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ABSTRACT: 

The problem of sorting a sequence of n elements on a parallel computer with k 
processors is considered. The algorithms we present can all be run on a single 
instruction stream multiple data stream computer. For large n, each achieves an 
asymptotic speed-up ratio of k with respect to the best sequential algorithm. This 
linear (in k) speed-up is optimal in the number of processors used. 

Th?.u°riL^aS s u p p o r t e d
 by t h e N a t i o n a t Science Foundation under Grant GJ-32111 

and the Office of Naval Research under Contract N00014-67-A-0314-0010, NR 044-



INTRODUCTION: 

From the advent of parallel computers, much attention has been paid to the 
design of efficient algorithms for these machines. In this paper, we are interested in 
sorting algorithms for those parallel computers referred to as SIMD machines (single 
instruction stream multiple data stream machines [Flynn 1972]). In these parallel 
computers all processors execute the .same instruction at the same time, but an 
instruction may be processing different data for different processors. Illiac IV is such 
a parallel computer (Barnes et al. [1968]). 

We assume (1) that the machine is composed of K processors (P1,P2,...,PK) and 
that each processor Pi has its own memory Mi which can be accessed directly by Pi; 
(2) that a special instruction, the route instruction, allows the processor Pi to read 
one cell of the memory of an adjacent processor (where adjacent depends upon the 
interconnection strategy) and store its contents in its own memory, Mi; and (3) that 
each processor has the capability of inhibiting the execution of the current 
instruction by setting an appropriate indicator.. These assumptions are not 
restrictive. In particular, Illiac IV has these properties. 

The central idea of this paper is the following: given any algorithm using only 
comparison-exchanges for sorting k elements with k processors, there is a 
corresponding algorithm for sorting rk elements with k processors where every 
comparison in the first algorithm is replaced by a rperge-sorting of two ordered lists 
of r elements in the second. Since the time for merging two ordered lists is also a 
lower bound for routing the information involved (i.e. both are linear), it follows that 
the time complexity of routing will determine the complexity of the sorting algorithms 
in this family, provided the initialization time for sorting the lists of r elements can be 
neglected. 

Because of the effect of routing, we consider three methods for connecting the 
processors: a linear order; a two-dimensional array scheme (as is used in the Illiac 
IV); and a "perfect shuffle." For each interconnection pattern there is an rk-
element/k-processor sorting algorithm that is optimal in the sense that for suitable 
choices of r, the speed-up of the parallel sorting over the optimal sequential sorting 
algorithm is the number of processors used, which, of course, is the maximal possible 
increase using parallelism. When the maximum speed-ups for the three 
interconnection methods are expressed in terms of the number of elements sorted, 
say n, they are, respectively: log n; (log n/log log n)**2; and 2**V log ri. This is also 
the number of processors used. 

Previous studies in parallel sorting (c.f. Stone [1973]) have frequently equated 
the number of elements to be sorted with the number of processors. These studies 
concluded that the speed-up was logarithmic in the number of processors, or, using a 
special interconnection scheme, n/log n. No algorithm that had a speed-up that was 
linear in the number of processors was known. While the equation of the number of 
processors with the number of elements may be reasonable for sorting networks (i.e. 
an ensemble of logical circuits to sort n inputs), it is likely that users of parallel 
computers will want to employ more than one memory location per processor. 
Indeed, one interpretation of the results we derive is that they are an indication of 



the optimal ratio of memory size to the number of processors (with respect to the 
Interconnection scheme used). 

The family of sorting algorithms we present is in itselfs very simple but, so far, 
no optimal sorting algorithm was known for parallel computers. The best known 
result was an implementation of Quicksort for sorting a sequence of n elements on a 
parallel computer with k=log n processors, leading to an average complexity of 0(n), 
as in our first algorithm, but with a worst case complexity of 0<n**2/log n) (Stone 
[1975]). In contrast, our family of parallel sorting algorithms provides optimal speed
up for problems which are large in relation to the number of available processors 
(where large depends upon the particular interconnection strategy used for 
processor communication). 

