

3. VARIABLE-PRECISION. ZERO-FINDING METHODS 

Suppose £ ^ 0 is a simple zero of the nonlinear equation 
f (x) = 0 . 

Here, f(x) is a sufficiently smooth function which can be 
evaluated near £ , with absolute error 0(2~n) , in time w(n). 
We consider some methods for evaluating C to precision n . 

£. = ax. - 1 . l I 
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Since we are interested in results for very large n , the 
time required to obtain a good starting approximation is 
neglected. 

Assumptions 

To obtain sharp results we need the following two assump
tions, which are similar to (1.2) and (1.3): 

(3.1) M(n) = o(w(n)) , i.e., lim M(n)/w(n) = 0 ; 

and, for some a £ 1 and all g > 0 , 

(3.2) w(gn) - Baw(n) 
as n 0 0. 

From (3.1), the time required for a multiplication is 
negligible compared to the time for a function evaluation, if 
n is sufficiently large. (3.2) implies (3.1) if a > 1 , and 
(3.2) certainly holds if, for example, 

w(n) ~ cna[log(n)]Y[loglog(n)]6 . 

The next lemma follows from our assumptions in much the 
same way as Lemma 1.1. 
Lemma 5.1 

If 0 < $ < 1 , w(n) = 0 for n < 1 , and 

c x < 1/(1 - 6 a) < c 2 , 
then ^ 

cnw(n) < I w(3 n) < c9w(n) 

for all sufficiently large n . 

A Discrete Newton Method 

To illustrate the ideas of variable-precision zero-finding 
methods, we describe a simple discrete Newton method. More 
efficient methods are described in the next three sections, and 
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in Brent [75a]. 

Consider the iteration 
x. i = x. - f(x.)/g. * l+l I V ir & i ' 

where is a one-sided difference approximation to f f(x^), 
i , e - ' f(x. + h.) - f(x.) 

gi " h. 
i 

If = |x^ - c| is sufficiently small, f(x^) is evaluated 
with absolute error 0 ( £ ? ) , and h^ is small enough that 
( 3 . 3 ) g± = f'(x.) + 0 ( £ . ) , 

then the iteration converges to ? with order at least two. 
To ensure ( 3 . 3 ) , take I K of order , e.g. = f(x^) . 

To obtain C to precision n, we need two evaluations of 
f with absolute error 0 ( 2 n ) , preceded by two evaluations 
with error 0 ( 2 ~ N / ^ ) , etc. Thus, the time required is 

( 3 . 4 ) t(n) - 2 ( 1 + 2 ^ A + 2 ~ 2 A + ...)w(n) . 

Asymptotic Constants 

We say that a zero-finding method has asymptotic constant 
C(a) if, to find a simple zero C i 0 to precision n, the 
method requires time t(n) - C(a)w(n) as n °°. (The asymp
totic constant as defined here should not be confused with the 
"asymptotic error constant11 as usually defined for single-
precision zero-finding methods.) 

For example, froffl ( 3 . 4 ) , the discrete Newton method des
cribed above has asymptotic constant 

C N(a) = 2 / ( 1 - 2 " A ) < 4 . 

Note that the time required to evaluate £ to precision n is 
only a small multiple of the time required to evaluate f(x) 
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with absolute error 0(2~n) . (If we used fixed precision, the 
time to evaluate C would be 0(log(n)) times the time to 
evaluate f(x).) 

4. A VARIABLE-PRECISION SECANT METHOD 

The secant method is known to be more efficient than the 
discrete Newton method when fixed-precision arithmetic is used. 
The same is true with variable-precision arithmetic, although 
the ratio of efficiencies is no longer constant, but depends 
on the exponent a in (3.2). Several secant-like methods are 
described in Brent [75a]; here we consider the simplest such 
method, which is also the most efficient if a < 4.5243... . 

The secant iteration is 

x. - = x. - f. l+l i i 
x. - x. i 

l l-l 
I l-l 

where f^ = f(x^) , and we assume that the function evaluations 
are performed with sufficient accuracy to ensure that the order 

1 ^ 
of convergence is at least P = y(l + 5 2) = 1.6180... , the 
larger root of 
(4.1) P 2 = P + 1 . 

