
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
o f photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

MULTIPLE-PRECISION ZERO-FINDING METHODS AND THE
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION

Richard P. Brent
Computer Centre

Australian National University
Canberra, A.C.T. 2600, Australia

July 1975

DEPARTMENT
of

COMPUTER SCIENCE

Carnegie-Mellon University

MULTIPLE-PRECISION ZERO-FINDING METHODS AND THE
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION

Richard P. Brent
Computer Centre,

Australian National University,
Canberra, A.C.T. 2600, Australia

ABSTRACT

We consider methods for finding high-precision approxim
ations to simple zeros of .smooth functions. As an application,
we give fast methods for evaluating the elementary functions
log(x), exp(x), sin(x) etc. to high precision. For example,
if x is a positive floating-point number with an n-bit frac
tion, then (under rather weak assumptions) an n-bit approxim
ation to log(x) or exp(x) may be computed in time asymptot
ically equal to 13M(n)log2n as n -* °°, where M(n) is the
time required to multiply floating-point numbers with n-bit
fractions. Similar results are given for the other elementary
functions, and some analogies with operations on formal power
series are mentioned.

1. INTRODUCTION

When comparing methods for solving nonlinear equations or
evaluating functions, it is customary to assume that the basic
arithmetic operations (addition, multiplication, etc.) are
performed with some fixed precision. However, an irrational
number can only be approximated to arbitrary accuracy if the
precision is allowed to increase indefinitely. Thus, we shall
consider iterative processes using variable precision. Usually

This work was supported in part by the Office of Naval Re
search under Contract N0014-67-0314-0010, NR 044-422 and by
the National Science Foundation under Grant GJ 32111.

2.

the precision will increase as the computation proceeds, and
the final result will be obtained to high precision. Of
course, we could use the same (high) precision throughout, but
then the computation would take longer than with variable pre
cision, and the final result would be no more accurate.

Assumptions

For simplicity we assume that a standard multiple-
precision floating-point number representation is used, with a
binary fraction of n bits, where n is large. The exponent
length is fixed, or may grow as o(n) if necessary. To avoid
table-lookup methods, we assume a machine with a finite random-
access memory and a fixed number of sequential tape units.
Formally, the results hold for multitape Turing machines.

Precision n Operations

An operation is performed with precision n if the operands
and result are floating-point numbers as above (i.e., precision
n numbers), and the relative error in the result is 0(2 n) .

Precision n Multiplication

Let M(n) be the time required to perforine precision n
multiplication. (Time may be regarded as the number of single-
precision operations, or the number of bit operations, if

2
desired.) The classical method gives M(n) = 0(n) , but
methods which are faster for large n are known. Asymptotic
ally the fastest method known is that of Schonhage and Strassen
[71], which gives
(1.1) M(n) = 0(n.log(n)loglog(n)) as n «.

Our results do not depend on the algorithm used for
multiplication, provided M(n) satisfies the following two
conditions.

3.

(1.2) n = o(M(n)) , i.e., lim n/M(n) = 0 ;

and, for any a > 0 ,

(1.3) M(an) - aM(n) , i.e., lim ^ 1 = 1 .

Condition (1.2) enables us to neglect additions, since
the time for an addition is 0(n) , which is asymptotically
negligible compared to the time for a multiplication. Condi
tion (1.3) certainly holds if

M(n) ~ cn[log(n)]3[loglog(n)]Y ,
though it does not hold for some implementations of the
Schonhage-Strassen method. We need (1.3) to estimate the con
stants in the asymptotic "0 M results: if the constants are
not required then much weaker assumptions suffice, as in Brent
[75a,b].

The following lemma follows easily from (1.3).
Lemma 1.1

If 0 < a < 1 , M(n) = 0 for n < 1 , and c- < —^- < c 0,
v ' 1 1-a 2

then oo ,
c-M(n) < I M(a n) < c9M(n)

1 k=0 1

for all sufficiently large n .

2. BASIC MULTIPLE-PRECISION OPERATIONS

In this section we summarize some results on the time
required to perform the multiple-precision operations of div
ision, extraction of*'square roots, etc. Additional results are
given in Brent [75a].

Reciprocals

Suppose a ^ 0 is given and we want to evaluate a pre
cision n approximation to 1/a . Applying Newton's method to
the equation

f(x) = a - 1/x = 0
gives the well-known iteration

x. - = x. - x.e. , l+l 1 I I 9

where
ei = a x i - 1 •

Since the order of convergence is two, only k ~ l°&2n ^ t e r "

ations are required if x^ is a reasonable approximation to
1/a , e.g., a single-precision approximation.

If e k = 0(2~ n) , then e k_ x = 0(2~ n / 2) , so at the last
iteration it is sufficient to perform the multiplication of
xk 1 ^ ek 1 u s ^ n § precision n/2 , even though ax^ ^ must
be evaluated with precision n . Thus, the time required for
the last iteration is M(n) + M(n/2) + 0(n) . The time for
the next to last iteration is M(n/2) + M(n/4) + 0(n/2) , since
this iteration need only give an approximation accurate to
0(2~ n /^) , and soon. Thus, using Lemma 1.1, the total time
required is

100 ~ (1 + + y + j + ...)M(n) ~ 3M(n)

as n -> 0 0 .