1. A NEIGHBORHOOD SORT FOR A LINEARLY CONNECTED SYSTEM: 

We begin this section by giving some notation and definitions that are used 
throughout the paper. An r-sequence, S, is an ordered set of n elements with n«rk, 
such that the first r elements, SI, are stored in M l , the next r elements, S2, are 
stored in M2, etc It will be denoted by S=Sl;S2;...;Sk. An r-sequence S«Sl;S2;...;Sk is 
partially sorted if each Si is a sorted sequence. An r-sequence S-Sl;S2;...;Sk is 
sorted if the whole sequence Sl,S2,...,Sk is sorted. 

The reader should note that this definition of a sorted sequence coincides with 
the standard notion of a sorted sequence (i.e. as memory address increases the 
sequence is monotone) only when each memory Mi contains consecutive memory 
locations. Another way of addressing memory is to have in memory Mi all addresses 
which modulo k are congruent to i (as is done for example in the Illiac IV). For this 
case, a sorted r-sequence will not be sorted with respect to memory location, but a 
post-processing step which accomplishes this re-ordering can be performed in time 
linear in the number of elements sorted. Since this does not affect the nature of our 
asymptotic results, we shall not treat the matter further. 

In this section we will present and analyze a sorting algorithm for a machine 
for which the processors adjacent to Pi are Pj where j—i—1 mod k or j-i+1 mod k. 
The algorithm takes, as input, an arbitrary r-sequence, and gives as output the 
corresponding sorted r-sequence. It is illustrated in figure 1. 

PI / M l 
P2 / M2 
P3 / M3 
P 4 / M 4 

43 63 54 
28 79 72 
32 47 84 
66 25 17 

PI / M l 
P2 /M2 
P3 / M3 
P4 / M4 

17 25 28 
32 43 47 
54 63 66 
72 79 84 

(a) Input (b) Output 

Figure 1: Effects of the algorithm on the 3-sequence 
43,63,54;28,79,72;32,47,84;66,25,17. 

The algorithm is based upon a generalization of the neighbor sort, (Habermann 



[1972]), and will be described in section 1.1. In section 1.2. we will give an 
implementation of this algorithm for the machine we consider. An analysis of the 
algorithm will be presented in section 1.3. Taking into account both the computational 
cost, measured as the number of comparisons executed, and the routing cost, the cost 
for transferring the data between different memories, it will be shown that the 
algorithm takes time (n log n)/k + 0(n). Therefore, when k < log n the asymptotic 
speed-up ratio is k and this is optimal in the number of processors used. 

1.1. THE ALGORITHM: 

Habermann has presented an algorithm for sorting k elements using k 
processors in k steps of parallel "comparison exchanges." The algorithm is the 

. following. Let a l , a2, ak be the sequence to be sorted. In the first step, for 
i>l,3,...92|k/2]-l, processor Pi compares elements ai and ai+1 and if ai > ai+1 the two 
elements are exchanged. In the second step, the same comparison exchanges are 
executed for i=2,4,...,2((k-l)/2|. Steps 3, 5, ... are the repetitions of step 1. And 
steps 4, 6, ... are the repetitions of step 2. The proof that this algorithm leads to a 
completely sorted sequence after at most k steps is based on the observation that 
the distance between the position of an element in the sequence after p steps and its 
final position is bounded by k-p. 

Now we give a generalization of this algorithm to partially sorted r-sequences. 
In the first step, for i=l,3,...,2lk/2j-l, processor Pi merges the two sub-sequences Si 
and Si+1 and then assigns to Si the first half of the resulting merged sequence (i.e., 
the r smallest elements) and assigns to Si+1 the second half (i.e., the r largest 
elements). For the second step, the same operations are executed but for 
i»2,4,...,2[{k-l)/2]. Again steps 3, 5, ... are repetitions of step 1, and steps 4, 6, ... are 
repetitions of step 2. This is illustrated in figure 2. 