Let e = |x^ ^ - c| . Since the smaller root of (4.1) 
lies inside the unit circle, we have 

x. - C = 0(e p) 
and 

x i + ^ " 5 = 0 ( 8 ^ • 
To give order P , f. must be evaluated with absolute error 

2 ^ 
0(s p ) . Since £ i = 0 C | x I - S | ) = 0(e p) , it is also necess
ary to evaluate (f. - f. .)/(x. - x. -) with relative error 

J 2 1 i-l i i-l 
0(eP " P) , but |x^ ~ x i " e > s o ^ t 2 ^ S n e c e s s a r y t o 

evaluate f. i with absolute error 0(e p ~P + 1 ) . [Since i-l 



£. must be evaluated with absolute error 0(£ p ) , f. . must 
1 o 2 1 

be evaluated with absolute error 0(e p) , but p - p + l = 2 > p , 
so this condition is superfluous.] 

The conditions mentioned are sufficient to ensure that 
the order of convergence is at least p . Thus, if we replace 

by 2 , we see that £ may be evaluated to precision n 
if f is evaluated with absolute errors 0(2~n) , 0(2~^nP ), 
0(2 H ), 0(2 H ) , . . . . It follows that the asymptotic 
constant of the secant method is 

C s(a) = 1 + (2p-2)a/(l - p ~ a ) * C s(l) = 3 . 

The following lemma states that the secant method is 
asymptotically more efficient than the discrete Newton method 
when variable precision is used. 

Lemma 4.1 

Cg(a) < C N(a) for all a * 1 . In fact, Cg(a)/CN(a) 
decreases monotonically from |- (when a = 1) to j (as 
a -> °°). 

5. OTHER VARIABLE-PRECISION INTERPOLATORY METHODS 

With fixed precision, inverse quadratic interpolation is 
more efficient than linear interpolation, and inverse cubic 
interpolation is even more efficient, if the combinatory cost 
(i.e., "overhead11) is negligible. With variable precision the 
situation is different. Inverse quadratic interpolation is 
slightly more efficient than the secant method, but inverse 
cubic interpolation is not more efficient than inverse quad
ratic interpolation if a < 4.6056... . Since the combinatory 
cost of inverse cubic interpolation is considerably higher 
than that of inverse quadratic interpolation, the inverse 
cubic method appears even worse if combinatory costs are sig
nificant. 
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Inverse Quadratic Interpolation 

The analysis of variable-precision methods using inverse 
quadratic interpolation is similar to that for the secant 
method, so we only state the results. The order p = 1.8392... 

3 2 
is the positive root of p = p + p + 1 . It is convenient 
to define a = 1/p = 0.5436... To evaluate £ to precision 
n requires evaluations of f to (absolute) precision n, 
(1 - a + a 2)n , and (1 - a - a 2 + 2a3)n for j=0,l,2, 
Thus, the asymptotic constant is 

C Q(a) = 1 + (1 - a + a 2 ) a + (3a3)a/(l - a06) 

$ C Q(1) = j(7 - 2a - a 2) = 2.8085... . 

Lemma 5.1 

Cq(O0 < C s(c0 for all a ^ 1 . In fact, Cq(OO/C s(CO 
increases monotonically from 0.9361... (when a = 1) to 
1 (as a -> °°) . 

Inverse Cubic Interpolation, etc. 

If y = 0.5187... is the positive root of 
4 3 2 

y + y + y + y = 1 , then the variable-precision method of 
order 1/y = 1.9275... , using inverse cubic interpolation, 
has asymptotic constant 

C c(a) = 1 + (1 - y + y 2 ) a + (1 - M - y 2 + 2 y 3 ) a 

+ (4y4)°7(l - y a) 
:< C c(l) = (13^- 6y - 4y 2 - 2y3)/3 = 2.8438... . 

Note that C c(l) > C^(l) . Variable-precision methods 
using inverse interpolation of arbitrary degree are described 
in Brent [75a]. Some of these methods are slightly more 
efficient than the inverse quadratic interpolation method if 
a is large, but inverse quadratic interpolation is the most 
efficient method known for a < 4.6056... . In practice a 



is usually 1, lh or 2. 

An Open Question 
Is there a method with asymptotic constant C(a) such 

that C(l) < C Q(1) ? 

6. VARIABLE-PRECISION METHODS USING DERIVATIVES 

In Sections 3 to 5 we considered methods for solving the 
nonlinear equation f(x) = 0 , using only evaluations of f . 
Sometimes it is easy to evaluate f 1 (x) , f 1 f(x), ... once 
f(x) has been evaluated, and the following theorem shows that 
it is possible to take advantage of this. For an application, 
see Section 10. 