Division

Since b/a = b(l/a) , precision n division may be done in
time

D(n) - 4M(n)
as n 0 0 .

Inverse Square Roots
-k

Asymptotically the fastest known method for evaluating a
to precision n is to use the third-order iteration

1 3 Jl^

5.

where
2

2
At the last iteration it is sufficient to evaluate ax^ to 2 3 2 precision n , to precision n/3 , and x ^ (e ^ - j t 0

precision 2n/3 . Thus, using Lemma 1.1 as above, the total
time required is

Q(n) ~ (2 + | + + | + | + ...)M(n) - 4±M(n)

as n 0 0 .

Square Roots

Since
'a.a 2 if a > 0 ,

[0 if a = 0 ,
%

we can evaluate a to precision n in time

R(n) ~ 5^M(n)

as n <». Note that the direct use of Newton's method in the
form
(2.D x. + 1 = I(x. + a/x.)

or r 2

|a - x
(2.2) x 4 . ̂ = x_. + l+l i 2x. l
is asymptotically slower, requiring time - 8M(n) or ~ 6M(n)
respectively.

3. VARIABLE-PRECISION. ZERO-FINDING METHODS

Suppose £ ^ 0 is a simple zero of the nonlinear equation
f (x) = 0 .

Here, f(x) is a sufficiently smooth function which can be
evaluated near £ , with absolute error 0(2~n) , in time w(n).
We consider some methods for evaluating C to precision n .

£. = ax. - 1 . l I

6.

Since we are interested in results for very large n , the
time required to obtain a good starting approximation is
neglected.

Assumptions

To obtain sharp results we need the following two assump
tions, which are similar to (1.2) and (1.3):

(3.1) M(n) = o(w(n)) , i.e., lim M(n)/w(n) = 0 ;

and, for some a £ 1 and all g > 0 ,

(3.2) w(gn) - Baw(n)
as n 0 0.

From (3.1), the time required for a multiplication is
negligible compared to the time for a function evaluation, if
n is sufficiently large. (3.2) implies (3.1) if a > 1 , and
(3.2) certainly holds if, for example,

w(n) ~ cna[log(n)]Y[loglog(n)]6 .

The next lemma follows from our assumptions in much the
same way as Lemma 1.1.
Lemma 5.1

If 0 < $ < 1 , w(n) = 0 for n < 1 , and

c x < 1/(1 - 6 a) < c 2 ,
then ^

cnw(n) < I w(3 n) < c9w(n)

for all sufficiently large n .

A Discrete Newton Method

To illustrate the ideas of variable-precision zero-finding
methods, we describe a simple discrete Newton method. More
efficient methods are described in the next three sections, and

7.

in Brent [75a].

Consider the iteration
x. i = x. - f(x.)/g. * l+l I V ir & i '

where is a one-sided difference approximation to f f(x^),
i , e - ' f(x. + h.) - f(x.)

gi " h.
i

If = |x^ - c| is sufficiently small, f(x^) is evaluated
with absolute error 0 (£ ?) , and h^ is small enough that
(3 . 3) g± = f'(x.) + 0 (£ .) ,

then the iteration converges to ? with order at least two.
To ensure (3 . 3) , take I K of order , e.g. = f(x^) .

To obtain C to precision n, we need two evaluations of
f with absolute error 0 (2 n) , preceded by two evaluations
with error 0 (2 ~ N / ^) , etc. Thus, the time required is

(3 . 4) t(n) - 2 (1 + 2 ^ A + 2 ~ 2 A + ...)w(n) .

Asymptotic Constants

We say that a zero-finding method has asymptotic constant
C(a) if, to find a simple zero C i 0 to precision n, the
method requires time t(n) - C(a)w(n) as n °°. (The asymp
totic constant as defined here should not be confused with the
"asymptotic error constant11 as usually defined for single-
precision zero-finding methods.)

For example, froffl (3 . 4) , the discrete Newton method des
cribed above has asymptotic constant

C N(a) = 2 / (1 - 2 " A) < 4 .

Note that the time required to evaluate £ to precision n is
only a small multiple of the time required to evaluate f(x)

8.

with absolute error 0(2~n) . (If we used fixed precision, the
time to evaluate C would be 0(log(n)) times the time to
evaluate f(x).)

4. A VARIABLE-PRECISION SECANT METHOD

The secant method is known to be more efficient than the
discrete Newton method when fixed-precision arithmetic is used.
The same is true with variable-precision arithmetic, although
the ratio of efficiencies is no longer constant, but depends
on the exponent a in (3.2). Several secant-like methods are
described in Brent [75a]; here we consider the simplest such
method, which is also the most efficient if a < 4.5243... .

