
Optimizing Symbolic Model Checking for
Constraint-Rich Models

Bwolen Yang, Reid Simmons, Randal E. Bryant, and David R. O’Hallaron

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213�
bwolen, reids, bryant, droh � @cs.cmu.edu

Abstract. This paper presents optimizations for verifying systems with complex
time-invariant constraints. These constraints arise naturally from modeling physi-
cal systems, e.g., in establishing the relationship between different components in
a system. To verify constraint-rich systems, we propose two new optimizations.
The first optimization is a simple, yet powerful, extension of the conjunctive-
partitioning algorithm. The second is a collection of BDD-based macro-extraction
and macro-expansion algorithms to remove state variables. We show that these
two optimizations are essential in verifying constraint-rich problems; in particu-
lar, this work has enabled the verification of fault diagnosis models of the Nomad
robot (an Antarctic meteorite explorer) and of the NASA Deep Space One space-
craft.

1 Introduction

This paper presents techniques for using symbolic model checking to automatically
verify a class of real-world applications that have many time-invariant constraints. An
example of constraint-rich systems is the symbolic models developed by NASA for
on-line fault diagnosis [15]. These models describe the operation of components in
complex electro-mechanical systems, such as autonomous spacecraft or robot explor-
ers. The models consist of interconnected components (e.g., thrusters, sensors, motors,
computers, and valves) and describe how the mode of each component changes over
time. Based on these models, the Livingstone diagnostic engine [15] monitors sensor
values and detects, diagnoses, and tries to recover from inconsistencies between the ob-
served sensor values and the predicted modes of the components. The relationships be-
tween the modes and sensor values are encoded using symbolic constraints. Constraints

Effort sponsored in part by the Advanced Research Projects Agency and Rome Laboratory,
Air Force Materiel Command, USAF, under agreement number F30602-96-1-0287, in part by
the National Science Foundation under Grant CMS-9318163, and in part by grants from the
Intel Corporation and NASA Ames Research Center. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of the Advanced Research Projects Agency, Rome Laboratory, or
the U.S. Government.

between state variables are also used to encode interconnections between components.
We have developed an automatic translator from such fault models to SMV (Symbolic
Model Verifier) [10], where mode transitions are encoded as transition relations and
state-variable constraints are translated into sets of time-invariant constraints.

To verify constraint-rich systems, we introduce two new optimizations. The first
optimization is a simple extension of the conjunctive-partitioning algorithm. The other
is a collection of BDD-based macro-extraction and macro-expansion algorithms to re-
move redundant state variables. We show that these two optimizations are essential in
verifying constraint-rich problems. In particular, these optimizations have enabled the
verification of fault diagnosis models for the Nomad robot (an Antarctic meteorite ex-
plorer) [1] and the NASA Deep Space One (DS1) spacecraft [2]. These models can be
quite large, with up to 1200 state bits.

The rest of this paper is organized as follows. We first briefly describe symbolic
model checking and how time-invariant constraints arise naturally from modeling (Sec-
tion 2). We then present our new optimizations: an extension to conjunctive partitioning
(Section 3), and BDD-based algorithms for eliminating redundant state variables (Sec-
tion 4). We then show the results of a performance evaluation on the effects of each
optimization (Section 5). Finally, we present a comparison to prior work (Section 6)
and some concluding remarks (Section 7).

2 Background

Symbolic model checking [5, 6, 10] is a fully automatic verification paradigm that
checks temporal properties (e.g., safety, liveness, fairness, etc.) of finite state systems
by symbolic state traversal. The core enabling technology for symbolic model check-
ing is the use of the Binary Decision Diagram (BDD) representation [4] for state sets
and state transitions. BDDs represent Boolean formulas canonically as directed acyclic
graphs such that equivalent sub-formulas are uniquely represented as a single subgraph.
This uniqueness property makes BDDs compact and enables dynamic programming to
be used for computing Boolean operations symbolically.

To use BDDs in model checking, we need to map sets of states, state transitions, and
state traversal to the Boolean domain. In this section, we briefly describe this mapping
and motivate how time-invariant constraints arise. We then finish with definitions of
some additional terminology to be used in the rest of the paper.

