
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PATH EXPRESSIONS

A. N. Habermann
Carnegie-Mellon University

Pittsburgh, PA 15213

June 1975

Abstract . Tradit ional ly , synchronization of concurrent processes is coded in line b y

opera t ions on semaphores or similar objects. Path expressions move the

respons ib i l i t y of implementing such restrictions from the programmer to a compiler.

T h e programmer specifies as part of a type definition which execution sequences are

permi t ted . The advantage of using path expressions instead of P, V operat ions on

semaphores (or similar operations) is comparable to the advantage of using f o r - and

whi le -s tatements instead of JUMP or BRANCH instructions. In this paper the rules for

wr i t i ng a path express ion are described, parsing and implementation are discussed and

the use of path expressions is shown by a number of examples.

This work was supported in part by the Defense Advanced Research Projects
Agency under contract F44620-73-C-0074 monitored by the Air Force Office
of Scientific Research, and in part by the National Science Foundation
under grant DRC74-24573.

1

1. INTRODUCTION

T h e concept of subroutine was invented to save the programmer the unreward ing

task of rewr i t ing the same lines of code several times. Presently, the significance of

p r o c e d u r e s or functions goes far beyond the original subroutine idea. The p rocedure

dec larat ion is an important program design tool. First, it allows the programmer to

spl i t the programming task into several parts, where each part is significantly smaller

than the total program. Secondly, the procedure concept provides an important

abst ract ion tool . In a wel l -designed program, the implementation of a p rocedure is

i r re levant to the program environment in which the procedure is called. All that

matters at the call site is the functional specification of the procedure, i.e. the

parameters it expects and its effect on the calling environment.

In large programs (such as a compiler or an operating system) the p rocedure

concept is useful but not sufficient to make the programming task simple enough.

Here the number of procedures rises to such a height that it becomes necessary to

par t i t ion the set of all procedures into meaningful subsets. The promising concept for

achieving such a meaningful partitioning is that of a "type definit ion" (or "class" in

S I M U L A 67). A t ype definition describes the internal structure of a set of dat

ob jec ts and all the procedures which define operations on these objects. E.g., appl ied

to compiler design, one finds type definitions for objects such as a hash table,

symbo l table, a lexeme, a syntax stack, etc. More detailed examples fol low

subsequent sections.

a

a

in

A n operat ing system maKes it possible that user programs share resources and

r u n in paralle, . However , it is a wel i -known fact that user programs cannot have

u n r e s t r i c t e d access to shared objects [1]. m many cases on.y one operat ion on a

1. INT RODUCT ION
2

s h a r e d object may be executed at a time, though the order is immaterial. In o ther

cases operat ions must be executed in a given order (e.g. placing the first message in

a queue must precede taking a message out of the queue).

Until now, concurrency restrictions have been coded in line b y inserting crit ical

reg ions and wait/signal operations in the programs [2]. There has been an ex tens ive

d iscuss ion about a var ie ty of synchronization primitives. An analysis of their re lat ive

p o w e r is found in [3] . Path expressions do not introduce yet another synchronizat ion

pr imit ive . A path express ion relates to such primitives as a f o r - or while-statement of

an ALGOL - l i ke language relates to a JUMP or BRANCH instruction in an Assembly

language. A programmer specifies control by a while-statement; the statement is

implemented b y test and branch instructions. Likewise, a programmer specif ies

res t r i c t ions on the execution of operations on shared objects; the speci f ied

res t r i c t ions are translated by a compiler into instructions which use synchronizat ion

pr imit ives . T h e purpose of writing path expressions is to bring the design of

c o n c u r r e n c y restr ict ions to a higher level in the same sense as eluded to b y the

p h r a s e "higher level programming language". Programmers have learned b y

e x p e r i e n c e how important this is.

C o n c u r r e n c y restr ict ions apply to operations which access a shared object . Since

a shared object is completely described by a type definition, a path express ion is

p laced in a t y p e definition as part of the internal structure description (examples

fo l low in subsequent sections). A path expression describes the allowable sequences

of execut ing operations on a shared object. In the common simple case, a path

e x p r e s s i o n is a regular expression from which all possible execution sequences can be

d e r i v e d .

1. INTRODUCT ION
3

Subsequent sections deal with simple pa

and concatenation of path expressions, and

e x p r e s s i o n s . The use of path expressions is

of wh ich have been bor rowed from the paper

th expressions, with conditional elements

with parsing and implementation of path

demonstrated by several examples, some

on Monitors [4] .

2. O N W R I T I N G PATH EXPRESSIONS

2.1 A path express ion is delimited by the keywords path and end. Its operands are

funct ion names. The operators are (in precedence order) *, ;, +. The precedence is

o v e r r u l e d b y parentheses (). The operator ; is the sequencing operator . The

sequencing operator can be omitted (analogous to the multiplication operator in

arithmetic express ions) . E.g.,

path a ; b ; c end or path a b c end

means that the only permissible execution sequence i s . a b c a b c a b c a b c a b c a

b c . A n operand to which the sequencing operator applies is called a "factor".

T h e k e y w o r d s path, end represent an implicit Kleene star, i.e. once the end of a

path is reached, the path can be entered again at the beginning. The operator * also

r e p r e s e n t s the Kleene star. It is used as a unary postfix operator indicating that the

o p e r a n d it modifies can be executed zero or more times before going on to the next .

E.g.,

path p j (q ; r)*; s end or path p (q r)* s end

means that an arb i t rary number of sequences q; r (including none) can be executed in

b e t w e e n an execut ion of p and the subsequent execution of s.

2. ON WRIT ING PATH EXPRESSIONS
4

T h e opera to r + represents exclusive selection. E.g.,

path f ; (g + h) ; k end

means that e i ther a g or an h (but not both or none) must be executed be tween an

e x e c u t i o n of f and the subsequent execution of k. An operand to which the o p e r a t o r

+ appl ies is called a "term".