The secant iteration is

x. - = x. - f. l+l i i
x. - x. i

l l-l
I l-l

where f^ = f(x^) , and we assume that the function evaluations
are performed with sufficient accuracy to ensure that the order

1 ^
of convergence is at least P = y(l + 5 2) = 1.6180... , the
larger root of
(4.1) P 2 = P + 1 .

Let e = |x^ ^ - c| . Since the smaller root of (4.1)
lies inside the unit circle, we have

x. - C = 0(e p)
and

x i + ^ " 5 = 0 (8 ^ •
To give order P , f. must be evaluated with absolute error

2 ^
0(s p) . Since £ i = 0 C | x I - S |) = 0(e p) , it is also necess
ary to evaluate (f. - f. .)/(x. - x. -) with relative error

J 2 1 i-l i i-l
0(eP " P) , but |x^ ~ x i " e > s o ^ t 2 ^ S n e c e s s a r y t o

evaluate f. i with absolute error 0(e p ~P + 1) . [Since i-l

£. must be evaluated with absolute error 0(£ p) , f. . must
1 o 2 1

be evaluated with absolute error 0(e p) , but p - p + l = 2 > p ,
so this condition is superfluous.]

The conditions mentioned are sufficient to ensure that
the order of convergence is at least p . Thus, if we replace

by 2 , we see that £ may be evaluated to precision n
if f is evaluated with absolute errors 0(2~n) , 0(2~^nP),
0(2 H), 0(2 H) , It follows that the asymptotic
constant of the secant method is

C s(a) = 1 + (2p-2)a/(l - p ~ a) * C s(l) = 3 .

The following lemma states that the secant method is
asymptotically more efficient than the discrete Newton method
when variable precision is used.

Lemma 4.1

Cg(a) < C N(a) for all a * 1 . In fact, Cg(a)/CN(a)
decreases monotonically from |- (when a = 1) to j (as
a -> °°).

5. OTHER VARIABLE-PRECISION INTERPOLATORY METHODS

With fixed precision, inverse quadratic interpolation is
more efficient than linear interpolation, and inverse cubic
interpolation is even more efficient, if the combinatory cost
(i.e., "overhead11) is negligible. With variable precision the
situation is different. Inverse quadratic interpolation is
slightly more efficient than the secant method, but inverse
cubic interpolation is not more efficient than inverse quad
ratic interpolation if a < 4.6056... . Since the combinatory
cost of inverse cubic interpolation is considerably higher
than that of inverse quadratic interpolation, the inverse
cubic method appears even worse if combinatory costs are sig
nificant.

10.

Inverse Quadratic Interpolation

The analysis of variable-precision methods using inverse
quadratic interpolation is similar to that for the secant
method, so we only state the results. The order p = 1.8392...

3 2
is the positive root of p = p + p + 1 . It is convenient
to define a = 1/p = 0.5436... To evaluate £ to precision
n requires evaluations of f to (absolute) precision n,
(1 - a + a 2)n , and (1 - a - a 2 + 2a3)n for j=0,l,2,
Thus, the asymptotic constant is

C Q(a) = 1 + (1 - a + a 2) a + (3a3)a/(l - a06)

$ C Q(1) = j(7 - 2a - a 2) = 2.8085... .

Lemma 5.1

Cq(O0 < C s(c0 for all a ^ 1 . In fact, Cq(OO/C s(CO
increases monotonically from 0.9361... (when a = 1) to
1 (as a -> °°) .

Inverse Cubic Interpolation, etc.

If y = 0.5187... is the positive root of
4 3 2

y + y + y + y = 1 , then the variable-precision method of
order 1/y = 1.9275... , using inverse cubic interpolation,
has asymptotic constant

C c(a) = 1 + (1 - y + y 2) a + (1 - M - y 2 + 2 y 3) a

+ (4y4)°7(l - y a)
:< C c(l) = (13^- 6y - 4y 2 - 2y3)/3 = 2.8438... .

Note that C c(l) > C^(l) . Variable-precision methods
using inverse interpolation of arbitrary degree are described
in Brent [75a]. Some of these methods are slightly more
efficient than the inverse quadratic interpolation method if
a is large, but inverse quadratic interpolation is the most
efficient method known for a < 4.6056... . In practice a

is usually 1, lh or 2.

An Open Question
Is there a method with asymptotic constant C(a) such

that C(l) < C Q(1) ?

6. VARIABLE-PRECISION METHODS USING DERIVATIVES

In Sections 3 to 5 we considered methods for solving the
nonlinear equation f(x) = 0 , using only evaluations of f .
Sometimes it is easy to evaluate f 1 (x) , f 1 f(x), ... once
f(x) has been evaluated, and the following theorem shows that
it is possible to take advantage of this. For an application,
see Section 10.

Theorem 6.1

If the time to evaluate f(x) with an absolute error
0(2~n) is w(n) , where w(n) satisfies conditions (3.1) and
(3.2), and (for k=l,2,...) the time to evaluate f ^ (x) with
absolute error 0(2~n) is w^(n) > where

w R(n) = o(w(n))

as n °°, then the time to evaluate a simple zero £ ^ 0 of
f(x) to precision n is

t(n) - w(n)

as n -> °°.