2.1 Representing State Sets and Transitions

In the symbolic model checking of finite state systems, a state typically describes the
values of many components (e.g., latches in digital circuits) and each component is
represented by a state variable. Let ���������
	�����	������ be the set of state variables in
a system, then a state can be described by assigning values to all the variables in � .
This valuation can in term be written as a Boolean formula that is true exactly for the
valuation as � �������� � � ����� ��� , where � � is the value assigned to the variable � � , and
the “==” represents the equality operator in a predicate (similar to the C programming
language). A set of states can be represented as a disjunction of the Boolean formulas

that represent the states. We denote the BDD representation for a set of states � by
� � � � .

In addition to the set of states, we also need to map the system’s state transitions
to the Boolean domain. We extend the above concept of representing a set of states to
representing a set of ordered-pairs of states. To represent a pair of states, we need two
sets of state variables: � the set of present-state variables for the first tuple and ��� the
set of next-state variables for the second tuple. Each variable � in � has a corresponding
next-state variable ��� in ��� . A valuation of variables in � and ��� can be viewed as a
state transition from one state to another. A transition relation can then be represented
as a set of these valuations. We denote the BDD representation of a transition relation�

as
� � � 	 ��� � .

In modeling finite state systems, the overall state transitions are generally specified
by defining the valid transitions for each state variable. To support non-deterministic
transitions of a state variable, the expression that defines the transitions evaluates to a
set, and the next-state value of the state variable is non-deterministically chosen from
the elements in the set. Hereafter, we refer to an expression that evaluates to a set either
as a set expression or as a non-deterministic expression depending on the context, and
we use the bold font type, as in f, to represent such expression. Let f

�
be the set expres-

sion representing state transitions of the state variable � � . Then the BDD representation
for � � ’s transition relation

� �
can be defined as

� � � � 	 ��� �	� � � �
���� f
� � � � � � For syn-

chronous systems, the BDD for the overall state transition relation
�

is
� � � 	 �� �	� �

� ������ � � � � 	 ��� � � Detailed descriptions on this formulation, including mapping of asyn-
chronous systems, can be found in [5].

2.2 Time-Invariant Constraints and Their Common Usages

In symbolic model checking, time-invariant constraints specify the conditions that must
always hold. More formally, let ��� , . . . , ��� be the time-invariant constraints and let
� � ��� ��� ��� � ���� � � � . Then, in symbolic state traversal, we consider only states
where � is true. We refer to � as the constrained space.

To motivate how time-invariant constraints arise naturally in modeling complex
systems, we describe three common usages. One common usage is to make the same
non-deterministic choice across multiple expressions in transition relations. For exam-
ple, in a master-slave model, the master can non-deterministically choose which set
of idle slaves to assign the pending jobs, and the slaves’ next-state values will depend
on the choice made. To model this, let f be a non-deterministic expression represent-
ing how the master makes its choice. If f is used multiple times, then each use makes
a non-deterministic choice independently of other uses. Thus, to ensure that the same
non-deterministic choice is seen by the slaves, a new state variable � is introduced to
record the choice made, and � is then used to define the slaves’ transition relations. This
recording process is expressed as the time-invariant constraint � � f.

Another common usage is for establishing the interface between different compo-
nents in a system. For example, suppose two components are connected with a pipe of a
fixed capacity. Then, the input of one component is the minimum of the pipe’s capacity
and the output of the other component. This relationship is described as a time-invariant
constraint between the input and the output of these two components.

Third common usage is specific uses of generic parts. For example, a bi-directional
fuel pipe may be used to connect two components. If we want to make sure the fuel
flows only one way, we need to constrain the valves in the fuel pipe. These constraints
are specified as time-invariant constraints. In general, specific uses of generic parts arise
naturally in both the software and the hardware domain as we often use generic building
blocks in constructing a complex system.

