
Petri Nets and Linear Logic:

Appeared in the Proceedings of the 1995 Joint Conference on Declarative Programming — GULP–
PRODE’95 (M. Alpuente, M.I. Sessa editors), pp. 313–318, Palladio Press, Marina di Vietri, Italy,
11–14 September 1995.

a case study for logic programming

Iliano Cervesato∗

Department of Computer Science – Carnegie Mellon University
5000 Forbes Avenue – Pittsburgh, PA, 15213-3891

Phone: (412)-268-1413 – Fax: (412)-268-5576
iliano@cs.cmu.edu

Abstract

The paper reports on an experiment with the major linear logic programming
languages defined in the recent years: Lolli, LO and Forum. As a case study,
we consider the representation of a class of Petri nets, P/Tω nets, in each of
these languages.

Keywords: Petri nets, multiset rewriting systems, linear logic, logic programming.

1 Introduction
The relationship between linear logic [4] and Petri Nets [8] has been a major object
of investigation [2, 3, 6]. It was soon noticed that the monoidal structure of multisets
can serve as an abstract link between Petri nets (where markings are multisets and
transition are rewrite rules on multisets) and the multiplicative fragment of linear
logic (where either ⊗ or O is the operation of the monoid and 1 or⊥ is its identity).
See [3] for a precise account of this relationship.

On the other hand, a number of fragments of linear logic have been cast into
logic programming languages with the aim of capturing some of the expressive power
provided by this new logic. We consider three such proposals, Lolli [5], LO [1] and
Forum [7], and compare their flexibility precisely on the encoding of Petri nets (or
equivalently of multiset rewriting systems). Considerations about the amenability
of these languages to efficient implementations are outside the scope of this paper.

∗This research was completed during an extended visit of the author at the Department of
Computer Science of Carnegie Mellon University . His permanent address is: Dipartimento di
Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy .

-'
?

$

6

& � %

-'
?

$

6

& � %
Ready to produce (p)

���

Ready to release (r)

���t
Buffer (b)

���ttt

Counter (n)

���t t

Ready to acquire (a)
���t

Ready to consume (c)

���

Produce
(t p)

Release
(t r)

Acquire
(t a)

Consume
(t c)

�
�

�
�

�
��3

- 2 -

Figure 1: A producer/consumer net

2 P/Tω nets
A multiset rewriting system (MRS) M over a set S is a set of multiset rewrite rules
t = •t.t• with •t and t• multisets over S called respectively the preset and the postset
of t. Given a multiset M , a rule t in M is enabled at M if •t is a submultiset of M . If
t is enabled at M , the application of t on M produces the multiset M ′ = M − •t+ t•,
+ and − being the multiset union and difference respectively. We write in this case
M �t

M M ′ (or M �M M ′). We use �∗
M for the reflexive and transitive closure of

�M.
A place/transition net with infinite place capacities, P/Tω net for short, is a pair

N = (S,M) where S is a set and M is an MRS over S. We require either S or M
to be non-empty. The elements of S are called places and the elements of M are
called transitions. A P/Tω system is a pair N = (N, M) where N = (S,M) is a
P/Tω net and M is a multiset over S called a marking.

Figure 1 describes a producer-consumer system by means of the usual graphical
representation for Petri nets. The left cycle represents the producer, that releases
one item per cycle, puts it in the common buffer and increments by one the counter.
The consumer (on the right) extracts two items at a time from the buffer and
consumes them. We will use this example as a benchmark for our implementations.
In section 4, we will rely on the abbreviations shown in parentheses.

The dynamic behavior of a P/Tω net is inherited from the underlying MRS. In
this context, the application of an enabled transition (i.e. a multiset rewrite rule) to
a marking is referred to as the firing of that transition.

3 Encoding Petri nets in linear logic
We describe in this section two encodings of P/Tω systems in multiplicative linear
logic. The first uses the language L⊗ to encode multisets by means of the connectives
⊗ and 1. Dually, LO relies on O and ⊥.

A sequent for L⊗ has the form Γ; ∆ ` C where C is a possibly empty conjunction
of atomic formulas (C-formula), ∆ is a multiset of C-formulas and Γ is a set of linear
implications with C-formulas as antecendent and consequent (I-formula). The rules

Γ; C ` C axiom′

Γ; ∆ ` C
Γ; ∆,1 ` C 1L′

Γ; · ` 1 1R′

Γ; ∆, C1, C2 ` C
Γ; ∆, C1 ⊗ C2 ` C ⊗L′ Γ; ∆1 ` C1 Γ; ∆2 ` C2

Γ; ∆1, ∆2 ` C1 ⊗ C2
⊗R′

Γ, C1−◦C2; ∆1 ` C1 Γ, C1−◦C2; ∆2, C2 ` C
Γ, C1−◦C2; ∆1, ∆2 ` C −◦L′

Figure 2: The system MILLP/T for L⊗.

for the resulting system are presented in figure 3. MILLP/T is proved in [3] to be
equivalent to the usual system for full linear logic when restricted to formulas in L⊗.

