
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Optima! Sorting Algorithms
for Parallel Computers

Gerard Baudet

David Stevenson

May, 1975

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania

ABSTRACT:

The problem of sorting a sequence of n elements on a parallel computer with k
processors is considered. The algorithms we present can all be run on a single
instruction stream multiple data stream computer. For large n, each achieves an
asymptotic speed-up ratio of k with respect to the best sequential algorithm. This
linear (in k) speed-up is optimal in the number of processors used.

Th?.u°riL^aS s u p p o r t e d
 by t h e N a t i o n a t Science Foundation under Grant GJ-32111

and the Office of Naval Research under Contract N00014-67-A-0314-0010, NR 044-

INTRODUCTION:

From the advent of parallel computers, much attention has been paid to the
design of efficient algorithms for these machines. In this paper, we are interested in
sorting algorithms for those parallel computers referred to as SIMD machines (single
instruction stream multiple data stream machines [Flynn 1972]). In these parallel
computers all processors execute the .same instruction at the same time, but an
instruction may be processing different data for different processors. Illiac IV is such
a parallel computer (Barnes et al. [1968]).

We assume (1) that the machine is composed of K processors (P1,P2,...,PK) and
that each processor Pi has its own memory Mi which can be accessed directly by Pi;
(2) that a special instruction, the route instruction, allows the processor Pi to read
one cell of the memory of an adjacent processor (where adjacent depends upon the
interconnection strategy) and store its contents in its own memory, Mi; and (3) that
each processor has the capability of inhibiting the execution of the current
instruction by setting an appropriate indicator.. These assumptions are not
restrictive. In particular, Illiac IV has these properties.

The central idea of this paper is the following: given any algorithm using only
comparison-exchanges for sorting k elements with k processors, there is a
corresponding algorithm for sorting rk elements with k processors where every
comparison in the first algorithm is replaced by a rperge-sorting of two ordered lists
of r elements in the second. Since the time for merging two ordered lists is also a
lower bound for routing the information involved (i.e. both are linear), it follows that
the time complexity of routing will determine the complexity of the sorting algorithms
in this family, provided the initialization time for sorting the lists of r elements can be
neglected.

Because of the effect of routing, we consider three methods for connecting the
processors: a linear order; a two-dimensional array scheme (as is used in the Illiac
IV); and a "perfect shuffle." For each interconnection pattern there is an rk-
element/k-processor sorting algorithm that is optimal in the sense that for suitable
choices of r, the speed-up of the parallel sorting over the optimal sequential sorting
algorithm is the number of processors used, which, of course, is the maximal possible
increase using parallelism. When the maximum speed-ups for the three
interconnection methods are expressed in terms of the number of elements sorted,
say n, they are, respectively: log n; (log n/log log n)**2; and 2**V log ri. This is also
the number of processors used.

Previous studies in parallel sorting (c.f. Stone [1973]) have frequently equated
the number of elements to be sorted with the number of processors. These studies
concluded that the speed-up was logarithmic in the number of processors, or, using a
special interconnection scheme, n/log n. No algorithm that had a speed-up that was
linear in the number of processors was known. While the equation of the number of
processors with the number of elements may be reasonable for sorting networks (i.e.
an ensemble of logical circuits to sort n inputs), it is likely that users of parallel
computers will want to employ more than one memory location per processor.
Indeed, one interpretation of the results we derive is that they are an indication of

the optimal ratio of memory size to the number of processors (with respect to the
Interconnection scheme used).

The family of sorting algorithms we present is in itselfs very simple but, so far,
no optimal sorting algorithm was known for parallel computers. The best known
result was an implementation of Quicksort for sorting a sequence of n elements on a
parallel computer with k=log n processors, leading to an average complexity of 0(n),
as in our first algorithm, but with a worst case complexity of 0<n**2/log n) (Stone
[1975]). In contrast, our family of parallel sorting algorithms provides optimal speed
up for problems which are large in relation to the number of available processors
(where large depends upon the particular interconnection strategy used for
processor communication).