In the examples above, the use of time-invariant constraints is not always necessary
because some these constraints can be directly expressed as a part of the transition re-
lation and the associated state variables can be removed. However, these constraints are
used to facilitate the description of the system or to reflect the way complex systems are
built. Without these constraints, multiple expressions will need to be combined into pos-
sibly a very complicated expression. Performing this transformation manually can be
error-prone. Thus it is up to the verification tool to automatically perform these transfor-
mations and remove unnecessary state variables. Our optimizations for constraint-rich
models is to automatically eliminate redundant state variables (Section 4) and partition
the remaining constraints (Section 3).

2.3 Symbolic State Traversal

To reason about temporal properties, the pre-image and the image of the transition re-
lation are used for symbolic state traversal, and time-invariant constraints are used to
restrict the valid state space. Based on the BDD representations of a state set � and the
transition relation

�
, we can compute the pre-image and the image of � , while restrict-

ing the computations to the constrained space � , as follows:

pre-image
� � � � � ��� � � � � � � � � � ��� � � � 	 � � � � � � � � � � � � � � � � ��� (1)

image
� � � � � � ��� � � � � � � � � � ��� � � � 	 � � � � � � � � � � � � � � ��� (2)

One limitation of the BDD representation is that the monolithic BDD for the transi-
tion relation

�
is often too large to build. A solution to this problem is the conjunctive

partitioning [5] of the transition relation. In conjunctive partitioning, the transition rela-
tion is represented as a conjunction � � � � � � ���� � ��� with each conjunct � � represented
by a BDD. Then, the pre-image can be computed by conjuncting with one � � at a
time, and by using early quantification to quantify out variables as soon as possible.
The early-quantification optimization is based on the property that sub-formulas can be
moved out of the scope of an existential quantification if they do not depend on any of
the variables being quantified. Formally, let � �� , a subset of ��� , be the set of variables
that do not appear in any of the subsequent �
	 ’s, where �������� and ��������� . Then
the pre-image can be computed as

� � � � � � �� ����� � � � 	 � � � � � � � � � � � � � � � � ��� (3)
� � � � � � �� ����� � � � 	 � � � � � � �

...
� � � � � � �� ������� � � 	 � � � � � ��� � �

pre-image
� � � � � ��� � � � � � � � �

The determination and ordering of partitions (the � � ’s in above) can have signifi-
cant performance impact. Commonly used heuristics [7, 11] treat the state variables’
transition relations (

� �
’s) as conjuncts. The ordering step then greedily schedules the

partitions to quantify out more variables as soon as possible, while introducing fewer
new variables. Finally, the ordered partitions are tentatively merged with their prede-
cessors to reduce the number of intermediate results. Each merged result is kept only if
the resulting graph size is less than a pre-determined limit.

The conjunctive partitioning for the image computation is performed similarly with
present-state variables in � being the quantifying variables instead of next-state vari-
ables in ��� . However, since the quantifying variables are different between the image
and the pre-image computation, the resulting conjuncts for image computation is typi-
cally very different from those for pre-image computation.

2.4 Additional Terminology

We define the ITE operator (if-then-else) as follows: given arbitrary expressions � and� where � and � may both be set expressions, and Boolean expression � , then

ITE
� � 	�� 	 � � ��� ��� �

� � ��� �
if � ��� ���

� ��� �
otherwise

�
where

�
is the set of variables used in expressions � , � , and � . We define a care-space

optimization as any algorithm care-opt that has following properties: given an arbitrary
function � where � may be a set expression, and a Boolean formula � , then

care-opt
� � 	 � � � � ITE

� � 		� 	�
 � 	
where
 is defined by the particular algorithm used. The usual interpretation of this
is that we only care about the values of � when � is true. We will refer to � as the
care space and � � as the don’t-care space. The goal of care-space optimizations is to
heuristically minimize the representation for � by choosing a suitable
 in the don’t-
care space. Descriptions and a study of some care-space optimizations, including the
commonly used restrict algorithm [6], can be found in [13].

3 Extended Conjunctive Partitioning

The first optimization is the application of the conjunctive-partitioning algorithm on the
time-invariant constraints. This extension is derived based on two observations. First,
as with the transition relations, the BDD representation for time-invariant constraints
can be too large to be represented as a monolithic graph. Thus, it is crucial to represent
the constraints as a set of conjuncts rather than a monolithic graph.

