
The Knowledge Engineering Review, Vol. 00:0, 1–24. c© 2004, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

NEXCEL, a Deductive Spreadsheet1

ILIANO CERVESATO
Deductive Solutions
4903 Regina Drive, Annandale, VA 22003, USA
E-mail: iliano@deductivesolutions.com

Abstract

Usability and usefulness have made the spreadsheet one of the most successful computing applications
of all times: millions rely on it every day for anything from typing grocery lists to developing multi-
million dollar budgets. One thing spreadsheets are not very good at is manipulating symbolic data and
helping users make decisions based on them. By tapping into recent research in Logic Programming,
Databases and Cognitive Psychology, we propose a deductive extension to the spreadsheet paradigm
which addresses precisely this issue. The accompanying tool, which we call NEXCEL, is intended as
an automated assistant for the daily reasoning and decision-making needs of computer users, in the same
way as a spreadsheet application such as Microsoft Excel assists them every day with calculations simple
and complex. Users without formal training in Logic or even Computer Science can interactively define
logical rules in the same simple way as they define formulas in Excel. NEXCEL immediately evaluates
these rules thereby returning lists of values that satisfy them, again just like with numerical formulas. The
deductive component is seamlessly integrated into the traditional spreadsheet so that a user not only still
has access to the usual functionalities, but is able to use them as part of the logical inference and, dually,
to embed deductive steps in a numerical calculation.

1 Introduction

Envisioned in the early ’60s, born in the late ’70s and popularized during the ’80s with the Personal Com-
puter (Power 10/04/2003), the spreadsheet is one of the most ubiquitously used computing applications (it
has only in recent years been surpassed by email programs and web browsers). Over 50 million people—
secretaries, accountants, teachers, engineers, officers, managers and many others—rely on it every day for
anything from grocery lists to multi-million dollar transactions (Boehm, Abts, Brown, Chulani, Horowitz,
Madachy, Reifer, Clark & Steece 2000). The vast majority of these users have no or little formal Computer
Science training, and yet the intuitive interface and clever design of the spreadsheet let them put together
complex computations with a few mouse clicks, instantly turning them into unaware programmers. This
aspect cannot be overemphasized: in almost no time can a novice user perform simple tasks, and just a
few hours of exposure are sufficient to acquire the skills to perform non-trivial computations over large
amounts of data.2 De facto, the spreadsheet is the tool of choice for non-scientific numerical computations
and decision-making based on numerical analysis.

However, a large percentage, if not the majority, of the decisions we make every day depends on
information that is not numerical, or not only numerical. Consider the following simple example from the
academic world:
1This work was supported by DARPA under contract W31P4Q-05-C-R0405.
2The following anecdote illustrates this point well: A friend of the author, physician by trade, discovered the Personal
Computer and Excel a few years ago. Within a month, he had entered several years of financial data for all the stocks
he owned, together with various formulas to predict their trend. He never found the silver bullet that would allow
him to beat the market, but he eventually turned his self-taught Excel skills to Medicine and built a sophisticated
application to track the cardiac history of his patients. It is believed that several lives were saved in that way.



2 I. CERVESATO

Is Alice, a student who has taken ’Operating Systems’ and ’Theory of Computation’, qualified
to attend ’Advanced Networking’? If not, what other courses does she need to take first?
Would that allow her to take ’Advanced Networking’ next semester? If not, what is the earliest
date she can take it?

Answering each of these questions requires logical reasoning. The last also has a numerical component.
Students and courses are symbolic data and they participate in relations that describe what courses a
student has taken, what the prerequisites of a course are, and when courses are offered. Inference rules
(e.g., a student can take a course if he has passed all prerequisites) describe the reasoning processes that
need to be performed to produce the answers. Similar setups and reasoning tasks routinely take place in
many professional and personal settings: diagnosis of diseases, legal argumentation, combat readiness of
troops, even fashionable color coordination require reasoning patterns akin to the above example.

For all their merits, spreadsheets are pretty much useless when it comes to these forms of symbolic
inference: they do offer a few logical operators, but these are designed for simple conditional tests, not
deductive reasoning; furthermore, although relations fit snuggly in the familiar row and column layout, the
handful of commands that endorse this view have little to do with logical inference. Worse, the computer
applications that do support those forms of reasoning, logic programming languages, some databases, and
many domain-specific tools, require a level of sophistication that even many trained programmers do not
have. In fact, these applications are seldom installed on an end-user’s computing environment. This leaves
a wishful problem-solver to either undergo lengthy training or give up on automation. This last option
often leads to arbitrary, suboptimal, or incorrect decisions.

In this paper, we describe a deductive extension to the spreadsheet that supports sophisticated logical
reasoning with the same degree of usability as a traditional spreadsheet application such as Microsoft
Excel, hence potentially filling this significant void in the end-user’s computing landscape. This Deductive
Spreadsheet allows users to define logical statements and inference rules for symbolic reasoning in the
same way that Excel allows them to define mathematical formulas for numerical calculations. These rules
interpret areas of the spreadsheet as logical relations (for example a table associating students, each course
they have taken, and related information) and compute new relations based on them (e.g., what courses
a student may take next). Values satisfying them are visualized on the fly and updates anywhere in the
spreadsheet are instantly propagated, just as with numerical formulas. As users may not trust the validity
of values obtained in this way, extensive explanation facilities are provided. The Deductive Spreadsheet
is a conservative extension of the Traditional Spreadsheet in the sense that every traditional functionality
remains available. Furthermore the deductive extension integrates seamlessly into the existing paradigm
in the sense that traditional formulas can participate in logical inferences and deduced values can be used
in arithmetic calculations.

Under the hood, the added deductive capabilities are provided through machinery borrowed from the
field of Logic Programming (Lloyd 1987), but adapted to the peculiarities of the spreadsheet environment
and the usability requirement of our target audience: those 50 million managers, officers, engineers,
teachers, accountants, secretaries, etc., who do not have a formal training in either Computer Science
or Logic, and yet would welcome unintimidating automated assistance with their daily reasoning tasks.
We use a small logic programming language inspired by Datalog (Lloyd 1987) to define derived relations:
the target region of the spreadsheet contains a set of logical clauses in the same way that calculated
cells contain a numerical formula in the Traditional Spreadsheet. Therefore, logical reasoning reduces to
computing tables of data by evaluating Datalog-like definitions, a process that parallels the calculation of
numerical formulas. Each row in the calculated relation is a tuple of values satisfying the definition for
this relation, so that the evaluated table lists all such solutions, without repetitions.