T h e opera to r ; is distr ibutive with respect to the operator +. E.g.,

path f (g + h) k end « path (fg + fh) k end - path fgk + fhk end,

because in all cases an execution of k is separated from the preceding execut ion of f

b y an execut ion of either g or h.

T h e opera to r * is not distributive with respect to either + or 5 . E.g.,

path p ; (q ; r)* ; s end + path p ; (q* ; r*) 5 s end

because in the latter all q's between a p and an s precede all r's between these t w o .

A l so ,

path f (g + h)* k end t path f (g* + h*) k end

because the f i rst path allows an arbitrary mixture of g's and h's between e v e r y pair

(f ,k) , w h e r e a s the second path allows either all g's or all h's (but no mixture) b e t w e e n

an execut ion of f and a subsequent execution of k.

2.2. A path express ion can easily be translated into a graph model represent ing the

f in i te state machine defined by the regular expression. The arcs in the g r a p h

r e p r e s e n t the functions, the nodes represent the initial state, the final state and the

sequent ia l states corresponding to the semicolons in the path expression. E.g.,

path f (gh + km*n)(p + q) s end

is r e p r e s e n t e d b y the graph

2. ON WRIT ING PATH EXPRESSIONS 5

(T h e final state is identical to the inital state.)

The d i f ference between path f (g + h) . k end and path f (g* + h .) k end

s h o w n in the graphs below.

is

T h e f i rs t of these paths is called a "simple path". The second is not a simple path.

In terms of the graphs, a simple path has a graph in which no two arcs c a r r y the same

name. In terms of finite state machines, an operand of a simple path has a unique

s tar t ing state and a unique result state. The result state is in general a function of

the c u r r e n t state and the executed function. However, the result state in a simple

pa th e x p r e s s i o n is a function of the executed operation, but not of the cur rent state.

It was s h o w n in [5] that simple path expressions can be implemented b y P,V

opera t ions on Boolean semaphores.

2. ON WRIT ING PATH EXPRESSIONS 6

2.3. In many cases in which synchronization is necessary, simple paths are adequate.

E.g., a set of crit ical regions {a,b,c,d} is programmed by

path a + b + c + d end

because this path specifies that each time exactly one of the four functions can

e x e c u t e .

If the execut ion of a function named in a path expression is attempted and the

c u r r e n t state of the path expression does not allow its immediate execut ion, the

p r o g r a m attempting the execution is suspended. When the state of the path

e x p r e s s i o n changes and some programs are waiting for a function which can be

e x e c u t e d in that state, the longest waiting program will be reactivated and will be

enab led to execute the requested function. In other words , the programs are

schedu led per state in f i rst -come, f i rs t - serve order (FCFS). In Section 3 w e wil l see

h o w the o r d e r can be specif ied, up to a limited extent, by the programmer.

Example 1. A communciation between two processes is initiated b y declaring a b u f f e r

w h i c h can hold a message whose interpretation is known to both processes. Assuming

the ex is tence of the type message, the buffer objects are defined b y

t y p e ones lotbuf fer •

var mes - message

path deposi t ; remove end

let b = ones lotbuf fer , m • ref message in

op b.deposit(m) «= mes <- m

op b.remove(m) « m «- mes

end

2. ON WRIT ING PATH EXPRESSIONS
7

T h e t y p e definition consists of two parts. The first part is a record descr ibing the

internal s t ructure of the objects of that type. The second part descr ibes the

opera t ions which can be performed on these objects. The let -clause specif ies the

parameters used in the operations. The prefix parameter of an operation is of the

same t y p e as the t ype in which the operation is declared (SIMULA 67 laudatur).

U n p r e f i x e d fieldnames, such as "mes", in the body of an operation relate to the g i ven

p r e f i x parameter.

T h e internal st ructure defined in a type definition can be accessed in the programs

of the operat ions defined in that type. Outside the type definition, the operat ions can

be appl ied , but the internal structure is not accessible.

T h e path express ion is part of the internal structure, i.e., e v e r y object declared of

t y p e ones lotbuf fer has its own path. A path is not defined for the collection of

o b j e c t s o f that t y p e ; on the contrary , a new instance of the path is created e v e r y time

a new object of that t ype is declared.

T h e path express ion specifies that every deposit must be fol lowed b y a remove

act ion and e v e r y remove by a deposit. If a second remove is attempted, it wil l

automatically be delayed until another deposit has taken place. A second attempt to

depos i t is l ikewise delayed until the first message has been removed.

Example 2. Some cases which an operating system must handle call for a

schedul ing discipline different from the straightforward FCFS discipline postulated for

path express ions . An example is given in [4] suggested by A. Ballard and J . J .

Horn ing .

2. ON WRIT ING PATH EXPRESSIONS
8

A n alarm clock serv ice must be designed which enables a calling program to de lay

i tself fo r a g i ven number of time units, or "ticks". A program sets the alarm clock b y

call ing wakeme(n = integer). The programs must be awakened b y smallest wakeup

time f i rst and not in FCFS order . Time is measured by a hardware clock which

act ivates the alarm clock procedure "tick" eve ry time unit.

T h e alarm clock feature is provided by a definition of "wakeuptime" and a

def in i t ion of "alarmclock".

t y p e wakeuptime =

var wt - integer (oo) comment wt is initialized with the value oo

path set ; pass; wakeup end

let u • wakeuptime, n • integer in

op u.set(n) - wt «- n

op u.pass « wt «- 0

op u.wakeup • wt *- co

op u.val = result integer; return wt

end

A t y p e definit ion describes an object and its operations, but it does not declare

any ob jec ts of its t y p e . If we wish to combine a type definition with the declarat ion

of one ob ject of that t ype , we use the keyword decl instead of type.

