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A b s t r a c t 

Berry and Curien, building on Kahn and Plotkin's theory of Concrete D a t a 
Structures and sequential functions, have defined a sequential exponentia
t ion of Concrete D a t a Structures. Their construction gives rise to an ap
peal ing model of sequential algorithms and a functional programming lan
guage C D SO, exhibit ing some interesting semantic properties, such as: loss 
of extensionality; a not ion of program equivalence sensit ive to computat ion 
strategy; a lazy, coroutine-like semantics; full abstraction; identification of 
s y n t a x and semantics . 
We propose to develop a similar model of concurrent computation by for
mulat ing an appropriate notion of parallel algorithm and generalizing their 
construction t o a parallel exponentiation,, while retaining analogous semantic 
properties. T h e introduction of parallelism into this sett ing raises several 
interest ing issues, such as the existence, nature and properties of a satisfac
tory model of parallel computat ion employing parallel algorithms; ideally 
one would like to obtain a cartesian closed category with appropriate no
tions of parallel application, currying and composit ion. We hope that our 
ideas will yield insights into the proper mathematical treatment of parallel 
programming. 
W e present here our notion of parallel algorithm and our parallel expo
nentiat ion of Concrete D a t a Structures. We motivate carefully the ideas 
behind our construction, and we explain how it can be viewed as a natural 
generalization of the Berry-Curien construction. We introduce application 
and currying operations suitable for our parallel sett ing. In order to justify 
our ideas and to place our work into context , we show some properties of 
our construction, and give a variety of examples . Finally, we indicate some 
directions for further research on issues raised by our model . 
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1 I n t r o d u c t i o n 

T h e search for a satisfactory syntact ic and semantic account of sequential computat ion, in particular 
the desire to achieve full abstraction, has led to a considerable body of research. In the classic 
paper [Plo77], Plotkin showed that under its standard interpretation the programming language 
P C F is inherently sequential , and that the standard continuous function semantic model is not fully 
abstract because of the fact that the model contains inherently parallel functions (such as parallel-
or) that cannot be defined in P C F . T h e continuous functions model is, however, fully abstract 
for a parallel version of P C F obtained by including a parallel conditional primitive. A substantial 
body of work has been directed at obtaining a truly sequential model for the original P C F with a 
suitably restricted notion of function [BCL85], 

Kahn and Plotkin [KP78] have defined Concrete Data Structures, or CDSs , together wi th their 
order-theoretic counterparts , Concrete Domains. T h e y introduced a notion of sequential function 
that leads to a product-closed category. T h e notion of stability was introduced by Berry [Ber78] in 
an a t tempt to find a suitably restrictive property of functions intermediate between sequentiality 
and continuity. Berry introduced the stable ordering on stable functions and showed that it pos
sesses some natural and interesting properties. This investigation pointed out that other orderings 
than the usual extensional ordering on functions might be more suitable in achieving a satisfac
tory semantic treatment . However, Berry and Curien [BC82,Cur86] showed that the category of 
concrete domains fails to be cartesian closed when the morphisms in the category are taken to be 
the continuous functions, or the stable functions, or the sequential functions, between concrete do
mains; consequently, neither stabil ity nor sequentiality produces a sufficiently restricted notion of 
function to serve satisfactorily as the basis for a definition of exponent iat ion for concrete domains. 

Berry and Curien were able t o define an exponentiat ion for concrete data structures, by replacing 
functions by a notion of sequential algorithms. For deterministic C D S s , or D C D S s , the resulting 
category of D C D S s and sequential algorithms turns out to be cartesian closed. Furthermore, 
a notat ion for elements of D C D S s is a basis for a functional language CDSO, which is given a 
semantic model with several interesting properties: 

• T h e model is not extensional; a sequential algorithm may be viewed as a sequential input-
output function paired with a computat ion strategy. 

• T h e operational semantics is essentially based on an extension of Kahn-MacQueen's coroutine 
mechanism [KM77], employing lazy evaluation. 

• T h e semantics is fully abstract, with respect to a suitable notion of observability that is 
sensit ive t o computat ion strategy. 

• Observability extends uniformly to higher-order D C D S s . 

• D C D S constants are interpreted as themselves , thereby blurring the "syntax vs. semantics" 
dist inction. 

T h e Berry-Curien model of sequential algorithms provides deep insights into the nature of 
deterministic sequential computat ion. Although Berry and Curien also discussed briefly an at tempt 
to introduce non-determinism into their model [Cur86, section 2.7], they were unable to obtain a 
cartesian closed category. 

We report here an a t tempt to generalize Berry and Curien's sequential exponentiat ion con
struction so as to incorporate concurrency into the framework, while retaining the appropriate 
analogues of the above semantic properties. We believe that there are fundamental insights into 
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the semantic treatment of parallelism to be gained by doing this. We have made the decision to re
strict our at tent ion so far to deterministic computat ion, thereby allowing us to retain an essentially 
functional semantics . W e will, of course, allow non-determinism in the scheduling of computat ions; 
indeed, one of our object ives is t o improve on the original construction so as t o avoid unnecessary 
scheduling constraints . 

We hope ul t imately to achieve an appeal ing model of parallel computat ion . This is our first 
exposit ion of the genesis of this model. We present here a notion of parallel algorithm and a new 
parallel exponent iat ion for deterministic concrete data structures, and we formalize what it means 
to execute a parallel algorithm by defining a suitable application operation. We introduce currying 
and uncurrying operations and show that they have the expected properties. W e give a variety of 
examples to il lustrate the problems that arise when incorporating parallelism into this set t ing, and 
to demonstrate our solutions. 

We do not give proofs of our results here for lack of space, and in antic ipation of better for
mulations of the model , as it evolves. We also do not provide yet a formal operational semantics 
and a generalization of the programming language, a l though we do take care to supply informal 
and intuit ive mot ivat ion and justification for our ideas. Our exposit ion relies heavi ly on an infor
mal understanding of our intended operational semantics , and we supply the necessary informal 
explanations. Future work will provide formal details and present a parallel programming language 
based on these ideas together with an operational semantics . A major object ive of our research is 
to obtain a cartesian closed category suitable for model l ing parallelism. 

Readers familiar wi th Berry and Curien's work m a y proceed directly to section 2. In the 
remainder of this section we present briefly CDSs and their sequential exponent iat ion and product , 
as well as the definitions of stable and sequential functions. Here we follow the development 
of [Cur86] closely, and point out any changes we make. We omit parts of the development which 
m a y be derived as a specialization of our corresponding definitions and results. T h e operational 
semantics is presented only informally. 

In section 2 we present our parallel exponent iat ion of CDSs , beginning with our not ion of parallel 
algorithm. We explain carefully how our construction arises out of an a t t empt to generalize the 
Berry-Curien concepts to incorporate an intuitively appeal ing treatment of parallelism. W e also 
present "trim powerdomains", which arise naturally in the construction, and we define currying 
of parallel algorithms. In sect ion 3 we define an application operation, and a restricted notion of 
ground application. For a restricted class of CDSs , the filiform D C D S s , we are able to simplify 
the definition of application. Finally, we discuss the work remaining to be done, and directions for 
further investigation. 

1.1 CONCRETE DATA STRUCTURES 

DEFINITION 1.1.1 A concrete data structure, or CDS, ( C , V , E , h ) consists of 

• A set C of cells. 

• A set V of values. 

• A set E C C x V of events. 

• A n enabling relation h C Vfin(E) X C between finite sets of events and cells. 
For y C j i n E , we say that y is an enabling of c, or that y enables c, iff y h c. If { e i , . . . e^} h c 
we m a y write e\,... en h c. If 0 h c we may write h c, and say that c is initial. 
We denote events as pairs (c,v). We also use an alternative notat ion c = v in examples and 
discussions, but only the former in formal contexts . 
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Where necessary, we may subscript the,const i tuents of a C D S , so that for a CDS M we have 
M = ( C m , V m , E m , I~m). 

D e f i n i t i o n 1 .1 .2 For a C D S M , y C E M , and c € C M : 

• F ( y ) = ( c | ( c , v ) G 2/ f ° r some v } , cells filled in y. 

• E ( y ) = {c |y ' Hm c for some i/' Q 2/}, cells enabled in 

• A ( y ) = E(t/) \ F ( y ) , cells accessible in y. A cell is accessible iff it is enabled but not filled. 

• 

D e f i n i t i o n 1 . 1 . 3 For a CDS M and c ,c ' E C ^ , we say that c immediately precedes c' and c' 
immediately follows c, denoted c <Cm c', iff there exists an enabling y' Hm C' of M such that 
c G F(2/ 7). Taking the reflexive and transitive closure of <Cm, w ^ say that c precedes cf and c1 

follows c iff c < C ^ c\ 

A CDS M is well founded iff <Cm is well founded. • 

D e f i n i t i o n 1 . 1 . 4 For M a well founded CDS and y C Em-

• y is functional1 iff (c, v i ) , ( c ,V2) G y implies that v\ = ^2. 

• y is 5a /e 2 iff F ( y ) C E ( y ) . 

• 2/ is a 5<a^e of M iff it is functional and safe. 

And 'we define the following collections of sets of events: 

• £(M) = 'P(Em), the collection of sets of events of M. 

• ^"(M), the collection of functional sets of events of M . 

• 5 ( M ) , the collection of safe sets of events of M. 

• V{M) = T{M) n 5 ( M ) , the collection of states of M. 

We add a subscript to indicate finiteness of the sets of events involved, e.g, JTy t n(Af) for the 
collection of finite functional sets of events , and Vjin{M) for the collection of finite states of M. • 

We order £ ( M ) by set inclusion, obtaining a poset ( £ ( M ) , C ) . We also order functional sets of 
events and states by set inclusion, but denote the orders Cj? and C p , respectively, to emphasize 
the intended framework (and in anticipation of the possible need to generalize the order later). We 
denote the lub in these two posets as U r̂ and U p , respectively. We say that a poset is consistently 
complete iff every consistent (i.e- upper-bounded) subset has a least upper bound. We then obtain 
the following result for the posets (T(M),Cjr), ( P ( M ) , C p ) , and their finite versions. 