We based our language extension on Datalog for two reasons. First, it admits evaluation strategies
that are always bound to terminate, a property that does not hold of other logic programming languages
such as Prolog (Lloyd 1987). This is rather important considering our target audience: although expert
Prolog programmers know how to debug infinite loops, end-users experience non-termination only when
an application hangs, an event often followed by a reboot. Second, one such (terminating) strategy, bottom-
up evaluation, closely fits the intended mode of operation of the Deductive Spreadsheet as it explicitly



NEXCEL, a Deductive Spreadsheet 3

computes and maintains the values of all defined Datalog clauses. Other applications of Datalog, in
particular in the context of Deductive Databases (Ceri, Gottlob & Tanca 1990), are query oriented and
often take advantage of more focused strategies. Within the Deductive Spreadsheet, we rely on a second
strategy, a terminating variant of top-down evaluation, as a basis for an explanation mechanism that
permits users to inquire about why a particular entry appears in a calculated relation. We extended the
generally accepted definition of Datalog to provide an interface to the language of numerical formulas of
the Traditional Spreadsheet, and also to extend the expressiveness of that language to solve a larger number
of practical problems. The resulting dialect of Datalog incorporates negation, constraints, calculated
values and flat lists. This extension has been engineered in such a way as to maintain all the desirable
properties of the original language.

The linguistic extensions just described are made available to the users by means of a parallel extension
of the user interface of the Traditional Spreadsheet. Our main goals in that respect were to provide these
extended functionalities in a minimally intrusive way so that users who do not want to take advantage of
them are not penalized, neither cognitively nor from a performance point of view, and that users who do
want to use them can acquire skills gradually by experimenting with familiar concepts. At first sight, the
result is nearly indistinguishable from the layout of a traditional spreadsheet application. However, once
a user selects a range of cells, he can enter Datalog clauses using an extension of the current methods
for creating numerical formulas: a slightly beautified Datalog syntax allows typing them in directly, they
can be constructed by clicking and dragging spreadsheet entities with the mouse, and they can be defined
using dedicated wizards. In all cases, sophisticated form of visual feedback and precise error reporting
assist the user in this task. Changes to formulas and the data they reference are propagated instantly. Most
modifications to primitive and derived relations are handled transparently, including the cut and paste of
rows, but certain changes to the geometry of these tables, e.g., deleting a column, require the intervention
of the user. Explanation facilities are provided for debugging and auditing purposes. In particular, a dialog
akin to a directory browser allows a user to inspect the reasoning process that caused a tuple to appear in
the result, step by step. The possibility of performing logical reasoning enables support for a number of
convenient new productivity tools, such as connection graphs or workflow graphs.

As we were designing the user interface of the Deductive Spreadsheet, we heavily relied on recently
proposed methodologies from the field of Cognitive Psychology, notably the Cognitive Dimensions of
Notation (Green & Petre 1996) and the psycho-economic Attention Investment Model (Blackwell 2002).
These approaches have been used with great success in the development of other extensions of the
Traditional Spreadsheet (Peyton Jones, Blackwell & Burnett 2003). We performed a small-scale and
very preliminary user evaluation of the interface and the extended functionalities. We obtained positive
feedback and a few suggestions for improvement from the intermediate and advanced users, who we were
mainly targeting. To our surprise, we also got a good feedback from the beginners we tested, although
they clearly struggled with some of the more advanced concepts.

We are in the process of implementing a Deductive Spreadsheet prototype as an add-on module to
Microsoft Excel 2003. The resulting system, which we call NEXCEL, is primarily meant as an evaluation
testbed for the concepts presented here, in preparation for a commercial-strength reimplementation, either
as an extension of an existing product or as a stand-alone application. This work constitutes an extension
to the spreadsheet paradigm itself, and therefore can be realized in any commercial application.

The remainder of this paper outlines the development of our proposal for a Deductive Spreadsheet.
Section 2 briefly examines the key concepts underlying the traditional spreadsheet and recalls various
attempts proposed throughout its history to support logical reasoning. Section 3 surveys the main
extensions to the core functionalities of the Traditional Spreadsheet, while Section 4 examines the
corresponding extensions to the user interface. In Section 5, we report on the feedback we obtained from
users in a preliminary evaluation. Section 6 gives an overview of the ongoing implementation effort.
Although our design employs sophisticated techniques from Logic Programming, Database Theory and
Cognitive Psychology, we will strive to maintain our presentation at an intuitive level. Readers interested
in the technical aspects of this work are referred to (Cervesato 2005).



4 I. CERVESATO

2 Spreadsheets and Beyond

In this section, we identify some of the key concepts underlying the Traditional Spreadsheet, and
summarize extensions with deductive capabilities proposed in the literature. In Section 2.1, we outline
a simple model of the core functionalities of a spreadsheet, relying mainly on examples — a detailed
technical treatment can be found in (Cervesato 2005). Then, in Section 2.2, we briefly review historical
proposals for extending the Traditional Spreadsheet with logical inference.

2.1 The Traditional Spreadsheet Model

To most people, a spreadsheet is a grid of cells in which one enters numbers, strings and arithmetic
formulas, and such that the latter are automatically calculated. We will now explore the various objects
that constitute a spreadsheet: the basic scalar infrastructure, array formulas, and the little relational support
available in commercial products. We will emphasize some of the lesser known entities which we will use
as inspiration, and sometimes building blocks, for our deductive extension in Section 3. We also discuss
the principal functionalities supported by a spreadsheet application: evaluation, update and explanation.
We delay the discussion of user interface issues until Section 4.

When talking about spreadsheets, we shall draw a distinction between what the user types using her
keyboard (or enters in other ways) and what she sees on her screen. We refer to the former manifestation
as a “spreadsheet”, and use the name “evaluated spreadsheet” for the latter. A spreadsheet in the first
sense is therefore a syntactic entity, and as such it is saved to a file, for example. An evaluated spreadsheet
is the result of a semantic operation, in particular evaluation or update propagation. As we model the
spreadsheet paradigm and the proposed extensions, we will be interested in both aspects: the (syntactic)
way things are written, and the operations that interpret this syntax and visualize the values the user is
ultimately interested in.

