
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ON CHARACTER SET REDUCTION

by

Reino Kurki-Suonio

Carnegie Institute of Technology
August, 1965

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146).

HINT LIBRARY

CAHNEHE-IKLLON BJKVE.\2!TY

r Abstract

Character sets of languages can be reduced by representing

several different characters by one in case this does not cause

ambiguities. For finite-state languages the best reductions can

always be found, whereas for context-free languages the problem

is, in general, unsolvable. Easily invertible reductions are

obtained, however, if the language is embedded into a finite-

state language. A method for this is suggested which uses only

Information on the possible adjacent character pairs.

The parsing problem of the reduced language can be returned

to that of the original. The implications of this to precedence

grammars are discussed.

Finally, results of some programs for character set reductions

are demonstrated.

1. Introduction

The limitations of the available character sets cause

many difficulties in designing symbolic languages. Some of

the difficulties can, of course, be postponed to the imple

mentations by assuming an unlimited source of symbols. This

was done e.g. in designing Algol 60 [6], whose character set

includes 116 symbols, 24 of which are represented in the

reference language by underlined (boldface) letter strings.

In most other languages (and in most implementations of Algol)

a great number of reserved words and phrases is used, instead.

This leads, of course, to some restrictions on the invention

of names for local purposes in a program. In general, the

wider and the more "English-1 ike11 the language is, the more

severe these restrictions are. (Note the corollary: the

farther your own language is from English, the less nuisance

you have.)

In any case, writing and keypunching phrases like

" IF A IS GREATER THAN B" or 'DIVIDE B INTO A GIVING

C, ON SIZE ERROR GO TO L" may feel convenient for the first

time, but being forced to repeat them for the length of any

practical program resembles the old punishment to write down

100 times the lesson you did not learn.

In the following we will assume that an extension of the

available alphabet is used in the reference language rather

than reserved words. The possibility of reducing this character

set by combining several characters will be investigated. No

attention will be paid to the illegibility of the reduced

language. One possible application would be in on-line con

versational communication with a computer. One or more symbols

could be assigned to each available key. When pushing a key,

the computer should decide from the context which symbol you

mean and type you back a reasonable string representation for

it.

2. Notations

Familiarity with context-free grammars [1], finite-state

machines [4] and their use as recognizers [7] is assumed. The

language (set of strings) defined by a grammar 6 will be

denoted by L(G). The alphabet of a language (the terminal

alphabet of a context-free grammar or the input alphabet of a

finite-state machine) will be denoted by T = {a,b...}. The

set of finite strings on T will be F T = {x,y,...). Ttie non

terminals of a context-free grammar will be denoted by S,A,B,...

where S is the designated one* Application of one rewriting

rule (production) will be denoted by -» ; and =* will be a

sequence of -Vs. When writing down a context-free grammar, we

will adopt the symbol | from [6] to indicate repetition of

the previous left-hand side of a production.

By the predicate P(a,b) we will mean that there exist

strings x, y such that xaby belongs to the given language.

Terminators \- , -J will be used to indicate the left and right

end of a string. So P(|~,a) and P(a,-|) are equivalent to

the existence of a string x such that ax or xa belongs

to the language, respectively. If the null string belongs to

the language, P(}-,-)) is true.

3. Character Set Reductions

A mapping f: T ->T f of the character set of a language

into another character set T f is called a reduction if no

two sentences have the same image in F̂ ,, . This means that

f is invertlble for sentences and that the reduced representa

tion of the language has exactly the same ambiguities as the

original. A reduction is called a left-to-right reduction if

no two initial strings of sentences have the same image in F^,.

Let L be a finite-state language. We can then find a

deterministic finite-state machine M to recognize L. For sim

plicity, M is allowed to be incomplete, and it is assumed to

contain only those states which are reachable from the initial

state and from which at least one of the admissible final states

is reachable. A mapping f will then transform M into a

finite-state machine M f, which is, in general, non-deterministic.