T h e alarm clock maintains a list of wakeuptimes. A list w is declared b y

var w • list <n> of <t>

w h e r e n is the number of initial elements and t the type of the list elements. T h e

c u r r e n t element of a list w is represented by ,w, Relevant list operations are

2. ON WRIT ING PATH EXPRESSIONS

advance w current is set to the next element or to nil

if it is moved past the end of the list

reset w set current back to the first element

new .w a new list element is created and inserted preceding

the current . The current is set to the new element

f r e e .w the current element is deleted and current is advanced

Assuming that only one alarm clock is needed, the declaration of alarm clock

decl alarmclock •

var wl ist - list 1 of wakeuptime

comment the list is initialized with a permanent last element with value co

va r now = integer(O), f irst « integer(oo)

path setalarm + tick end

let n • integer in

proc setalarm(n) = result ref wakeuptime

begin cons t = n + now

reset wl ist ; while .wlist.wt < t do advance wlist od

comment termination is guaranteed by the fact that last element.wt • oo

if f i rst > t then f irst «- t fi; new.wlist; .wlist.set(t)

re turn ref .wlist

end

comment a proc is not available outside a type definition

2. ON WRIT ING PATH EXPRESSIONS 10

op wakeme(n) =

beg in var x •» setalarm(n); x.wakeup end

op t ick «

begin now «- now + 1; reset wlist

whi le .wlist .wt < now do .wlist.pass; free .wlist od

end

comment tick is activated at regular intervals by the hardware clock

A program calling wakeme adds a new element to the list of wakeuptimes which is

i n s e r t e d such that the list is sorted by ascending wakeup times at all times. The

p r o g r a m then applies wakeup to this element. The path express ion in type

wakeupt ime ensures that the wakeup operation is not scheduled until operat ion pass

has been appl ied to this element. The latter operation is performed by tick, but not

until "now" over takes the stated wakeuptime.

This solut ion seems more complicated than the Monitor solution g iven in [4] , Th is

is pr imari ly due to explanation of the list operation. However , the g iven solut ion

d e s e r v e s this title more than the Monitor solution. The latter has the drawback tha't

the p rogram whose wakeuptime is the first is awakened e v e r y clock tick! (Imagine the

p o o r g u y w h o wants to get up early in the morning at 5:30 a.m. and turns in ear l y at

9:00 P.M. He is awakened after eve ry time unit and he must inspect his watch e v e r y

time to see if it is time to get up.) A fair comparison cannot be made unless an

accurate Monitor solution is presented.

Example 3. The delay between two data transfers from (or to) a disk w i th a

moving head is proport ional to the distance the head must travel . There fo re , the most

ef f ic ient schedule for processing disk requests is not FCFS, but "nearest track f i rs t" ,

2. ON WRIT ING PATH EXPRESSIONS
11

i.e., if a t ransfer involving track t is completed, the disk scheduler should pick as next

r e q u e s t the one asking for a track nearest to t. However, this scheduling discipline

has the drawback of a potential starvation. It may happen that the scheduler picks

r e q u e s t s fo r tracks at one end of the disk all the time, neglecting requests for the

o t h e r end of the disk. This problem is solved by an "elevator schedule". T h e

schedu le r will pick the nearest track, but it will move in one direction, either up o r

d o w n like an e levator , until there are no more requests for tracks in that d i rect ion.

A program activates the disk by placing a command in its command buf fer . We

assume the existence of type command, describing the internal s t ructure of a disk

command. A disk device is represented by the definition

t y p e DISKDEVICE(n,p = integer) «

a r ray [l : n] of array [l : p] of storagecell

v a r combuf « command

path act ivate; execute; release end

let D - DISKDEVICE, c - command in

op D.activate(c) - combuf «- c

op D.execute - <data transfer by device>

op D.release • combuf «- nil

end

T h e operat ion execute represents the action of the disk device executing the

command in its command buffer. The details of this action are not relevant here . T h e

path specif ies that a program cannot execute release until the device has completed a

t r a n s f e r . T h e action corresponds to the program detecting that the device is done.

I ts occu r rence in the path is more important than the action it performs. Instead of

2. ON WRIT ING PATH EXPRESSIONS 12

sett ing combuf to nil, the body could have been defined as a noop. Its posit ion in the

path , h o w e v e r , guarantees that the next command cannot be placed in the command

b u f f e r unless the completion of the current data transfer has been detected.

Data t ransfer requests will be sorted by arrival time per track, i.e. requests for

one track are t reated FCFS. Grouping requests by track is made possible b y

t y p e track « '

var com - command(nil)

path r e s e r v e ; val ; leave end

let t = track, c - command in

op t . reserve (c) = com <- c

op t.val result command; return com

op t. leave • com <- nil

end

T h e operat ion leave plays a role similar to that of the operation release in type

D ISKDEVICE . Its usefulness becomes clear in the definition of DISKSCHEDULER (see

the def ini t ion of access).

T h e d i rect ion in which the head is traveling is represented by a "range t y p e " .

Th is is a t y p e definition in which all the constants of that t ype are listed b y name (e.g.

range t ype color • red , orange, yel low, green, blue, violet end). The operat ion of t ype

d i rec t ion allows us to change the direction,

range t ype direct ion = {up.down}

let d = d i rect ion in

op d. invert « result direction; return if d - up then down else up fi

end

2. ON WRIT ING PATH EXPRESSIONS 13

W e are now ready for the DISKSCHEDULER. The scheduler keeps track of the f i rst

r e q u e s t in both directions in the variables next[down] and next[up] . It changes

d i rec t ion w h e n there are no more requests in that direction. The scheduler makes

o n l y one operat ion available to programs which want to use the DISK device contro l led

b y the scheduler . This operation is "access" and it requires a track number and a

command to be executed. The operation access uses the procedures "enter" and

" e x i t " (not available outside the scheduler) in which respectively a request is e n t e r e d

and a next data t ransfer is scheduled (if any),

t y p e DISKSCHEDULER(n,p = integer) «

array [l : n] of track; var D = DISKDEVICE(n,p)

v a r f ree = array [l : n] of Boolean(true)

var dir - d i rect ion(down), k • integer(O); const Dsize • n

va r next - array direction of integer(0,oo)

path enter + exit end

let S - DISKSCHEDULER, i - index, c - command in

proc S .enter(i) -

if n e x t f u p] - 0 and next [down] « oo then k «- i; D.activate(S[k].val)