2.1.1 Scalar Spreadsheets
We begin with a model that reflects just the quintessential aspects of the spreadsheet paradigm, ignoring
advanced features such as array formulas for the moment. We call this minimal model a “scalar
spreadsheet”: although it falls short of what commercial applications offer, it captures what a spreadsheet
is to most users.

From a syntactic point of view, a (scalar) spreadsheet is a collection of cells which can contain either
values or formulas. Examples of values are the numbers “42” and “12.99”, or the string “Total” (dates and
currencies are just numbers visualized in a special way by means of formatting directives). Most cells in
a typical spreadsheet contain the default blank value.

A cell can also contain a formula such as “= (A3− 32) ∗ 5/9”: after evaluation, this cell will display
the result of taking the contents of the cell A3, subtracting 32 from it, multiplying the result by 5 and
dividing it by 9. A (scalar) formula is constructed out of values (e.g., “32”, “5” and “9”), operators (here,
“−”, “∗” and “/”), and cell references such as A3 in this example. The symbol “=” is commonly used
to distinguish formulas from values (strings in particular); we will omit it hereafter. The cell reference
“A3” identifies the cell on column A and row 3 of the current worksheet (the exact syntax for references
is not important for our purposes, and indeed other notations exist). Commercial applications support
spreadsheets consisting of several worksheets, each with typically 65,536 rows and 256 columns — these
numbers are again unimportant from a modeling standpoint

In this early model, a spreadsheet is therefore a collection of cells each of which contains either a value
or a formula. Valid spreadsheets are subject to one condition: cells are not allowed to contain circular
dependencies, i.e., a cell c cannot contain a formula that references c, directly or indirectly. For example,
the above formula cannot be inserted in cell A3, in any cell possibly referenced in cell A3 (if A3 contains
a formula), in any cell referenced in a cell referenced in cell A3, etc.3 From a programming language
point of view, a spreadsheet is a simple functional language without recursion.

3To be fully precise, most commercial spreadsheet applications allow advanced users to enable a restricted form of
circular dependency which permits calculating numerical approximations of the solutions of some types of equations



NEXCEL, a Deductive Spreadsheet 5

Of course, a user is not interested in formulas per se, but in the values computed by them. Spreadsheet
applications provide three core functionalities for going back and forth between a (syntactic) spreadsheet
and an evaluated spreadsheet: evaluation, updates and explanation.

When loading a spreadsheet file (or pressing a special key combination), a spreadsheet application
computes the formula contained in each cell and displays the corresponding value. This process is called
evaluation and the result is the evaluated spreadsheet displayed on the user’s screen. Intuitively, evaluation
starts with the cells, call them C0, that contain a value in the original spreadsheet and displays them
unchanged. It then examines those cells, say C1, containing formulas that only reference cells among C0

and computes their value. It continues with the cells C2 that reference at most cells in C0 and C1, and so
on until all the cells have been given a value. Because of the absence of circular dependencies, this process
always terminates with the evaluation of the entire spreadsheet. It can be efficiently performed in a time
proportional to the number of non-blank cells. The partially evaluated spreadsheet obtained at each step is
called an environment: evaluation starts from a totally undefined environment and progressively populates
its cells with values. The evaluated spreadsheet is then the final environment, which does not contain any
undefined cell. The interested reader is referred to (Cervesato 2005) for an algorithmic description and a
detailed analysis of evaluation.

Full evaluation is a very rare event that takes place mostly when loading a spreadsheet from file. Much
more common is updating a spreadsheet, something that happens every time the user modifies the contents
of a cell. Recalculation is the process of propagating changes to all parts of the spreadsheet that depend
on the modified locations by updating the displayed values of the affected cells. Although recalculations
can be implemented as evaluation, it is almost invariably much more efficient to identify the cells affected
by the changes (either because its contents have been modified, or because they depend on a modified
cell) and reevaluate only their contents. This can be efficiently achieved by invoking a form of partial
evaluation that starts from an environment that simply marks all cells affected by the update as undefined,
and preserves the former value of every other cell.

Explanation is the ability to answer questions such as “why does this location report this value?”. It has
been recognized as one of the essential functionalities of a spreadsheet applications as it has been shown
that the vast majority of spreadsheets are riddled with errors of all types (Panko 1998). Formulas are a
common source of errors, especially when they reference other cells. Commercial spreadsheets support
explanation by offering tools that visualize dependencies among cells in the evaluated spreadsheet. By
using these tools, a user can highlight the cells that are referenced in the formula contained in a cell, and
chase such dependencies forward or backward often until an error is discovered.

2.1.2 Arrays
Arrays, or cell ranges, are a familiar concept to spreadsheet users. For example, the simplest way to add all
the values in column A from row 2 to 31 is to enter the formula SUM(A2:A31) into a cell: here, A2:A31 is
an array reference and SUM is an operator that accepts an array as an argument. Not as well known is the
fact that most commercial spreadsheets make available a mechanism by which a formula can evaluate to
an array, i.e., produce a value not just for a single cell, but for multiple cells at once. These are called array
formulas. In Microsoft Excel, this can be achieved, for example, by selecting cells C1:C3, entering the
formula A1:A3 + B1:B3 and sealing it with the special “CTRL-SHIFT-ENTER” key combination. This
will have the effect of adding the contents of arrays A1:A3 and B1:B3 component-wise and displaying the
results in cells C1 through C3. Mismatches between the argument geometries (e.g., adding a 3-element
array to a 5×7-element array) are automatically adjusted through default expansion and truncation rules.

Array formulas differ from the scalar expressions described earlier by the fact that they reside not in a
single cell, but in a range of cells such as C1:C3 in the above example. In order to capture this aspect, we
need to upgrade our notion of (syntactic) spreadsheet: not only individual cells, but also groups of cells
can hold a formula. Clearly, any given cell can be associated to at most one array formula in this way (or
it can hold a value or a scalar formula). This possibility, of writing an expression in a range of cells, is

using bounded iterations. While our model and the proposed extension can easily accommodate this rarely used
feature, doing so would be an unnecessary distraction from the main focus of this paper.



6 I. CERVESATO

one of the pillars of the extension proposed in this paper: note again that it is a standard (although seldom
used) feature of any commercial spreadsheet. In Section 3, we will assign to such ranges not traditional
array formulas but inference rules that permit logically deriving sets of values from data present in other
parts of the spreadsheet.