Second, in constraint-rich models, many quantifyingvariables (variables being quan-
tified) do not appear in the transition relation. There are two common causes for this.
First, when time-invariant constraints are used to make the same non-deterministic
choices, new variables are introduced to record these choices (described as the first
example in Section 2.2). In the transition relation, these new variables are used only in

their present-state form. Thus, their corresponding next-state variables do not appear in
the transition relation, and for the pre-image computation, these next-state variables are
parts of the quantifying variables. The other cause is that many state variables are used
only to establish time-invariant constraints. Thus, both the present- and the next-state
version of these variables do not appear in the transition relations.

Based on this observation, we can improve the early-quantification optimization by
pulling out the quantifying variables (� ��) that do not appear in any of the transition
relations. Then, these quantifying variables (� ��) can be used for early quantification
in conjunctive partitioning of the constrained space (�) where the time-invariant con-
straints hold. Formally, let � � 	�� � 	
���	���� be the partitions produced by the conjunctive
partitioning of the constrained space � , where � ��� � � �� � ���� � � � . For the pre-
image computation, Equation 3 is replaced by

� � � � ��� �� ��� � � � � � � � � � � � ���
� � � � ��� �� ��� � � � � � � � � � �

...
� � � � ��� �� �����	� � � � � � � � � � �
� � � � � � �� � ��� � � � 	 � � � � � � �

where
� �� , a subset of ���� , is the set of variables that do not appear in any of the subse-

quent � 	 ’s, where � ��� ��
 and � � � ��
 . Similarly, this extension also applies to
the image computation.

4 Elimination of Redundant State Variables

Our second optimization for constraint-rich models is targeted at reducing the state
space by removing unnecessary state variables. This optimization is a set of BDD-
based algorithms that compute an equivalent expression for each variable used in the
time-invariant constraints (macro extraction) and then globally replace a suitable subset
of variables with their equivalent expressions (macro expansion) to reduce the total
number of variables.

The use of macros is traditionally supported by language constructs (e.g., DEFINE
in the SMV language [10]) and by simple syntactic analyses such as detecting determin-
istic assignments (e.g., � ��� � where � is a state variable and � is an expression) in the
specifications. However, in constraint-rich models, the constraints are often specified
in a more complex manner such as conditional dependencies on other state variables
(e.g., �� � � ��� � � as conditional assignment of expression � to variable � when� is true). To identify the set of valid macros in such models, we need to combine the
effects of multiple constraints. For these models, one drawback of syntactic analysis
is that, for each type of expression, syntactic analysis will need to add a template to
pattern match these expressions. Another more severe drawback is that it is difficult
for syntactic analysis to estimate the actual cost of instantiating a macro. Estimating
this cost is important because reducing the number of variables by macro expansion
can sometimes result in significant performance degradation caused by large increases

in other BDD sizes. These two drawbacks make the syntactic approach unsuitable for
models with complex time-invariant constraints.

Our approach uses BDD-based algorithms to analyze time-invariant constraints and
to derive the set of possible macros. The core algorithm is a new assignment-extraction
algorithm that extracts assignments from arbitrary Boolean expressions (Section 4.1).
For each variable, by extracting its assignment form, we can determine the variable’s
corresponding equivalent expression, and when appropriate, globally replace the vari-
able with its equivalent expression (Section 4.2). The strength of this algorithm is that
by using BDDs, the cost of macro expansion can be better characterized since the actual
model checking computation is performed using BDDs.

Note that there have been a number of research efforts on BDD-based redundant
variable removal. To better compare our approach to these previous research efforts, we
postpone the discussion of this prior work until Section 6, after describing our algo-
rithms and the performance evaluation.

4.1 BDD-Based Assignment Extraction

The assignment-extraction problem can be stated as follows: given an arbitrary Boolean
formula � and a variable � (where � can be non-Boolean), find g and � such that

– � � � � � g
� � � ,

– g does not depend on � , and
– � is a Boolean formula and does not depend on � .