Theorem 6.1 

If the time to evaluate f(x) with an absolute error 
0(2~n) is w(n) , where w(n) satisfies conditions (3.1) and 
(3.2), and (for k=l,2,...) the time to evaluate f ^ ( x ) with 
absolute error 0(2~n) is w^( n) > where 

w R(n) = o(w(n)) 

as n °°, then the time to evaluate a simple zero £ ^ 0 of 
f(x) to precision n is 

t(n) - w(n) 

as n -> °°. 

Proof 
For fixed k £ r-s we may use a direct or inverse Taylor 

series method of order k + 1 . The combinatory cost is of 
order k.log(k + 1).M(n) (see Brent and Kung [75]). From 
(3.1), this is o(w(n)) as n 0 0 . Thus, 

t(n) $ [1 - (k + irV 1 w(n) + o(w(n)) 
< (1 +: I + o(l))w(n) . 



For sufficiently large n , the Mc(l) M term is less than 1/k, 
so ? 

t(n) < (1 + g)w(n) . 
Given e > 0 , choose k £ 2/e . Then, for all sufficiently 
large n , 

w(n) < t(n) < (1 + e)w(n) , 

so t(n) ~ w(n) as n -* 0 0 . 

Corollary 6.1 
If the conditions of Theorem 6.1 hold, f:[a,bj + I , 

fT(x) ± 0 for x € [a,b] , and g is the inverse function of 
f , then the time to evaluate g(y) with absolute error 
0(2~n) , for y 6 I , is 

w (n) - w(n) 

as n °°. 

Note 

Corollary 6.1 is optimal in the sense that, if 
w (n) - cw(n) for some constant c < 1 , then w(n) ~ cw (n) 
by the same argument, so w(n) ~ c w(n) , a contradiction. 
Hence, c = 1 is minimal. 

7. THE ARITHMETIC-GEOMETRIC MEAN ITERATION 

Before considering the multiple-precision evaluation of 
elementary functions, we recall some properties of the arith
metic-geometric (A-G) mean iteration of Gauss [1876]. Starting 
from any two positive numbers a^ and b Q , we may iterate as 
follows: 

a. i = ifa. + b.) (arithmetic mean) l+l 2 V I I 
and 

b. ^ = (a.b.) 2 (geometric mean) 



Second-order Convergence 

The A-G mean iteration is of computational interest 
because it converges very fast. If b^ « a i , then 

2(b./a.)1 2 

b. ,/a. t = 1 — \ | * 2(b./a.)^ , i+l' I+I 1 + b./a. v l 9 

I I 
so only about |log2(aQ/bg)| iterations are required before 
a^/b^ is of order 1 . Once a^ and b^ are close together 
the convergence is second order, for if b^/a^ = 1 " ei then 

E . - = 1-b. -/a. - = 1 - 2(1 - E . ) * V ( 2 - E . ) = ef/8 + 0 ( E 3 ) . i+I i+I' i+I ^ iJ v r v I*7 

Limit of the A-G Mean Iteration 

There is no essential loss of generality in assuming that 
a n = 1 and b n = coscj) for some <j> . If a = lim a. = lim b., 
then 

where K(cj>) is the complete elliptic integral of the first 
kind, i.e., ^ 2 

K(cf>) = / (1 - sin2<j>sin2e)_J*de . 
0 

(A simple proof of (7.1) is given in Melzak [73].) 

Also, if c Q = sincf) , c i + 1 = a i - a i + 1 (i=0,l,...), then 

(7 21 T 2 i _ 1 c 2 = 1 -

where E (.<(>) is the complete elliptic integral of the second 
kind, i. e., 

H2
 2 2 J-E(<f>) = / (1 - sin <J>sin 6) 2d6 . 

0 
Both (7.1) and (7.2) were known by Gauss. 



LegendreT s Identity 

For future use, we note the identity 

(7.3) K(<|0E(<N + K(<j>')E(<}>) - K(9)K((f)') = ~ T T , 

where <J> + <j)! = r̂r . (Legendre [ 1 1 ] proved by differentiation 
that the left side of (7.3) is constant, and the constant may 
be determined by letting <j> 0.) 