From a semantic standpoint, the array operators available in commercial spreadsheet applications are
such that array expressions can always be simulated with scalar formulas: arrays introduce convenience,
but no extra expressive power. In particular, any spreadsheet (with array formulas) has a canonical scalar
counterpart (the above example is simulated by entering the scalar formulas A1 + B1, A2 + B2, A3 +

B3 in cells C1, C2 and C3, respectively). Furthermore, the semantics of a generic spreadsheet is defined
on the basis of the semantics of this canonical scalar representative. Not only are evaluation, update and
explanation defined in this way, but so is the very notion of dependency. Indeed, the apparently circular
insertion of the array formula A1:A5 + A2:A6 in the range A3:A7 is legal because its scalar expansion
does not have circular dependencies.

Although logical rules reside in the same cell ranges as array formulas, the deductive extension
proposed in this paper cannot be simulated by current scalar formulas, in general. Therefore, it represents
a genuine (and significant) increase in expressive power with respect to the Traditional Spreadsheet.

2.1.3 Relational Support

The tabular layout of a Traditional Spreadsheet naturally lends itself to interpreting groups of columns
as relations. For example, columns A through D in a worksheet may be used to record student names,
classes, the grades of each student for the corresponding class, and the dates they were awarded. A row is
then seen as a record of related values, for example “(Alice, Operating Systems, A-, 12/14/2005)”. The
values in each participating column are understood as having the same meaning.

The deductive extension in Section 3 will heavily rely on the notion of relation, or more precisely on its
logical counterpart, the concept of predicate. Indeed, inference rules will generally compute to relations,
i.e., upon evaluation, they will fill the cell range in which they are defined with a set of records. In order
to do so, they will typically interpret other areas of the spreadsheet as relations and combine portions of
their records into their own result. Section 3 will be mainly concerned with defining the language of these
logical formulas and how to evaluate them, while Section 4 will describe how to conveniently make them
available to users.

It should be noted that commercial products do provide a limited toolkit for supporting the relational
interpretation of a region of the spreadsheet. Microsoft Excel, for example, recognizes this intent when
the user enters textual captions in the top row of a new worksheet and then inputs the first record. Excel
then interprets this group of columns as a “data list” and makes available a number of commands to
manipulate it: it defines a “form” for inputing new records or modifying existing ones; it offers “filters”
to hide from view all records that do not satisfy a given condition; it permits sorting a data list in place;
it provides a number of “database functions” to conditionally perform operations such as SUM on a data
list; finally it allows a set of columns to be imported from an external application, either a database or
another spreadsheet — this is the only non-manual way of creating a relation.

This relational support is limited and limiting in a number of ways. First, it lacks completeness as
few rudimentary operations are available to combine two or more relations (the most interesting are
VLOOKUP and HLOOKUP, which allow simulating at best some cases of outer joins, with much effort,
but not the more useful inner join). Second, this support is mostly provided in the form of commands (like
“Print”, say) rather than operators (like “+”) that can be woven into formulas. This endows relations
with a second-class nature that sits on top of but does not blend into the spreadsheet paradigm: relational
command are not bound to the relations they compute, they must be initiated by the user rather than
performed automatically through calculation, and updates are not automatically propagated.

By contrast, our effort makes available a linguistic extension that allows working with relations (or
more accurately predicates) as first-class objects in the same way as current formulas operate on cells: the
logical rules defining a predicate are bound to a cell range exactly like array formulas. In particular, they



NEXCEL, a Deductive Spreadsheet 7

are saved to file just like any formula, they are evaluated upon loading a (deductive) spreadsheet from a
file, and they immediately propagate any update affecting the data they depend on.

2.2 Related Work: Mixing Spreadsheets and Logic

We will now review the main historical attempts at infusing spreadsheets with deductive capabilities.

2.2.1 1982–2004
The idea of combining logic programming and spreadsheets started circulating in the early 80’s, at a
time when both technologies were relatively new, and the personal computer had just begun trickling
off the production lines. The first and maybe most comprehensive early proposal was put forth by Frank
Kriwaczek in his 1982 Master’s thesis (Kriwaczek 1982), a revised version of which was later published
for a wider audience as (Kriwaczek 1988). His LogiCalc system was meant to “reconstruct logically, in
micro-Prolog, a typical spreadsheet program”. It not only captured most of the functionalities of early
spreadsheets, but also provided powerful extensions such as relational views, integrity constraints, bidi-
rectional variables, symbolic manipulations, and complex objects (e.g., lists, graphics, and spreadsheets
themselves). The input and output was based on the limited teletype interface of early computers as
modern graphical user interfaces had not been invented at the time.

A few years later, van Emden proposed using the concept of incremental query, by which a standard
Prolog query can be refined interactively, for solving spreadsheet-like problems (van Emden, Ohki &
Takeuchi 1986). The proof-of-concept Prolog implementation realized core spreadsheet functionalities as
well as exploratory logic programming, but made use of the (still non-graphical) matrix display of the
spreadsheet only for output, one solution at a time. This ideas was later refined (Cheng, van Emden & Lee
1988) to report all solutions to a Prolog query in a tabular fashion using a windowed graphical interface.

The last attempt of the decade at integrating logic and spreadsheets was Spenke and Beilken’s
PERPLEX system (Spenke & Beilken 1989), which relied on logical formulas to express bidirectional
integrity constraints within a fully graphical spreadsheet. The resulting system was very powerful but
unlikely to be usable by an entry level user.

Surprisingly, this thread of research dried out in the late 80’s in spite of the gigantic advances in user
interface design and the coming of age of logic programming in the 1990’s. The one isolated exception
was the Knowledgesheet system (Gupta & Akhter 2000), which explored an alternative way of embedding
logical constraints within a spreadsheet.

2.3 Recent Efforts

In a sharp reversal of this trend toward oblivion, half a dozen logical extensions to the spreadsheet
paradigm were proposed in 2004–05. This flurry of activity culminated in the Workshop on Logical
Spreadsheets—WOLS’05 held at Stanford University in the summer of 2005 (Workshop on Logical
Spreadsheets 2005). The presented systems fell into two clear classes: proposals which allowed the
Prolog-style computation of new values from existing values, and systems which provided support for
bidirectional constraints. The present work falls into the first class.