else f ree [i] <- false

if i • k then nex t [d i r . inver t] « - i

else if i < k and nextfup] < i then n e x t [u p] « - i

else if i > k and i < next[down] then n e x t [d o w n] « - i fi

fi fi fi

2. ON WRIT ING PATH EXPRESSIONS

proc S.exit(i) *

begin var x • integer; if nextfdir] - 0 or next[dir] - oo then dir «- dir . invert fi

if 0 < nex t [d i r] < oo then

k «- nex t [d i r] ; D.activate(S[k].val)

if dir - down then

if some x in [k+1 : Dsize] sat not f ree[x]

then f r e e [x] true; next[down] «- x else nextfdownJ <- oo fi

else

if some x in - [1 : k -1] sat not f ree[x]

then f r e e [x] «- true; next[up] «- x else next[up] «- 0 fi

fi fi

end

op S.access(i.c) •

begin S[i] . reserve(c) ; enter(i,c); D.release; S[i].leave; exit(i) end

end

T h e p rocedure enter immediately activates the requested data t ransfer if this is

the on ly request in existence. Otherwise, it updates the appropriate next pointer (if

n e c e s s a r y) . The procedure exit changes the direction if there are no more requests

in the present direct ion. The variables next[up] and next [down] are primari ly used

f o r improving the DISK utilization. Without them, procedure exit must search the

a r r a y of tracks for the next requested track before it can activate the DISK. The

var iab les n e x t [u p] and next [down] make it unnecessary that the search through the

a r r a y p recedes the activation of the DISK. This saving of time is important, because,

if it is not activated within a critical time limit, the DISK cannot operate at full speed .

(T h e problem can be solved in another way if the array is replaced b y two lists, one

2. ON WRIT ING PATH EXPRESSIONS
15

f o r the d i rect ion up and one for down. T y p e track must then be extended w i th an

addit ional f ield "num" which records the track number. The buJk of the w o r k is now

p e r f o r m e d in procedure enter. As before, it immediately activates the requested

t r a n s f e r if this is the first request. Otherwise, it places a new element in the

a p p r o p r i a t e list (depending on i<k) such that the up-l ist is sorted b y descending track

number and the down- l i s t by ascending track number. Procedure exit reduces to a

change of d i rect ion if the list it is working on is empty and activating the f irst element

o f the list in the current direction.)

T h e search through the array of tracks cannot be omitted, but instead of

p reced ing the DISK activation, it is performed after the DISK has been activated. T h e

cons t ruc t

come <var> in { - }<range> sat <Boolean expr>

is equiva lent to a logical predicate prefixed by the quantor 3. (The k e y w o r d sat reads

as "sat isf ies" or "satisfy".) If the range is empty or the Boolean express ion is false fo r

all the range values, then the result is false and the variable is undefined. If there is

a va lue in the range which satisfies the Boolean expression, the result is t rue and the

va lue of the var iable is the leftmost range element for which the Boolean express ion is

sat is f ied . T h e optional minus sign in front of the range means that the range is

t r a v e r s e d from right to left. In that case the rightmost range element is re tu rned .

(T h e o b v i o u s complement of this predicate is

all <var> in { - }<range> sat <Boolean expr>

w h i c h is shor t for not some <var> in { - }<range> sat not <Boolean expr>.)

T h e programs for enter and exit become substantially shorter if the var iables

n e x t [u p] and nex t [down] are deleted. Procedure enter reduces to an activation if the

2. ON WRIT ING PATH EXPRESSIONS 16

reques t is the f i rst . Procedure exit amounts to the search for the next and its

act ivat ion (if one is found). However, it was noted that this may result in poor

per fo rmance of the DISK device. In this simplified form, the SCHEDULER is essential ly

the same as the DISK MONITOR presented in [4].

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS

3.1 In some cases the programmer should be able to specify that an operat ion can be

e x e c u t e d only if a certain condition is true. For example, if the type stack is def ined

w i t h the operat ions push and pop, the former must not be executable when the stack

has reached its maximum height and the latter must not be executable when the stack

is empty .

A conditional element in a path expression has the form

[<cond.l>:<elem.l>,<cond.2>:<elem.2>,...,<cond.n>:<elem.n>,{elem.(n-»-l)}]

T h e conditional element is equal to the leftmost element for which the preceding

condi t ion is t rue . The optional (n+l)st element is the "otherwise". It represents the

condit ional element if all conditions cond.l,...,cond.n are false.

T h e conditions in a conditional element are severely restr icted. The permit ted

condit ions are Boolean expressions in which the operands are either constants o r

f ieldnames of the t y p e definition in which the path expression is defined. M o r e o v e r ,

all operat ions which modify the operands of the conditions must occur in the path

e x p r e s s i o n of which the conditional element is a part. These restr ict ions are

n e c e s s a r y to make sure that the evaluation of a condition does not conflict w i th other

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 17

opera t ions on the operands used in that condition. Such a conflict is not possible if

the operat ions which modify operands of a condition occur in the path, because

eva luat ion of the path and execution of one of its elements exclude one another.

Example 4. The operations on a stack are push and pop. The elements of a stack

can be of a rb i t ra ry type . However, we restrict ourselves to a stack of uniform t y p e ,

i.e. all the stack elements must be of the same type. When a stack is dec lared, its

maximum height must be specified,

t y p e stack(n « integer, t - t ype) •

a r ray [l : n] of t

cons max = n; var top = integer(O)

path[top = 0: push, top * max: pop, push + pop] end

let st • stack, x - ref t in

op st .push(x) » begin top+1; s t [t o p] « - x end

op s t .pop(x) = begin x «- s t [top] ; top-1 end

end

T h e condit ions in this path expression clearly satisfy the restrictions.