8. FAST MULTIPLE-PRECISION EVALUATION OF ir 

The classical methods for evaluating TT to precision n 
2 

take time 0(n ): see, for example, Shanks and Wrench [62]. 
2 

Several methods which are asymptotically faster than 0(n ) 
are known. For example, in Brent [75a] a method which requires 

2 
time 0(M(n)log (n)) is described. From the bound (1.1) on 

1+e 
M(n) , this is faster than 0(n ) for any e > 0 . 

Asymptotically the fastest known methods require time 
0(M(n)log(n)) . One such method is sketched in Beeler et al 
[72]. The method given here is faster, and does not require 
the preliminary computation of e . 

The Gauss-Legendre method 

Taking cf) = cj)1 = TT/4 in (7.3), and dividing both sides 
2 

by IT , we obtain 
(8.1) [2K(TT/4)E(7T/4) - K 2(7T/4)]/TT 2 = ± . 

However, from the A-G me^i iteration with a^ = 1 and b^ = 2 , 
and the relations (7.1) and (7.2), we can evaluate K(TT/4)/TT 
and E(7T/4)/TT , and thus the left side of (8.1). A division 
then gives TT . (The idea of using (7.3) in this way occurred 
independently to Salamin [75] and Brent [75b].) After a little 
simplification, we obtain the following algorithm (written in 
pseudo-Algol): 



A 1; B «- 2 -h. 
, T 1/4; x «- l; 

while A - B > 2~ n do 

begin Y ^ A; A «- | (A + B); B «- (BY)52; 

end; 

T -«- T - X(A -
X + 2X 

Y ) 2 ; 

return A 2/T [or, better, (A + B)2/(4T)] . 

rate of convergence is illustrated in Table 8.1. 

Table 8.1: Convergence of the Gauss-Legendre Method 

Iteration A 2/T - TT TT - (A + B)2/(4T) 
0 8.6'-l 2.3'-l 
1 4.6'-2 1.0'-3 
2 8.8'-5 7.4'-9 
3 3.1'-10 1.8'-19 
4 3.7»-21 5.5'-41 
5 5.5'-43 2.4»-84 
6 1.2'-86 2.3«-171 
7 5.8»-174 1.1'-345 
8 1.3»-348 l.l'-694 
9 6.9'-698 6.1'-1393 

Since the A-G mean iteration converges with order 2, we 
need ^log^n iterations to obtain precision n. Each iteration 
involves one (precision n) square root, one multiplication, 
one squaring, one murtdplication by a power of two, and some 
additions. Thus, from the results of Section 2, the time 
required to evaluate TT is ~ -2~M(n)log2n . 

Comments 

1. Unlike Newton's iteration, the A-G mean iteration is not 
self-correcting. Thus, we cannot start with low precision 



and increase it, as was possible in Section 2. 

2. Since there are ~log2n iterations, we may lose 
0(loglog(n)) bits of accuracy through accumulation of round
ing errors, even though the algorithm is numerically stable. 
Thus, it may be necessary to work with precision n + 
0(loglog(n)) . From (1.3), the time required is still 
~-yM(n)log 2n . 

9. MULTIPLE-PRECISION EVALUATION OF LOG(X) 

There are several algorithms for evaluating log(x) to 
precision n in time 0(M(n)log(n)) . For example, a method 
based on Landen transformations of incomplete elliptic 
integrals is described in Brent [75b]. The method described 
here is essentially due to Salamin (see Beeler et al [72]), 
though the basic relation (9.1) was known by Gauss. 

If cos(cj)) = e 2 is small, then 

(9.1) K(cj)) = (1 + 0(e)) log (4e~^2) 

Thus, taking a Q = 1 , b Q = 4/y , where y = 4e 2 , and 
applying the A-G mean iteration to compute a = lim , gives 

log(y) = £ (1 + 0(y~2)) 

for large y . Thus, so long as y 5 2 n ^ 2 , we can evaluate 
log(y) to precision n. If log(y) = 0(n) then ~21og2n 
iterations are required, so the time is ~13M(n)log2n , 
assuming TT is precomputed. 

For example, to find log(106) we start the A-G mean 
iteration with a Q = 1 and b Q = 4 T-6 . Results of the first 
seven iterations are given to 10 significant figures in Table 
9.1. We find that TR/(2a ?) = 13.81551056, which is correct. 