1. A NEIGHBORHOOD SORT FOR A LINEARLY CONNECTED SYSTEM:

We begin this section by giving some notation and definitions that are used
throughout the paper. An r-sequence, S, is an ordered set of n elements with n«rk,
such that the first r elements, SI, are stored in M l , the next r elements, S2, are
stored in M2, etc It will be denoted by S=Sl;S2;...;Sk. An r-sequence S«Sl;S2;...;Sk is
partially sorted if each Si is a sorted sequence. An r-sequence S-Sl;S2;...;Sk is
sorted if the whole sequence Sl,S2,...,Sk is sorted.

The reader should note that this definition of a sorted sequence coincides with
the standard notion of a sorted sequence (i.e. as memory address increases the
sequence is monotone) only when each memory Mi contains consecutive memory
locations. Another way of addressing memory is to have in memory Mi all addresses
which modulo k are congruent to i (as is done for example in the Illiac IV). For this
case, a sorted r-sequence will not be sorted with respect to memory location, but a
post-processing step which accomplishes this re-ordering can be performed in time
linear in the number of elements sorted. Since this does not affect the nature of our
asymptotic results, we shall not treat the matter further.

In this section we will present and analyze a sorting algorithm for a machine
for which the processors adjacent to Pi are Pj where j—i—1 mod k or j-i+1 mod k.
The algorithm takes, as input, an arbitrary r-sequence, and gives as output the
corresponding sorted r-sequence. It is illustrated in figure 1.

PI / M l
P2 / M2
P3 / M3
P 4 / M 4

43 63 54
28 79 72
32 47 84
66 25 17

PI / M l
P2 /M2
P3 / M3
P4 / M4

17 25 28
32 43 47
54 63 66
72 79 84

(a) Input (b) Output

Figure 1: Effects of the algorithm on the 3-sequence
43,63,54;28,79,72;32,47,84;66,25,17.

The algorithm is based upon a generalization of the neighbor sort, (Habermann

[1972]), and will be described in section 1.1. In section 1.2. we will give an
implementation of this algorithm for the machine we consider. An analysis of the
algorithm will be presented in section 1.3. Taking into account both the computational
cost, measured as the number of comparisons executed, and the routing cost, the cost
for transferring the data between different memories, it will be shown that the
algorithm takes time (n log n)/k + 0(n). Therefore, when k < log n the asymptotic
speed-up ratio is k and this is optimal in the number of processors used.

1.1. THE ALGORITHM:

Habermann has presented an algorithm for sorting k elements using k
processors in k steps of parallel "comparison exchanges." The algorithm is the

. following. Let a l , a2, ak be the sequence to be sorted. In the first step, for
i>l,3,...92|k/2]-l, processor Pi compares elements ai and ai+1 and if ai > ai+1 the two
elements are exchanged. In the second step, the same comparison exchanges are
executed for i=2,4,...,2((k-l)/2|. Steps 3, 5, ... are the repetitions of step 1. And
steps 4, 6, ... are the repetitions of step 2. The proof that this algorithm leads to a
completely sorted sequence after at most k steps is based on the observation that
the distance between the position of an element in the sequence after p steps and its
final position is bounded by k-p.

Now we give a generalization of this algorithm to partially sorted r-sequences.
In the first step, for i=l,3,...,2lk/2j-l, processor Pi merges the two sub-sequences Si
and Si+1 and then assigns to Si the first half of the resulting merged sequence (i.e.,
the r smallest elements) and assigns to Si+1 the second half (i.e., the r largest
elements). For the second step, the same operations are executed but for
i»2,4,...,2[{k-l)/2]. Again steps 3, 5, ... are repetitions of step 1, and steps 4, 6, ... are
repetitions of step 2. This is illustrated in figure 2.

S2:28 72 79 J 63 72 79 î P2 17 25 32 1 32 43 541 P2 32 43 47

Figure 2: The four steps of parallel "merging-splittings"
for sorting the partially sorted 3-sequence

43,54,63;28)72,79;32,47,84;17,25,66.

