
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ON THE COMPUTATIONAL COMPLEXITY OF FINDING
THE MAXIMA OF A SET OF VECTORS

H. T. Kung

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa.

April, 1974

This research was supported in part by the National Science Foundation
under Grant GJ32111 and the Office of Naval Research under Contract
N0014-67-A-0314-0010, NR 044-422,

ABSTRACT

Let ui * U2* * * * , Ud b e t o t a l l-y ordered sets and let V be a set of n d-dimen-
sional vectors in X ̂ X X U^. A partial ordering is defined on V in

a natural way. We consider the problem of finding all maximal elements of V

with respect to the partial ordering. The computational complexity of the

problem is defined to be the number of required comparisons of two components and
2

is denoted by C d(n). It is trivial that Cj (n) = n-1 and Cd(n) <> 0(n) for

d ^ 2. Previous results are C^(n) ^ 0(n log2 n) for d = 2,3. In this paper,

we show

2. Cd(n) £ flog2 nil for d £ 2.

i

1. INTRODUCTION

Let U^U,^,...,^ be totally ordered sets and let V be a set of n dimen

sional vectors in U 1 x U 2 X ... X Uj. Let x^v) denote the ith component of

any vector v. A partial ordering is defined on V in a natural way, that

is, for v, u 6 V, v ^ u if and only if x^v) £ x^(u) for all i « 1,...,d,

where ^ is the total ordering on V,̂ . (We shall also write ^ for The con

text should make clear the meaning of We consider the problem of finding

all maximal elements of V. The computational complexity of the problem is

defined to be

C,(n) « min max c, (A,V)
A V

where cd(A,V) is the number of comparisons used by any algorithm A on any such

set V. In other words, Cd(n) is the maximum number of comparisons used by the

algorithm that solves the problem the fastest in the worst case. We are inter

ested in obtaining the upper and lower bounds on C, (n) for all d.
a

If d » 1, V is a totally ordered set. It is obvious that

C] (n) - n-1 •

If d > 1, V is a partially ordered set. It is not difficult to convince one

self that to find the maximal elements of a general partially ordered set, any
2

algorithm requires order n comparisons in the worst case. However, for the
special partial ordering f f^ f on V, we can do better. Recently, Luccio and
Preparata [1] have shown that

(1.1) Cd(n) £ 0(n log n) for d = 2 and 3.

(In this paper, all logarithms are to base 2 and all comparisons are between
components of the vectors in V.)

-2-

It remained an open problem to show whether such reduction is attainable for

d ^ 4. In this paper, we prove

(1.2) Cd(n) £ O(n(log n) d" 2) for d ;> 4,

and

(1.3) Cd(n) £[log nl] for d :> 2.

Since log ni is about n log n, the bounds in (1.1) and (1.3) are sharp for

d = 2 and 3, with respect to the magnitude of n. It remains an open problem

to show whether the bounds in (1.2) and (1.3) are sharp for d ;> 4.

In Section 2 we prove (1.3). In Section 3 we describe the basic recursive

procedure for obtaining the upper bound in (1.2). This procedure leads to the

problem of finding, from a given set, the elements which are not less than any

element in another given set. Upper bounds on the number of comparisons for

solving this problem are established by another recursive procedure, in the

final section.

-3-

2. LOWER BOUND

Lemma 2.1

Cd_1(n) ^ Cd(n) for d £ 2.

Proof

Let A d denote an algorithm which finds the maxima of n d-dimensional vec

tors with at most Cd(n) comparisons. It suffices to show that an algorithm

A, - can be constructed from A, such that A, - finds the maxima of n (d-1)-&-1 a a-1
dimensional vectors and uses the same number of comparisons as A d does. Let
V, - be a set of n (d-1)-dimensional vectors. Define a set V, of n d-dimen-
sional vectors by

V d = {(v1,v2,...,vd_1,vd_1)|(v1,...,vd_1) 6 V d _ 1 } .

Let ̂ d^^ be constructed from A d by replacing every comparison between the dth

components of two vectors in the algorithm A d by the comparison between the

(d-l)st components of the vectors. Then A d ^ and A d will be same for the set

V,. Since A finds the maxima of V,, so does A, -. Observe that (v-.•.•.v, ,,v, d a a' d-l 1 * ' d-1' d
is a maximum of V d if and only if (v^,...,vd ^) is a maximum of y Therefore
Ad_.j finds the maxima of Furthermore, by the definition of , it is
clear that A d and A d use the same number of comparisons. We have proven the
lemma. •

Let S(n) denote the maximum number of comparisons used by the algorithm

that sorts n records the fastest in the worst case. We have the following

Lemma 2.2

S (n) ̂ C 2 (n) .