Proof
For fixed k £ r-s we may use a direct or inverse Taylor

series method of order k + 1 . The combinatory cost is of
order k.log(k + 1).M(n) (see Brent and Kung [75]). From
(3.1), this is o(w(n)) as n 0 0 . Thus,

t(n) $ [1 - (k + irV 1 w(n) + o(w(n))
< (1 +: I + o(l))w(n) .

For sufficiently large n , the Mc(l) M term is less than 1/k,
so ?

t(n) < (1 + g)w(n) .
Given e > 0 , choose k £ 2/e . Then, for all sufficiently
large n ,

w(n) < t(n) < (1 + e)w(n) ,

so t(n) ~ w(n) as n -* 0 0 .

Corollary 6.1
If the conditions of Theorem 6.1 hold, f:[a,bj + I ,

fT(x) ± 0 for x € [a,b] , and g is the inverse function of
f , then the time to evaluate g(y) with absolute error
0(2~n) , for y 6 I , is

w (n) - w(n)

as n °°.

Note

Corollary 6.1 is optimal in the sense that, if
w (n) - cw(n) for some constant c < 1 , then w(n) ~ cw (n)
by the same argument, so w(n) ~ c w(n) , a contradiction.
Hence, c = 1 is minimal.

7. THE ARITHMETIC-GEOMETRIC MEAN ITERATION

Before considering the multiple-precision evaluation of
elementary functions, we recall some properties of the arith
metic-geometric (A-G) mean iteration of Gauss [1876]. Starting
from any two positive numbers a^ and b Q , we may iterate as
follows:

a. i = ifa. + b.) (arithmetic mean) l+l 2 V I I
and

b. ^ = (a.b.) 2 (geometric mean)

Second-order Convergence

The A-G mean iteration is of computational interest
because it converges very fast. If b^ « a i , then

2(b./a.)1 2

b. ,/a. t = 1 — \ | * 2(b./a.)^ , i+l' I+I 1 + b./a. v l 9

I I
so only about |log2(aQ/bg)| iterations are required before
a^/b^ is of order 1 . Once a^ and b^ are close together
the convergence is second order, for if b^/a^ = 1 " ei then

E . - = 1-b. -/a. - = 1 - 2(1 - E .) * V (2 - E .) = ef/8 + 0 (E 3) . i+I i+I' i+I ^ iJ v r v I*7

Limit of the A-G Mean Iteration

There is no essential loss of generality in assuming that
a n = 1 and b n = coscj) for some <j> . If a = lim a. = lim b.,
then

where K(cj>) is the complete elliptic integral of the first
kind, i.e., ^ 2

K(cf>) = / (1 - sin2<j>sin2e)_J*de .
0

(A simple proof of (7.1) is given in Melzak [73].)

Also, if c Q = sincf) , c i + 1 = a i - a i + 1 (i=0,l,...), then

(7 21 T 2 i _ 1 c 2 = 1 -

where E (.<(>) is the complete elliptic integral of the second
kind, i. e.,

H2
 2 2 J-E(<f>) = / (1 - sin <J>sin 6) 2d6 .

0
Both (7.1) and (7.2) were known by Gauss.

LegendreT s Identity

For future use, we note the identity

(7.3) K(<|0E(<N + K(<j>')E(<}>) - K(9)K((f)') = ~ T T ,

where <J> + <j)! = r̂r . (Legendre [1 1] proved by differentiation
that the left side of (7.3) is constant, and the constant may
be determined by letting <j> 0.)

8. FAST MULTIPLE-PRECISION EVALUATION OF ir

The classical methods for evaluating TT to precision n
2

take time 0(n): see, for example, Shanks and Wrench [62].
2

Several methods which are asymptotically faster than 0(n)
are known. For example, in Brent [75a] a method which requires

2
time 0(M(n)log (n)) is described. From the bound (1.1) on

1+e
M(n) , this is faster than 0(n) for any e > 0 .

Asymptotically the fastest known methods require time
0(M(n)log(n)) . One such method is sketched in Beeler et al
[72]. The method given here is faster, and does not require
the preliminary computation of e .

The Gauss-Legendre method

Taking cf) = cj)1 = TT/4 in (7.3), and dividing both sides
2

by IT , we obtain
(8.1) [2K(TT/4)E(7T/4) - K 2(7T/4)]/TT 2 = ± .

However, from the A-G me^i iteration with a^ = 1 and b^ = 2 ,
and the relations (7.1) and (7.2), we can evaluate K(TT/4)/TT
and E(7T/4)/TT , and thus the left side of (8.1). A division
then gives TT . (The idea of using (7.3) in this way occurred
independently to Salamin [75] and Brent [75b].) After a little
simplification, we obtain the following algorithm (written in
pseudo-Algol):

A 1; B «- 2 -h.
, T 1/4; x «- l;

while A - B > 2~ n do

begin Y ^ A; A «- | (A + B); B «- (BY)52;

end;

T -«- T - X(A -
X + 2X

Y) 2 ;

return A 2/T [or, better, (A + B)2/(4T)] .

rate of convergence is illustrated in Table 8.1.