3.2. T h e normal scheduling discipline in a path expression is FCFS. However , there are

cases in which execution of two different functions is possible, but the execut ion of

one of these two is more important than execution of the other. If such a f i xed

p r i o r i t y relat ion exists between two elements p and q of a selective element p+q, the

p r i o r i t y can be indicated in a path by one of the symbols'> or <. These symbols have

the same precedence as the operator + . E.g.,

path f(g > h) k end

means that after an execution of f either a g or an h can be executed. However , if an

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 18

execu t ion of both g and h is requested, g will be scheduled first.

Stating a f ixed pr ior i ty introduces the problem of a potential s tarvat ion. If

execut ions of g are requested so frequently that another request for g has a r r i ved b y

the time f completes, then h will never be executed. Thus, the pr ior i ty operator must

be appl ied wi th care. It can be used in cases in which starvation is not possible or in

cases w h e r e the starvation is allowed. (An example of the latter is the null operat ion

w h i c h is per formed on an idling CPU.)

Example 5. The operating system maintains a pool of storage blocks, equal in s i ze ,

w h i c h can be allocated to user programs and will be released in due time. T h e

operat ions available to a user program are getspace and release. We postulate

the ex is tence of a type baseaddress, which gives access to a block of storage. T h e

opera t ing system maintains a stack of free blocks. (All f ree storage blocks are

identical , so a stack is as good as a queue.) If there is a state in which either getspace

or re lease can be executed, there is a slight preference for executing release f i rst .

Th i s cannot lead to starvation, because there is a finite number of storage blocks in

the pool . The number of consecutive executions of release is limited b y that number.

T h e t y p e definit ion for the storage pool is, of course, v e r y similar to the preceding

stack example because of our choice to record the free blocks in a stack,

decl POOL(n « integer) *

array [l : n] of baseaddress

cons max « n; var f ree • integer(n)

path[free « 0: release, free • max: getspace, release > getspace] end

let b = baseaddress in

op re lease(b) = begin free+1; P00L[free] *- b end

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 19

op getspace(b) - begin b *- POOL[free]; f ree-1 end

end

3.3. It is al lowed to define more than one path within a type definition. These paths

may be independent in the sense that none of the operands in one path occurs in the

o t h e r , o r the paths may share some operands. A multiple path construct can, fo r

instance, be used to express potential parallelism. E.g., the multiple path

path p ; r end

path q ; r end

spec i f ies that t w o subsequent p's are separated by an r, that two subsequent q's are

s e p a r a t e d b y an r, and that two subsequent r's are separated by a p and a q. But the

multiple path does not specify any ordering between p and q. There fore , it does not

matter in which o rder p and q are executed in between two subsequent r's. T h e

execut ions of p and q may even overlap in time. However , the next r cannot be

e x e c u t e d until both p and q have been completed.

A path express ion allows the execution of only one of the functions named in that

pa th at a time. (In other words, the functions named in a path are automatically

embedded in a critical region specific for that path.) The computation of the next state

in the path takes place in between two function executions and does not ove r lap w i th

the execut ion of one of the functions.

T h e functions in the multiple path of the preceding example are not necessar i ly

mutual ly exc lus ive . In addition, the next state of one path may be evaluated whi le a

n o n - s h a r e d funct ion in the other path is executing. We call such a multiple path

s t r u c t u r e a "parallel path", because there is an inherent parallelism in the execut ion of

n o n - s h a r e d functions.

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 20

A s t r o n g e r connection between paths is obtained by concatenating severa l paths

into one path. The symbol & is used to represent concatenation. E.g.,

path p ; r & q ; r end

is the concatenation of the paths path p ; r end and path q ; r end. The

concatenated paths are treated as one. This means that only one function named in

the path can be executed at a time. In addition, the next state computation takes

place in b e t w e e n the execution of functions named in the path, so the next state

computat ion cannot over lap with the execution of one of the functions. All the

funct ion execut ions and the next state computation are mutually exclusive in this case.

W e call this multiple path structure a "connected path". The given example states that

e v e r y execut ion of r must be preceded b y an execution of p and an execut ion of q.

T h e o r d e r in which p and q are executed is not specified. However , since p and q

occur in a connected path, it is not possible that p and q execute in parallel .

T h e r e f o r e , e v e r y execution of r is preceded by either the sequence p;q or b y the

sequence q;p.

T h e restr ict ions imposed upon conditional elements cause no problem in a

connected path. In a parallel path, however , the variable operands in a condit ion can

o n l y be modified b y operations in the path in which the condition occurs. E.g.,

path [s < t : p ,r] & [s < t : q,r] end

path [s < t : p,r] end and path [s < t: q,r] end

w h e r e p « s ^ s - 1, q = t <- t - 1, r = {s <- s «• 1; t <- t + 1}. The connected path is

c o r r e c t , because all the operations on the variable operands in the conditions occur in

the path. T h e parallel path violates the restrictions on the variable operands in the

condi t ions , because p in the first path modifies a variable in the condition of the

s e c o n d path and q, in the second path, one in the first path.

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS
21

Example 6. In the first paper on path expressions [5] we descr ibed how a

b o u n d e d buf fe r of n slots (n > 1) can be built from the types oneslotbuffer and

r i n g b u f f e r . T h e connected paths make it possible to define a r ingbuffer which builds

d i r e c t l y o n the type message without having to define an auxiliary type oneslotbuffer .

A bounded buffer (or r ingbuffer) has a number of N slots which can hold a

message (N > 1). The programs which place a message in a slot are called the

"senders" , the programs which take a message out are called the "receivers" . T h e

const ra int is that senders and receivers must not operate on a buffer slot at the same

time. This can, of course, be achieved by allowing only one sender or one rece i ve r to

access the r ingbuffer at a time, i.e. by embedding deposit (m-message) and

remove(m=message) in one critical region. However, we consider this solution as too

r e s t r i c t i v e . It is perfect ly alright that several senders and several rece ivers access

the r ingbuf fe r at the same time if they access different slots. Thus, the restr ict ions

must be imposed on finding a buffer slot in which a message can be placed o r f rom

w h i c h a message can be taken.