1 Berry and Curien use the term consistent instead of functional. We choose to use the latter term so as to avoid 
confusion with consistency in a poset. 

2We simplify the definition of safety by assuming a well founded CDS. The definition in [Cur86] requires that each 
cell filled in y have a linear deduction in y (w.r.t the enabling relation). This is then shown equivalent to having a 
tree-like proof in y, and, for a well founded CDS, to having an enabling in y. 
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P R O P O S I T I O N 1 .1 .5 Let M be a well founded CDS. Then the posets ( . ^ ( M ) , C ^ ) , (Tfin(M), Cjr), 
(Z>(M), C p ) and ( P / t n ( M ) , C p ) are a// consistently complete, with the empty set as minimal ele
ment, and set unions as least upper bounds. Lubs of a set of elements contained in any two of the 
posets coincide, provided they exist. 

( 2 > ( M ) , C p ) is in fact a concrete d o m a i n 3 . See [KP78] and [Cur86, section 2.2] for the repre
sentat ion theorem relating concrete domains and states of CDSs ordered by inclusion. 

D E F I N I T I O N 1 .1 .6 A well founded CDS M is stable iff for any s tate x and cell c enabled in x , c has 
a unique enabling in x, i.e. if y \~M c> V1 \~M c, and y,yf C x then y = y'. 

A CDS M is a deterministic C D S , or D C D S for short, iff it is well founded and stable. • 

For simplicity, we will work from now on exclusively with D C D S s , a l though some of the devel
opment could be carried out in somewhat more general terms. 

T h e gibs of consistent sets of states of a D C D S are just set intersections. 

P R O P O S I T I O N 1 .1 .7 For a DCDS M, if X is a consistent, non-empty, set of states of M, then CiX 
is a state of M, and it is the gib of X in ( D ( M ) , C p ) . 

E X A M P L E 1 . 1 . 8 T h e e m p t y D C D S N U L L has no cells, no values, no events , and an empty enabling 

relation: 

C N u U = V N u l l = E N u H = *~Null= 0 

Its only s tate is the e m p t y state 0 . • 

E X A M P L E 1 . 1 . 9 T h e D C D S B O O L has a single, initial, cell, which may be filled wi th values repre
senting the boolean truth values: 

• C B O O I = { b } 

• V B o o l = { t t , f f } 

• E B o o l = { b = T T , B = f f } 

• ^ B o o l b 

Its states are 0 , { B = T T } and { B = F F } , and thus ( D ( B O O L ) , C p ) is isomorphic to the conventional 

flat boolean cpo. • 

E X A M P L E 1 . 1 . 1 0 T h e D C D S N A T has a single, initial, cell, which may be filled with a natural 
number. We use IN for the set of natural numbers. T h u s , 

• ^ N a t = ( n ) 
• V N a t = IN 

• E N a t = { N = k | k 6 IN} 

• *"Nat N 

Its states are 0 and { N = k) for k £ IN, so that ( P ( N A T ) , C p ) is isomorphic to the conventional flat 
natural numbers cpo. • 

3 When suitable count ability requirements are imposed. 
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Figure 1: T h e poset ( 2 ? ( F o o ) , C p ) 

E x a m p l e 1 -1 .11 T h e D C D S F o o is given by: 

• C F O O = { a , b , c } 

• V F o o = { 0 , 1 , 0 , 7 } 

• E F O O = { a = 0 , a = l , b = /3,c = 7 } 

• ^Foo a> 
!""Foo b> 
a = 0 , b = f3 h F o o c, 
a = * ^Foo c 

Figure 1 presents the Hasse diagram for the poset of its s tates , X>(Foo). Note that F o o is stable, 
since the two distinct enablings of c are inconsistent and cannot co-exist in a state. • 

1 . 2 P r o d u c t o f D C D S s 

We define a binary product of D C D S s and a convenient representation for compound sets of events. 
First , we need a notat ion for tagging cells. If c is a cell of a D C D S M and i is a tag or label, we 

write c.i t o indicate the labelled version of cell c. Formally, c.i will be the pair (c, i ) , and in defining 
products we will use integers as labels. We extend the notat ion to sets of cells and of events, so 
that , for C C CM and y G £ ( M ) , C.i = {c.i\c G C} and y.i = {(c.i, v ) | (c , v) G y}. 

D e f i n i t i o n 1 .2 .1 For M\,M2 D C D S s , define the product of M\ and M 2 , denoted by M\ x M 2 , as 
follows.: 

C e l l s C M I X M 2 = C M r l u C M 2 . 2 
V a l u e s V M l X M 2 = V M L U V M 2 

E v e n t s E M I X M 2 = E M I • 1 U E A / 2 .2 
E n a b l i n g s For z = 1,2 . y.z f"A/ lXAf2 c.i iff y hjv/. c 
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Define the pair of z\ G £ ( M i ) and z2 G £ ( M 2 ) to be 

(z\,Z2) = z i . L U z 2 - 2 G f ( A f x X M 2 ) 

As a notat ional convention, we will use x , y, etc. to denote such compound sets of events . 
Define the projections fst and snd 

fst : £ ( M i X M 2 ) — f ( M i ) 
snd : f ( M i X M 2 ) -> 5 ( M 2 ) 

by 

f s t ( ( Z I , Z 2 ) ) = *1 
s n d ( ( z i , z 2 ) ) = z 2 

We let X associate to the right, so that 

M i X M 2 X M 3 = M i X ( M 2 X M 3 ) . 

T h e product trivially preserves well foundedness and stability. 
Pairing preserves functionality, safety and finiteness: 

P R O P O S I T I O N 1 . 2 . 2 z G £(Mi X M 2 ) iff3zx G £ ( M i ) , * 2 G £ ( M 2 ) . f = (zuz2). 
Ifz= ( ^ i , ^ 2 ) , tfien 

• z is functional iff for i = 1,2, zt- IS functional. 

• Z IS SA/E I/F for i = 1,2, Z,- is safe. 

• £ IS finite iff for i = 1,2, zt- IS finite. 

In particular, a pair of (finite) states is a (finite) s tate of the product , and a pair of (finite) 
functional sets of events is a (finite) functional set of events of the product. As a corollary, the 
projections preserve functionality, safety and finiteness (and thus stateness and finite stateness) of 
their arguments . 

E X A M P L E 1 . 2 . 3 T h e D C D S B O O L X B O O L is given by: 

• C BOOLXBOOL = { B - L > b - 2 } 

• V BOOLXBOOL = { T T , F F } 

• E B O O I X B O O I = { B . L = T T , B . L = F F , B . 2 = T T , B . 2 = F F } 

• ''"BOOLXBOOL B . L , 

•""BOOLXBOOL B - 2 

It has 9 s tates , one of which is ( { B = T T } , { B = f f } ) , alternatively denoted by { B . l = t t , B . 2 = f f } . 
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1 . 3 S t a b l e a n d S e q u e n t i a l F u n c t i o n s 

We may now define stabil i ty and sequentiality of functions between (the collections of states of) 
D C D S s . T h e concreteness of D C D S s allows a definition of sequentiality that uses the cells of a 
concrete data structure in a manner similar to the use of occurrences of a syntactic term in a 
"syntactic" definition of sequentiality [Plo77]. 

D e f i n i t i o n 1 .3 .1 Let M and M ' be two D C D S s . A continuous function / from V(M) to V(M') 
is stable if for any x G V(M) and x' Qv(M') f(x) there exists a s tate x , x ' ) G V(M), such 
that , for any Z Qv{M) x> x' Qv(M') f(z) iff M(f,x,x') C P ( M ) Z. 

T h a t is , there must exist a minimal s tate M ( / , x , x ' ) below x on which / attains or surpasses 
x'. 

D e f i n i t i o n 1 .3 .2 Let M and M' be two D C D S s , and x G V(M). A continuous function / from 
V(M) to V(Mf) is sequential at x if, for any c' G A ( / ( x ) ) , one of the following holds: 

(1) Either A ( x ) = 0, and thus x has no super-state; 4 

(2) Or there exists some c G A ( x ) that must be filled in any y that increases x such that c' is 
filled in f(y), that i s -

3c G A ( x ) . Vy G V(M) . x Cv y & c' G F(f{y)) = > c G F(y) 

If case (2) holds, then a c G A ( x ) as described there is a sequentiality index of / at x for c'. 
Such a cell c is a strict sequentiality index if there does exist a y that increases x wi th c' filled in 
/ ( » ) • 

D e f i n i t i o n 1 . 3 . 3 A function / : V(M) - * is 

• sequential if it is continuous and it is sequential at all x G P ( M ) . 

• strictly sequential if it is sequential and, for any x G P ( M ) and c' G A ( / ( x ) ) , / has a strict 
index at x for c', that i s - it is always possible to increase x to y such that cf G F(f(y)). 

• strongly sequential ii it is sequential and, for any x G 2?(M) and c ; G A ( / ( x ) ) such that / has 
a strict index at x for c', this index is unique. 