Table 8.1: Convergence of the Gauss-Legendre Method

Iteration A 2/T - TT TT - (A + B)2/(4T)
0 8.6'-l 2.3'-l
1 4.6'-2 1.0'-3
2 8.8'-5 7.4'-9
3 3.1'-10 1.8'-19
4 3.7»-21 5.5'-41
5 5.5'-43 2.4»-84
6 1.2'-86 2.3«-171
7 5.8»-174 1.1'-345
8 1.3»-348 l.l'-694
9 6.9'-698 6.1'-1393

Since the A-G mean iteration converges with order 2, we
need ^log^n iterations to obtain precision n. Each iteration
involves one (precision n) square root, one multiplication,
one squaring, one murtdplication by a power of two, and some
additions. Thus, from the results of Section 2, the time
required to evaluate TT is ~ -2~M(n)log2n .

Comments

1. Unlike Newton's iteration, the A-G mean iteration is not
self-correcting. Thus, we cannot start with low precision

and increase it, as was possible in Section 2.

2. Since there are ~log2n iterations, we may lose
0(loglog(n)) bits of accuracy through accumulation of round
ing errors, even though the algorithm is numerically stable.
Thus, it may be necessary to work with precision n +
0(loglog(n)) . From (1.3), the time required is still
~-yM(n)log 2n .

9. MULTIPLE-PRECISION EVALUATION OF LOG(X)

There are several algorithms for evaluating log(x) to
precision n in time 0(M(n)log(n)) . For example, a method
based on Landen transformations of incomplete elliptic
integrals is described in Brent [75b]. The method described
here is essentially due to Salamin (see Beeler et al [72]),
though the basic relation (9.1) was known by Gauss.

If cos(cj)) = e 2 is small, then

(9.1) K(cj)) = (1 + 0(e)) log (4e~^2)

Thus, taking a Q = 1 , b Q = 4/y , where y = 4e 2 , and
applying the A-G mean iteration to compute a = lim , gives

log(y) = £ (1 + 0(y~2))

for large y . Thus, so long as y 5 2 n ^ 2 , we can evaluate
log(y) to precision n. If log(y) = 0(n) then ~21og2n
iterations are required, so the time is ~13M(n)log2n ,
assuming TT is precomputed.

For example, to find log(106) we start the A-G mean
iteration with a Q = 1 and b Q = 4 T-6 . Results of the first
seven iterations are given to 10 significant figures in Table
9.1. We find that TR/(2a ?) = 13.81551056, which is correct.

Table 9.1: Computation of log(10)

i a.
l

b.
i

0 1.000000000 '0 4.000000000 »-6
1 5.000020000 -1 2.000000000 -3
2 2.510010000 -1 3.162283985 -2
3 1.413119199' -1 8.909188753' -2
4 1.152019037' -1 1.122040359" -1
5 1.137029698* -1 1.136930893' -1
6 1.136980295' -1 1.136980294' -1
7 1.136980295' -1 1.136980295' -1

Since log(2) = ~log(2n) , we can evaluate log (2) to
precision n in time ~13M(n)log2n . Suppose x € [b,c] ,
where b > 1 . We may set y = 2 nx , evaluate log(y) as
above, and use the identity

log(x) = log(y) - n.log(2)

to evaluate log(x) . Since log(y) - n.log(2) , approximately
log^n significant bits will be lost through cancellation, so
it is necessary to work with precision n + 0(log(n)).

If x is very close to 1 , we have to be careful in
order to obtain log(x) with a small relative error. Suppose
x = l + 6 . If | 6 | < 2 n/l°S(n) w e m a y u s e power series

log(l + 6) = 6 - 62/2 + 63/3 - ... ,

and it.is sufficient^to take about log(n) terms. If 6 is
larger, we may use the above A-G mean method, with working
precision n + 0(n/log(n)) to compensate for any cancellation.

Finally, if 0 < x < 1 , we may use log(x) = -log(l/x) ,
where log(l/x) is computed as above. To summarize, we have
proved:

Theorem 9.1

If x > 0 is a precision n number, then log(x) may be
evaluated to precision n in time ~13M(n)log2n as n 0 0

[assuming TT and log(2) precomputed to precision n +
0(n/log(n))].

Note: The time required to compute log(x) by the obvious
power series method is 0(nM(n)) . Since 131og2n < n for
n > 83 , the method described here may be useful for moderate

2
n , even if the classical 0(n) multiplication algorithm is

used.