Table 9.1: Computation of log(10 ) 

i a. 
l 

b. 
i 

0 1.000000000 '0 4.000000000 »-6 
1 5.000020000 -1 2.000000000 -3 
2 2.510010000 -1 3.162283985 -2 
3 1.413119199' -1 8.909188753' -2 
4 1.152019037' -1 1.122040359" -1 
5 1.137029698* -1 1.136930893' -1 
6 1.136980295' -1 1.136980294' -1 
7 1.136980295' -1 1.136980295' -1 

Since log(2) = ~log(2n) , we can evaluate log (2) to 
precision n in time ~13M(n)log2n . Suppose x € [b,c] , 
where b > 1 . We may set y = 2 nx , evaluate log(y) as 
above, and use the identity 

log(x) = log(y) - n.log(2) 

to evaluate log(x) . Since log(y) - n.log(2) , approximately 
log^n significant bits will be lost through cancellation, so 
it is necessary to work with precision n + 0(log(n)). 

If x is very close to 1 , we have to be careful in 
order to obtain log(x) with a small relative error. Suppose 
x = l + 6 . If | 6 | < 2 n/l°S( n) w e m a y u s e power series 

log(l + 6) = 6 - 62/2 + 63/3 - ... , 

and it.is sufficient^to take about log(n) terms. If 6 is 
larger, we may use the above A-G mean method, with working 
precision n + 0(n/log(n)) to compensate for any cancellation. 

Finally, if 0 < x < 1 , we may use log(x) = -log(l/x) , 
where log(l/x) is computed as above. To summarize, we have 
proved: 



Theorem 9.1 

If x > 0 is a precision n number, then log(x) may be 
evaluated to precision n in time ~13M(n)log2n as n 0 0 

[assuming TT and log(2) precomputed to precision n + 
0(n/log(n))]. 

Note: The time required to compute log(x) by the obvious 
power series method is 0(nM(n)) . Since 131og2n < n for 
n > 83 , the method described here may be useful for moderate 

2 
n , even if the classical 0(n ) multiplication algorithm is 

used. 

10. MULTIPLE-PRECISION EVALUATION OF EXP(X) 

Corresponding to Theorem 9.1, we have: 

Theorem 10.1 
If [a,b] is a fixed interval, and x € [a,b] is a 

precision n number such that exp(x) does not underflow or 
overflow, then exp(x) can be evaluated to precision n in 
time ~13M(n)log2n as n + 0 0 (assuming TT and log(2) are 
precomputed). 
Proof 

To evaluate exp(x) we need to solve the equation 
f(y) = 0 , where f(y) = log(y) - x , and x is regarded as 
constant. Since 

f°°(y) = (-D1""1 (k - l)!y"k 

can be evaluated in time 0(M(n)) = o(M(n)log(n)) for any 
fixed k > 1 , the result follows from Theorems 6.1 and 9.1. 
[The (k + l)-th order method in the proof of Theorem 6.1 may 
simply be taken as 

k i 
^ i+l = yi ^ ( X " l o8Cyi))VJI ] 

1 1 1 j=0 



11. MULTIPLE-PRECISION OPERATIONS ON COMPLEX NUMBERS 

Before considering the multiple-precision evaluation of 
trigonometric functions, we need to state some results on 
multiple-precision operations with complex numbers. We assume 
that a precision n complex number z = x + iy is represented 
as a pair (x, y) of precision n real numbers. As before, a 
precision n operation is one which gives a result with a 
relative error 0(2 n ) . (Now, of course, the relative error 
may be complex, but its absolute value must be 0(2~n).) Note 
that the smaller component of a complex result may occasionally 
have a large relative error, or even the wrong sign! 

Complex Multiplication 

Since z = (t + iu)(v + iw) = (tv - uw) + i(tw + uv) , a 
complex multiplication may be done with four real multiplic
ations and two additions. However, we may use an idea of 
Karatsuba and Ofman [62] to reduce the work required to three 
real multiplications and some additions: evaluate tv , uw , 
and (t + u)(v + w) , then use 

tw + uv = (t + u)(v + w) - (tv + uw) . 

Since |t + u| <2 2|t + iu| and |v + w| £ 22|v + iw|, we 
have 

| (t + u) (v + w) | $ 2 1 z | . 
Thus, all rounding errors are of order 2~ n|z| or less, and 
the computed product has a relative error 0(2~n) . The time 
for the six additions is asymptotically negligible compared to 
that for the three multiplications, so precision n complex 
multiplication may be performed in time -3M(n) . 