The expression
� � � g

�
represents a non-deterministic assignment to variable � . In the

case that g always returns a singleton set, the assignment
� � � g

�
is deterministic. A

solution to this assignment-extraction problem is as follows:

� � � � � �
t � �

�������
ITE

� �	�
�� ��	 � � � 	� � (4)

g � restrict
�
t 	�� �

where ��
 is the set of all possible values of variable � , and restrict [6] is a care-space
optimization algorithm that tries to reduce the BDD graph size (of t) by collapsing the
don’t-care space (���). The BDD algorithm for the � ������� operator is similar to the
BDD algorithm for the existential quantification with the � operator replaced by the �
operator for variable quantification. A correctness proof of this algorithm can be found
in the technical-report version of this paper [17].

4.2 Macro Extraction and Expansion

In this section, we describe the elimination of state variables based on macro extrac-
tion and macro expansion. The first step is to extract macros with the algorithm shown
in Figure 1. This algorithm extracts macros from the constrained space (�), which is
represented as a set of conjuncts. It first uses the assignment-extraction algorithm to

extract assignment expressions (line 5). It then identifies the deterministic assignments
as candidate macros (line 6). For each candidate, the algorithm tests to see if applying
the macro may be beneficial (line 7). This test is based on the heuristic that if the BDD
graph size of a macro is not too large and its instantiation does not cause excessive in-
crease in other BDDs’ graph sizes, then instantiating this macro may be beneficial. If
the resulting right-hand-side g is not a singleton set, it is kept separately (line 9). These
g’s are combined later (line 10) to determine if the intersection of these sets would result
in a macro (lines 11-13).

extract macros(� , �)
/* Extract macros for variables in � from

the set � of conjuncts representing the constrained space */
1 ����� /* initialize the set of macros found so far */
2 for each �	�
�
3 ����� /* initialize the set of non-singletons found so far */
4 for each ���� such that � depends on �
5 � g ������� assignment-extraction ��������� /* �������	� g ����� */
6 if (g always returns a singleton set) /* macro found */
7 if (is-this-result-good(g))
8 ��� � ��� � g � �"!�
9 else ��� �

g �"!�
10 g’ �$# g %'& g
11 if (g’ always returns a singleton set) /* macro found */
12 if ((is-this-result-good(g’))
13 ��� � ��� � g’ � �"!�
14 return �

Fig. 1. Macro-extraction algorithm. In lines 7 and 12, “is-this-result-good” uses BDD properties
(such as graph sizes) to determine if the result should be kept.

After the macros are extracted, the next step is to determine the instantiation order.
The main purpose of this algorithm (in Figure 2) is to remove circular dependencies.
For example, if one macro defines variable � � to be

� � � � �)(� and a second macro defines� � to be
� � � � �)* � , then instantiating the first macro results in a circular definition in the

second macro (� � � � � � � �)(� � �)*) and thus invalidates this second macro. Similarly,
the reverse is also true. To determine the set of macros to remove, the algorithm builds a
dependence graph (line 1) and breaks circular dependencies based on graph sizes (lines
2-4). It then determines the ordering of the remaining macros based on the topological
order (line 4) of the dependence graph.

Finally, in the topological order, each macro
� � 	 g � is instantiated in the remaining

macros and in all other expressions (represented by BDDs) in the system, by substitut-
ing the variable � with its equivalent expression g.

order macros(�)
/* Determine the instantiation order of the macros in set � */
/* first build the dependence graph � ����� ��� � */

1 � � � ����������� ��� ���	��� g� � ��� ��� � ����
)� g
 ��� � � g
 depends on ��� �
/* then remove circular dependences */

2 while there are cycles in � ,
3 �� � set of macros that are in some cycle
4 remove the macro with largest BDD size in �
5 return a topological ordering of the remaining macros in �

Fig. 2. Macro-ordering algorithm.