E x a m p l e 1 . 3 . 4 Define the strict or function by: 

sor : P ( B o o l x B o o l ) -* P ( B o o l ) 

s o r ( ( { b = « } , { b = «}» = {b = t t } 
sor({{b = t t } , { b = «») = {b = t t } 
s o r ( ( { b = f f } , {b = «») = {b = t t } 
s o r ( ( { b = « } , { b = «») = {b = « } 

4 The definition in [Cur86] uses instead: 

(l 7 ) C' is not filled in F(Y) for any Y above X, that is-

Vy G V(M) . XCVY^C $ F(/(y)) 

The overall definitions (1, 2) and 2) are equivalent, but we prefer to use (1), since it is disjoint from (2). 



where, for any omit ted cases, sor returns 0 . 
sor is stable and sequential. It has both b . l and b . 2 as sequential ity indices at 0 for b. • 

E x a m p l e 1 .3 .5 Define the parallel or function by: 

por : Z>(Bool X B o o l ) - * D ( B o o l ) 

por(( 0 , {b = t t » ) = {b = t t } 
p o r ( ( { b = T T } , 0 )) = {b = T T } 
p o r « { b = f f } , {b = f f } ) ) = { b = f f } 

where any omit ted cases m a y either be inferred by monotonicity, or else are taken to return 0 . 
por is neither stable nor sequential — it has no sequentiality index at 0 for b; and there is no 

unique minimal s ta te of B o o l X B o o l below ( {b = T T } , {b = T T } ) for which por attains {b = T T } , 
thus no s tate of B o o l X B o o l can serve as M ( p o r , ( {b = T T } , {b = T T } ) , {b = T T } ) . • 

Sequentiality of a function implies stability. T h e converse, however, does not hold. 

E x a m p l e 1 . 3 . 6 We define gf, a variant of "Gustave's function" (attributed to Berry [Ber78] by 
Huet [Hue86]) by: 

g f : 2 > ( B o o l X B o o l X B o o l ) X>(Bool) 

g f « { b = t t } , ( { b = f f } , 0 ») = {b = t t } 
g f « 0 ,<{b = t t } , { b = «}») = {b = t t } 
g f « { b = f f } , < 0 , {b = «}») = {b = t t } 
g f « { b = f f } , ( { b = f f } , { b = « » » = {b = f f } 

where any omit ted cases m a y either be inferred by monotonicity, or else are taken to return 0 . 
Note that g f is s table , but not sequential — it has no sequential ity index at 0 for b. • 

T h e D C D S s and sequential functions form a cartesian category (i .e. product-closed) , but it is 
not cartesian closed (because the collection of all sequential functions from a D C D S to another 
need not form a D C D S ) . T h e same is true for D C D S s and stable functions, and for D C D S s and 
continuous functions. 

1 . 4 S E Q U E N T I A L E X P O N E N T I A T I O N O F D C D S S 

Having defined sequential functions between D C D S s , we now proceed to define sequential algo
rithms between D C D S s , which may be viewed abstractly as a sequential function plus a computa
tion strategy for that function. T h e function is embodied in the algorithm's input-output behavior, 
and the computat ion strategy is embodied in the choice of the sequential ity index to be computed. 

Operationally, the computat ion is demand driven so that , for instance, an external observer's 
information about the result of an application may be gradually increased by filling out the cells of 
the result s tate , wi th each demand for the value of a cell spawning a new computat ion (which may 
or may not terminate) . T h e algorithm's events then associate wi th each current input s tate x and 
demand for computat ion c' a command which either outputs a value v1 for the demand, or a t tempts 
to increase the information known about the input by issuing a demand for computat ion of some 
cell c in the input s tate . This c, naturally enough, is a sequentiality index of the sequential function 
at x , so that the choice of c among all sequentiality indices at x (if not unique) determines the 
computat ion strategy. T h e sub-computat ion of c in the input state , or in the argument expression 
in a more general sett ing, proceeds in the same manner: hence the overall coroutine flavor. 

More formally: 
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D e f i n i t i o n 1 .4 .1 Let M and M' be D C D S s . We define their sequential exponentiation M -^Seq Mf 

as follows, where we let M— abbreviate M -^Seq M'. 

C e l l s C M ^ = Vfin(M) x C M ' 
A cell consists of an input s tate x G Vjin(M), describing the currently known information 
about the argument, and a request for the computat ion of a value for a result cell c' G C M ' -
We m a y denote a cell ( x , c ' ) G C M ^ as xc'. 

V a l u e s VM-~ = { v a l o f c|c G C M } 
U { o u t p u t v'\v' G VM*} 

Values are commands , either an output command, or a valof command meant to increase the 
information available about the argument. 

E v e n t s E M ^ = { ( x c 7 , v a l o f c) G C M ^ X V M _ J C G A ( X ) } 
U { ( x c ' , o u t p u t v') G C M - . X V M J ( C ' , Z / ) G E M ' } 

Output events correspond to events in M'. 

A valof event is an at tempt to increase the current input s tate at an accessible cell. 

E n a b l i n g s 

Va lo f : (xc' , v a l o f c) V^' iff y = X UJ? { ( C , V)} for some v. 

In a valof enabling the current input s tate is increased by filling c. 

O u t p u t : {(xjc'j, o u t p u t t > j ) } j = 1 I ~ M _ xc' iff {(c£, v'j)}j-i ^~Mf c' and x = U p ^ = 1 X j . 
A n output enabling corresponds to an enabling in M ' , where the enabled cell incorporates 
all the current s tate information of the enabling cells. 

We call a s tate of M —*3eq M1 a sequential algorithm. 
For a G V(M -+3eq Mf) and x G V(M), let the sequential application of a to x , denoted a -seq x, 

be given by 

a 'seq x = { ( c ; , (2/c7, o u t p u t v') G a & t/ C p x } . 

Sequential exponent iat ion preserves well foundedness and stability, and sequential application 
is well defined. T h e category of D C D S and sequential algorithms is cartesian closed. 

In presenting examples of algorithms, we will make use of a few abbreviations and notational 
conventions to avoid the proliferation of parentheses and commas . This notat ion is chosen to 
display the structure of algorithms in what we hope is a more readable manner. Later we will 
generalize the notat ion to the parallel sett ing. Recall that a sequential algorithm is defined as a 
s tate , i.e. a set of events; the events are cells paired with commands; cells are (finite) input states 
paired with result cells; there are two types of command: v a l o f and o u t p u t commands . A n event 
( ( x , c ' ) , u ) of an algorithm a may be abbreviated to xc1 = u\ we may choose to list the member 
events of a vertically. We also use the display notation in a recursive fashion: within each event 
xc1 = u of a we list the elements of the state component x vertically. Here now are some examples. 

E x a m p l e 1 . 4 . 2 Figures 2 and 3 present two sequential algorithms to compute the strict or func
tion. T h e y have the same input-output function, namely sor (example 1.3.4), but differ in their 
choice of which sequentiality index to compute first. 

Figures 4 and 5 present two sequential algorithms for non-strict or. T h e y compute respectively 
the lor- non-strict left or function, and ror- non-strict right or function. We demonstrate that they 
have different input-output functions: 
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l s o r € £ > ( B o o l X B o o l - + s e q B o o l ) 

0 b = v a l o f b . l 

b . l = t t ) b = v a l o f b . 2 

b . l = t t 

b . 2 = t t 

b . l = t t 

l s o r = < ^ b . 2 = f f 

' b . l = f f j > b = v a l o f b . 2 

b . l = f f 

b . 2 = t t 

b . l = f f 

b . 2 = f f 

b = o u t p u t t t 

b = o u t p u t t t 

b = o u t p u t t t 

b = o u t p u t f f 

Figure 2: T h e left strict or sequential algorithm 

r s o r G P ( B o o l x B o o l - + s e q B o o l ) 

0 b = v a l o f b . 2 

{ b . 2 = t t } b = v a l o f b . l 

b . l = t t 

b . 2 = t t 

b . l = f f 

r s o r = < b . 2 = t t 

' b . 2 = f f } > b = v a l o f b . l 

b . l = t t 

b . 2 = f f 

b . l = f f 

b . 2 = f f 

b = o u t p u t t t 

b = o u t p u t t t 

b = o u t p u t t t 

b = o u t p u t f f 

Figure 3: T h e right strict or sequential algorithm 

l o r € 2 > ( B o o l X B o o l - * , c g B o o l ) 

0 b = v a l o f b . l 

| b . l = t t } b = o u t p u t t t 

J b . l = f f } b = v a l o f b . 2 

l o r = < ( b . l = f f 

b . 2 = t t 

b . l = f f 

b . 2 = f f 

b = o u t p u t t t 

b = o u t p u t f f 

Figure 4: T h e non-strict left or sequential algorithm 
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r o r 

r o r G P ( B o o l X B o o l - > 5 e g B o o l ) 

0 b = v a l o f b.2 

I b . 2 = t t } b = o u t p u t t t 

| b . 2 = f f | b = v a l o f b . l 

»r = < f b . l = t t [ 

I i U r b = o u t p u t t t 

b = o u t p u t f f 

Figure 5: T h e non-strict right or sequential algorithm 

l o r - s e q { b . l = t t } = {b = t t } 
r o r - s e q { b . l = t t } = 0 

And finally we present Berry and Curien's formalization of the view of a sequential algorithm 
as a pair consist ing of a sequential function together with a way of comput ing it: 

P r o p o s i t i o n 1 . 4 . 3 For M and M' DCDSs, 

• Let S E Q ( M , M ' ) be the sequential functions from V(M) to V(M'). 

• Let <s be the stable ordering of stable functions, i.e. for any stable functions f and g from 

Vx G D . x' < ' f(x) =• M(f,x,x') = M(g,x,x'). 

• And let =e be extensional equality of sequential algorithms, i.e. for all a, a' G V(M -+Seq Mf), 
a =e a* iff a -5eg x = a' -seq x for all x G V(M). 

Then(V(M -+Seq M')/ = e , C p / = e ) and ( S E Q ( M , M ' ) , < 5 ) are isomorphic, and, in particular, 
application is sequential in its second argument. 

So far we have summarized enough of the definitions and results of Berry and Curien's work on 
sequentiality to establish a coherent background from which to develop our ideas on parallelism. 
W e will begin to explain the genesis of our ideas in the next section. 

2 Parallel Exponentiation of DCDSs 
We would now like to generalize the sequential exponentiat ion so as to be able to express algorithms 
for non-sequential functions, such as por, while retaining as far as possible suitable analogues to 
the other properties of sequential exponentiat ion. Why, then, are sequential algorithms sequential? 
From an operational v iewpoint , the reason seems t o be that a valof command may only start 

(£>,<) to (£>',<'), f<° g iff 

VieO. f(x) <' g(x) 
and 
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one sub-computat ion , and only after it returns may the main computat ion proceed. If that sub-
computat ion happens to be non-terminating then the whole computat ion is non-terminating. This 
is precisely why the cell named by a valof is an index of sequentiality. 