10. MULTIPLE-PRECISION EVALUATION OF EXP(X)

Corresponding to Theorem 9.1, we have:

Theorem 10.1
If [a,b] is a fixed interval, and x € [a,b] is a

precision n number such that exp(x) does not underflow or
overflow, then exp(x) can be evaluated to precision n in
time ~13M(n)log2n as n + 0 0 (assuming TT and log(2) are
precomputed).
Proof

To evaluate exp(x) we need to solve the equation
f(y) = 0 , where f(y) = log(y) - x , and x is regarded as
constant. Since

f°°(y) = (-D1""1 (k - l)!y"k

can be evaluated in time 0(M(n)) = o(M(n)log(n)) for any
fixed k > 1 , the result follows from Theorems 6.1 and 9.1.
[The (k + l)-th order method in the proof of Theorem 6.1 may
simply be taken as

k i
^ i+l = yi ^ (X " l o8Cyi))VJI]

1 1 1 j=0

11. MULTIPLE-PRECISION OPERATIONS ON COMPLEX NUMBERS

Before considering the multiple-precision evaluation of
trigonometric functions, we need to state some results on
multiple-precision operations with complex numbers. We assume
that a precision n complex number z = x + iy is represented
as a pair (x, y) of precision n real numbers. As before, a
precision n operation is one which gives a result with a
relative error 0(2 n) . (Now, of course, the relative error
may be complex, but its absolute value must be 0(2~n).) Note
that the smaller component of a complex result may occasionally
have a large relative error, or even the wrong sign!

Complex Multiplication

Since z = (t + iu)(v + iw) = (tv - uw) + i(tw + uv) , a
complex multiplication may be done with four real multiplic
ations and two additions. However, we may use an idea of
Karatsuba and Ofman [62] to reduce the work required to three
real multiplications and some additions: evaluate tv , uw ,
and (t + u)(v + w) , then use

tw + uv = (t + u)(v + w) - (tv + uw) .

Since |t + u| <2 2|t + iu| and |v + w| £ 22|v + iw|, we
have

| (t + u) (v + w) | $ 2 1 z | .
Thus, all rounding errors are of order 2~ n|z| or less, and
the computed product has a relative error 0(2~n) . The time
for the six additions is asymptotically negligible compared to
that for the three multiplications, so precision n complex
multiplication may be performed in time -3M(n) .

Complex Squares
2

Since (v + iw) = (v - w)(v + w) + 2ivw , a complex

square may be evaluated with two real multiplications and
additions, in time -2M(n) •

Complex Division

Using complex multiplication as above, and the same div
ision algorithm as in the real case, we can perform complex
division in time ~12M(n) . However, it is faster to use the
identity

t + iu f 2 2. -1 r, . w
v + i w = (v + w) [(t + iu) (v - IW)] ,

reducing the problem to one complex multiplication, four real
multiplications, one real reciprocal, and some additions.
This gives time -10M(n) . For complex reciprocals we have
t = 1 , u = 0 , and time -7M(n) .

Complex Square Roots

Using (2.2) requires, at the last iteration, one precision
n complex squaring and one precision n/2 complex division. Thus,
the time required is -2(2 + 10/2)M(n) = 14M(n) .

Complex A-G Mean Iteration

From the above results, a complex square root and multip
lication may be performed in time -17M(n) . Each iteration
transforms two points in the complex plane into two new points,
and has an interesting geometric interpretation.
12. MULTIPLE-PRECISION EVALUATION OF TRIGONOMETRIC FUNCTIONS

Since

(12.1) log(v + iw) = log|v + iw| + i.artan(w/v)

and
(12.2) exp(i6) = cos(9) + i.sin(6) ,
we can evaluate artan(x) , cos(x) and sin(x) if we can
evaluate log(z) and exp(z) for complex arguments z . This

may be done just as described above for real z , provided we
choose the correct value of (a^b^) 2 . Some care is necessary
to avoid excessive cancellation; for example, we should use the
power series for sin(x) if |x| is very small, as described
above for log(l + 6) . Since ~21og2n A-G mean iterations
are required to evaluate log(z) , and each iteration requires
time -17M(n) , we can evaluate log(z) in time ~34M(n)log2n .
From the complex version of Theorem 6.1, exp(z) may also be
evaluated in time ~34M(n)log2n .

As an example, consider the evaluation of log(z) for
z = 10^(2 + i) . The A-G mean iteration is started with
a Q = 1 and b Q = 4/z = 1.6!-6 - (8.0f-7)i . The results of
six iterations are given, to 8 significant figures, in Table
12.1.

Table 12.1: Evaluation of log 106(2 + i).

j a.
3

b. J
0 (1 .0000000'0,

0.0000000'0)
(1.6000000'-6,

-8.0000000» -7)
1 (5 .0000080'-1,

-4.0000000»-7)
(1.3017017'-3,

-3.0729008' -4)
2 (2 .5065125'-!,

-1.5384504'-4)
(2.5686505»-2,

-2.9907884' -3)
3 (1 ,3816888'-1,

-1.5723167'-3)
(8.0373334'-2,

-4.6881008' -3)
4 ci. .0927111»-1,

-3.1302088'-3)
(1.0540970'-1,

-3.6719673' -3)
5 (1. 0734040^-1,

-3.4010880'-3)
(1.0732355'-1,

-3.4064951' -3)
6 (1. 0733198»-1,

-3.4037916'-3)
(1.0733198'-1,

-3.4037918'--3)

We find that •—- = 14.620230 + 0.46364761i

- log | z [+ i.artan(i-)

as expected.