3 Extending Core Functionalities

We will now introduce the functional extensions underlying the Deductive Spreadsheet. As mentioned
above, our objective is to make support available for manipulating relations as first-class objects, namely
to write formulas that compute to relations and to extend the traditional mechanisms for evaluation, update
and explanation to these new entities. As our language for relational formulas, we designed a variant
of the logic programming language Datalog (Lloyd 1987, Ceri et al. 1990). Datalog has been studied
for many years in the context of Deductive Databases (Ceri et al. 1990, Colomb 1998), it has excellent
computational properties and expressiveness, and it comes with a number of traditional algorithms that are
compatible with our intended use in a spreadsheet context. We extend its syntax to support embedding the
array and scalar formulas of the Traditional Spreadsheet and to make it usable in a wider range of practical



8 I. CERVESATO

circumstances. Supported algorithms are extended accordingly. We will now outline salient aspects of this
program, relying on examples for the most part. Formal definitions and detailed analyses can be found
in (Cervesato 2005).

3.1 First-Class Relations and Logical Infrastructure

Assume that a tabular area of a spreadsheet has been loaded with information about commercial flight
segments, for example using the “data list” forms available in the Traditional Spreadsheet, or by some
other input method. In order to make this example more concrete, suppose that columns A, B, and
C contain the origin and destination airports of every such flight, and the distance between them,
respectively. Figure 1 partially displays this setting within Microsoft Excel 2000 (please ignore the textbox
and menus for the time being), with the addition of captions for the whole table (“directFlight”) and the
individual columns (“From”, “To” and “Dist”). For the sake of readability, we will use these names to
refer to the actual table and its columns, instead of cell ranges such as A3:C200 for example (commercial
spreadsheet provide means to associate symbolic names to cell ranges and other spreadsheet entities).

We now want to compute all airport pairs that are reachable by flying through at most one intermediate
city. Intuitively, they consist of all pairs of cities that can be reached in either one hop or two hops. The
first option is just the table directFlight, with the distance information omitted: if one can fly directly from
A to B, then one can fly in at most two hops from A to B. The second way is to fly to an intermediate city
and from there to a destination: if one can fly from A to X directly and then from X to B directly, then
one can fly in at most two hops from A to B. This simple reasoning pattern provides a way of building the
desired relation, call it twoHopsMax. The logic programming language Datalog (Lloyd 1987, Ceri et al.
1990) formalizes such patterns and provides a syntax to express them. This simple example assumes the
following form in Datalog:

twoHopsMax(A, B) ← directFlight(A, B, ).

twoHopsMax(A, B) ← directFlight(A, X, ) ∧ directFlight(X, B, ).

Here, the predicate directFlight(A, B, ) describes a generic record of the table directFlight, using the
variables “A” and “B” to identify the values in its first and second column, respectively; the notation “ ”
is a way to ignore the third value in this record. Then, it suffices to read the reverse implication symbol,
“←”, as “if” and the conjunction symbol, ∧, as “and”, and we obtain an exact reading of the above
informal definition of twoHopsMax: the formula on the first line states that one way to build a record for
twoHopsMax is to take any tuple from directFlight and ignore the third component; the second formula
says that one can alternatively combine the first and second value in two arbitrary records, as long as their
second and first values coincide. Each of these formulas is called a clause in Datalog, and altogether they
contribute to defining the predicate twoHopsMax.

Now, assume that we want this derived relation to be written in columns D and E of our spreadsheet,
evaluated when loading it from a file, and automatically updated whenever any value in directFlight

changes. There is no way to achieve this effect within the Traditional Spreadsheet.
By contrast, the Deductive Spreadsheet allows associating a clausal definition such as the above to a

region of the spreadsheet. Indeed, we can select cell range D3:E500 and assign these two clauses to it,
in nearly the same way as we would install an array formula into it. Again, we use symbolic names for
this table and its columns. Evaluating these clauses will fill this table with unique records satisfying them,
starting from row 3. If there are less than 497 such records, the bottom portion of the table will remain
blank, if there are more, some entries will be dropped (the user interface provides a notation for ranges
such as “columns D and E from row 3 to the bottom of the worksheet).

The Deductive Spreadsheet provides syntax to define a wide range of relations. Let us first modify the
above example to return only those pairs of cities that are at most 200 miles apart. This is achieved by the
following two clauses:

twoHopsMax(A, B) ← directFlight(A, B, D) ∧ D < 200

twoHopsMax(A, B) ← directFlight(A, X, D) ∧ directFlight(X, B, D′) ∧ D + D′ < 200



NEXCEL, a Deductive Spreadsheet 9

The added conjuncts, D < 200 and D + D′ < 200, are called constraints. Constraints are one of the
available interfaces to embedding traditional spreadsheet formulas within a clausal definition. Indeed,
200 here is just a value, while the expression D + D′ is closely related to scalar formulas. In general, a
constraint can compare any expression built out of values, operators, cell references and clausal variables.
The other way to refer to a traditional formula within a clause is to use the coercion operator 〈. . .〉, which
converts a generic array formula to a relation with the same geometry (the dual [. . .] coercion interprets a
clausal definition as an array for inclusion in a traditional formula).

The above examples make a fairly basic use of the logical capabilities of Datalog. The following
recursive clauses compute the pair of airports that can be reach via arbitrarily many hops:

indirect(A, B) ← directFlight(A, B, ).

indirect(A, B) ← directFlight(A, X, ) ∧ indirect(X, B).

Notice that indirect is defined in terms of itself: there is an itinerary from A to B if there is a direct flight
between them, or if there is a direct flight from A to some intermediate destination X and an itinerary
from X to B.

Datalog allows other logical operators to appear in clauses, in particular a restricted form of negation
called stratified negation (Lloyd 1987, Ceri et al. 1990). One thing that Datalog does not permit is for a
clause to return values computed by applying a functional operator to recursive argument (for instance,
adding an argument to indirect to keep track of the number of segment): this is unsafe as it may cause
evaluation never to terminate. From a practical point of view, computing values in this way is however
extremely useful: one does want to know the number of hops in his itinerary. The Deductive spreadsheet
accommodates this need by permitting such calculations, but stopping the computation after a user-defined
bound on the maximum number of iterations. It is then possible to compute the number of premier (25%
bonus) frequent flyer miles an itinerary will yield, which would be forbidden in Datalog:

indirect(A, B, M) ← directFlight(A, X, D) ∧ M = 1.25 ∗D.

indirect(A, X, M) ← directFlight(A, X, D) ∧ indirect(X, B, M′) ∧ M = 1.25 ∗D + M′.

We similarly stretch the traditional limits of Datalog by allowing flat lists, as in the following example
which returns not just pairs of airports that are linked by air, but also the actual itinerary between them:

indirect(A, B, It) ← directFlight(A, B, ) ∧ It = [A, B]

indirect(A, B, It) ← directFlight(A, X, ) ∧ indirect(X, B, It′) ∧ It = [A|It′].