A natural first s tep towards a generalization, then, would be to have the valof command start a 
number of sub-computat ions , with the understanding that not all of them have to terminate before 
the main computat ion may resume. Suppose, then, we allow commands of the form v a l o f s , where 
s is a set of cells of the relevant D C D S . For the por function, using this informal extension of the 
notat ion for sequential algorithms, this would result in the event 

0b=valof{b . l ,b .2} , 

describing the intention to begin two sub-computat ions , one for each of the cells b . l and b.2. A 
problem now seems to be that there is no way to determine what responses for the values of b . l and 
b.2 would let the main computat ion proceed without , perhaps, wait ing for the termination of all the 
sub-computat ions . For instance, in a p o r algorithm, we would like to allow the main computat ion 
to proceed (issue the output value t t ) once either of the two sub-computat ions terminates wi th the 
value t t ; there is no need to wait for termination of both sub-computat ions when this happens. 
Thus , in the p o r example , we would like to enable the input states { b . l = t t } , {b .2 = t t } , and 
{ b . l = f f , b . 2 = f f } , obtaining an algorithm that looks like 

0b=valof { b . l , b . 2 } ] 

b . l = t t J b = o u t p u t t t 

b . 2 = t t J" b = o u t p u t t t 

b . l = f f 1 . . _ _ 
b 2 = f f f b = o u t P u t f f 

But there are other states which m a y also claim to be enabled, if we were to continue to use 
the notion of enabling that was presented earlier for sequential algorithms. Some of these states 
are superfluous, in the sense that , for instance, addition of the event 

f b . l = t t 1 
\ b . 2 = f f J 

o u t p u t t t 

to the algorithm above yields a different algorithm with the same intended operational se
mantics , possibly impairing full-abstraction. T h e extra event is superfluous in that it contains 
information (about b.2) that is not crucial to the operational behavior given the rest of the infor
mat ion that is known (here, b . l = t t ) ; the algorithm already describes what should happen next 
when this much is known. 

Similarly, we argue that "partial" states should not be deemed to be enabled, where by par
tiality we mean that the main computat ion m a y not yet proceed, but must continue to wait for 
additional sub-computat ions to terminate. In our example these states would be { b . l = f f } and 
{b .2 = f f } ; neither of these states is sufficient for triggering a command in the p o r algorithm. 
B y not regarding such states as enabled in the algorithm, we do not have to include events like 
{ b . l = f f } b = v a l o f b.2 in the description of the p o r algorithm. 

In any case, using valof commands simply involving sets of cells is not adequate because it does 
not include all of the necessary information. T h e solution we adopt is a further generalization of 
the valof command. Rather than having it ask about values of cells or even sets of cells, we have 
it proposing alternative functional sets of events, or branches, of which one corresponding to the 
input is to be chosen. T h e operational reading should still b e that sub-computat ions are started for 
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each of the cells mentioned, but now the point at which the main computat ion m a y be resumed and 
the remaining uncompleted sub-computat ions may be discarded is precisely defined: each branch 
specifies a sufficient condition for such a resumption. For our example we need three branches, 
{ b . l = tt}, {b .2 = tt}, and { b . l = ff, b.2 = ff}, corresponding to the input states we would like 
to enable. 

Our tentat ive p o r algorithm now takes the form 

0b=query 
b.l=tt 
b.2=tt 
b.l=ff 
b.2=ff b=output tt 

b=output tt 
b=output f f 

where the b o x encloses the set of branches, or query. We also change the name of the command 
from valof t o query in order to emphasize the distinction. The query command in its final form 
will turn out to be a combinat ion of generalized valof and output commands . 

We impose the restriction that a query contain no additional superfluous branches, such as 
{ b . l = tt,b.2 = ff}, for our example. Such branches make no sense operationally, and, as pointed 
out above, m a y impair full abstraction. T h e superfluous branches are precisely those which are 
supersets of other branches, and so we require of a query that it have no two branches that are 
related by set inclusion. We call queries satisfying this restriction trim, and formulate later the 
not ion of a trim powerdomain of functional sets of events , t o which the queries belong. 

We will also impose another intuitively natural restriction on queries: that the empty branch 
is not allowed, since a query containing the empty branch (and by trimness this would be the only 
branch) need not be issued at all. 

We now address the problem of selecting a branch. Obviously, there is no problem for branches 
which are not cons i s tent 5 , since only one of them may be satisfied by the input state . But several 
consistent branches m a y match a given input state . If each such branch enables a distinct cell, 
then we could associate with it a distinct command, and thus obtain a non-deterministic relational 
s emant i c s 6 . Consider, for example, the following variation on the tentat ive p o r algorithm (which 
is no longer intended to compute por proper): 

Consistency of branches is taken to mean consistency in (TFTN(M), CJR) for the appropriate M. That is, two 
branches are consistent iff their union is functional. 

6 , 6 Assuming that the selection of the branch taken is non-deterministic. 
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0b=query 
b.l=tt 
b.2=tt 
b.l=ff 
b.2=ff b=output tt 

b=output f f 
b=output f f 

For an input s tate { b . l = tt,b.2 = tt} the resulting output s tate could be either {b = tt}, or 
{b = f f}, depending on which of the two relevant branches was chosen. 

We choose, however, to limit ourselves to a deterministic, functional semantics . We do this by 
not having each branch enable a cell, but , rather, by having each equivalence class of branches of 
a query enable a cell, wi th equivalence defined to be the transitive closure of the (restriction to 
the query of the) consistency relation. Transitivity is needed to ensure that no matter which two 
consistent branches satisfy the input, they will be bundled together for the purpose of enabling a 
common cell. 

Therefore the exponent iat ion cells, rather than consisting of a state, representing the current 
input s tate , and a result cell, now consist of a class and a result cell; a class consists of several 
(representations of) current input s tates , each containing the information of a branch from the 
chosen equivalence class and of a previous input s tate representation, from the previously enabled 
cell. This conglomeration of equivalent current input states makes it impossible (for the algorithm, 
or any external observer of its behavior) to determine which specific branch was taken, and thus we 
achieve a deterministic functional semantics , without making any assumptions about the selection 
of a branch among several consistent branches. We believe that this is a crucial aspect , since, 
in more general terms, if the algorithm, or computat ional agent, has a means of tell ing apart 
consistent possibilities which are satisfied by the environment, then it may reflect non-determinism 
in scheduling by the environment as non-deterministic behavior on its part. W e would argue that 
it is necessary to equate all such equivalent possibilities in order to get a properly deterministic 
notion of behavior. 

Here, then, is our next tentat ive version of por , where the two consistent branches { b . l = tt} 
and {b.2 = tt} enable the same cell: 

0 p=query 

p=output tt 

p=output f f 
Classes are also enclosed in boxes . 
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Analogously to queries, and for the same reasons, we require that classes belong to a trim 
powerdomain of states . 

T h e introduction of classes with multiple states , though, introduces a new consideration, related 
to currying. T h e elements of a class of an uncurried algorithm will be compound states of a product 
of D C D S s . W h e n currying such an algorithm we must take care to preserve the relationship 
between components of these compound states , so that , for instance, uncurrying would yield back 
the original algorithm. T h e currying must take place at the level of the class element. Each element 
of a class must therefore include, in a suitable representation, all the information content that may 
be necessary for currying. T h a t is, class elements must encompass s tate components from all the 
possible arguments . Our definition of exponentiat ion must then provide such a representation, and 
currying and uncurrying will be simple transformations of the representation. 

We now proceed to define formally the concepts behind the above intuit ions. 

2.1 T R I M POWERDOMAINS 

As mentioned above, we will not allow just any collection of states or functional sets of events to 
serve as classes and queries, respectively. We impose a requirement that , for such a collection to 
be valid, it must b e non-empty, and no two elements of it m a y be related (by set inclusion, in our 
concrete case) . 

To motivate an ordering for our powerdomain construction, consider classes as assertions about 
the input s tate , with each class a disjunction of conjunctions, so that the information about the 
input s tate may be increased by reducing the number of disjuncts a n d / o r increasing the number 
of conjuncts in one or more of the disjuncts. 

Here is the formalization, for a general poset: 

DEFINITION 2 . 1 . 1 For (D,<) a poset , define its trim powerdomain, denoted by (Vt(D),C.), as 
follows: 

• p G Vt(D) iff 

- p C D & 

- p is non-empty & 

- ( TRIM) : N o two elements of p are related by < , that i s -

£ i > £ 2 G p Sz Xi < x2 xi = x 2 

• Pi Q P2 iff V x 2 G p2 . 3 x i G pi . x i < x 2 

T h e • relation is the Smyth preorder on V(D), and it is a partial order on Vt(D). If J_£> is a 
least e lement of (D, < ) then (Vt(D), C) has a least e lement {-LD} • 

Our construction of the trim powerdomain is essentially identical to the S m y t h powerdomain 
[Smy78], but rather than dealing directly with the equivalence classes, we take canonical represen
tat ives , chosen for their trimness. It is important to note, however, that we allow infinite subsets of 
D in our powerdomain, because natural algorithms such as the identity algorithm on NAT involve 
infinite queries. 

DEFINITION 2 . 1 . 2 For (D,<) a poset and Y C D, Y is consistent in D, denoted ftp Y, iff it 
has an upper bound in D. This also defines a binary consistency relation ^£>, on D, namely, 
Vi 1tD V2 iff { 2 / 1 , 2 / 2 } • • 

15 



D e f i n i t i o n 2 . 1 . 3 For 5 a set and P C V(S) a collection of subsets of S , define 

f ? = { i c u P | V p G P . p n X # 0 } 

\PP is the collection of cross-sections, or possible representative choices, of the family P. • 

Consistency for a subset of a trim powerdomain coincides with the property of having a consis
tent cross-section, in the following sense: 

L e m m a 2 . 1 . 4 ( C o n s i s t e n c y L e m m a ) For any P C Vt(D), 

1 W ) p {ff 3 X G * p • to x -

We define a useful map that , for p € V(D), returns the set of minimal e lements of p. 