-4-

Proof
Consider any algorithm which finds the maxima of n 2-dimensional vectors.

Let v,,...,v be 2-dimensional vectors such that for all i, x-(v.) are distinct I n 1 1
and for all i, j,

(2.1) x^v^ > ^(v) if and only if x2(vj.) < x 2(v^).

We apply the algorithm to the set {v^,v2,...,v^}.

For each v. the algorithm must determine whether v. is a maximal element or not,

To prove v^ is maximal the algorithm must establish the relationships that, for

each j ̂ i, either (v^ > x^ (vj) o r ^(v^) > x 2(v^). By (2,1) we know that

all v^ are maximal elements0 The algorithm must establish the relationships

that either x̂ (v^) > x-j (v..) or x̂ (v^) < x̂ (v_.) between all pairs (i,j). This

implies the algorithm will sort x^(v^),...,x^(v). Therefore, S(n) ̂ (n). I

It is well known (for example, see Knuth [2, §5.3,1]) that

S(n) £ Tlog nil.

Therefore, by Lemmas 2.1 and 2.2, we have shown the following

Theorem 2.1

For any d a 2,

Cd(n) ^ c
d - 1 (n) c

2
(n) * r i ° 8 n i 1 ,

so that about n log n comparisons are needed for finding the maxima of n d-

dimensional vectors in the worst case.

-5-

3. ALGORITHMS FOR FINDING THE MAXIMA OF A SET OF VECTORS

In this and the following sections we shall construct algorithms to

achieve the upper bounds asserted in (1.2). In the rest of the paper, we

assume that for any two vectors u,v in V, R or S, x^(u) ̂ x^(v) for all i 0

Under this assumption it will be easier to describe the ideas of the algor

ithms. The algorithms can be obviously modified if the assumption is removed

(see [1]). Without loss of generality, we assume that n = 2 for some posi

tive integer r, and that the elements of V have been arranged as a sequence
v1»•••> v

n
 s o t^at

(3.1) x^v) > x](v 2) > ... > x^v^.

(Note that sorting takes 0(n log n) comparisons.)

Like many other "fast" algorithms (e.g., FFT), our algorithms will first

solve two subproblems and then combine the results of the subproblems. We

shall first find R, the set of the maxima of {v^, • e. >v
n^2 ̂ a n c* »̂ t* i e s e t °^

the maxima of {v^^+i > • • • > v
n}° Observe that by (3.1) the elements of R are

also maximal elements of V, but the elements in S are not necessarily maximal

elements of V. In fact, an element in S is a maximal element of V if and only

if it is not < any element in R. Therefore, we have the following algorithm:

Algorithm 3.1

We define a recursive procedure for finding the set of the maxima of

V « {v-|,... ,v n}. To find V M, we find R, the set of the maxima of [v^,... >v

n/2}>

find S, the set of the maxima of {v
n/2+-|>•••>v

n) and then find T, the set of

elements in S which are not ^ any element in Re Then set V M R U Tfl

-6-

The number of comparisons required by Algorithm 3.1 depends on those re

quired to find T. Define

C, (r,s) = min max c,(A,R,S)
d A |R|-r d

|S|^

where R and S are any sets consisting of r and s, respectively, d-dimensional
vectors, and c^(A,R,S) is the number of comparisons used by any algorithm A
for finding the elements in S which are not ^ any element in R. Hence T can
be found in C^(n/2,n/2) comparisons, since |R|,|S| ̂ n/2. Observe, however,
that because of the relation (3.1), for u € R, v £ S , u ^ v i f and only if
x^u) ^ x^(v) for i « 2,...,d. To find T, first components of the vectors do
not have to be considered. We end up with considering (d-1)-dimensional vec
tors. Hence T can be found in C, -(n/2,n/2) instead of C,(n/2,n/2) compari-
sons. Therefore, by Algorithm 3.1, we obtain the following recurrence rela
tion on C,(n):

a

(3.2) Cd(n) ^ 2Cd(n/2) + Cd_1(n/2,n/2).