A buf fe r slot can be in one of three states: empty, full o r inuse. In the state

e m p t y , the slot is available for placing a message. In the state full , a message can be

taken out . The state inuse indicates that this slot is momentarily not available,

because e i ther a message is being placed in this slot, or a message is being taken out.

T h e t ype r ingbuffer makes available two operations on a r ingbur re r :

depos i t (m»message) and remove(m=message). It uses four internal p r o c e d u r e s :

searchs lo t , searchmes, addslot and addmes. The procedure searchslot looks for a slot

in state empty and the procedure searchmes looks for a slot in state full . T h e

s e n d e r s should not be able to execute searchslot if all the slots are full . T h e

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS
22

r e c e i v e r s should not be able to execute searchmes if all the slots are empty. T h e s e

const ra ints wil l be expressed in a path expression. The procedure addslot is

p e r f o r m e d b y a receiver when it is done taking out a message. A sender per forms

addmes w h e n it is done placing a message in the r ingbuffer .

T h e search process is slightly improved by the use of two variables d (for depos i t)

and r (fo r remove) which respect ively point to the last found empty slot and the last

f o u n d full slot. A search starts at d+1 or r+1 instead of always at the f i rst buf fe r

s lot . If the search always starts at the front, the probabil ity Of finding a slot in the

s tate w e are looking for is smaller at the front than at the end. The variables d and r

let a search start at the slots which have been least recently inspected,

t y p e r ingbuf fer (N=integer) •

array [0 : N - l] of message; cons size - N

va r mesnum - integer(O), slotnum - size, d,r - i n t e g e r (- l)

range t ype slotstate « {empty, inuse, full} end

var state = array [0 : s i z e - 1] of slotstate

path [mesnum > 0 : searchmes] • addmes & [slotnum > 0 : searchslot] + addslot end

let r b - r ingbuf fer , m - message, k « index in

proc rb.searchmes • result integer

begin local x * r+1; while state[x] t full do x «- (x+1) % size od

s ta te [x] «- inuse; mesnum *- mesnum - 1; r «- x; re\urt\ r

end
comment the operator % stands for the remainder function

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 23

proc rb.searchslot - result integer

begin local y - d+1; while state[y] ? empty do y <- (y+1) t size od

s t a t e [y] «- inuse; slotnum «- slotnum - 1; d «- y ; return d

end

proc rb.addmes(k) • begin mesnum <- mesnum + 1; state[k] <- full end

proc rb.addslot(k) » begin slotnum *- slotnum + 1; state[k] <- empty end

op rb.deposit (m) « begin local y • searchslot; r b [y] <- m; addmes(y) end

op rb . remove(m) • begin local x « searchmes; m <- rb [x] ; addslot(x) end

end

T h e path express ion precludes the execution of deposit if there are no empty

s lots available and it precludes the execution of remove if there are no messages in

the buf fe r . The path specifies that the search and add operations cannot over lap in

t ime. Th is guarantees that the elements of the state vector and the variables slotnum

and mesnum have a meaningful value. The path does not specify that an execut ion of

searchs lo t must be fol lowed by an execution of addmes, nor does it requ i re

searchmes; addslot. This means that a number of senders and receivers can access

the r ingbuf fe r at the same time, but only one at a time can search or add.

Th is solut ion differs from the solutions given in [5 and 6] in that here severa l

s e n d e r s and severa l receivers can access the buffer, whereas the other solutions

al low on ly one sender and one receiver to access the buffer simultaneously.

H o w e v e r , P. Wodon showed that these solutions can be revised to handle severa l

s e n d e r s and several receivers [7]. The monitor solution g iven in [4] is v e r y

r e s t r i c t i v e . It allows only one user at a time, either a sender or a rece iver , but not

b o t h . It seems not hard to modify the buffer monitor such that it handles the search

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 24

and add procedures , but not the buffer operations. Then it also allows severa l

s e n d e r s and severa l receivers to access the buffer simultaneously.

Example 7. Another problem that has frequently been discussed is the Readers -Wr i te rs

p rob lem [8]. A group of "readers" can "read" a data object which they share wi th a

g r o u p of " w r i t e r s " who can "wr i te" the data object. Reading can go on in parallel , but

o n l y one w r i t e r can wr i te at a time. In addition, writing must not over lap in time w i th

reading.

Since the actions "read" and "write" are of no consequence to the solution of the

p rob lem, w e will not present a complete type definition for the data objects to be

r e a d and wr i t ten . We confine the solution to the path expressions which restr icts the

execut ions of reading and writing.

A w r i t e r cannot start as long as reading is going on. It is therefore necessary to

d ist inguish be tween the states "reading is going on" and its negation. These states

and thei r transit ions are easily implemented by counting the number of readers , r.

Let read be def ined as { rinit ; actual reading ; rquit }, where

procedure rinit • r <- r + 1

and

procedure rquit • r «- r - 1

If r is init ial ized at ze ro , the test r = 0 reveals whether writing can start or not. This

is e x p r e s s e d in the path expression

path [r=0 : wr i te , rqui t] + rinit end

If r > 0, wr i t ing cannot start , but readers can start and leave. Thus, reading can go

o n in paral lel . If r = 0, either a reader or a wr i ter can start. If a wr i te r s tar ts , a

r e a d e r cannot start until the wr i ter is done.

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 25

Th is solut ion has a starvation problem. It is possible that the wr i te rs wil l n e v e r

get a chance if reading is going on. By the time a reader quits, another reader may

h a v e per fo rmed rinit. If this happens all the time, r will never reach the value z e r o

and wr i t ing is impossible.

Wr i te rs get a fair chance if no new readers could do rinit after a wr i te r attempts

to s tar t . T h e r e f o r e , we introduce the procedure "writeattempt" and redefine wr i te •

{wr i teat tempt ;. actual wri t ing} . Reading will die out after a wr i te attempt has

s u c c e e d e d if we add

path rinit + (writeattempt ; wr i te) end

to the path above. The additional path does not allow another rinit to start if

wr i teat tempt succeeded and r > 0, because the first path does not allow a wr i te to

p r o c e e d . This means that the element (writeattempt ; wr i te) cannot complete until r

- 0.