Bounded iteration is again used to avoid the possibility of an infinite computation.
Complex deductive patterns can be achieved by appropriately combining the logical features introduced

so far. For example, it is possible to find the shortest itinerary between two cities, the number of such
itineraries, the list of all airports reachable from a given city, etc. Abbreviations are available for many
of these advanced patterns. The resulting language allows expressing numerous classes of problems that
are not solvable in the Traditional Spreadsheet. Examples include the bill of materials, anti-trust control,
meeting planner, workflow, and various types of transitive closure. See (Cervesato 2005) for details.

3.2 Evaluation and Updates

Datalog has been extensively studied in the context of databases as its recursive clauses extend the
expressiveness of the traditional query languages of Relational Databases (Ceri et al. 1990, Colomb 1998).
Particularly appealing is the fact that, differently from other logic programming languages like Prolog,
there are algorithms that guarantee that the evaluation of a set of Datalog clauses will always terminate.
This is of prime importance in the context of a spreadsheet as the prospect of non-termination would not
be accepted by users.

A number of (terminating) evaluation algorithms have been proposed for Datalog (Ceri et al. 1990).
Many of them are optimized for efficiently answering typical database queries, which tend to be rather
focused, returning just a few records. This is not the way we anticipate the deductive extension of the



10 I. CERVESATO

spreadsheet will be used. Instead, we expect the typical user will define rather general relations, similar
to the examples given above, characterized by a number of records comparable to the tables they draw
their input from. One of the earliest proposals for evaluating Datalog clauses, bottom up evaluation, is
particularly suited to this mode of operation as it efficiently computes sets of records until all possible
solutions have been produced. In order to produce the set of values satisfying indirect for example, it
would first return the pairs of cities that are directly linked (using directFlight in the first clause), then
those that require one stop, then two stops, and so on. At each step, records previously obtained are
discarded; the process ends when no new record is generated in this way. We have extended this approach
to encompass the language outlined in the previous section, including the aspects that are not found in
Datalog (Cervesato 2005).

An optimized version of this evaluation method, known as the semi-naı̈ve strategy, forms the basis
of an efficient procedure for update propagation. While updates in the Traditional Spreadsheet statically
identify the affected cells, this method attempts to dynamically identify the records that should be added
or deleted to a derived relation. This can be done quite efficiently for common types of clausal definitions.
We invite the interested reader to consult (Cervesato 2005) for details.

3.3 Explanation

Explanation in the Traditional Spreadsheet boils down to following cell references in formulas, which is
reasonable since the result of a formula typically depends on all the values that are referenced in it. This
is not so in our deductive extension: although the definition of indirect references the relation directFlight

for example, any given record in the former is actually computed on the basis of very few records in the
latter. Therefore, just following static references is not particularly useful in this new setting. In fact, the
type of questions we are interested in is not so much “What does this relation depend on?”, but rather
“Why was this record returned?”. This requires unfolding the computation that produced this particular
record, not tracking down static dependencies.

One way to answer such questions is to keep track of how each record was obtained. This approach not
only requires considerable bookkeeping, but is ineffective vis-a-vis of another legitimate type of questions:
“Why was this record not returned?”. The explanation facilities of the Deductive Spreadsheet operate
differently: it starts with the suspect record (or in general an arbitrary query) and unfolds the available
clauses in search of all supporting facts in the spreadsheet (or their absence). This technique employs a
top-down strategy as it unravels definitions from the top query all the way down to elementary evidence.
Unless conducted carefully, top-down evaluation can be non-terminating even in Datalog. The Deductive
Spreadsheet relies on approaches that guarantee termination (Smith, Genesereth & Ginsberg 1986, Warren
1998).

4 User Interface Extension

The Traditional Spreadsheet owes much of its success to a user interface that has evolved to provide
intuitive access to the underlying functionalities, for the most part (array formulas are an unfortunate
exception). In particular, it offers consistent interaction modalities across features and a gentle learning
curve that allows users to progress through exposure and minimal experimentation. One of our main
goals in the design of the Deductive Spreadsheet was to maintain this very same level of usability as we
made available the added expressiveness of logical reasoning. For this reason, we relied on user interface
design methodologies recently proposed within the field of Cognitive Psychology and applied with great
success in other extensions of the spreadsheet (Peyton Jones et al. 2003). Using them as guidelines, we
developed a minimally intrusive extension of the user interface of the Traditional Spreadsheet to support
the deductive functionalities described above. It extends all traditional methods for interacting with the
spreadsheet to the new deductive features, in particular as far as formula manipulation is concerned. We
will now briefly review both the interface design approach and the outcome of adopting it. Details can be
found in (Cervesato 2005).



NEXCEL, a Deductive Spreadsheet 11

Figure 1 Mouse-Assisted Clausal Definition

4.1 Approach

Following the steps of (Peyton Jones et al. 2003), we used two Cognitive Science methodologies to design
our initial user interface of the Deductive Spreadsheet: the Cognitive Dimensions of Notation (Green &
Petre 1996) and the Attention Investment Model (Blackwell 2002). The first relies on the observation
that the designers of a system, language or computer interface often lack names to talk about some of
the cognitive concepts they use, especially those concepts that most directly impact the end user. It then
proceeds to providing a concrete vocabulary to bring these often implicit concepts to the foreground and
help make informed user-centered decisions. For example, it defines “premature commitment” as the
degree to which a user is forced to make a decision before all the information is available. By contrast
the Attention Investment Model (Blackwell 2002) “offers a cost/benefit analysis of abstraction use that
allows us to predict the circumstances in which users will choose to engage in [them]”, hence encouraging
the designer to put himself in the shoes of the user and anticipate how they will cope with aspects of the
notation.

4.2 Realization

Our primary concern in designing the user interface of the Deductive Spreadsheet has been to remain
conservative with respect to the choices that have sedimented in the mostly excellent interfaces of modern
spreadsheet applications, choices to which users have become accustomed and sometimes dependent.
Within these necessary bounds, our major design objective has been to provide the user with a simple
and intuitive access to the enhanced expressive power of the deductive infrastructure. For the most part,
this is realized by simply extending the current interaction modalities to the new deductive components.
For example, all the graphical approaches to constructing a scalar or array formula are available when
building a clausal definition. We occasionally extend current support in order to further simplify the user’s
experience, in particular by offering a new interactive way to assemble clauses, or to take advantage of
the deductive infrastructure, for instance by providing novel flow graph visualization mechanisms.