In the following section, we shall show (Theorem 4.2) that

d 3
(3.3) Cd(r,s) < (adr+pds)(log r)(log s) + dr

for d s 3, where Oj and $ d are constants. By (3.3), we have

(3.4) C. .(n/2,n/2) £ O(n(log n) d" 3) for d s 4.
a- I

Therefore, from (3.2) and (3.4), we obtain the main result of the paper:

Theorem 3.1

- 7 -

4. UPPER BOUNDS ON Cd(r,s)

This section deals with the proof of the following result: For d ^ 3

(4.1) Cd(r,s) £ (adr+Pds)(log r)(log s) d ~ 3 + dr.

We shall first prove (4.1) for d = 3 and then use induction on d to prove (4.1)
for all d. We shall first describe the key idea used in the induction.

Let R and S be two sets consisting of r and s, respectively, d-dimensional
vectors. Assume d ^ 4. Without loss of generality we assume that the
elements of R have been arranged as u^,...,u and the elements of S as v^,,..,vc

so that

x-(u-) > x (u) > ... > x-(u),
(4.2) 1 1 1 2 1 r

x^v^ > x 1(v 2) > ... > x 1(v g) e

Also, we assume that s = 2 m for some positive integer m. Define x̂ (u^) = 0 0

and x.|(u j) = -«>. Using binary search we find k, 0 ̂ k ^ r, such that

(4.3) Xl(uk) * X l(v s / 2) > V W '

We now divide R into two subsets R, and R 0 such that R, « fu.I1 ^ i < k) and
R2 ~ ^ uJ k < 1 ^ r } * A l s o divide S into two subsets and S 2 such that

- £v±|1 £ i £ s/2} and S 2 = {v±|s/2 < i ̂ s).

-8-

u 1 = (x (Uj), x 2(u]), ... x d(u 1))
• • •
• • •

u k = (X l(u k), x 2(u k) ... x d(u k))

"uk+i = ^T^k+P' V W ' ••• V V i "
R2

s1

u_ = (x^u^, x 2(u r) ... x d(u r)) r

S2

V1 a (X-̂ V-j), X2 (Vj) , Xd(vi))
• • • • • • • • •

Vs/2 = ^ s ^ ' *2{Vs/2>> Xd (vs/2) :)

V
S/2+1 = ^s/l+J* *2{vs/2^> Xd (v

s/2+1 })

• • •
• • •

v g = (x-,(vs), x 2(v s), x d(v s))

Recall that our problem is to find all elements in S which are not less than
any element in R. We let ^ J denote this problem. It is trivial to see that

H LbJ PR -I fR 2l fR 1 fR2]

can be done by doing four subproblems, , , and
fR 2i LsiJ LbiJ Lb

2J Ls2-
Observe that the problem J is trivial, since by (4.2) and (4.3) we know there

is no element in R 0 which is greater that any element in S-. Thus, we do not

have to worry about the problem J. Furthermore, observe that by (4.2) and

(4.3) the first component of any element in R1 is greater than that of any

element in S 0. Hence by the same reason as we used in the previous section,

to do the problem c we only have to consider (d-1)-dimensional vectors rather
L S 2 J M

than d-dimensional vectors. Thus, to solve the problem
vectors, we can instead solve the three subproblems:

fRil
1. the problem g for d-dimensional vectors,
2. the problem for d-dimensional vectors,

3. the problem |̂ s J f o r (d-1)-dimensional vectors.

for d-dimensional

-9-

Therefore, we have shown

(4,.4) Cd(r,s) ^ Cd(k,s/2) + Cd(r-k,s/2) + Cd_.,(k,s/2).

In the rest of the section we shall first prove (4.1) for d = 3 then use (4G4)
to prove (4.1) for general d by induction.,

Theorem 4.1

C3(r,s) £(c*3i4-p3s) (log r)

for constants <Xj and ĝ .

Proof

Let [v.,,...,v } be the elements of S. We establish the theorem by ex-• s

hibiting an algorithm which is adapted from a result in [1]G

Algorithm 4.1

This algorithm finds all elements in S which are not less than any element
in R for d = 3.

1. Arrange the elements of R as a sequence u^,...,u^ such that

x^u-j) > x] (u2) > ... > x.j(ur).

2. Arrange the elements of S as a sequence vi>«»«» v
s such that if a(j)

is the largest value of the index i such that x^(u^) ^ x^(v^) then

a(l) £ a(2) ^ ... ̂ a(s).

(x^(UQ) is defined to be ».)