D e f i n i t i o n 2 . 1 . 5 For (D,<) a poset , define 

trim : V{D) -+ Vt(D) U { 0 } 

by 
Vp C D . trim(p) = {x € p | W € p . x' < x =• x1 = a;} 

N o t e that if (D, < ) is well founded then, for any non-empty subset P of D, t r i m ( P ) e *Pt{D). 
We now use this map to get an explicit formulation of lubs and gibs in the trim powerdomain. 

We limit ourselves to well founded posets. 

P r o p o s i t i o n 2 . 1 . 6 For (D,<) a well founded poset, and any non-empty subset P of the trim 
powerdomain Vt(D), UP exists, and HP = t r i m ( U P ) . 

P r o p o s i t i o n 2 . 1 . 7 If(D,<) is a consistently complete and well founded poset then (Vt(D),C.) is 
consistently complete. Moreover, for any consistent subset P C Vt(D), 

UP = t r i m ( { v X | X e VP & HDX}), 

where V is the lub in (D, <). 

Note that for P = 0 the above reduces to U 0 = { V 0 } = { J - D } = -LvT(D)-

2 . 2 A F e w P r e l i m i n a r i e s 

For the purposes of defining exponent iat ion we will mainly be interested in the trim powerdomains 
formed over {Tjin(M), C ^ ) and ( P / t n ( M ) , C p ) for a D C D S M . It is from these trim powerdomains, 
denoted {Vt{Tjin{M)), Qjr) and (Vt(Vf{n(M)), C p ) , that we will draw our queries and classes, 
respectively. We use similarly subscripted versions of U for the lubs in these trim powerdomains. 
We also use additional trim powerdomains, such as (Vt(£(M)), C ) , to give more general definitions. 

Note that for any D C D S M, the posets (£fin(M), C ) , ( ^ > m ( M ) , C ^ ) and (Vfin(M), Cv) are 
well founded, due to finiteness, and thus we can use the results relating to lub and gib in the trim 
powerdomains. W h e n they exist , the lubs for the trim powerdomains built over these three posets 
coincide (just-observe that the lubs in the underlying posets are all set unions) . 

We give here some preliminaries relating to these trim power domains . 
We extend the notions of a cell being filled, enabled and accessible in a set of events to collections 

of sets of events in a natural way. 
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D e f i n i t i o n 2 . 2 . 1 For M a CDS and q G VT(8(M)): 

• F(q) = U y € g F ( y ) . A cell is filled in q iff it is filled in any of g's elements. 

• E(g ) = Ciy£qE(y). A cell is enabled in q iff it is enabled in all of g's e lements . 

• A(q) = E(q) \ F(g) . A cell is accessible in q iff it is enabled in q, and is not filled in q. 
A n equivalent definition is A(q) = n y € g A ( y ) . A cell is accessible in q iff it is accessible in all 
of qJs e lements . 

We define, in general, equivalence over a subset of a poset , meant to capture the above mentioned 
equivalence of branches in a query, the query being regarded as a subset of the poset (JF/ z - n (M), CJR) 
for the appropriate M. 

D e f i n i t i o n 2 . 2 . 2 For ( £ > , < ) a poset , F C D , let fty be the restriction of the binary consistency 
relation ftr> to Y , i.e., YX fty 2/2 iff 2/1 1TD 2/2 and Y\,Y2 G Y . 

Define the relation of equivalence on Y , denoted « y , to be f |y , the transitive closure of ffy. 
Thus , Y « y y' iff there is an n > 0 and a chain in Y such that 

Y = 2/0 fty 2/11>y • • * FAR 2/n = 2/'-

This relation « y is indeed an equivalence relation on Y . We denote by [y]y the equivalence 
class of Y in Y , and by Y / « the collection of all such equivalence classes. • 

Now define a covering relation that is intended to capture the enabling of a cell by an equivalence 
class of branches in a query, as proposed in the discussion above. 

D e f i n i t i o n 2 . 2 . 3 For M a D C D S , and q\,q2,q G Vt(Tfin(M)), we say that q2 q-covers or that 
qi is q-covered by q2, denoted q\-<q q2, iff 

32/ € q . q2 = qi [Y]Q 

where [Y]Q is the « g equivalence class of Y in q, as defined above. • 

We will use the covering relation solely in cases where qi and q2 are actually classes. The 
following proposit ion states that if pi~<q p2 with p\ a class and q a query about cells that are 
accessible from pi, then p2 is itself a class, and, further, we have a simplified explicit formulation 
of p2 that does not make use of the trim mapping. 

P r o p o s i t i o n 2 . 2 . 4 If P l G Vt(Vfin(M)), q G Vt(Tjin{M)), F(q) C A ( p i ) , and P l - < q p2, then 
P2 £ *PtCDfin(M)), and there is a branch Y G q such that 

p2 = {a?i UJRY'\xi G Pi ,2/ ' G [Y]Q}. 

E x a m p l e 2 . 2 . 5 For the above tentative example for por , the query, call it q, has two equivalence 
classes, 

{ { b . l = t t } , { b . 2 = t t } } 

and m 

{ { b . l = f f , b . 2 = f f } } 
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participating, respectively, in the following covering relations: 

{ « } - < * { { B . I = TT}, {B.2 = TT } } 

and 

W -<G {{B.L = FF,B.2 = « » 

And finally, before turning to the exponent iat ion itself, we define the representation and base 
maps , needed to facilitate currying. 

DEFINITION 2.2.6 We define two maps , rep and base, from CDSs to CDSs . If a CDS M is not 
an exponent iat ion, we call it a basic CDS, and let r e p ( M ) = NULL and b a s e ( M ) = M. For an 
exponent iat ion M —• M ' , we let 

r e p ( M -+ M') = M x rep(M') 
b a s e ( M - ^ M ' ) = b a s e ( M ' ) . 

Strictly speaking, we should define an algebra of CDS names t o serve as a type system, so that 
the above maps may be defined by structural induction. Different interpretations of —• would then 
let us talk about sequential and parallel exponentiat ion. B u t , having pointed this out , we proceed 
on the assumption that D C D S s are finitely generated, and that rep(M' ) and b a s e ( M ' ) may, be 
taken as inductively determined for the purpose of forming M —• M ' . 

It is the definition of rep that calls for x associating to the right. In turn, we define rep this 
way to correspond to the argument structure of the exponent iat ion, in that for instance if MQ is 
basic, the D C D S Mk —• • Mi - * Mo has for its representation the D C D S Mk X • • • Mi x NULL 
and MQ for its base. 

2.3 E X P ONENT IATION 

We m a y now give the generalized definition of exponentiat ion. 

DEFINITION 2.3.1 Let M and M1 be D C D S s . Let M_> abbreviate M M ' , let M x abbreviate 
r e p ( M —• M ' ) and let M 0 abbreviate b a s e ( M M ' ) . Define the D C D S M -* M' as follows: 

CELLS C M ^ = Vt(Vfin(Mx)) x C M o 

A cell of the exponent iat ion consists of a trim and non-empty class of finite states of the 
representation D C D S , and a basic cell. 

Notation: We m a y denote an element (p, c) of CM— SIS pc, and an element ( x , c) of 2 > / i n ( M x ) x 

CA/O A S 

VALUES VM^ = {QUERY q\q € Vt(Fjin(Mx)) & 0 ^ q} 
U{OUTPUT v\v G VMQ) 

Values are commands , either an output command involving a basic value, or a query command 
involving finite functional sets of events — branches — of the representation D C D S . A query 
must be trim and non-empty, and may not contain the empty branch. 
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E v e n t s E M ^ = { ( p c , q u e r y q) G C M _ X V M J F ( $ ) C A(p)} 
u { ( p c , o u t p u t v) G C M - X V M _ | ( C , V ) G E M 0 } 

Output events correspond to events in the base D C D S . 
A query event for a cell pc may only issue a query q that concerns cells that are accessible 
from p; this is a request to increase the information known about the input state . 

E n a b l i n g s 

Q u e r y : ( p c , q u e r y q) \~M^ p'C iff p-<q pf. 
A query enabling is determined by the covering relation. T h e enabled cell increases the 
enabling cell by an equivalence class of the query. 

O u t p u t : { ( p j C j , o u t p u t Vj)}k

j=1 pc iff {(CJ, V j ) } j = i ^MQ c and p = Uv

k

jz=1pj. 
An output enabling corresponds to an enabling in the base D C D S . T h e enabled cell 
incorporates all the information of the enabling cells. 

We call a s tate of M —• M' a parallel algorithm, or just an algorithm. ' • 

Note that an initial cell of M —*• M' is of the form {0}c , with c an initial cell of M0. 
Our usage of a representation D C D S is necessitated by our demand to represent together 

information about all possible arguments , so that b a s e ( M ) must never be an exponentiat ion, for 
any M. There is , in general, a difference between M —• M' and r e p ( M —* Mf) —» b a s e ( M —* M ' ) , 
al though they are isomorphic, and will be related by the currying transformations. 

Exponent ia t ion preserves well foundedness: 

P r o p o s i t i o n 2 . 3 . 2 For any DCDSs M and M', M -> M' is a well founded CDS. 

T h e proof relies on well foundedness of ( ' P t ( D / t n ( r e p ( M -+ and this relies on the 
finiteness of the states involved. ( T h e possible existence of infinite sets in a trim powerdomain is 
irrelevant to this consideration.) 

Before proceeding to show that exponentiat ion preserves stability, we give a few examples . 