5 Evaluation

5.1 Experimental Setup

The benchmark suite used is a collection of 58 SMV models gathered from a wide
variety of sources, including the 16 models used in a BDD performance study [16].
Out of these 58 models, 37 models have no time-invariant constraints, and thus our
optimizations do not get triggered and have no influence on the overall verification time.
Out of the remaining 21 models, 10 very small models (� 10 seconds) are eliminated.
On the remaining 11 models, our optimizations have made non-negligible performance
impact on 7 models. In Figure 3, we briefly describe these 7 models. Note that some of
these models are quite large, with up to 1200 state bits.

Model # of State Bits Description

acs 497 the altitude-control module of the NASA DS1 spacecraft
ds1-b 657 a buggy fault diagnosis model for the NASA DS1 spacecraft
ds1 657 corrected version of ds1-b
futurebus 174 FutureBus cache coherency protocol
nomad 1273 fault diagnosis model for an Antarctic meteorite explorer
v-gate 86 reactor-system model
xavier 100 fault diagnosis model for the Xavier robot

Fig. 3. Description of models whose performance results are affected by our optimizations.

We performed the evaluation using the Symbolic Model Verifier (SMV) model
checker [10] from Carnegie Mellon University. Conjunctive partitioning was used only
when it was necessary to complete the verification. In these cases (including acs, no-
mad, ds1-b, and ds1), the size limit for each partition was set to 10,000 BDD nodes. For
the remaining cases, the transition relations were represented as monolithic BDDs. The
performance of all the benchmark models were measured in the following four settings:

Base: no new optimizations except that the constrained space � is represented
as a conjunction with each conjunct’s BDD graph size limited to 10,000

nodes (i.e., optimizations in Section 3 are used without the “early quantifi-
cation on the constrained space � ” optimization). Without this partition-
ing, the BDD representation of the constrained space could not be con-
structed for 4 models.

Quan: same as the Base case with the addition of the “early quantification on
the constrained space” optimization (Section 3).

SynMacro: same as the Quan case with the addition of a syntactic analysis
that pattern matches deterministic assignment expressions (� ��� � , where� is a state variable and � is an expression) as macros and expands these
macros.

BDDMacro: all the optimizations are turned on; i.e., same as the SynMacro
case with the addition of BDD-based assignment extraction to extract macros.

The evaluation was performed on a 200MHz Pentium-Pro with 1 GB of memory
running Linux. Each run was limited to 6 hours of CPU time and 900 MB of memory.

5.2 Results

Figure 4 shows the impact of our optimizations for the 7 models whose results changed
by more than 10 CPU seconds and 10% from the Base case. For all benchmarks, the
time spent by our optimizations is very small (� 5 seconds or � 5% of total time) and
is included in the running time reported.

The overall impact of our optimizations is shown in the rightmost column of Fig-
ure 4. These results demonstrate that our optimizations have significantly improved the
performance for 2 cases (with speedups up to 74) and have enabled the verification
of 4 cases. For the v-gates model, the performance degradation (speedup �������) is
in the computation of the reachable states from the initial states. Upon further inves-
tigation, we believe that it is caused by the macro instantiation, which increases the
graph size of the transition relation from 122-thousand to 476-thousand nodes. This
case demonstrates that reducing the number of state variables does not always improve
performance.

Base Quan SynMacro BDDMacro Base / BDDMacro
Model sec sec sec sec speedup

acs m.o. 32 76 7 enabled
ds1-b m.o. 321 138 54 enabled
ds1 m.o. m.o. t.o. 37 enabled
futurebus 1410 53 35 19 74.2
nomad m.o. t.o. 7801 633 enabled
v-gates 36 35 53 50 0.7
xavier 16 5 1 2 8.0

Fig. 4. Performance impact of each optimization. The m.o.’s and t.o.’s are the results that ex-
ceeded the 900-MB memory limit and the 6-hour time limit, respectively.

The remaining columns of Figure 4 show the impact of each optimization. The
results show that by simply performing early quantification on the constraints (the
Quan column), we have enabled the verification of acs and ds1-b, and achieved sig-
nificant performance improvement on futurebus (speedup � 20). This is mostly due to
the fact that a large number of variables can be pulled out of the transition relations
and applied to conjunctive partitioning and early quantification of the time-invariant
constraints (Figure 5(a)). With the addition of syntactic analysis for macro extraction
(the SynMacro column), we are able to verify nomad. Finally, by adding BDD-based
macro extraction (the BDDMacro column), we are able to verify ds1. The results in
Figure 5(b) show that BDD-based macro extraction (BDDMacro) can be rather effec-
tive in reducing the number of variables, especially for the acs, nomad, ds1-b, and ds1
models where � ��� � additional BDD variables (i.e., � ��� state bits) are removed in
comparison to using syntactic analysis (SynMacro).