S2:28 72 79 J 63 72 79 î P2 17 25 32 1 32 43 541 P2 32 43 47 

Figure 2: The four steps of parallel "merging-splittings" 
for sorting the partially sorted 3-sequence 

43,54,63;28)72,79;32,47,84;17,25,66. 

A proof can be given that the algorithm leads to a sorted r-sequence in at most 
k steps. It is based on the same observation and can be adapted from the proof 
given by Habermann. 

1.2. IMPLEMENTATION OF THE ALGORITHM: 

Assume we know how to merge two sorted sequences Ai and Bi of equal length 
using processor Pi, and that it can be done in parallel for all processors (that is, the 
control structure of the algorithm must depend upon data-dependent masks rather 

Step 1: Step 2: Step 3: Step 4: 



than upon data-dependent branches). In particular, the merge sorting algorithm (see 
for example Knuth [1973]) is an ideal method for completing the first phase, that is, 
for initially sorting the Si. The second phase, sorting the partially sorted r-sequence 
using the k steps of parallel "merge splitting" as described above, can also be done 
easily on an SIMD machine, as can be seen in the program given below. 

The program is written in an Algol-like language using an additional feature for 
describing the parallelism. Namely, when a statement is followed by a mask, only 
those processors Pi for which bit i of the mask is set to 1 will execute the instruction, 
the other processors being inhibited. When no specification follows a statement 
every processor is to execute the corresponding instruction. 

The data structure involved in the program includes in memory Mi, for i«l,2,...k, 
an array Si[l:r] containing the current sub-sequence Si of the r-sequence to be 
sorted, and three arrays Ai[l:r+1], Bi[l:r+1] and Ci[l:2r] used as working areas. For 
simplicity we assume that k, the number of processors, is even. We use two masks: 
in EVEN the bit i is set to 1 only for i=2,4,...,k-2, and in ODD only for i-l,3,...,k-l. 
These masks are used only for the implementation of the second phase. 

The procedure MERGE, when executed by processor Pi with parameter p, 
merges the two subsequences Ai[l:p] and Bi[l:p] (that is the first p elements in both 
arrays Ai and Bi) and stores the resulting merged sequence in Ci[l:2p]. 



comment: w is added as a sentinel at the 
end of both sequences Ai and Bi so that 
no supplementary test is required for 
checking if any sequence becomes 
exhausted, (w is supposed to be greater 
than any element that Ai and Bi can ever 
contain.) 

MERGE(p)-
begin 
Ai[p+l]«-w;Bi[p+l]<-w; 

a*-l;b*-l; 
for c*-l step 1 until 2p do 

if Ai[a]>Bi[b] 
then begin 

Ci[c]«-Bi[b];b<-b+l 
end 

else begin 
Ci[c]<-Ai[a];a<-a+l 
end; 

end 

comment: We use implicitly two masks which are set according to the result of the 
comparison between A[a] and B[b]. (This is easily done if there exists an instruction 
which allows a processor to set its inhibition indicator according to its condition 
code.) 

Phase 1: 
for p+-l step p until r-1 do 

for step 2p until r do 
begin 
Ai[l:p]<-SiEj:j+p-l]; 
Bi[l:p]«-Si[j+p:j+2p-lJ 
MERGE(p); 
Si[j:j+2p-l]<-Ci[l:2p]; 
end; 

comment: The phase 1 is completed at this point and Sl[l:r], S2[l:r], 

contain the partially sorted r-sequence. 

comment: The phase 1 as it is programmed 
here is able to partially sort only those 
r-sequences for which r is a power of 2. 
This restriction can be easily removed 
if we add artificial elements. 