E x a m p l e 2 . 3 . 3 Here are the representations and bases for several D C D S s : 

r e p ( B o o l ) = N u l l 
b a s e ( B o o l ) — B o o l 

r e p ( B o o l - * B o o l ) B o o l x N u l l 
b a s e ( B o o l —• B o o l ) = B o o l 

r e p ( B o o l —• B o o l —• B o o l ) — B o o l x B o o l x N u l l 
= 

B o o l x ( B o o l x N u l l ) b a s e ( B o o l —• B o o l —• B o o l ) B o o l 

r e p ( B o o l x B o o l —• B o o l ) ( B o o l x B o o l ) x N u l l 

b a s e ( B o o l x B o o l -> B o o l ) 
B o o l 

E x a m p l e 2 . 3 . 4 Figure 6 finally presents the parallel or algorithm. 
Here we extend the display notat ion as follows. Classes and queries are framed in boxes , with 

their e lements , compound sets of events , stacked vertically. We use a shorthand notation for pairs, 
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por € I>(Bool x Bool -» Bool) 

query 

por [| b.i=« |] b 

[{ b.2=tt }] output tt 

i }i > output ff 

Figure 6: T h e parallel or algorithm 

denot ing 0 6 £(Null) as [], and denoting (y0, [ y i , . • - Vd]) as [y 0 , yij-^Vd] for d > 0. We will only 
use this notat ion at the topmost l eve l - e lements of classes and quer ies - so as to stress our use of 
a representation, and t o differentiate between pairs in P / t n ( r e p ( M —• M')) and pairs that arise 
when M itself is a product. 

Note that [ | b.l=tt j] and [ | b.2=tt j] are consistent and hence equivalent branches in the 
query. Thus they are "coerced" into enabling the same cell 

which ensures that the algorithm cannot determine which of the branches was satisfied, and 
must act deterministically. In particular, we have no way of expressing the non-deterministic 
algorithm suggested on page 14. • 

Example 2.3.5 Figure 7 presents the algorithm for the function gf. For convenience of presenta
tion, we use here a shorthand notat ion for cells of Bool X Bool X Bool, with b l for b . l , b2 for 
b.1.2 and b3 for b.2 .2 . 

Note that equivalence is discrete on the query of gf, i.e. all pairs of branches in the query are 
inconsistent. Here is a variant of gf for which this is no longer the case: 

gf'«{b 
gf'd 

= tt},({b = «} , 0 ))) = {b = tt} gf'«{b 
gf'd 0 ,<0> = «},{b = «})) ) = {b = tt} «f«{b = «},< 0 ,{b = tt}))) = {b = tt} «f'«{b = «},<{b = tt}, 0 ))) = {b = tt} 
gf'(( 0 ,<{b = «},{b = tt}))) = {b = tt} «f'«{b = tt},< 0 ,{b = f f »)) = {b = tt} gf'«{b = «}.<{b = «},{b = . « } » ) = {b = ff} 

gf': P(Bool x Bool x Bool) T»(Bool) 
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g f E P ( B o o l x B o o l x B o o l -> B o o l ) 

[0] p = q u e r y 

b l = t t 
b 2 = f f 

b 2 = t t 
b 3 = f f 

b 3 = t t 
b l = f f 

b l = f f 
b 2 = f f 
b 3 = f f 

b l = t t 
b 2 = f f 

b 2 = t t 
b 3 = f f 

b 3 = t t 
b l = f f 
b l = f f 
b 2 = f f 
b 3 = f f -

b = o u t p u t t t 

b = o u t p u t t t 

b = o u t p u t t t 

b = o u t p u t f f 

Figure 7: Algorithm for gf 
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gf ' € P ( B o o l x B o o l x B o o l -> B o o l ) 

b l = t t 
b 2 = f f 

b 2 = t t 
b 3 = f f 

b 3 = t t 
b l = f f 

b l = f f 
b 2 = t t 

b 2 = f f 
b 3 = t t 

b 3 = f f 
b l = t t 

b l = f f 
b 2 = f f 
b 3 = f f 

[0] b = q u e r y 

p = o u t p u t t t 

p = o u t p u t f f 

Figure 8: Algorithm for gf' 
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where any omit ted cases may either be inferred by monotonicity, or else are taken to return 
0. Figure 8 presents the algorithm for GF'. Note that here we have branches which are equivalent, 
but not consistent. T h e first branch is consistent with the fifth and sixth; the second branch is 
consistent wi th the fourth and sixth; the third with the fourth and fifth; and hence, the first six 
branches of the query are equivalent. Note that GF' is not sequential — just like GF it has no 
sequential ity index at 0 — but , in contrast to gf, it is also not stable — there is no unique minimal 
s tate below ( ( { b = t t } , { b = f f } ) , { b = f f } ) for which GF' attains {b = t t } . This observation is 
not accidental, as we will show when characterizing stabil i ty of an algorithm's input-output function 
in future work. 

idFoo = < 

idFoo € Z>(Foo -> F o o ) 

[0] & = q u e r y 

[{ a = 0 } ] 

[{ * = 1 } ] 

[0] 

a = o u t p u t 0 

a = o u t p u t 1 

b = q u e r y 

[{ b=/3 } ] 

f a = 0 1 
[ b=/3 

[ { a = l } ] 

i c = 7 

[ { b = / ? } ] 

p = o u t p u t (3 

[{ c = 7 } ] 

p = o u t p u t 7 

p = q u e r y [{ = = 7 } ] 

p = o u t p u t 7 

Figure 9: The identity algorithm on F o o 

E x a m p l e 2 . 3 . 6 Figure 9 presents the identity algorithm on the D C D S F o o (see example 1.1.11). 
• 

E x a m p l e 2 . 3 . 7 Figure 10 presents the identity algorithm on the D C D S N a t . N o t e that this 
involves a query containing an infinite number of (mutual ly inconsistent) branches, and an infinite 
number of output events . • 

2 . 4 T h e T r e e L e m m a 

An algorithm a £ V(M -» M') has a well defined structure when considered as a directed graph, 
which we call the precedence graph of a, with enabled cells as nodes and the immediate precedence 
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idNat G £>(Nat -> N a t ) 

| | [0] | n = q u e r y { [ { n=k }] | k G IN } 

u ( u A : € I n { [ { n = k } l n = o u t p u t f c | ) 

Figure 10: T h e identity algorithm on N a t 

relation pc < m — M ' J>V giving a directed edge from pc to p'c', if they are enabled in a. If M M ' 
is well founded the graph is acyclic, hence a precedence DAG. B y functionality of a we m a y take 
for a filled cell the unique event associated with it. 

t p u t / 3 

b=/J } ] 

Figure 11: T h e precedence D A G of idpoo 
E x a m p l e 2 . 4 . 1 Figure 11 presents the precedence D A G of the identity algorithm on the D C D S 
F o o . Arcs corresponding to query enablings are depicted by double lines. Nodes are labelled by 
events; in this case all enabled cells are filled. • 

T h e precedence graph of an algorithm contains some interesting sub-graphs. In particular, it is 
worth looking at the structure of the sub-graph obtained when considering only cells sharing the 
same basic cell c G Cb ase(M-^M /)- This subgraph is, in general, a forest, and any two distinct trees 
in the forest have inconsistent classes at their root cells. T h e precedence edges internal to such 
forests are all induced by query enablings, while precedence edges between forests are induced by 
output enablings, and thus from enablings in b a s e ( M —• Mf). We may talk of a query precedence 
forest or query precedence tree for a basic cell c in a. 

Each o £ t h e algorithms given in the examples with a base D C D S B o o l corresponds to a single 
tree. T h e identity algorithm on F o o in examples 2.3.6 and 2.4.1 corresponds to three forests, two 
with a single tree and one (for the basic cell c ) containing two trees. 
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We now give the tree l emma, an important technical l emma which states formally the properties 
ment ioned above. A corresponding l emma has been shown by Berry and Curien for sequential 
algorithms. It is the basis for a tree-like notat ion for algorithms and, in general, for reasoning 
about the structure of algorithms. As an added benefit, we will use the tree l emma to show that 
exponent iat ion preserves stability. 

P r o p o s i t i o n 2 .4 -2 Let M be a DCDS, p,Pi,P2,q E Vt(T(M)). If p-<q p\} p-<q P2> and pi ft p2 

then p\ = p2. 

L e m m a 2 . 4 . 3 ( T r e e L e m m a ) For M and M' DCDSs, and an algorithm a £ V(M —• M'), 

(1) If pc,p'c E E(a ) and p ft p' then: 

(la) Either pc <* p'c, or p'c <C* pc. 

If pc <C* p'c then there exists n > 0 and a chain 

P = P O - < G I Pl~<q2 P2 <qn Pn = P* 

such that Vi < n . (pic,query qi+i) € a. 

(lb) And if (pc, o u t p u t v), (p'c, o u t p u t v') E a for some v,v', then p = p' (and v = v'). 

(2) Any cell pc enabled in a has only one enabling in a. 

C o r o l l a r y 2 . 4 . 4 For any DCDSs M and M', M -+ M' is a DCDS. 

C o r o l l a r y 2 . 4 . 5 If M -» M1 is a DCDS, a E V(M M'), p ft pr and (pc,u),(p'c,u) E a for 
some u, then p = p'. 

2 . 5 C u r r y i n g 

We now define currying and uncurrying operators. T h e y turn out to be simple manipulations of 
states of the representation D C D S . 

D e f i n i t i o n 2 . 5 . 1 Let Mu M2 and M' be D C D S s . Let Mu and Mc be the D C D S s 

Mu = M i X M 2 -+ M' 
Mc = Mx-*M2->M' 

so that r e p ( M u ) = ( M i X M2) X rep(M') and r e p ( M c ) = M1 X (M2 X rep(M') ) . We define 

curry : £ ( r e p ( M w ) ) —• £ ( r e p ( M c ) ) 
uncurry : £ ( r e p ( M c ) ) —> £ ( r e p ( M u ) ) 

by 

V ( ( j / i , y 2 ) , 5 ' ) € f ( r e p ( M « ) ) . c u r r y ( « y i , , j/')) = <2/i, (</2, j/')) 
V ( y i , < t / 2 , y ' » € £ ( r e p ( M c ) ) . u n c u r r y « j , 1 , ( y j , j , / ) ) ) = ( ( y x , t / 2 ) ,y') 

Extend curry to algorithms as follows, and extend uncurry in a complete ly analogous way. 