Complex Squares 
2 

Since (v + iw) = (v - w)(v + w) + 2ivw , a complex 



square may be evaluated with two real multiplications and 
additions, in time -2M(n) • 

Complex Division 

Using complex multiplication as above, and the same div
ision algorithm as in the real case, we can perform complex 
division in time ~12M(n) . However, it is faster to use the 
identity 

t + iu f 2 2. -1 r, . w .... 
v + i w = (v + w ) [ (t + iu) (v - IW) ] , 

reducing the problem to one complex multiplication, four real 
multiplications, one real reciprocal, and some additions. 
This gives time -10M(n) . For complex reciprocals we have 
t = 1 , u = 0 , and time -7M(n) . 

Complex Square Roots 

Using (2.2) requires, at the last iteration, one precision 
n complex squaring and one precision n/2 complex division. Thus, 
the time required is -2(2 + 10/2)M(n) = 14M(n) . 

Complex A-G Mean Iteration 

From the above results, a complex square root and multip
lication may be performed in time -17M(n) . Each iteration 
transforms two points in the complex plane into two new points, 
and has an interesting geometric interpretation. 
12. MULTIPLE-PRECISION EVALUATION OF TRIGONOMETRIC FUNCTIONS 

Since 

(12.1) log(v + iw) = log|v + iw| + i.artan(w/v) 

and 
(12.2) exp(i6) = cos(9) + i.sin(6) , 
we can evaluate artan(x) , cos(x) and sin(x) if we can 
evaluate log(z) and exp(z) for complex arguments z . This 



may be done just as described above for real z , provided we 
choose the correct value of (a^b^) 2 . Some care is necessary 
to avoid excessive cancellation; for example, we should use the 
power series for sin(x) if |x| is very small, as described 
above for log(l + 6) . Since ~21og2n A-G mean iterations 
are required to evaluate log(z) , and each iteration requires 
time -17M(n) , we can evaluate log(z) in time ~34M(n)log2n . 
From the complex version of Theorem 6.1, exp(z) may also be 
evaluated in time ~34M(n)log2n . 

As an example, consider the evaluation of log(z) for 
z = 10^(2 + i) . The A-G mean iteration is started with 
a Q = 1 and b Q = 4/z = 1.6!-6 - (8.0f-7)i . The results of 
six iterations are given, to 8 significant figures, in Table 
12.1. 

Table 12.1: Evaluation of log 106(2 + i). 

j a. 
3 

b. J 
0 (1 .0000000'0, 

0.0000000'0) 
(1.6000000'-6, 

-8.0000000» -7) 
1 (5 .0000080'-1, 

-4.0000000»-7) 
(1.3017017'-3, 

-3.0729008' -4) 
2 (2 .5065125'-!, 

-1.5384504'-4) 
(2.5686505»-2, 

-2.9907884' -3) 
3 (1 ,3816888'-1, 

-1.5723167'-3) 
(8.0373334'-2, 

-4.6881008' -3) 
4 ci. .0927111»-1, 

-3.1302088'-3) 
(1.0540970'-1, 

-3.6719673' -3) 
5 (1. 0734040^-1, 

-3.4010880'-3) 
(1.0732355'-1, 

-3.4064951' -3) 
6 (1. 0733198»-1, 

-3.4037916'-3) 
(1.0733198'-1, 

-3.4037918'--3) 

We find that •—- = 14.620230 + 0.46364761i 

- log | z [ + i.artan(i-) 



as expected. 

Another method for evaluating trigonometric functions in 
time 0(M(n)log(n)) , without using the identities (12.1) and 
(12.2), is described in Brent [75b]. 
13. OPERATIONS ON FORMAL POWER SERIES 

There is an obvious similarity between a multiple-
precision number with base £^ 

3 e I a 6"1 (0 < a, < 3) , 
i=l 

and a formal power series: 
oo 
£ a.x1 (a. real, x an indeterminate) . 
i=0 1 1 

Thus, it is not surprising that algorithms similar to those 
described in Section 2 may be used to perform operations on 
power series. 

In this section only, M(n) denotes the number of scalar 
operations required to evaluate the first n coefficients 
cn,...,c j in the formal product 

I c i x l 

'0; 

OO , oo > /00 . *\ I b.x 1 

U=o j [i=0 J i=0 

Clearly, C J depends only on aQ,...,a^. and bg,...,b.. , in 

fact j 
c. = / a.b. . . 