At first glance, the user interface of the Deductive Spreadsheet is indistinguishable from the screen of a
typical Traditional Spreadsheet. Indeed, the user still sees a grid of cells which she can format in the usual
ways. They form a worksheet and several worksheets constitute a workbook. All the traditional navigation
methods, selection techniques, and commands at large operate as usual. It is only when she starts working
with the system that the new possibilities reveal themselves as added menu items and extensions to old



12 I. CERVESATO

Figure 2 Deductive Explanation Dialog

functionalities. The major changes to the static layout of the application window cater around providing
simple and efficient methods for designating areas of the worksheet as relations, and making a convenient
interface available for associating a clausal theory with a range of cells. Although the first objective can
be realized by chaining commands in the traditional spreadsheet, we streamline this process by providing
a simple dialog for achieving it.

The second objective comprises entering clausal definitions and invoking deductive capabilities. We
currently offer two equivalent syntaxes for writing clauses: one is a slightly beautified form of Datalog
(see Figure 1 for an example) and the other extends the traditional SQL query language of relational
databases — see (Cervesato 2005). Our main motivation for this dual language approach is that some
users may find it easier to express their problem logically, while others may have more of a relational
mind-set. The textual syntax of logical formulas is however likely to evolve as we gather feedback from
user.

The most immediate way to create a logical definitions is to enter it into the formula input textbox,
just as for scalar formulas. Because clausal rules (or SQL statements) tend to be more complex than
a typical arithmetic formulas, we have enhanced this capability by effectively making available a
syntactic editor that highlights keywords and provides visual feedback for relations and their columns,
autoformats complex definitions, possibly over several lines, and monitors what the user writes in real
time, recognizing potential errors and suggesting corrections. A second way to define a derived relation
is to use the mouse to drag and drop predicates in a clause, or select them from dedicated menus. An
example is given in Figure 1. Finally, the formula insertion wizard, although seldom used in practice,
has been extended to support defining clauses. The traditional cut and paste mechanism for propagating
formulas, a favorite among users, has been extended to work seamlessly over logical formulas (and by
extension over array formulas, whose support is rather deficient in commercial spreadsheet applications).

Core functionalities are invoked as in the Traditional Spreadsheet. In particular, evaluation is automati-
cally performed when a file is loaded. Recalculation is automatic by default, but it can be fine tuned using
menu dialogs, and forced by invoking dedicated commands. Explanation can be invoked by choosing
a menu item, which brings up the dialog in Figure 2, which inquires about how outbound itineraries
from ’JFK’ have been obtained. The explanation mechanism allows the user to cycle through all possible
answers to a query (here it examines itineraries between ’JFK’ and ’LAX’) and all possible ways they
can be obtained. For each, the left pane displays a directory-like structure that outlines the sequence of



NEXCEL, a Deductive Spreadsheet 13

steps taken, i.e., all the records it depends on. Because such explanations can be rather large, the user can
minimize parts that are not deemed interesting, and incrementally expand them later. When any record is
selected, the right pane shows the instantiated clause that produced it.

Traditional Spreadsheets come with a number of tools aimed at visualizing raw data in an intuitive
manner, hence making them more readily usable, augmenting productivity, and improving the user’s
experience (or her customers’). Many of these tools target tabular data, allowing to summarize them
as charts or graphs, and to build complex what-if analysis scenarios with a few mouse clicks. The
deductive extension opens the doors to new opportunities. For example, a relation such a directFlight

can conveniently be displayed as a graph with airports as nodes and connections as edges possibly labeled
with distance or other information. Overlaying other relations provides an immediate visual intuition
that is not easily achievable in tabular form. We call this type of rendering a connection graph. Another
productivity tools we have been investigating in the context of the Deductive Spreadsheet is a flow graph
generator (Cervesato 2005).

5 Preliminary Evaluation and User Feedback

We have conducted a small-scale and very preliminary usability experiment on potential users of the
Deductive Spreadsheet. We interviewed eight current users of Traditional Spreadsheet applications,
principally Microsoft Excel, with diverse backgrounds and sophistication levels. We explained the
general idea underlying the proposed extension, showed them screenshots for a simulated example of
the Deductive Spreadsheet, and noted their reactions.

Altogether, this experiment showed that our target audience, namely intermediate and advanced users,
could easily grasp the potential of the Deductive Spreadsheet. Indeed, they suggested several uses for it in
their current activities. They commented favorably on the user interface, especially the explanation facility
and the possibility of displaying tables as a connection graph. To our surprise, also beginners, which were
not a target category, showed interest in the basic relational functionalities, although they had difficulties
with some of more advanced concepts such as recursion. Beginners took issue with the wording of menu
items and other interface text and demanded friendlier approaches to building simple clausal definitions so
that they could perform basic manipulations of tabular data in unintimidating ways. In essence, beginners
pressed for being included as the beneficiaries of this technology.

Tested users across the board were very positive about the integration of persistent relational query
facilities in a spreadsheet, a key aspect of the Deductive Spreadsheet. They were clearly interested in
the possibility of using spreadsheets as small homegrown databases, without the steep learning curve of
typical database management systems. The idea of tabular views of data where changes are automatically
propagated seemed particularly appealing to them.

The feedback from volunteers in our target audience, advanced and intermediate users, suggests that we
may have achieved our cognitive objectives. We also see the keen interest of beginners for what the core
technology of the Deductive Spreadsheet can deliver as an unexpected niche. If rigorous testing confirms
these preliminary results, we intend to concentrate future efforts to making available intuitive tools to take
advantage of basic but useful aspects of our solution. We also plan to build on the numerous improvements
suggested by the advanced and especially intermediate users.