V? G Vt(£(rep(Af„))) . 
curry(g) = {curry(y)|t / e <?} 

Vo 6 V{MU) . 
curry(a) = {(curry(p)c, q u e r y curry(g)) | (pc, q u e r y q) € a } 

U{(curry(p)c , o u t p u t u)|(pc, o u t p u t v) £ a} 
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P r o p o s i t i o n 2 . 5 . 2 The maps curry and uncurry are well defined, that is, they produce states of 
Mc, Mu, when applied to states of Mu, Mc, respectively. Moreover, curry is an isomorphism from 
V{MU) to V(MC), and uncurry is its inverse. The two maps preserve enablings. 

p o r E X>(Bool x B o o l - » B o o l ) 

p o r = < 

b = t t } 0)] 

[(0,0)] b = q u e r y 

K { 

[(0 i b = t t 1>! 

K { 
b = f f } , { b = f f }>] 

[ ( { b = t t } , 0)] 

[(0 , { b = t t } ) ] 

[<{ b = f f } , { b = f f } ) ] 

b = o u t p u t t t 

b = o u t p u t f f 

Figure 12: An alternative presentation of the parallel or algorithm 

c p o r G P ( B o o l -> B o o l -» B o o l ) 

c p o r = < 

[0,0] b = q u e r y 

[{ b = t t } , 0] 

[0 , { b = t t } ] 

[{ b = f f } , { b = f f } ] 

[ { b = t t } , 0] 

[0 ,j b = t t J] 

[ { b = f f } , { b = f f } ] 

b = o u t p u t t t 

b = o u t p u t f f 

Figure 13: T h e curried parallel or algorithm, c p o r = curry(por) 

E x a m p l e 2 . 5 . 3 Figure 13 presents c p o r = curry(por) , the curried version of por . Contrast it 
with an alternative presentation of p o r in figure 12, using a compound s tate notat ion for states of 
B o o l x B o o l . • 

E x a m p l e 2 . 5 . 4 Figure 14 presents c g f 7 = curry(curry(gf 7 ) ) , the fully curried gf 1 algorithm. • 

3 A p p l i c a t i o n 

Recall that for a sequential algorithm a of M -*seq M* and a s tate x of M , Berry and Curien 
defined the application of a to x by 
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c g f G T>(Bool B o o l -»• B o o l -»• B o o l ) 

c g f = 

[ { b = f f } 

[0,0,0] b = q u e r y 

{<-«} { b = f f } 

p = o u t p u t t t 

p = o u t p u t f f 

Figure 14: T h e curried algorithm for gf', cg f ' = curry(curry(gf ' ) ) 
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a -seq x = {(c ' , v')\3y. (yc\ o u t p u t v') G a & y Cv x}. 

One might read this as saying that the events ( c ' , i / ) of 
Q 'seq % <̂ re obtained by "projection" 

from events (yc', o u t p u t vf) of a whose s tate component y conforms with x in that y C p x. 
We will in fact start wi th a technical definition of a generalized (and formal) projection operation 

fitted to our parallel sett ing. T h e motivation for its definition follows, and we will then give the 
reasoning leading to our definition of parallel application. 

In this sect ion, let M and M' be D C D S s . 
3 . 1 P r o j e c t i o n 

Let Mx abbreviate r e p ( M ' ) , so that rep (M —• M') = M x Mx. 

D e f i n i t i o n 3 . 1 . 1 For x G T>(M), define the projection by x 

irx :Vt(£(M x M x ) ) - Vt(£(Mx))U { 0 } 

by 

V? G Vt(£(M x A f x ) ) . TR^G) = tr im({snd(^) | z G <? & fst(^) C p x } ) . 

Extend ^ to by setting: 

7R A ? (query G) = q u e r y 7r X (G), 
7 T X ( 0 U T P U T V ) = O u t p u t V. 

Project ion is continuous: 

P r o p o s i t i o n 3 . 1 . 2 For any x G V(M) and Q C Vt(£fin(M X M x ) ) , if ft Q then 

u{**(q)\q eQ} = ^(ug) 

(where the left hand side is to be taken as the empty set in case it is not well defined, that is, 
when irx(q) = 0 for some q G Q-) 

T h e above proposit ion is also true for trim powerdomains over functional sets of events , i.e. for 
Q Q Vt{Tfin(M x M x ) ) , and for trim powerdomains over states , i.e. for Q C Vt(Vfin(M X M x ) ) . 

3 . 2 M o t i v a t i o n 

We discuss now the considerations leading to our formal definition of application. We intersperse 
the discussion with several examples , and only afterwards do we give the formal definition. All of 
the examples given conform with the ensuing definition. 

Let us now consider the application of an algorithm a G V{M —• Mf) to x G V(M). If M1 is 
an exponent iat ion itself, then the result should be an algorithm a1 G V(M'). Intuitively speaking, 
there ought to be an operational correspondence between the events of a and the events of a', in 
the rough sense that for each event (pc, u) G a there are some events of a1 which are responsible for 
af exhibit ing the same behavior that (pc, u) entails when the first argument to a is known to be x. 
Let us, for the t ime being, assume that each event of a has at most one corresponding event of a1 

— call this the uniqueness assumption. 
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Example 3.2.1 Consider the application of the curried parallel-or algorithm c p o r to {b = ff}. 
Intuitively the result should be the identity algorithm on Bool; this is in fact the case. There 
is a clear one-to-one correspondence between the events of the algorithms, and the uniqueness 
assumption holds. 

cpor • | b=ff | = [{ b=tt }] 
p=query 
p=output tt 

[{ b=ff }] b=output ff 

Consider an output event (pc, output v) G a. W h e n a is applied to x, a particular x G p 
m a y be the true description of a's input only if fs t (x) C p x. For such an x there must then be a 
corresponding output event (p'c, output v) G a' with snd(x ) G p'. B y the uniqueness assumption, 
this implies that pf = 7Tx(p) — a ^ d this is, in fact, the motivation behind the definition of projection. 

If no x G p has fs t (x) C p x , then the output event (pc, output v) will not take place at all 
when a is applied t o x. Therefore there need not be a corresponding event in a'. We will identify 
this case by p' = 7Tx(p) = 0, which is not a valid class anyway. 

For a query event (pc, query q) G a there should be a corresponding query event (p'c, query q') 

in a'. As for output events, using the uniqueness assumption, we should have p' = 7Tx(p). Similarly, 
qf need only contain snd(y) for the branches y G q for which fst(y) Cjr x: no other branch of q 
will ever be satisfied by x. We have then q' = nx(q) — but this is independent of the uniqueness 
assumption, since we want q' to be identical to the query that is externally visible when a is applied 
to x and q is issued. (Admittedly , this argument depends heavily on the underlying operational 
semantics , which we do not present here.) 

As with output events , if p' = ^ ( p ) = 0 then no element of p is a true description of the input 
state , when a is applied to x , and there need be no corresponding event in a'. Quite similarly, if 
fst(y) x for all branches y of g, then no branch of the query can be satisfied when a is applied 
to x , and there need not be a corresponding event in a'. This case is identified by q' = 7rx(g) = 0, 
which, again, is not a valid query anyway. 

Example 3.2.2 Consider the application of cpor to 0. 
[0] b=query [{b=tt}] 

[{ b=tt }] b=output tt > 

T h e resulting algorithm will not have or need an event with an output f f command, and, in 
fact, projection of that event of cpor produces an invalid empty class. • 

We have thus far seen two characteristic s ituations in which a query event (pc, query q) need 
not have a corresponding event in a': either because it will not be executed when a is applied to 
x, in which case irx(p) = 0; or because, even if it is executed, no branch of its query m a y possibly 
be taken. In both cases, no event of a following from (pc, query q) can be executed either, when 
applying a to x. 
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A third type of a query event in a that need not have a corresponding query event in a' arises 
when some branch y 6 q is completely satisfied by x , that is , when fst(y) x and snd(y) = 0. It 
is then the case that 0 £ = 7rx(g), and again q' is not a valid query. 

In this third case, in contrast to the previous two, some event following (pc, query q) may in fact 
have a corresponding event in a'; but (pc, query q) itself has no corresponding event in a' because 
a when applied to x may "jump to conclusions" without wait ing for any additional arguments. 
T h a t is , it will act according to the branch that is completely satisfied by x , and there is no need 
to issue any corresponding query; rather, a1 will have an event corresponding to some subsequently 
enabled event that is consistent with this branch. We refer to this phenomenon, involving the loss 
or "abstracting away" of events , as abstraction. 

Example 3.2.3 This third s i tuation occurs when we apply c p o r to {b = tt}, obtaining a non-
strict constant algorithm, since a branch of the query is completely satisfied by {b = tt}. 

cpor {b=tt} = { [0] b=output tt 
So far we have outlined application in terms of our projection operator. Indeed, irx(a) = 

{(7rx(p)c, nx(u))\(pc, u) £ a} is a fairly natural generalization from the Berry-Curien formulation 
of a -seq x. It does yield a very useful approximation of application — in fact, for all examples 
ment ioned so far in this section it yields precisely what we would intend the application to produce. 
It is probably rather more intuit ive than the precise definition we are about to give. But it 
cannot serve to define application completely since, in general, irx(a) is not a s tate . T h e reason 
is that splitting of equivalence classes may occur: equivalent but inconsistent branches in a query 
q need not remain equivalent when q is projected by x. T h e equivalence classes of q will each 
be mapped into one or more equivalence classes of ftx(q)i so that if (pc, query q) I~M-»-M' P\c, 
then ( x x ( p ) c , query irx(q)) V*C w i t h p' Q fl"x(pi); and pi = nx(Pi) is true only if the relevant 
equivalence class is not split. 