The mapping f is now a reduction of L in exactly those cases

when M 1 is unambiguous. Futthermore, f is a left-to-right

reduction if M' is deterministic. Both these criteria are

decidable. Especially, we can then find the reductions with

the least number of different characters.

To M 1 we can add output in T so that in each transi

tion the output is the input symbol of the corresponding

transition in M. The inverse mapping of f can now be per

formed by M* (or by any machine equivalent to it). If f

is not a left-to-right reduction, the inversion cannot be

performed from left to right without a lookahead, and there is

no finite bound for the length of the necessary lookahead.

For context-free languages we will show, at first, that

the best reductions cannot be found, in general. This problem

is obviously equivalent to deciding whether a given mapping f

increases the ambiguity of a language or not. Let G be a

context-free grammar. We can then find a standard grammar G'

(cf. [5]) where all productions are of the form A -> aAj • • *<A (n £ 0)

and which generates exactly the same sentences as G . Replacing

G f by a grammar in which all terminal characters in the produc

tions are different, we get an unambiguous grammar G" • If

we could decide whether the language L(G') is a reduction of

L(G n) or not, we could solve the ambiguity problem of G f, which

is, in general, unsolvable [2].

The solvability of the reduction problem for finite-state

languages suggests embedding a context-free language (or any non-

finite-state language) into a finite-state language and requiring

the reduction to be a reduction of this wider language. Obviously

there is, however, no smallest finite-state language L f cover

ing a non-finite-state language L , since x e L 1 , x { L implies

that L f - {x} is also a finite-state language.

A simple finite-state language covering a given language

L is the language consisting of all strings a^...a (n ̂ 0)

such that after extending them with a Q = J- , a^ + 1 = we have

P(a i, for i a 0,...,n. This language will be denoted

by R(L) , and reductions of R(L) are called simple reductions

of L.

For R(L) a finite-state machine M can be constructed

easily by taking the set of states {S ; a e T}U { h] and
a

letting a symbol a e T to cause a state transition from S f e

to S if and only if P(b,a) . The initial state and the a
admissible final states are Ŝ . and {a ; P(a,-|)}, respectively.

Since both the inputs and outputs of M' depend only on the

states to be entered, the simplification of M' is easy. As

an example we consider the language L defined by the grammar

P 3 of [3]:

S -> A

A -> A - B | B

B -» B * C | C

C -»9 D | D

D -» (A) | X

r

Fig. 1

Let f now be a mapping which maps *, 9, (,) and X to

a, b, a, b, c and c, respectively. Since the resulting M f

is deterministic, f is a left-to-right reduction. The inverse

mapping of f is performed most easily by the two-state machine

of Fig. 2, which is the minimal machine equivalent to M 1. The

two states correspond to whether we are expecting an operator or

an operand.

a/9
b/< c/>

initial state a/-
b/*

Fig. 2

The finite-state machine M for R(L) is given in Fig. 1.

4. Character Set Extensions

It Is sometimes desirable to consider a given language L

as a reduction f(L Q) of another language L Q. E.g., a parsing

algorithm might be easier to express for L Q than for L (cf.

next section). Also better reductions of L might be found as

simple reductions of L Q, since f(R(Lg)) is included in R(L).

As an example let us consider the language

L = {ab nc n, db ne n ; n > 0) . Let a, b, c, d and e be mapped

by f to a 1, b 1 , c 1, d' and c 1, respectively. Obviously f is

a reduction. It is not a simple reduction, since e.g., a fb fc f

is the image of abc and abe, both of which belong to R(L).

However, L is a simple reduction g(Lg) of a language L Q where b

is denoted differently depending on the first character, and f

is a reduction of the finite-state language g(R(Lp)).

Languages are most often given by their grammars. Reducing

the character set means then to perform the given character set

mapping in the grammar. On the other hand, it is to be noted

that a character set extension of a language is not always realiz

able by a replacement of the terminal characters in the grammar.