Total CP Optimization
of BDD # of BDD vars extracted

Model Variables image pre-image

acs 994 439 449
ds1-b 1314 550 566
ds1 1314 550 566
futurebus 348 58 110
nomad 2546 1121 1174
v-gates 172 0 17
xavier 200 69 86

(a)

Macro Optimization
of BDD vars removed
SynMacro BDDMacro

82 352
148 492
220 496

12 18
688 844

16 16
64 116

(b)

Fig. 5. Effectiveness of each optimization. (a) Number of quantifying BDD variables that are
pulled out of the transition relation for early quantification of the time-invariant constraints. These
results are measured without macro optimizations. With macro optimizations, the corresponding
results are basically the same as subtracting off the number of state variables removed. (b) The
number of BDD variables removed by macro expansion. Note: the number of BDD variables is
twice the number of state variables—one copy for the present state and one copy for the next
state.

6 Related Work

There have been many research efforts on BDD-based redundant state-variable removal
in both logic synthesis and verification. These research efforts all use the reachable state
space (set of states reachable from initial states) to determine functional dependencies
for Boolean variables (macro extraction). The reachable state space effectively plays
the same role as a time-invariant constraint, because the verification process only needs
to check specifications in the reachable state space,

Berthet et al. propose the first redundant state-variable removal algorithm in [3]. In
[9], Lin and Newton describe a branch-and-bound algorithm to identify the maximum
set of redundant state variables. In [12], Sentovich et al. propose new algorithms for
latch removal and latch replacement in logic synthesis. There is also some work on
detecting and removing redundant state variables while the reachable state space is
being computed [8, 14].

From the algorithmic point of view, our approach is different from prior work in
two ways. First, in determining the relationship between variables, the algorithms used
to extract functional dependencies in previous work can be viewed as direct extraction
of deterministic assignments to Boolean variables. In comparison, our assignment ex-
traction algorithm is more general because it can also handle non-Boolean variables
and extract non-deterministic assignments. Second, in performing the redundant state-
variable removal, the approach used in the previous work would need to combine all the
constraints first and then extract the macros directly from the combined result. How-
ever, for constraint-rich models, it may not be possible to combine all the constraints
because the resulting BDD is too large to build. Our approach addresses this issue by
first applying the assignment extraction algorithm to each constraint separately and then
combining the results to determine if a macro can be extracted (see Figure 1).

Another difference is that in previous work, the goal is to remove as many vari-
ables as possible. However, we have empirically observed that in some cases, removing
additional variables can result in significant performance degradation in overall verifi-
cation time (slowdown over 4). To address this issue, we use simple heuristics (size of
the macro and the growth in graph sizes) to choose the set of macros to expand. This
simple heuristic works well in the test cases we tried. However, in order to fully eval-
uate the impact of different heuristics, we need to gather a larger set of constraint-rich
models from a wider range of applications.

7 Conclusions and Future Work

The two optimizations we proposed are crucial in verifying this new class of constraint-
rich applications. In particular, they have enabled the verification of real-world applica-
tions such as the Nomad robot and the NASA Deep Space One spacecraft.

We have shown that the BDD-based assignment-extraction algorithm is effective
in identifying macros. We plan to use this algorithm to perform a more precise cone-
of-influence analysis with the assignment expressions providing the exact dependence
information between the variables. In general, we plan to study how BDDs can be use
to further help other compile-time optimizations in symbolic model checking.

Acknowledgement

We thank Ken McMillan for discussions on the effects of macro expansion. We thank
Olivier Coudert, Fabio Somenzi and reviewers for comments on this work. We are grate-
ful to Intel Corporation for donating the machines used in this work.