Another method for evaluating trigonometric functions in
time 0(M(n)log(n)) , without using the identities (12.1) and
(12.2), is described in Brent [75b].
13. OPERATIONS ON FORMAL POWER SERIES

There is an obvious similarity between a multiple-
precision number with base £^

3 e I a 6"1 (0 < a, < 3) ,
i=l

and a formal power series:
oo
£ a.x1 (a. real, x an indeterminate) .
i=0 1 1

Thus, it is not surprising that algorithms similar to those
described in Section 2 may be used to perform operations on
power series.

In this section only, M(n) denotes the number of scalar
operations required to evaluate the first n coefficients
cn,...,c j in the formal product

I c i x l

'0;

OO , oo > /00 . *\ I b.x 1

U=o j [i=0 J i=0

Clearly, C J depends only on aQ,...,a^. and bg,...,b.. , in

fact j
c. = / a.b. . .

The classical algorithm gives M(n) = 0(n) , but it is poss
ible to use the fast Fourier transform (FFT) to obtain

M(n) = 0(n.log(n)) .
(see Borodin [73]).

If we assume that M(n) satisfies conditions (1.2) and

(1.3), then the time bounds given in Section 2 for division,
square roots, etc. of multiple-precision numbers also apply for
the corresponding operations on power series (where we want the
first n terms in the result). For example, if

oo
P(x) = 7 a.x and a n i 0 , then the first n terms in the

i=0 1

expansion of 1/P(x) may be found with -3M(n) operations as
n 0 0. However, some operations, e.g. computing exponentials,
are much easier for power series than for multiple-precision
numbers!
Evaluation of log(P(x))

If a^ > 0 we may want to compute the first n terms in
the power series Q(x) = log(P(x)). Since Q(x) = log(ag) +
log(P(x)/a) , there is no loss of generality in assuming that

U oo
a n = 1 . Suppose Q(x) = \ b.x . From the relation

i=0 1

(13.1) Q'(x) = P'(x)/P(x) ,

where the prime denotes formal differentiation with respect to
x , we have

(13.2)

The first n terms in the power series for the right side of
(13.2) may be evaluated with ^4M(n) operations, and then we
need only compare coefficients to find b^,...,b ^ • (Since
a^ = 1 , we know that b Q = 0.) Thus, the first n terms in
log(P(x)) may be found in ^4M(n) operations. It is inter
esting to compare this~result with Theorem 9.1.

Evaluation of exp(P(x))

If R(x) = exp(P(x)) then R(x) = exp(aQ)exp(P(x) - a Q) ,
so there is no loss of generality in assuming that a^ = 0 .
Now log(R(x)) - P(x) = 0 , and we may regard this as an

equation for the unknown power series R(x) , and solve it by-
one of the usual iterative methods. For example, Newton's
method gives the iteration

(13.3) R i + 1(x) = R^x) - R.(x)(log(Ri(x)) - P(x)) .

If we use the starting approximation R Q 0 0 = 1 > then the
terms in R ^ M agree exactly with those in R(x) up to (but
excluding) the term 0(x 2 k) . Thus, using (13.3), we can find
the first n terms of exp(P(x)) in -9M(n) operations, and
it is possible to reduce this to M(n) operations by using
a fourth-order method instead of (13.3). Compare Theorem 10.1.

Evaluation of P m

Suppose we want to evaluate (P(x))m for some large
positive integer m . We can assume that a^ i 0 , for other
wise some power of x may be factored out. Also, since
P m = a^P/a^) 1 1 1 , we can assume that a^ = 1 . By forming P^ ,
P , P° , ..., and then the appropriate product given by the
binary expansion of m , we can find the first n terms of
P m in 0(M(n)log2m) operations. Surprisingly, this is not
the best possible result, at least for large m . From the
identity
(13.4) P111 = exp(m.log(P))

and the above results, we can find the first n terms of P m

in 0(M(n)) operations! (If a Q f 1 , we also need 0(log2m)
operations to evaluate a^ .) If the methods described above
are used to. compute the*exponential and logarithm in (13.4),

34

then the number of operations is M(n) as n °°.

Other Operations on Power Series
The method used to evaluate log(P(x)) can easily be

generalized to give a method for f(P(x)) , where df(t)/dt

is a function of t which may be written in terms of square
roots, reciprocals etc. For example, with f(t) = artan(t)
we have df/dt = 1/(1 + t 2) , so it is easy to evaluate
artan(P(x)). Using Newtonfs method we can evaluate the
inverse function f^"1^(P(x)) if f(P(x)) can be evaluated.
Generalizations and applications are given in Brent and Kung
[75].