E.g., in the above example the given extension could be realized

for the context-free grammar

S -> aA | dB

A -» be | bAc

B -> be | bB

but not for the grammar

S -» aA | dB

A -> Cc | CAc

B ->Ce | CBe

C ->b.

When speaking of character set reductions and extensions of

grammars, we will always assume that no other changes are

allowed in the grammar except replacing the occurrences of

terminal characters by some other terminals.

For a given grammar G we can now find an extension GQ

such that G Q is a simple (left-to-right) reduction f(GQ) of

GQ and that the finite-state language f(R (L (G Q))) is as

small as possible. To express the necessary and sufficient

requirements of GQ we adopt the following notations:

a,b,.«. will denote different occurrences of terminal

characters in G or in G Q rather than the

different symbols; terminators f~ , -J are also

treated as terminal characters;

a = b will denote that a and b are represented by the

same symbol in G ;

a a* b will denote that a and b are represented by the

same symbol in G Q . Note that a ̂ a for all a.

5. Implications To Precedence Grammars

The parsing problem of a reduced language can be returned

to that of the original, if a device for Inverting the reduction

is provided. So reductions may be considered as operations

extending any family of grammars for which a given parsing

method can be used.

In [3] a family of context-free grammars , precedence gram

mars (PGs), was introduced, for which the syntax analysis can be

formulated in a particularly simple way. To be more exact, the

problem of finding all phrases in a sentence is simple, though

assigning the proper nonterminals for them might not be straight

forward or even unique. Precedence grammars are a special case

of operator grammars, in which no productions A -» ...BC...

with adjacent nonterminals are allowed. It was shown in [5]

As G is required to be a simple reduction of G Q the following

must be satisfied:

fif a 0 ~ b 0 • a n ^ b n f a l " V P (V ai+1> •

(I) J P (b i . b
1 + 1) f o r 1 - 0,...,n-1, then

I a^ p-i b^ for i » 1,... ,n-1 .

For simple left-to-right reductions (1) reduces to

(I I) if a « b , P(a,c) , P(b,d) then c w d .

In section 6 we will discuss some experiments in reducing G

by simple reductions of R (L (G Q)) .

that any context-free grammar can be transformed into this form.

Slightly differing from [3] we define the following precedence

relations for an operator grammar:

(2)

(3)

^a = b if there is a production A ->

a < b 11 A ->

a •> b 11 A -»

a k b if there is a production A -»

a <$ b 11 A -»

a b M A ->

••aBb•••,

. .aB... and B => Cb...,

•.Bb... and B => ...aC,

• •ab•• • |

• .aB. .. and B => b...,

• .Bb. •. and B => ...a

For f - and -| the relations will be defined as if the designated

nonterminal would be S f with a production S 1 ->^"S^ .

Obviously the relations (3) are different cases of P(a,b).

In [3] the corresponding relations of groups (2) and (3)

were not separated, and the criterion for precedence grammars was

that for any pair a,b at most one of the relations holds. A

trivial relaxation of this is to allow at most one relation of

each group (maybe different members of the groups) to hold for

any pair. This family can now be further extended by simple

(left-to-right) reductions. These grammars will be called (left-

to-right) RPG fs. It is decidable whether an operator grammar

is a (left-to-right) RPG or not.

An example of a left-to-right RPG is the grammar P^ of

[3], which differs from P 3 discussed above only by having one

character for both - and 9 . In [3] it was pointed out that P a

is a PG , and we showed above that even a further reduction of

P 2 into three characters is a simple left-to-right reduction of

V
One of the properties of (left-to-right) RPG's id that they

can be embedded into each other so that the resulting grammar

is also a (left-to-right) RPG. As an example we consider the

following left-to-right RPG's

G: G f: G":

S -*S + A|A S 1 -»S' * A 1 |Af S" -»S M + A|S" * A"|A M

A ->A * B|B A' A 1 + B ^ B 1 A M (SM)|a

B -> (S)|a B' -> (S')|a

which generate the same language with different precedence

relations between * and + . If we want to be able to convert

the precedence relations of G inside an expression to those

of G 1 , we can add the productions

B->[S«]

B' ->[S]

where [and] are new delimiters indicating the change of the

precedence relations. If we want to be able to use any of the

three possible precedence relations, we can add the productions

B ->[S'] | {S"}

B'-»[SM] | {S}

B" - [S] | {S') .