A proof can be given that the algorithm leads to a sorted r-sequence in at most
k steps. It is based on the same observation and can be adapted from the proof
given by Habermann.

1.2. IMPLEMENTATION OF THE ALGORITHM:

Assume we know how to merge two sorted sequences Ai and Bi of equal length
using processor Pi, and that it can be done in parallel for all processors (that is, the
control structure of the algorithm must depend upon data-dependent masks rather

Step 1: Step 2: Step 3: Step 4:

than upon data-dependent branches). In particular, the merge sorting algorithm (see
for example Knuth [1973]) is an ideal method for completing the first phase, that is,
for initially sorting the Si. The second phase, sorting the partially sorted r-sequence
using the k steps of parallel "merge splitting" as described above, can also be done
easily on an SIMD machine, as can be seen in the program given below.

The program is written in an Algol-like language using an additional feature for
describing the parallelism. Namely, when a statement is followed by a mask, only
those processors Pi for which bit i of the mask is set to 1 will execute the instruction,
the other processors being inhibited. When no specification follows a statement
every processor is to execute the corresponding instruction.

The data structure involved in the program includes in memory Mi, for i«l,2,...k,
an array Si[l:r] containing the current sub-sequence Si of the r-sequence to be
sorted, and three arrays Ai[l:r+1], Bi[l:r+1] and Ci[l:2r] used as working areas. For
simplicity we assume that k, the number of processors, is even. We use two masks:
in EVEN the bit i is set to 1 only for i=2,4,...,k-2, and in ODD only for i-l,3,...,k-l.
These masks are used only for the implementation of the second phase.

The procedure MERGE, when executed by processor Pi with parameter p,
merges the two subsequences Ai[l:p] and Bi[l:p] (that is the first p elements in both
arrays Ai and Bi) and stores the resulting merged sequence in Ci[l:2p].

comment: w is added as a sentinel at the
end of both sequences Ai and Bi so that
no supplementary test is required for
checking if any sequence becomes
exhausted, (w is supposed to be greater
than any element that Ai and Bi can ever
contain.)

MERGE(p)-
begin
Ai[p+l]«-w;Bi[p+l]<-w;

a*-l;b*-l;
for c*-l step 1 until 2p do

if Ai[a]>Bi[b]
then begin

Ci[c]«-Bi[b];b<-b+l
end

else begin
Ci[c]<-Ai[a];a<-a+l
end;

end

comment: We use implicitly two masks which are set according to the result of the
comparison between A[a] and B[b]. (This is easily done if there exists an instruction
which allows a processor to set its inhibition indicator according to its condition
code.)

Phase 1:
for p+-l step p until r-1 do

for step 2p until r do
begin
Ai[l:p]<-SiEj:j+p-l];
Bi[l:p]«-Si[j+p:j+2p-lJ
MERGE(p);
Si[j:j+2p-l]<-Ci[l:2p];
end;

comment: The phase 1 is completed at this point and Sl[l:r], S2[l:r],

contain the partially sorted r-sequence.

comment: The phase 1 as it is programmed
here is able to partially sort only those
r-sequences for which r is a power of 2.
This restriction can be easily removed
if we add artificial elements.

Sk[l:r]

Phase 2:
for step 2 until k-1 do

begin
Ai[l:r]<-Si[l:r]; mask EVEN;
Bi[l:r]«-Si+l[l:rJ mask EVEN;
MERGE(r); mask EVEN;
Si[l:r]<-Ci[l:r]; mask EVEN;
Si+l[l:r>Ci[r*l:2r]5 mask EVEN;
Ai[l:r]4-Si[l:r]; mask ODD;
Bi[l:r]«-Si+l[l:r]s mask ODD;
MERGE(r); mask ODD;
Si[l:r]*-Ci[l:r]; mask ODD
Si+l[lT]<-Ci[r+l:2r]; mask ODD;
end

comment: This statement e.g. implicitely
uses the route instruction.

comment: After those k steps of parallel -merging-splittings", Sl[l:r], S2[l:r],
Sk[l:r] contain the sorted r-sequence, and our goal is achieved.