T h e f i rst solut ion favors the readers and the second solution gives both w r i t e r s

and readers a fair chance. The problem discussed most frequently is the one in which

the w r i t e r s have a preferential status. I.e., as soon as a wr i ter attempts to w r i t e , no

n e w readers should be able to start reading. The solution of this problem is obtained

b y a simple modification of the fair solution. The selection operator + in the additional

path is rep laced b y the selection operator < which assigns pr ior i ty to wri t ing. T h e

path solut ion is then

path [r = 0: wr i te , rqui t] + rinit end

path rinit < (writeattempt ; wr i te) end

If a reader must wait because writing is going on and another wr i ter arr ives later than

this r e a d e r , the wr i te r is selected when the second path becomes available. Only if

3. CONDIT IONALS, PRIORITY AND CONNECTED PATHS 26

no o t h e r w r i t e r a r r i ved before the last write operation has been completed, then a

r e a d e r can per form rinit. The first path assures that writing will not start until all

reading has ceased.

T h e t w o paths of the last two solutions form a parallel path instead of a connected

path . This means that the non-shared operands rquit and writeattempt can be

e x e c u t e d in parallel . It would not make much difference in this case if the paths w e r e

connec ted , because not much is gained by the parallel execution of these t w o tr iv ia l

p r o c e d u r e s .

4; PARSING AND IMPLEMENTING PATH EXPRESSIONS

4,1 A path express ion has an ambiguity if its graph has two arcs with the same name

leaving the same state, but resulting in different states. E.g., the graphs of

path f (gh + gk)m end and

path f (gh + g*k)m end are

T h e programmer is allowed to write such ambiguities, because they can be reso l ved

w h e n the path express ion is compiled.. In the first case the two arcs are replaced b y

one and the result states are merged into one. This means that the operand g in the

pa th e x p r e s s i o n is taken out as common factor. The result is

path fg (h + k)m end

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 27

If the ambiguity involves a repeated element, the trick is to replace this element,

g* s a y , b y € + gg* where * means the empty action. The g iven example is then

t rans fo rmed into

path f (gh + + gg*) k) m end »

path f (g (h + g*k) + k) m end

T h e last v e r s i o n is f ree of ambiguities. (If necessary, g* can be replaced b y * + g(€ +

g(*...+ gg*)...)- Apply ing this rule, path f (ggh + g*k) m end is t ransformed into

"path f (ggh + k + g (« + gg*)) m end which reduces to path f (k + g (k + g(h +

g*k))) m end.)

A g i ven path express ion can be simplified in a manner similar to the simplification

of algebraic express ions . Common factors can be taken out not only from the left but

also f rom the r ight. E.g.

path (a+b)p + a(p+q) + b(p+q) end

can be w r i t t e n as

path (a+b)p + (a+b)(p+q) end - path (a+b)(p+p+q) end

Since p+p B p, the path can be reduced to

path (a+b)(p+q) end

It turns out that an unambiguous path expression can be reduced to a canonical

fo rm. T h e proof is essentially the same as the one given for the state reduct ion of a

determinist ic finite state machine in [9]. The proof and the algorithms for br inging a

g i v e n path express ion in its canonical form will be discussed in a separate paper .

4.2 T h e g r a p h of a non-simple path expression has several arcs which c a r r y the same

name. Thus , an operand of a non-simple path may be executable in several states.

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 28

Let var iab le S T A T E indicate for a given path expression p which functions can execute .

A funct ion f in this path expression is programmed as

F = p.wait(f) ; f; p.signal(f)

T h e signal operat ion includes the computation of the next state which depends on the

c u r r e n t state and the executed function f.

If execut ion of f is requested and f is not included in the current state, the

e x e c u t i o n of f is delayed and the process requesting the execution of f is put on a .

wai t ing list. It is in principle possible to sort requests per state. However , this

means that a requesting process may have to be placed in several waiting lists. If

one of the states subsequently allows the execution of the requested funct ion, the

p r o c e s s must be removed from several lists. We consider such an implementation as

too cumbersome. Instead, a path expression has a single waiting list. If a process P.i

r eques ts execut ion of a function f which cannot be executed right away , a new

element (i,f) is added to the list, where i is the process index and f the requested

funct ion . T h e element is appended to the end of the list if no pr ior i ty is indicated.

O t h e r w i s e , it is inserted such that the given pr ior i ty is maintained.

A f t e r computing the next state, the signal operation scans the waiting list until it

f inds an element which can go in this state (if any). If it finds one, this element is

r e m o v e d from the list and the corresponding process is reactivated so that it can

e x e c u t e the requested function.

On l y one function named in a path expression can execute at a time. This implies

that a new request arr iving while one of the functions is executing must be put on the

wait ing list. If no function is executing, we say that the path is "idle". T h e

opera t ions wait and signal can be programmed using P, V operations on a mutual

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS

exc lus ion semaphore "mutex" and a set of private semaphores H p s e m [l : n] M , one fo r

each process . The programs are:

p .wait (f) =

beg in local x = (i,f)

P(mutex)

if idle and x.f * S T A T E then idle <- false; V(mutex)

else insert (x into waitinglist); V(mutex); P(psem[x.i]) fi

end

p.signal(f) -

begin local x

P(mutex) ; S T A T E next(STATE.f)

if some x in waitinglist sat x.f * STATE then free x; V(psem[x,i])

else idle «- t rue fi

V (mutex)

end

T h e subpaths of a connected path or a parallel path share one single mutual

exc lus ion semaphore so that only one path is tested at a time. A connected path

d i f f e r s f rom a parallel path in that the former has one single variable "idle", used b y

all its subpaths , whereas each subpath k in the latter has its o w n variable M id le [kJ M .