Sk[l:r] 

Phase 2: 
for step 2 until k-1 do 

begin 
Ai[l:r]<-Si[l:r]; mask EVEN; 
Bi[l:r]«-Si+l[l:rJ mask EVEN; 
MERGE(r); mask EVEN; 
Si[l:r]<-Ci[l:r]; mask EVEN; 
Si+l[l:r>Ci[r*l:2r]5 mask EVEN; 
Ai[l:r]4-Si[l:r]; mask ODD; 
Bi[l:r]«-Si+l[l:r]s mask ODD; 
MERGE(r); mask ODD; 
Si[l:r]*-Ci[l:r]; mask ODD 
Si+l[lT]<-Ci[r+l:2r]; mask ODD; 
end 

comment: This statement e.g. implicitely 
uses the route instruction. 

comment: After those k steps of parallel -merging-splittings", Sl[l:r], S2[l:r], 
Sk[l:r] contain the sorted r-sequence, and our goal is achieved. 



1.3. ANALYSIS OF THE ALGORITHM: 

We first evaluate the routing time. Routing is introduced only by instructions 
of the form Bi[l:r]<-Si+l[l:r] and Si+l[l:r]«-Gi[r+l:2r] in the second phase. Such 
instructions are executed k times each and, in both cases, r route instructions are 
required, therefore the total number of route instructions is 

R = 2rk = 2n. 

For the computational cost, we count only the number of comparison 
instructions executed but, clearly, the total cost excluding routing has the same order 
of magnitude. Comparison instructions occur only in the MERGE procedure and 2p 
comparisons are required when the procedure is called with parameter p. Looking at 
phase 1, the first for-loop is executed log r times (when r is a power of 2) for p - 1, 
2, 4, ... r/2 and the inner loop is executed r/2p times for each of the values of p. 
Each of the inner loops requires 2p comparisons, therefore the total number of those 
instructions is 

CI » [2p(r/2p)]log r = r log r = (n/k) log(n/k). 
For the second phase, the number of comparisons is simply 

C2 = 2rk « 2n. 
Therefore the total number of comparisons is 

C - CI + C2 = (n log n)/k - (n log k)/k + 2n. 

Assume, now, that the time for executing a comparison instruction is a unit of 
time. Let \ be the time for executing a route instruction involving an adjacent 
processor. Then, when we consider only comparisons and routing, the total execution 
time of the algorithm is 

T = C + XR « (n log n)/k - (n log k)/k + 2n + 2Xn 
or simply 

T « (n log n)/k + O(n). 

But we know that the minimum number of comparisons required for sorting a 
sequence of n elements on a sequential computer is asymptotically n log n. 
Therefore, when k is smaller than log n (in order of magnitude), the asymptotic 
speed-up ratio of our algorithm over the optimal sequential algorithm is k, which is 
optimal. In particular, when k=log n, the ratio of this parallel algorithm to the optimal 
sequential algorithm is of order log n, the number of processors. 

On the other hand, when k is greater than log n, the total execution time 
required for our algorithm is linear in n; but this is the best we can achieve with the 
constraints of- the machine we consider here, as can be seen from the following 
remark. In case all elements whose final destination is memory Mk are initially in the 
same memory Mi, the total routing must be at least r(k-i) (or min{r(k-i),ri} if we 
consider processors PI and Pk adjacent). If we choose, for example, i«k/2 then the 
total routing must be at least n/2 and consequently the total execution time must also 
be at least linear in n. Therefore, in this case our algorithm is within a constant 
factor of the optimum time. 



2. OTHER OPTIMAL ALGORITHMS: 

It seems unlikely that systems with many processors will have the routing time 
between Pi and Pj linear in |i-j|. Indeed, this is not the case with Illiac IV, which has 
sixty-four processing elements. In this section we examine two other schemes for 
connecting processors which are in some sense more efficient in routing information 
among the processors. The first, a two-dimensional array, is the technique used in 
Illiac IV; the second, based on the "perfect shuffle," is a design that has been 
frequently advocated for interconnecting networks of arithmetic processors. We 
begin with some general observations about our family of parallel sorting algorithms 
before considering the particular impact of the various interconnection structures. 