1.3. ANALYSIS OF THE ALGORITHM:

We first evaluate the routing time. Routing is introduced only by instructions
of the form Bi[l:r]<-Si+l[l:r] and Si+l[l:r]«-Gi[r+l:2r] in the second phase. Such
instructions are executed k times each and, in both cases, r route instructions are
required, therefore the total number of route instructions is

R = 2rk = 2n.

For the computational cost, we count only the number of comparison
instructions executed but, clearly, the total cost excluding routing has the same order
of magnitude. Comparison instructions occur only in the MERGE procedure and 2p
comparisons are required when the procedure is called with parameter p. Looking at
phase 1, the first for-loop is executed log r times (when r is a power of 2) for p - 1,
2, 4, ... r/2 and the inner loop is executed r/2p times for each of the values of p.
Each of the inner loops requires 2p comparisons, therefore the total number of those
instructions is

CI » [2p(r/2p)]log r = r log r = (n/k) log(n/k).
For the second phase, the number of comparisons is simply

C2 = 2rk « 2n.
Therefore the total number of comparisons is

C - CI + C2 = (n log n)/k - (n log k)/k + 2n.

Assume, now, that the time for executing a comparison instruction is a unit of
time. Let \ be the time for executing a route instruction involving an adjacent
processor. Then, when we consider only comparisons and routing, the total execution
time of the algorithm is

T = C + XR « (n log n)/k - (n log k)/k + 2n + 2Xn
or simply

T « (n log n)/k + O(n).

But we know that the minimum number of comparisons required for sorting a
sequence of n elements on a sequential computer is asymptotically n log n.
Therefore, when k is smaller than log n (in order of magnitude), the asymptotic
speed-up ratio of our algorithm over the optimal sequential algorithm is k, which is
optimal. In particular, when k=log n, the ratio of this parallel algorithm to the optimal
sequential algorithm is of order log n, the number of processors.

On the other hand, when k is greater than log n, the total execution time
required for our algorithm is linear in n; but this is the best we can achieve with the
constraints of- the machine we consider here, as can be seen from the following
remark. In case all elements whose final destination is memory Mk are initially in the
same memory Mi, the total routing must be at least r(k-i) (or min{r(k-i),ri} if we
consider processors PI and Pk adjacent). If we choose, for example, i«k/2 then the
total routing must be at least n/2 and consequently the total execution time must also
be at least linear in n. Therefore, in this case our algorithm is within a constant
factor of the optimum time.

2. OTHER OPTIMAL ALGORITHMS:

It seems unlikely that systems with many processors will have the routing time
between Pi and Pj linear in |i-j|. Indeed, this is not the case with Illiac IV, which has
sixty-four processing elements. In this section we examine two other schemes for
connecting processors which are in some sense more efficient in routing information
among the processors. The first, a two-dimensional array, is the technique used in
Illiac IV; the second, based on the "perfect shuffle," is a design that has been
frequently advocated for interconnecting networks of arithmetic processors. We
begin with some general observations about our family of parallel sorting algorithms
before considering the particular impact of the various interconnection structures.

Our linear-connected parallel algorithm is based on the simple idea of replacing
the*sequence of parallel "comparison-exchanges" of the initial neighbor sort by a
corresponding sequence of parallel "merging-splittings." This idea can be easily
generalized. For any algorithm (based exclusively on comparison exchanges) for
sorting a sequence of k elements on a parallel computer with k processors, there
corresponds another parallel sorting algorithm for sorting a sequence of n=rk
elements on a parallel computer with comparable interconnections. In addition, if the
initial algorithm requires C(k) parallel comparisons and a total routing R(k), the
running time of the new algorithm is, assuming that comparison takes one unit of time
and that X is an average for the time required for a unit step of routing:

T(n) « n log n + nf2C(k)-log k + X R(k)l. '
k L k k J

Provided that C(k) and R(k) are less than log n (in order of magnitude), the
asymptotic speed-up ratio is k which is optimal.