3. Set j «- 1.

- 1 0 -

4. If a(j) » 0, v. is not less than any element in R and go to step 9.

5. Construct T . . v , the set of maxima of {(x0(u.), x0(u.))|i = l,...,a(j)}>
a \J / Z l 3 1

and arrange its elements as a sequence w^,,..,w^ such that

X2^ WP > x2^ w2^ > # ,° > X2^ Wv^ #

6. If x2(Vj) > x^Cw^, is not less than any element in R and go to

step 9.

7. Determine the largest value i of the index i such that

x2(wt) * x 2(V j) for w. € T a (j) .

If x0(v.) > x 0 (w . *) , v. is not less than any element in R and go to 3 j 3 l ' j 8.
step 9.

9. If j < s, j *- j+1 and return to step 4.

10, Terminate the algorithm.

Step 5 can be efficiently performed by using, for example, an AVL binary

tree [2, §6.2.3] as the information structure which stores the elements of

T ,.N, For details of this information structure and for the proof of the
a (j)

validity of the algorithm, see [1]. We now estimate the number of comparisons

used in the algorithm. It is shown in [1] that the total number of comparisons

needed for step 5 is ^ 0(r log r). Clearly, step 1 also takes 0(r log r) com

parisons. By using the binary search technique, steps 2 and 7 take 0(s log r)

comparisons. Hence the total number of comparisons for the whole algorithm is

0(r log r) + 0(s log r). •

-11.

Theorem 4.2

For d £ 3.

(4.5) Cd(r,s) £ (adr+pds)(log r)(log s) d ~ 3 + dr,

where ad
 g a3 + 3 + 4 + ... + (d-1) and gd = 2"(d"3)g^.

(of3, P3 are given by Theorem 4.1.)

Proof

We shall prove the theorem by induction on d. By Theorem 4.1, (4.5)

holds for d • 3. Assume that (4.5) holds for d = A-l. Without loss of gen

erality, we assume that s = 2 m for some positive integer m. Then we have

(4.6) C^(r92m) <; (c ^ r + g ^ ' V l o g r)mA"4 + (jM)r.

By (4.4) we know that there exist P-j (- k/r) and (= (r-k)/r) such that

(4.7) Cz(v92m) £ CJ^(p1r,2m"1) + C ^ r ^ " 1) + (P]r 92 m^) .

Note that

(4.8) 0 <: P] , q1 £ 1 and p + q - 1.

We shall use (4.6) and (4.7) to prove that

C^(r,2m) £ (c^+p/Vlog r) m ^ 3 + ix9

that is, (4.5) for d = j£. The proof below is elementary but tedious. The
essential idea is to apply (4.7) recursively. It is not difficult to see from
(4.7) we can prove that

-12-

(4.9) C.(r,2m) £ E [C (A
* i =1 * 1i»• L1

r,1) + C (B r,1)]
•'Sn 1 V " " m

m
+ E S C. .(D r,2 m' J),

i =1 2

where A and D. . are defined as follows:

A. . » p. . E. . ,
xl Su 11'*** , 1m V***' m

(4.10))
m

k i E i i '

D. . = p. . E. . ,

where E- = E = 1 and the E. . are defined recursively by

(4.11) E,
p. E. , if i = 1 ,

= W , E if i - 2,
i-| » • • • » 1 j_] 1-| » • • • > j-1 J

and the p. . , q. . a r e constants satisfying the following conditions
i-| » • • • J 1!,

 ll » • • • »Xv •1
like (4.8)

(4.12)
0 * P. < , q ± i * 1,

1.

We first establish some properties of A . , B
T * * * ' m 1 * '

i » D i '•»lm 1 1 "
and E i-j » • • • » 1 j

(4.13) S E , - 1.
i-1 V ' ^ j

.13.

The proof of (4.13) follows from the fact that E E. .
1,-1 *V
Ì 2 - 1 . 2

P 1 + q, = 1 and E E = 2 (p

%,...,!.,) = = / N ° t e t h 3 t b? <4-10>»
• 1 n rk ik=1,2

. + B.
» m I m

m i r...,i m i l f... fi m i,,-..,^

= E ,
11
i m

Hence by (4.13), we have

(4.14) S (A. . + B.) « i.

Similarly, we can show that

(4.15) I D . . £ 1.
i=1
ik=l,2

Furthermore, from (4.10), (4.11) and (4.12), it is trivial to

1 T , , , ' 1 m XV""\ V " 1

Therefore, by (4.14),

-14-

E [C (A r,l) + C (B . r,1)]
i =1 1'***' m * V " m

£ E (M. + r + №. . r)

4=1,2
= 4r.