T

It is to be noted, that in order to preserve the grammar as

an RPG, the new delimiters must be used so that, when knowing

the current subgrammar and scanning a delimiter, no extra

information is needed to know which subgrammar is to be entered.

It is to be noted that a character set extension of an

RPG is not necessarily an RPG. Hence the set of RPG's is not

closed under the reduction technique introduced in section 4.

On the other hand, this technique does not give all those

reductions which are RPG's themselves, since some of them

might not be simple reductions of the same PC's as the original.

However, the ambiguity problem is decidable for RPG's and hence

the best RPG-reductions of an RPG can always be found.

6. Experiments With Programs For Character Set Reduction

The above ideas were implemented as a series of related

programs . The main interest was in programs for finding

character set reductions of context-free grammars with the

method introduced in section 4.

The programs were applied to the Algol-like language defined

in [3]. This language was selected instead of Algol 60 because

of its more concise syntax. (Some minor changes were made to the

syntax; e.g., it was transformed into a strict "Backus normal

form".) Denoting the language defined by this grammar by L, the

The CDC G-21 computer at Carnegie Tech was used. All programming
was done in Algol.

best simple left-to-right reductions of R(L) which were found

had 17 characters less than L. One possibility for such

reduction is to combine (~) characters as follows:

real

integer

Boolean

function

9

until

while

•

t

do

else

comment

D ^

value /-\.

array

switch

constant

for

10

if

procedure

step

false

true

begin

b

c

e

f

g

When allowing the program to consider L as a simple left-

to-right reduction of another language , two more characters

could be reduced, e.g.,

then go to h

i

The extension was, in fact, one in which digits were represented
differently in identifiers and digit strings.

HUNT LIBRARY
CARNEHE-KtLIN UNIVERSITY

T

For this reduction a 4-state machine was found for the inverse

mapping. This machine is given in Fig. 3. The characters

a, a',..., n represent sets of output symbols associated with

the state-transitions. The sets a ... i are given above; the

dashes indicate the column, e.g., a = freal Integer] , a' = {vp}

and a" = {false true3. The sets j ... n are:

j = { [(+ - * / - r = < > ^ < : ; > } ,

k = {) end) ,

1 = { ; 3 ,

m = { 0 ... 9 } ,

n = { a ... z] .

The initial state of the machine is the state 1.
e,g\l_

b»,c',d',b',j

a',b',c»,d,

7b,c fd»,e\h»,J

Fig. 3

When the reduction was not required to be a left-to-right

reduction, one more reduction could be made, e.g.:

end — ^

To reverse this final reduction, a 6-state non-deterministic

machine could be constructed, in which only a one character

lookahead is required to distinguish between end and £ .

REFERENCES

Chomsky, N., "On Certain Formal Properties of Grammars",
Information and Control 2 (1959), 137-167.

Floyd, R. W., "On Ambiguity In Phrase Structure Languages",
Comm. ACM 5 (Oct. 1962), 526.

Floyd, R. W., "Syntactic Analysis and Operator Precedence",
J. ACM 10 (July 1963), 316-333.

Gill, A., Introduction To The Theory of Finite-State Machines
McGraw-Hill, New York, 1962.

Greibach, S. A., "A New Normal-Form Theorem For Context-Free
Phrase Structure", J. ACM 12 (Jan. 1965), 42-52.

Naur, P. (Ed.), "Revised Report On The Algorithmic Language
ALGOL 60", Comm. ACM 6 (Jan. 1963), 1-17.

Rabin, M. 0. and Scott, D., "Finite Automata and Their
Decision Problems", IBM J. Res, Develop. 3 (1959), 114-125