For example, this scheme could be applied to Batcher's sorting algorithm
(Batcher [1968]). The resulting algorithm would lead to an improvement over the
neighbor algorithm for the number of comparisons (C(k) is reduced from k to (log
k)**2) but, for a parallel computer with a linear interconnection scheme, the total
routing becomes 2n log k + 0(n) as opposed to 2n for the neighbor sort algorithm and
thus Batcher's sorting algorithm is not optimal.. Hence the computational efficiencies
of this algorithm are lost in the routing inefficiencies. This illustrates the often
overlooked aspect of parallel computing: that it is the environment in which an
algorithm will be executed that determines whether the computational aspects will be
realized.

If we take into account other specific interconnection schemes for a parallel
computer, it is possible to decrease the time for sorting n elements and hence to
increase the speed-up of parallel sorting over sequential sorting. In Illiac IV, the
interconnection scheme is such that each processor can access in one route step not
only the memory of an adjacent processor but also the memory of a processor at a
distance of \/k. In this case simple (but tedious) algebra shows that the total routing
time for Batcher's algorithm is given by

R(k) - ^vKlogk - 8\/£ - logk + 8.

This shows that asymptotically (for large values of k) an adaptation of

Batcher's sorting algorithm on a two-dimensional array computer will give a better
result both for the total number of parallel comparisons (for the second order term
only) and for the tbtal routing than will the neighbor sort algorithm on a linearly
connected processor. However the following table shows that for small values of k
(the number of processors), the total routing of both algorithms are very close .̂ In
this table we have reported the quantities R(k)/k for both algorithms, namely RN(k) »
(2k)/k«2 in the case of the neighbor sort and RB(k) « (4V̂ k log k - 8v/k - log k + 8)/k
for the adaptation of Batcher's sorting algorithm to exploit the two dimensional
connections.

k - 4 16 64 256 1024
RN(k) 2 2 2 2 2
RB(k) - 1.50 2.25 2.03 1.47 0.99

Table 1: Comparison of the total routing on a square array for
the Neighbor sort and Batcher's algorithms.

With this two-dimensional interconnection scheme, the adaptation of Batcher's
sorting algorithm achieves an asymptotic speed-up ratio of k as long as C(k) and R(k)
are less than log n (in order of magnitude), that is, as long as vk log k < log n. This
holds for k less than (log n/log log n)**2. Thus, using this processor configuration,
the maximum possible speed-up over the optimal sequential sorting algorithm is
greater than log n (the case for the linear, interconnection scheme). This,
improvement in speed-up is due, of course, from using proportionately more
processors, and is still optimal in the number of processors used.

And in fact for the actual configuration of Illiac IV, with k=64 and X
approximately 3/4, we find that for r=1024, Batcher's sort is almost twice as fast as
the neighbor sort, counting only comparisons and routing.

Finally we briefly consider the effect of using a "perfect shuffle" to connect
the processors (Knuth[1973]). In this scheme the processors "adjacent" to Pi are Pj
where j=2i mod k and 2j=i mod k. For k a power of two, a sort of k elements can be
done with C(k)=»R(k)=(log k)**2 (Knuth [1973]). As above, the corresponding merge-
splitting algorithm has linear speed-up (in the number of processors) as long as k is
less than 2*W log n.

ACKNOWLEDGEMENTS:

We wish to thank J. F. Traub and D. E. Heller, CMU, for comments on the
manuscript, and H. T. Kung, CMU, for suggesting to the first author that sorting on a
parallel computer would be an interesting problem to study, and for many comments
and discussions.

BIBLIOGRAPHY:

Barnes, G. H., et al. [1968]. The ILLIAC IV Computer, IEEE Transactions on Computers,
Vol. C-17, no. 8, August 1968, pp. 746-757.