Some operations on formal power series do not correspond
to natural operations on multiple-precision numbers. One
example, already mentioned above, is formal differentiation.
Other interesting examples are composition and reversion. The
classical composition and reversion algorithms, as given in

3
Knuth [69], are 0(n) , but much faster algorithms exist: see
Brent and Kung [75].
REFERENCES

Beeler, Gosper and Schroeppel [72] Beeler, M., Gosper, R.W.,
and Schroeppel, R. MHakmemM. Memo No. 239, M.I.T.
Artificial Intelligence Lab., 1972, 70-71.

Borodin [73] Borodin, A., "On the number of arithmetics
required to compute certain functions - circa May
1973". In Complexity of Sequential and Parallel
Numerical Algorithms (ed. by J.F. Traub), Academic
Press, New York, 1973, 149-180.

Brent [75a] Brent, R.P., MThe complexity of multiple-
precision arithmetic". Proc. Seminar on Complexity
of Computational Problem Solving (held at the
Australian National University, Dec. 1974), Queens
land Univ. .Press, Brisbane, 1975.

Brent [75b] Brent, R.P., "Fast multiple-precision evaluation
of elementary functions". Submitted to J. ACM.

Brent and Kung [75] Brent, R.P. and Kung, H.T., "Fast
algorithms for reversion and composition of power
series". To appear. (A preliminary paper is tc
appear in Analytic Computational Complexity, edited
by J. F. Traub, Academic Press, 1975.

Gauss[1876] Gauss, C . F . , "Carl Friedrich Gauss Werke", (Bd.
3), Gottingen, 1876, 362-403.

Karatsuba and Ofman [62] Karatsuba, A. and Ofman, Y.,
"Multiplication of mu.ltidigit numbers on automata",
(in Russian). Dokl. Akad. Nauk SSSR 146 (1962),
293-294.

Knuth [69] Knuth, D.E., "The Art of Computer Programming",
(Vol. 2), Addison Wesley, Reading, Mass., 1969,
Sec. 4.7.

Legendre [11] Legendre, A.M., "Exercices de Calcul Integral",
(Vol. 1), Paris, 1811, 61.

Melzak [73] Melzak, Z.A., "Companion to Concrete Mathematics"
Wiley, New York, 1973, 63-69.

Salamin [75] Salamin, E., "A fast algorithm for the comput
ation of T T " . To appear in Math. Comp.

Schönhage and Strassen [71] Schönhage, A. and Strassen, V.,
"Schnelle Multiplikation grosser Zahlen". Computing
7 (1971), 281-292.

Shanks and Wrench [62] Shanks, D. and Wrench, J.W., "Calcul
ation of IT to 100,000 decimals". Math. Comp. 16
(1962), 76-99.

UNCLASSIFIED 3 flL4&2 D0bl3 GS2b
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entmred)

R E P O R T D O C U M E N T A T I O N P A G E READ INSTRUCTIONS BEFORE COMPLETING FORM
[I REPORT NUMBER ¡2 GOVT ACCESSION NO

JL
3. RECIPIENT'S CATALOG NUMBER

|4. TITLE (and Subtitle)

MULTIPLE-PRECISION ZERO-FINDING METHODS AND THE
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION

5. TYPE OF REPORT A PERlOO COVERED
Interim

6 PERFORMING ORG »EPORT N UM REP

|7. A U T H O R S ;
Richard P. Brent

8. CONTRACT OR GRANT NUMBERS)
N0014-67-A-0314-0010
NR 044-422

|9 PERFORMING ORGANIZATION NAME AND ADDRESS
Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

10. PROGRAM ELEMENT. PROJECT TASK AREA & WORK UNIT NUMBERS

I 1 ' CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research
Arlington, VA 22217

12. REPORT DATE
July 1975

13. NUMBER OF PAGES
28

M MONITORING AG EN Cv NAME & AODRESSf// different from Controlling Office) 15. SECURITY CLASS 'of this report)

UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRI BUT«ON STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT {of the abatract entered In Block 20, it different from Report)

18. SUP°L EMENTARY NOTES

19. KEY WORDS 'Continue on reverme aide if neceaaary and identify by block number)

20. A B S T » A 'Continue on reverae aide it neceaaary and Identify by block number) tie consider methods for find-
ing high-precision approximations to simple zeros of smooth functions. As an
application, we give fast methods for evaluating the elementary functions log(x
exp(x), sin(x) etc. to high precision. For example, if x is a positive float
ing-point number with an n-bit fraction, then (under rather weak assumptions) anj
n-bit approximation to log(x) or exp(x) may be computed in time asymptotically
equal to 13M(n) log^n as n-»°°, where M(n) is the time required to multiply
(floating-point numbers with n-bit fractions. Similar results are given for the
(other elementary functions, and some analogies with operations nn f n ™ i pnwpr

series are mentioned.
UNCLASSIFIED I JAK '3 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE fWhmn D»t* Ent^rrd)