6 Towards an Implementation

At the time of writing, we are in the early phase of an implementation of the Deductive Spreadsheet
into a prototype that we call NEXCEL. When completed, this system will embed all the primary
operational functionalities discussed in Section 3, in particular evaluation, update and explanation over
the entire linguistic extension, and a majority of interface functionalities previewed in Section 4. This
implementation is intended as a testing ground for our design, and is principally aimed at assessing two
aspects of this proposal: performance and usability. Abstract modeling (Cervesato 2005) anticipates that,
in practice, typical clausal definition will be evaluated in a time comparable to traditional formulas (and
therefore have no tangible cost for the user), although complexity analysis indicates the possibility of a
polynomial degradation in the worst case. An actual prototype will allow us to assess performance for a



14 I. CERVESATO

User
Excel
2003

A
d
d
-
o
n

Deductive Engine

Bottom-up
evaluator

Top-down
prover Relations

-�

-

Commands

-

Cell changes

�

Record updates

Figure 3 Structure of the NEXCEL Prototype

wide range of usage, and also to experiment with optimizations. On the usability front, this prototype will
permit actual user testing and experimentation with different ways of making functionalities available to
users. Ultimately, it will prepare the stage for an actual implementation of the Deductive Spreadsheet,
either an efficient module for an existing spreadsheet application (either Microsoft Excel or some other
commercial product), or as an independent application.

The NEXCEL prototype consists of two components, as sketched in Figure 3: an add-on module to
Microsoft Excel 2003 and an inference engine. Our implementation relies on an off-the-shelf Microsoft
Excel 2003 executable for all traditional functionalities as well as most user interface operations. The
add-on module, written in Visual Basic for Applications, acts as a bridge between Excel and the inference
engine: it recognizes user interactions intended to access extended functionalities and dispatches them as
needed to the inference engine. When loading a deductive spreadsheet from file, it will communicate the
contents of all regions used relationally, as well as any defining clauses it finds, and install the evaluated
records in the appropriate cells as soon as it receives them from the inference engine (this process
will often be conducted over several iterations). Similarly, it will relay any change affecting the logical
fragment of the spreadsheet and update deduced values as reported by the deductive engine. Finally, it
will pass on explanation requests and display their result as described in Section 4. It will handle directly
only the most basic requests, such as some changes in the geometry of a relation.

The inference engine implements all the functionalities described in Section 3, evaluation, update, and
explanation, and maintains appropriate data structures for these purpose. These currently include an eval-
uated copy of every relation referenced or defined in the Deductive Spreadsheet, and of course the clauses
defining the latter. They also include graphs tracking various types of dependencies between predicates, in
particular their call graph, which includes stratification information needed during evaluation. Our current
prototype is being written in the functional language Haskell, which combines reasonable efficiency and
rapid prototyping.

7 Conclusions

In this paper, we have outlined a design for an extension of the Traditional Spreadsheet that supports
powerful forms of symbolic reasoning while maintaining the usability of its user interface, as embodied in
successful commercial products. This design is currently being implemented into the NEXCEL prototype.

Acknowledgements

We are grateful to numerous individuals for their useful comments on early ideas underlying this
work. Among them, special acknowledgments go to Burkhard Freitag, Georg Gottlob, David Gunning,
Mike Kassoff, Frank Pfenning, Alberto Pravato, Alessandro Roncato, and David Walker, as well as the
participants of the WOLS’05 workshop on Logical Spreadsheets. We are especially indebted to the users
who volunteered some of their time to provide us with valuable comments on functionalities and user
interface design.



NEXCEL, a Deductive Spreadsheet 15

References

Blackwell, A. (2002), First steps in programming: a rationale for attention investment models, in
‘Conference on Human-Centric Computing Languages and Environments’, IEEE Computer Society,
pp. 2–10.

Boehm, B. W., Abts, C., Brown, A., Chulani, S., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K. &
Steece, B. (2000), Software Cost Estimation with COCOMO II, Prentice Hall.

Ceri, S., Gottlob, G. & Tanca, L. (1990), Logic Programming and Databases, Springer Verlag.

Cervesato, I. (2005), The deductive spreadsheet, Technical Report DS05-02, Deductive Solutions.

Cheng, M. H. M., van Emden, M. H. & Lee, J. H.-M. (1988), Tables as a user interface for logic programs,
in ‘Fifth Generation Computer Systems’, pp. 784–791.

Colomb, R. M. (1998), Deductive Databases and their Applications, Taylor & Francis.

Green, T. & Petre, M. (1996), ‘Usability analysis of visual programming environments: a “cognitive
dimensions” framework’, Journal of Visual Languages and Computing 7, 131–174.

Gupta, G. & Akhter, S. (2000), Knowledgesheet: A graphical spreadsheet interface for interactively
developing a class of constraint programs, in ‘Proceedings of the Second International Workshop
Practical Aspects of Declarative Languages’, Springer Verlag LNCS 1753, Boston, MA, pp. 308–
323.

Kriwaczek, F. (1982), Some applications of Prolog to decision support systems, Master’s thesis, Imperial
College, London, UK.

Kriwaczek, F. (1988), ‘Logicalc: a Prolog spreadsheet’, Machine intelligence.

Lloyd, J. W. (1987), Foundations of Logic Programming, second extended edition edn, Springer-Verlag.

Panko, R. R. (1998), ‘What we know about spreadsheet errors’, Journal of End User Comput-
ing (Special issue on Scaling Up End User Development) 10(2), 15–21. On the web at
http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm.

Peyton Jones, S., Blackwell, A. & Burnett, M. (2003), A user-centred approach to functions in Excel, in
‘Proceedings of the eighth ACM SIGPLAN international conference on Functional programming’,
ACM Press, Uppsala, Sweden, pp. 165–176.

Power, D. (10/04/2003), ‘A brief history of spreadsheets’, http://www.dssresources.com/history/
sshistory.html. DSSResources.Com.

Smith, D. E., Genesereth, M. R. & Ginsberg, M. L. (1986), ‘Controlling recursive inference’, Artificial
Intelligence 30(3), 343–389.

Spenke, M. & Beilken, C. (1989), A spreadsheet interface for logic programming, in ‘CHI ’89:
Proceedings of the SIGCHI conference on Human Factors in Computing Systems’, ACM Press,
pp. 75–80.

van Emden, M. H., Ohki, M. & Takeuchi, A. (1986), ‘Spreadsheets with incremental queries as a user
interface for logic programming’, New Generation Computing 4(3), 287–304.

Warren, D. S. (1998), Programming with tabling in XSB, in D. Gries & W. P. de Roever, eds, ‘Pro-
gramming Concepts and Methods, IFIP TC2/WG2.2,2.3 International Conference on Programming
Concepts and Methods (PROCOMET’98)’, Vol. 125 of IFIP Conference Proceedings, Chapman &
Hall, Shelter Island, NY, pp. 5–6.

Workshop on Logical Spreadsheets (2005), http://wols05.stanford.edu.