The classical algorithm gives M(n) = 0(n ) , but it is poss
ible to use the fast Fourier transform (FFT) to obtain 

M(n) = 0(n.log(n)) . 
(see Borodin [73]). 

If we assume that M(n) satisfies conditions (1.2) and 



(1.3), then the time bounds given in Section 2 for division, 
square roots, etc. of multiple-precision numbers also apply for 
the corresponding operations on power series (where we want the 
first n terms in the result). For example, if 

oo 
P(x) = 7 a.x and a n i 0 , then the first n terms in the 

i=0 1 

expansion of 1/P(x) may be found with -3M(n) operations as 
n 0 0. However, some operations, e.g. computing exponentials, 
are much easier for power series than for multiple-precision 
numbers! 
Evaluation of log(P(x)) 

If a^ > 0 we may want to compute the first n terms in 
the power series Q(x) = log(P(x)). Since Q(x) = log(ag) + 
log(P(x)/a ) , there is no loss of generality in assuming that 

U oo 
a n = 1 . Suppose Q(x) = \ b.x . From the relation 

i=0 1 

(13.1) Q'(x) = P'(x)/P(x) , 

where the prime denotes formal differentiation with respect to 
x , we have 

(13.2) 

The first n terms in the power series for the right side of 
(13.2) may be evaluated with ^4M(n) operations, and then we 
need only compare coefficients to find b^,...,b ^ • (Since 
a^ = 1 , we know that b Q = 0.) Thus, the first n terms in 
log(P(x)) may be found in ^4M(n) operations. It is inter
esting to compare this~result with Theorem 9.1. 

Evaluation of exp(P(x)) 

If R(x) = exp(P(x)) then R(x) = exp(aQ)exp(P(x) - a Q) , 
so there is no loss of generality in assuming that a^ = 0 . 
Now log(R(x)) - P(x) = 0 , and we may regard this as an 



equation for the unknown power series R(x) , and solve it by-
one of the usual iterative methods. For example, Newton's 
method gives the iteration 

(13.3) R i + 1(x) = R^x) - R.(x)(log(Ri(x)) - P(x)) . 

If we use the starting approximation R Q 0 0 = 1 > then the 
terms in R ^ M agree exactly with those in R(x) up to (but 
excluding) the term 0(x 2 k) . Thus, using (13.3), we can find 
the first n terms of exp(P(x)) in -9M(n) operations, and 
it is possible to reduce this to M(n) operations by using 
a fourth-order method instead of (13.3). Compare Theorem 10.1. 

Evaluation of P m 

Suppose we want to evaluate (P(x))m for some large 
positive integer m . We can assume that a^ i 0 , for other
wise some power of x may be factored out. Also, since 
P m = a^P/a^) 1 1 1 , we can assume that a^ = 1 . By forming P^ , 
P , P° , ..., and then the appropriate product given by the 
binary expansion of m , we can find the first n terms of 
P m in 0(M(n)log2m) operations. Surprisingly, this is not 
the best possible result, at least for large m . From the 
identity 
(13.4) P111 = exp(m.log(P)) 

and the above results, we can find the first n terms of P m 

in 0(M(n)) operations! (If a Q f 1 , we also need 0(log2m) 
operations to evaluate a^ .) If the methods described above 
are used to. compute the*exponential and logarithm in (13.4), 

34 

then the number of operations is M(n) as n °°. 

Other Operations on Power Series 
The method used to evaluate log(P(x)) can easily be 

generalized to give a method for f(P(x)) , where df(t)/dt 



is a function of t which may be written in terms of square 
roots, reciprocals etc. For example, with f(t) = artan(t) 
we have df/dt = 1/(1 + t 2) , so it is easy to evaluate 
artan(P(x)). Using Newtonfs method we can evaluate the 
inverse function f^"1^(P(x)) if f(P(x)) can be evaluated. 
Generalizations and applications are given in Brent and Kung 
[75]. 

Some operations on formal power series do not correspond 
to natural operations on multiple-precision numbers. One 
example, already mentioned above, is formal differentiation. 
Other interesting examples are composition and reversion. The 
classical composition and reversion algorithms, as given in 

3 
Knuth [69], are 0(n ) , but much faster algorithms exist: see 
Brent and Kung [75]. 
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