Our linear-connected parallel algorithm is based on the simple idea of replacing 
the*sequence of parallel "comparison-exchanges" of the initial neighbor sort by a 
corresponding sequence of parallel "merging-splittings." This idea can be easily 
generalized. For any algorithm (based exclusively on comparison exchanges) for 
sorting a sequence of k elements on a parallel computer with k processors, there 
corresponds another parallel sorting algorithm for sorting a sequence of n=rk 
elements on a parallel computer with comparable interconnections. In addition, if the 
initial algorithm requires C(k) parallel comparisons and a total routing R(k), the 
running time of the new algorithm is, assuming that comparison takes one unit of time 
and that X is an average for the time required for a unit step of routing: 

T(n) « n log n + nf2C(k)-log k + X R(k)l. ' 
k L k k J 

Provided that C(k) and R(k) are less than log n (in order of magnitude), the 
asymptotic speed-up ratio is k which is optimal. 

For example, this scheme could be applied to Batcher's sorting algorithm 
(Batcher [1968]). The resulting algorithm would lead to an improvement over the 
neighbor algorithm for the number of comparisons (C(k) is reduced from k to (log 
k)**2) but, for a parallel computer with a linear interconnection scheme, the total 
routing becomes 2n log k + 0(n) as opposed to 2n for the neighbor sort algorithm and 
thus Batcher's sorting algorithm is not optimal.. Hence the computational efficiencies 
of this algorithm are lost in the routing inefficiencies. This illustrates the often 
overlooked aspect of parallel computing: that it is the environment in which an 
algorithm will be executed that determines whether the computational aspects will be 
realized. 

If we take into account other specific interconnection schemes for a parallel 
computer, it is possible to decrease the time for sorting n elements and hence to 
increase the speed-up of parallel sorting over sequential sorting. In Illiac IV, the 
interconnection scheme is such that each processor can access in one route step not 
only the memory of an adjacent processor but also the memory of a processor at a 
distance of \/k. In this case simple (but tedious) algebra shows that the total routing 
time for Batcher's algorithm is given by 

R(k) - ^vKlogk - 8\/£ - logk + 8. 

This shows that asymptotically (for large values of k) an adaptation of 



Batcher's sorting algorithm on a two-dimensional array computer will give a better 
result both for the total number of parallel comparisons (for the second order term 
only) and for the tbtal routing than will the neighbor sort algorithm on a linearly 
connected processor. However the following table shows that for small values of k 
(the number of processors), the total routing of both algorithms are very close .̂ In 
this table we have reported the quantities R(k)/k for both algorithms, namely RN(k) » 
(2k)/k«2 in the case of the neighbor sort and RB(k) « (4V̂ k log k - 8v/k - log k + 8)/k 
for the adaptation of Batcher's sorting algorithm to exploit the two dimensional 
connections. 

k - 4 16 64 256 1024 
RN(k) 2 2 2 2 2 
RB(k) - 1.50 2.25 2.03 1.47 0.99 

Table 1: Comparison of the total routing on a square array for 
the Neighbor sort and Batcher's algorithms. 

With this two-dimensional interconnection scheme, the adaptation of Batcher's 
sorting algorithm achieves an asymptotic speed-up ratio of k as long as C(k) and R(k) 
are less than log n (in order of magnitude), that is, as long as vk log k < log n. This 
holds for k less than (log n/log log n)**2. Thus, using this processor configuration, 
the maximum possible speed-up over the optimal sequential sorting algorithm is 
greater than log n (the case for the linear, interconnection scheme). This, 
improvement in speed-up is due, of course, from using proportionately more 
processors, and is still optimal in the number of processors used. 

And in fact for the actual configuration of Illiac IV, with k=64 and X 
approximately 3/4, we find that for r=1024, Batcher's sort is almost twice as fast as 
the neighbor sort, counting only comparisons and routing. 

Finally we briefly consider the effect of using a "perfect shuffle" to connect 
the processors (Knuth[1973]). In this scheme the processors "adjacent" to Pi are Pj 
where j=2i mod k and 2j=i mod k. For k a power of two, a sort of k elements can be 
done with C(k)=»R(k)=(log k)**2 (Knuth [1973]). As above, the corresponding merge-
splitting algorithm has linear speed-up (in the number of processors) as long as k is 
less than 2*W log n. 
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