In case of a connected path or a parallel path the states of all the subpaths must

be tes ted in which the requested function occurs. The if clause in p.wait(f) is modified

f o r a connected path into

idle and all k in [1 : np] sat x.f * p[k] -> x.f < STATE[kJ

w h e r e np is the number of subpaths of the connected path. The if -clause in p.wait(f)

f o r a parallel path is

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 30

all k in [l : n p] sat x.f < p[k] -> (idle[k] and x.f < STATE[k])

T h e modifications in the assignments to the variable idle and in the if -clause in p.signal

are s e l f - e v i d e n t .

T h e next state is der ived from the parse tree which corresponds to the g raph of

the path express ion . In case of a simple path, the next state depends on the

e x e c u t e d function. In that case the next state function amounts to copy ing an

at t r ibute of the executed function. Otherwise, if all the operands of a select ion are

s ingle factors (e.g. (a+b+c)), then the next state only depends on the cur rent state.

In that case the next state function amounts to copying an attribute of the cur rent

s tate . If a path expression does not belong to one of these categor ies , a

case-statement is attached to each state. The next state is now computed b y

execut ing the case-statement attached to the current state. The value of the

case-c lause depends on the executed function.

4.3. T h e use of path expressions does not exclude the possibil ity of s tarvat ion o r

deadlock. E.g., the parallel path

path a + c end

path b + c end

may n e v e r schedule c if an execution of b is requested while a is being executed and

v i c e - v e r s a . The parallel path

path f p q end

path g q p end

r u n s into a deadlock after the first execution of f and g.

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 31

A l though starvat ion and deadlock are not impossible, it is easier to detect such

prob lems in a path structure than in programs which use P, V operat ions on

semaphores . In the latter case the problem must be der ived from several places in

the code. In the introduction path expressions were compared to control s t ruc tures

such as a while-statement. Control statements can be misused as much as path

e x p r e s s i o n s . If not programmed on purpose, a starvation problem in a parallel path is

comparable to programming an infinite loop, a mistake which can v e r y easily be made.

A n additional advantage of path expressions over coding synchronizat ion in line is

the detect ion of deadlocks at compile time. A parallel path can easily be tested for

the p resence of deadlocks and an error report can be given at compile time.

Unfo r tunate l y , only deadlocks in path expressions can be detected at compile time. It

is still possible to cause deadlocks at run time. E.g. the paths

path f g end and

path p q end

could be used b y two programs P.l and P.2 such that P.l successively calls g;p and P.2

q;f. This obv ious ly leads to a deadlock. The best a compiler can do is spot the

potent ia l deadlock state. The occurrence of function calls in conditional statements

make it impossible to find at compile time which functions will be executed. Thus ,

path express ions make it easier for a programmer to avoid starvation and deadlock

prob lems, but the responsibil ity for avoiding these problems is still up to the

programmer .

SUMMARY

SUMMARY

Path express ions make it possible to program the necessary synchronizat ion at a

h igher level than that of assembly code. Simple path expressions are a l ready

p o w e r f u l tools which would be hard to code in line by P, V operations on semaphores

o r similar primitive concepts. The examples show that the given rules for wr i t ing path

e x p r e s s i o n s are adequate to program useful operating system functions.

A path express ion is a regular expression describing the allowable execut ion

sequences of its operands. Several path expressions can be concatenated into one

connected path o r , b y sharing operand names, into a parallel path. A path express ion

may c o r r e s p o n d to an undeterministic finite state machine. The ambiguities can easi ly

b e removed b y taking out common factors and rewriting repeated elements. T h e

programmer does not have to w o r r y about writing unambiguous path express ions .

T h e ambiguities can be removed by a compiler. The latter also can reduce a path

e x p r e s s i o n to its canonical form.

T h e test ing in a non-simple path expression is slightly more elaborate than in a

simple path express ion . Connected paths and parallel paths add to the complexity of

the test . T h e programmer must still watch out for unwanted starvation and possible

deadlocks. T h e compiler is able to detect deadlocks present in a connected path or a

paral lel path. However , the order in which functions, named in a path express ion , are

cal led may still cause deadlocks at run time.

T h e usefulness of path expressions will be demonstrated in the design of an

operat ing system family. Path expressions will be defined as an extension of the

p r o c e s s and multiprogramming facilities. At the same time, a modifiable des ign

language is being developed in which path expressions are incorporated. T h e

reduct ion and compilation of path expressions is incorporated in a compiler for the

S U M M A R Y

des ign language. More theoretical results about path expressions (and general izat ion

of path express ions) will be presented in E. A. Schneider's thesis b y the end of this

y e a r .

ACKNOWLEDGMENT

I am gratefu l for the interesting discussions I had with Roy Campbell while I was in

Newcast le , England and while he visited me during the summer of 1974 at CMU. T h e

many hours I spent wi th Ed Schneider contributed enormously to the development of

the path express ions .

REFERENCES

[1] Di jkst ra , E. W. "Cooperating Sequential Processes"
In Programming Languages (ed. F. Genuys)
Academic Press, New York (1968)

[2] B r inch -Hansen , P. "Structured Multiprogramming"
C A C M 15,7 (July 1972)

[3] L ip ton , R. On Synchronization Primitive Systems
Thesis, Carnegie-Mellon University (1973)

[4] Hoare, C A R . "Monitors: An Operating Structuring Concept"
C A C M 17,10 (October 1974)

[5] Campbel l , R. H. and Habermann, A. N. "The specification of
Process Synchronization by Path Expressions"
Lecture Notes in Computer Science, Vo l . 16
Springer Verlag, Heidelberg, Berlin, New York (1974)

[6] Habermann, A. N. "Synchronization of Communicating Processes"
C A C M 15,3 (March 1972)

[7] Wodon , P. Private Communication

[8] Cour to i s , P. J . , Heymans, F. and Parnas, D. L.
"Concurrent Control with Readers and Wr i ters"
C A C M 14,10 (October 1971)

[9] Hopcrof t , J . E. and Ullman, J . D.
Formal Languages and their Relation to Automata
Addison Wesley, Reading, Mass. (1969)