By (4.6) and (4.15), we have

E E C (D .r,2
m

-J)
j-1 1. -1

 A 1 V ' ^ j
4=1,2

m m-1
£ E E C U - D D r + (a D . r + 0 2)(log

j-1 i-1 tr.--^j V ' ^ j
1^=1,2

£ E [(Jt-l)r + a^r + 2 J

" 0^2 "•'](log r)m

*
 [(a

jM
+ j M) r + <Pjn/ 2) 2 m] (l 0 8 r

>
mA

"
3

-

Hence by (4.9) we obtain that

C^(r,2
m

) <: jir + (aAr + g / V l o g r)m^
3

.

where = + (¿-1) and = P^/
2 -

We have proven the theorem. •

ACKNOWLEDGMENT

I want to thank M. Schkolnick for his comments on this paper«

-15-

REFERENCES
[1] F 0 Luccio and F. P„ Preparata, On Finding the Maxima of a Set of Vectors,

Instituto di Scienze dell'Informazione, Università di Pisa, Corso Italia
40, 56100 Pisa, Italy, 1973.

[2] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching,
Addison-Wesley Publishing Company, Reading, Mass., 1973.

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM
1 R E P O R T N U M B E R 2. G O V T ACCESSION NO. 3. R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E (and Subtitle)

ON THE COMPUTATIONAL COMPLEXITY OF FINDING
MAXIMA OF A SET OF VECTORS

5. T Y P E O F R E P O R T & P E R I O D C O V E R E D 4. T I T L E (and Subtitle)

ON THE COMPUTATIONAL COMPLEXITY OF FINDING
MAXIMA OF A SET OF VECTORS 6. P E R F O R M I N G ORG. R E P O R T N U M B E R

7. A U T H O R S

H. T. Kung

8. C O N T R A C T OR G R A N T N U M B E R S

N0014-67 -A-0314-0010
NR 044-422

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E AND ADDRESS

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 1S213

10. P R O G R A M E L E M E N T . P R O J E C T , TASK
A R E A & WORK U N I T NUMBERS

11. C O N T R O L L I N G O F F I C E N A M E A N D ADDRESS

Office of Naval Research
Washington, D. C. 20360

12. R E P O R T D A T E

April, 1974
11. C O N T R O L L I N G O F F I C E N A M E A N D ADDRESS

Office of Naval Research
Washington, D. C. 20360 13. N U M B E R O F P A G E S

17
14. M O N I T O R I N G A G E N C Y N A M E & ADDRESS^/ / different from Controlline Office)

Scientific Officer, Code 432
Mathematics Programs
Office of Naval Research; Washington, D. C. 20360

15. S E C U R I T Y CLASS, (of thia report)

UNCLASSIFIED
14. M O N I T O R I N G A G E N C Y N A M E & ADDRESS^/ / different from Controlline Office)

Scientific Officer, Code 432
Mathematics Programs
Office of Naval Research; Washington, D. C. 20360

15a. D E C L A S S I F I C A T I O N / D O W N G R A D I N G
S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (of thia Report)

Approved for public release; distribution unlimited.

17. D I S T R I B U T I O N S T A T E M E N T (of the abstract entered in Block 20, if different from Report)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y WORDS (Continue on reverse aide if necessary and identify by block number)

20. A B S T R A C T (Continue on reverse side if necessary and identify by block number) Let U-,U0 , ,U , be totally ordered sets and let V be a set of n d-dimensional I z d
vectors in U- x U 0 x .•.x U, . A partial ordering is defined on V in a natural I L d
way. We consider the problem of finding all maximal elements of V with respect
to the partial ordering. The computational complexity of the problem is defined
to be the number of required comparisons of two components and is denoted by

? Cn(n). It is trivial that C- (n) = n-1 and C,(n) < 0(n) for d > 2. 1 a 1 d - I
DD , j AN M 73 1473 E D I T . O N O F 1 NOV 65 IS O B S O L E T E UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N OF THIS P A G E (Wh*n Date Entered)

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S PAQZ(Whw> Dmf Entered)

Block 20 continued:

Previous results are Cd(n) <_ 0(n log2 n) for d = 2,3. In this paper,

we show
1 . Cd(n) < (n(log2 n) d" 2) for d > 4,

2. CXn) > rlog„ n!"l for d > 2.

S E C U R I T Y C L A S S I F I C A T I O N O F TH IS PAGEfWhen Dmtm Entered)