References

[1] BAPNA, D., ROLLINS, E., MURPHY, J., AND MAIMONE, M. The Atacama Desert trek
- outcomes. In Proc. of the 1998 International Conference on Robotics and Automation
(May 1998), pp. 597–604.

[2] BERNARD, D. E., DORAIS, G. A., FRY, C., JR., E. B. G., KANEFSKY, B., KURIEN, J.,
MILLAR, W., MUSCETTOLA, N., NAYAK, P. P., PELL, B., RAJAN, K., ROUQUETT, N.,
SMITH, B., AND WILLIAMS, B. Design of the remote agent experiment for spacecraft
autonomy. In Proc. of the 1998 IEEE Aerospace Conference (March 1998), pp. 259–281.

[3] BERTHET, C., COUDERT, O., AND MADRE, J. C. New ideas on symbolic manipulations
of finite state machines. In 1990 IEEE Proc. of the International Conference on Computer
Design (September 1990), pp. 224–227.

[4] BRYANT, R. E. Graph-based algorithms for Boolean function manipulation. IEEE Trans-
actions on Computers C-35, 8 (August 1986), 677–691.

[5] BURCH, J. R., CLARKE, E. M., LONG, D. E., MCMILLAN, K. L., AND DILL, D. L.
Symbolic model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 13, 4 (April 1994), 401–424.

[6] COUDERT, O., AND MADRE, J. C. A unified framework for the formal verification of
circuits. In Proc. of the International Conference on Computer-Aided Design (Feb 1990),
pp. 126–129.

[7] GEIST, D., AND BEER, I. Efficient model checking by automated ordering of transition
relation partitions. In Proc. of the Computer Aided Verification (June 1994), pp. 299–310.

[8] HU, A. J., AND DILL, D. L. Reducing BDD size by exploiting functional dependencies.
In Proc. of the 30th ACM/IEEE Design Automation Conference (June 1993), pp. 266–71.

[9] LIN, B., AND NEWTON, A. R. Exact redundant state registers removal based on binary
decision diagrams. IFIP Transactions A, Computer Science and Technology A, 1 (August
1991), 277–86.

[10] MCMILLAN, K. L. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[11] RANJAN, R. K., AZIZ, A., BRAYTON, R. K., PLESSIER, B., AND PIXLEY, C. Efficient

BDD algorithms for FSM synthesis and verification. Presented in the IEEE/ACM Interna-
tional Workshop on Logic Synthesis, May 1995.

[12] SENTOVICH, E. M., AND HORIA TOMA, G. B. Latch optimization in circuits generated
from high-level descriptions. In Proc. of the International Conference on Computer-Aided
Design (November 1996), pp. 428–35.

[13] SHIPLE, T. R., HOJATI, R., SANGIOVANNI-VINCENTELLI, A. L., AND BRAYTON, R. K.
Heuristic minimization of BDDs using don’t cares. In Proc. of the 31st ACM/IEEE Design
Automation Conference (June 1994), pp. 225–231.

[14] VAN EIJK, C. A. J., AND JESS, J. A. G. Exploiting functional dependencies in finite state
machine verification. In Proc. of European Design and Test Conference (March 1996),
pp. 266–71.

[15] WILLIAMS, B. C., AND NAYAK, P. P. A model-based approach to reactive self-
configuring systems. In Proc. of the Thirteenth National Conference on Artificial Intelli-
gence and the Eighth Innovative Applications of Artificial Intelligence Conference (August
1996), pp. 971–978.

[16] YANG, B., BRYANT, R. E., O’HALLARON, D. R., BIERE, A., COUDERT, O., JANSSEN,
G., RANJAN, R. K., AND SOMENZI, F. A performance study of BDD-based model
checking. In Proc. of the Formal Methods on Computer-Aided Design (November 1998),
pp. 255–289.

[17] YANG, B., SIMMONS, R., BRYANT, R. E., AND O’HALLARON, D. R. Optimizing sym-
bolic model checking for constraint-rich models. Tech. Rep. CMU-CS-99-118, School of
Computer Science, Carnegie Mellon University, March 1999.