Batcher, K. E. [1968]. Sorting Networks and Their Applications, Spring Joint Computer
Conference, AFIPS proceedings, Vol. 32, 1968, pp. 307-314.

Bouknight, W. J., et al., [1972} The ILLIAC IV System, Proc IEEE, 60, no. 4, Afiril

1972, pp. 369-388.

Flynn, M. J. [1972]. Some Computer Organizations and Their Effectiveness, IEEE
Transactions on Computers, Vol. C-21, no. 9, September 1972.

Habermann, A. N. [1972]. Parallel Neighbor Sort, Computer Science Department,
Carnegie-Mellon University, August 1972.

Knuth, D. E. [1973]. The Art of Computer Programming, Vol. 3, Sorting and Searching,
Addison Wesley, 1973.

Orcutt, S. E. [1974]. Computer Organization and Algorithms for Very High Speed
Computations, Ph.D. dissertation, Computer Science Department, Stanford

' University, September 1974.

Slothick, D. L., et al,, [1962]. The Soloman Computer — A Preliminary Report,
Proceedings of 1962 Workshop on Computer Organization. Washington D.C.:

• Spartan, 1963, p. 66.

Stoi^e, H. S. [1973]. Problems of Parallel Computations, Proceedings of the
Symposium on Complexity of Sequential and Parallel Numerical Algorithms, J. F.
Traub ed., New-York, New-York, Academic Press, 1973.

—- [19751 Private communication.

UNCLASSIFIED
J e c u B (T V C L A S S I F I C A T I O N O P T H I S P A G E (Whan Dttm Enfrod)

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM
' t R E P O R T N U M U b H " |2. G O V T A C C E S S I O N N O .

*

i

3. R E C I P I E N T ' S C A T A L O G N U M B E R

4 T I T L E Subtitle)

OPTIMAL SORTING ALGORITHMS FOR PARALLEL
COMPUTERS

5. T Y P E O F R E P O R T & P E R I O 0 C O V E R E D

Interim

4 T I T L E Subtitle)

OPTIMAL SORTING ALGORITHMS FOR PARALLEL
COMPUTERS

6 P E R F O R M I N G O R G R E P O R T N U M B E R

7 . A U T M O R r » ;

Gerard Baudet and David Stevenson

8 . C O N T R A C T O R G R A N T N U M B E R S)

N00014-67-A-0314-0010
N r 044-422

9 . P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Carnegie-Mellon University
Computer Science Dept.

10. P R O G R A M E L E M E N T . P R O J E C T , T A S K

A R E A & W O R K U N I T N U M B E R S

M C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Office of Naval Research
1 2 . R E P O R T D A T E

May 197 5
Arlington, VA 22217 13. N U M B E R O F P A G E S

11
U M O N I T O R I N G A G E N C Y N A M E & A D D R E S S f / / different from Controlling Office) 15. S E C U R I T Y C L A S S , (of thie report)

UNCLASSIFIED
1 5 « . D E C L A S S I F I C A T I O N D O W N G R A D I N G

S C H E D U L E

16 D I S T R I B U T I O N S T A T E M E N T (of thle Report)

Approved for public release- distribution unlimited.

17. D I S T R I B U T I O N S T A T E M E N T (of the abetrmct entered in Block 20, It different from Report)

•

18 . S U P P L E M E N T A R Y N O T E S

19- K E Y W O R D S 'Continue on reverme eide if neceeemry end identify by block number)

2 0 A B 5 T R A C T rContinue on reverse eide It neceeaery end identity by block number)

The problem of sorting a sequence of n elements on a parallel computer with k
processors is considered. The algorithms we present can all be run on a single
instruction stream multiple data stream computer. For large n, each achieves an
asymptotic speec-up ratio of k with respect to the best sequential algorithm.
This linear (in k) speed-up is optimal in the number of processors used.

t j A N ^ J 1473 E D I T I O N O F 1 N O V 6 5 IS O B S O L E T E UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (Whmn n»t* Fnl-rrd)