Example 3.2.4 For an example of splitt ing consider the application of the c g f ' algorithm to 0. 

cgf'.0= I 

,0] b=query 
[j b=tt },{ b=ff }] b=output tt 
[{ b=ff },{ b=tt }] b=output tt 

Splitt ing occurs because the two branches which are projected, though not consistent, are 
equivalent in the original query by means of branches which are not projected. There is no longer, 
after projection, an equivalence chain in the query relating these two branches. 

Contrast this with (̂cgf') which is not safe: 

'•(eg*') = { 
[0,0] b=query 

p=output tt 
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In general, as in this example , wx(a) may violate the safety requirement in that its classes are 
actually unions of enabled classes. 

In order to handle spl itt ing correctly we now have to abandon the uniqueness assumption. 
T h e definition of application can no longer be local, but must rather be an inductive definition, 
proceeding by the above intuit ions, with safety built into the definition, so that we reconstruct the 
correct classes. 

3.3 Definition of Application 
Here, now, is the inductive definition of appl icat ion 7 . We build a • x by induction on its enabling 
layers 8 ; We define (a • x ) n + i so that it will turn out to be the maximal sub-state of a • x such that 
F ( ( a • x ) n + i ) C E( (a • x)n). The sequence thus obtained is increasing, and a • x is its limit. 

Definition 3.3.1 For a G V(M -+ M'), x G V(M), define the application of a to x , denoted by 
a • x , to be U n > o ( a • x ) n , where the sequence { ( a • x ) n } n > 0 is inductively defined as follows: 

• (a • x)0 = 0. 

• (a • x ) n + i = {{pfc,Tfx(u)) € EM'\(pc,u) G o t p'c TTX(p) & p'c G E(a • x)n}. 

We define a map from events of a • x t o events of a that will make more precise the notion of 
corresponding events alluded to above. First, we need the following result: 

Proposition 3.3.2 If (p'c, u') G a • x then there exists a unique (pc,u) G a such that p' C irx(p) 
and u' = nx(u). 

Definition 3.3.3 For a G V(M -> M') and x G 2?(Af), define 

s o u r c e a ? r : a • x —• a 

by sett ing, for each (p'c,u') G a • x, s o u r c e a ) X ( p / c , u 7 ) to be .the unique event (pc ,u) G a such 
that u' = 7 r r (w) Sz p' C 7rx(p). • 

Note especially the requirement in the definition of application that events of a • x belong to 
E A / / . It is because of this that s o u r c e a j X is not surjective. This requirement filters out the undesired 
by-products of irx, identified above as arising from cases where one of the following three situations 
occur: 

• Kx(q) = 0 for some (pc, query q) G a. 

7The above discussion assumes that M1 is an exponentiation, and a - x is an algorithm. If M' is not an exponentiation, then, proceeding by the above guidelines, one would obtain a trivial algorithm a' of a "unary exponentiation" —• M' that is constructed as an exponentiation out of a representation of Null and a base A/'. Note that such an algorithm a' will have no query events, since the only possible branch is the empty branch; therefore it is isomorphic to a state of M' by the obvious isomorphism, which maps the event ({0}c, output v) to (c,v). We will omit explicit mention of this isomorphism in the definition and related development for simplicity of presentation. 
8That is, the induction may be thought of as formulated on the height of the proof for a cell in a • x. 
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• txip) = 0 for some (pc, u) G a. 

• 0 G nx(q) for some (pc, q u e r y q) E a. 

Note also that s o u r c e ^ is not injective, because of the possibility of splitt ing, as discussed above. 

P r o p o s i t i o n 3 . 3 . 4 Application is well defined, that is, for a G V(M —• Mf) and x G V(M), 
a-xe V(M'). 

Examples of application may be found in the preceding discussion. 
Applicat ion is monotone and continuous in its first argument, but in general it is not even 

monotone in its second argument. For an example contrast c p o r • 0 with c p o r • {b = t t } , where 
abstraction occurs, or even with c p o r • {b = f f } , where the query gains an additional branch — 
we will call this amplification. 

We are currently invest igating an "intensional strictness" order on parallel algorithms that 
treats abstraction and amplification more appropriately, so that application enjoys monotonicity 
and continuity [BG]. For the t ime being we show that ground application — maximal ly iterated 
application — has these properties even when set inclusion is used. 

3 . 4 G r o u n d a p p l i c a t i o n 

Ground application is just iterated or repeated application of an algorithm until the result is a 
basic state . Since the result is not an algorithm, we do no t have to deal with abstraction and 
amplification, and m a y order states by set inclusion without violating monotonic i ty or continuity. 

D e f i n i t i o n 3 . 4 . 1 For a G V(M) and x G X>(rep(M)), define inductively the ground application 
a -0 x of a to x to be: 

Or, equivalently: 

a -g x = ( . . . (a • Xd) -. • •) • x i 

when x = [ x ^ , . . . x i ] . • 

A n equivalent direct characterization, bringing out clearly the analogy between ground appli
cation and the Berry-Curien definition of the input-output function of an algorithm a, is: 

P r o p o s i t i o n 3 . 4 . 2 For a G V(M) and x G P ( r e p ( M ) ) , 

a -g x = { ( c , v ) | ( p c , o u t p u t v) G a & p C p { x } } 

T h e link with the sequential definition is made even clearer when we observe that p C p {x} holds 
if and only if there is a y G p such that y C x. 

D e f i n i t i o n 3 . 4 . 3 For a G V(M) define the ground input-output function associated with a, de
noted \a\g, to be 

a if r e p ( M ) = N u l l 
(a • f s t (x ) ) -g snd(x) otherwise 

\a\g : 2>(rep(M)) - * P ( b a s e ( M ) ) 

Vx G X>(rep(M)) . \a\g(x) = a-gx 

P r o p o s i t i o n 3 . 4 . 4 Ground application is monotone and continuous in its second argument, that 
is, for a G V(M), \a\g is monotone and continuous. 
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3.5 APPLICATION FOR FILIFORM D C D S S 

For filiform D C D S s the general definition of application can be simplified. A CDS is filiform iff all 
its enablings contain at most one event. T h e class of filiform D C D S s is interesting, since common 
atomic D C D S s like N u l l , B o o l and N a t are filiform, and product and exponent iat ion preserve 
filiformness. In fact, Berry and Curien [Cur86] showed that the category of filiform D C D S s with 
sequential algorithms is also cartesian-closed. 

In an algorithm of a filiform D C D S , a class p of an enabled cell is a single equivalence class; 
p/x = {p}. A l though splitt ing m a y still occur, and thus in general irx(a) is not safe, we can exploit 
this property t o give a simpler, local and non-inductive, definition of application, which closely 
resembles 7rx(a). 

P r o p o s i t i o n 3 . 5 . 1 If M -* M' is a filiform DCDS, a G V(M -> M')9 and x G V(M) then 

a • x = {(p'c,wx(u)) G EM'\(PC,U) G a & p' G 

4 C o n c l u s i o n 

We have defined a new mathematical model of parallel algorithms and a new parallel exponentiat ion 
for deterministic concrete data structures. We have explained our construction intuitively as a 
natural generalization of the sequential algorithms of Berry and Curien. We have discussed both 
informally and formally a variety of examples , and we have stated several important properties of 
our construction. In particular, we defined currying and uncurrying operators with the expected 
properties, and we formulated precisely what it means to apply a parallel algorithm to an input 
s tate from the relevant D C D S . 

This presentation has been extensively motivated by appeal to an informally described oper
ational semantics . We included no proofs for our results. We will describe a formal operational 
semantics , and give the relevant proofs, in a subsequent presentations of this work. In any case, 
we feel that we have included enough detail to enable the reader to grasp our main ideas and to 
see that what we have devised is a reasonable at tempt to incorporate an appealing treatment of 
concurrency into the framework of D C D S . 

We plan to explore the mathemat ica l structure of our model more deeply and we will a t tempt to 
define an appropriate notion of composition for parallel algorithms; this will enable us to establish 
one of our primary aims (and a touchstone for judging the "validity" of our model): that we 
have indeed built a cartesian closed category in which a satisfactory semantic account of parallel 
algorithms can be given. However, as we hinted above, it seems that a new order properly taking 
account of the phenomena of abstraction and amplification is required, and in [BG] we introduce 
a new "intesional strictness" order that solves the problem for first-order exponentiat ion. We will 
establish the appropriate relationship between our model and the standard continuous functions 
model of P C F . Just as the Berry-Curien sequential algorithms correspond to sequential functions 
paired with a computat ion strategy, we should be able to show how our parallel algorithms can be 
viewed as continuous functions paired with a strategy. This relationship seems very appropriate, 
since the standard continuous functions model is fully abstract for P C F P , the extension of P C F to 
include a parallel conditional. Again, this type of relationship would be further evidence in favor 
of the naturalness of our model . 

We also intend to design a parallel programming language based closely on our model , just as 
the programming language CDSO was built on top of the Berry-Curien model . Our overall aim is 
to achieve semantic properties analogous to those listed for CDSO. 
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Several interesting possibilities are suggested by our work. First, it seems that we are able 
to define a generalized version of sequentiality indices, perhaps better called computation indices 
which are applicable to the parallel setting; these are just the queries of the parallel algorithms. The 
sequential algorithms of Berry and Curien turn out (unsurprisingly) to correspond to algorithms 
with a minimal degree of parallelism (that have only one cell filled in each query). We can also 
characterize the class of algorithms which have a stable input-output function, in Berry's sense. 
We can formulate some intuit ively natural new orderings on algorithms: one which reflects the 
degree of parallelism exhibited by an algorithm, and possibly one which measures the laziness of an 
algorithm. There appears to b e a natural hierarchy among parallel algorithms, based on our notion 
of degree of parallelism. We would like to investigate the structure of this hierarchy, and perhaps it 
might be useful in assessing the relative expressive powers of various parallel primitives. We hope 
also to achieve a semantics for a parallel language in which the denotat ions reflect accurately the 
efficiency with which an algorithm is able to compute a function. 
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