In order to represent P/Tω nets in L⊗, we associate to every element in the
universe of a multiset a propositional letter. A multiset is then mapped to a C-
formula consisting of the multiplicative conjunction of its members. A rewrite rule
is represented by an I-formula built upon the representation of its preset and postset.
We will call this representation the conjunctive encoding and denote it with · , being
· the inverse function. We have the following result [3].

Theorem 1 (Soundness and completeness of the conjunctive encoding of MRSs)
Let M and M ′ be two multisets and M a multiset rewriting system over a com-

mon universe. Then, if M �∗
M M ′, there exist a derivation of M ; M ` M ′ .

Let Γ, ∆ and C be an I-context, a C-context and a C-formula respectively, Then,
if PT is a derivation of Γ; ∆ ` C, then ∆ �∗

Γ C .

The dual representation in LO consists in mapping multisets to D-formulas, i.e.
the set of formulas freely generated from ⊥ and O . We call this representation the
disjunctive encoding P/Tω systems [3].

4 Implementations in linear logic programming
We will now consider in turn three logic programming languages based on linear
logic and show how the notions presented in the previous section can be effectively
implemented by using each of them. The languages we chose are Lolli [5], LO [1]
and Forum [7]. These three languages differ for the fragment of linear logic they are
based upon. Consequently, the encoding of MRSs, and therefore of P/Tω systems,
will be different in each language. We foresay that the implementation will become
more direct and elegant as we move from Lolli to LO and finally to Forum. As a
benchmark, we use the producer-consumer example of figure 1.

4.1 Implementation in Lolli

The fragment of linear logic that Lolli [5] makes available as a programming language
is the first-order language freely generated from >, N , −◦, ⇒, where A ⇒ B is

Generic rules
rewrite L K :- {load L K}.
load (X::L) K :- (item X -o load L K).
load nil K :- rew K.

rew K :- unload K.

unload (X::L) :- item X, unload L.
unload nil.

Specific rules
rew K :- item p, (item r -o rew K). % t p
rew K :- item r, (item p -o (item b -o (item n -o rew K))). % t r
rew K :- item b, item b, item a, (item c -o rew K). % t a

rew K :- item c, (item a -o rew K). % t c

Example query
?- rewrite r::n::n::b::b::b::a::nil p::n::n::n::b::c::nil.

Figure 3: A Lolli encoding of the producer/consumer net

defined to be equal to !A−◦B, and ∀1. Lolli formalizes intuitionistic provability for
this fragment of linear logic over sequents of the form Γ; ∆ ` G, where Γ and ∆
are two multisets of formulas called the unbound and the bound context respectively
and G is the goal formula.

For our purpose, we will rely exclusively on the connectives ⊗, −◦ and ! (written
respectively ,, -o or :-, and {. . .} in the concrete syntax). Operationally, ⊗ requires
the bound context to be split among its two subgoals, D−◦G involves adding D to
the bound context in order to prove G, and !G succeeds if G is provable in an empty
bound context. When a clause or a fact from the bound context is used, it is deleted.

Lolli does not provide the tools for a direct implementation of neither the con-
junctive nor the disjunctive encoding. Therefore, an elegant solution cannot be
achieved within Lolli. However, we can simulate the former by representing a generic
rule t = {{a1, . . . , an}} . {{b1, . . . , bm}} as the clause rew K :- a1, . . ., an, (b1 -o

(b2 -o . . . (bm -o rew K). . .)). When called, the first part of this clause (a1,
. . ., an) consumes the preset of t while the remaining part asserts its postset and
finally calls rew K recursively for the application of another rule.

The full program, adapted from [5], is shown in figure 3. Markings are given two
representations: the users views them externally as lists and the program represents
internally their constituents as individual facts in the bound context. A multiset
rewriting sequence is performed in three stages: first the list representing the initial
marking is downloaded into the bound context (load), then the rewrite rules are
applied (rew), and finally the resulting multiset is encoded back into a list (unload).

1The syntax of Lolli can be enriched by permitting the following connectives in a goal position:
⊕, 1, ⊗, ! and ∃. The resulting formulas are called (linear) hereditary Harrop formulas.

Specific rules
r :- p. % t p
p @ b @ c :- r. % t r
c :- b @ b @ a. % t a
a :- c. % t c

r @ n @ n @ b @ b @ b @ a @ bot @ stop.

Example query
?- p @ n @ n @ n @ b @ c @ bot @ stop.

Figure 4: An LO encoding of the producer/consumer net

4.2 Implementation in LO

LO mechanizes the fragment of linear logic specified by the following grammar rules:
V ::= A | V1 OV2 (Head formulas)
G ::= A | > | G1 NG2 | G1 OG2 (Goal formulas)

D ::= V | G−◦V (Clauses)
where A ranges over atomic formulas (for the purpose of our example, it will be
sufficient to deal with the propositional fragment of LO).

The operational semantics of LO is conveniently described by means of classical
sequents of the form Γ ` Θ, where Γ is a set of clauses called the program and
Θ is a multiset of goal formulas called the context . The dynamic part of an LO
sequent is its context, that will in general contain more than one goal. Once all
the goals have been decomposed, a clause is fetched from the program and used
to continue the computation. In the following, we will deal with goal formulas
containing multiplicative disjunctions (written @ in LO) of atoms only.

Having multiplicative disjunction built-in, LO is adequate for coding the dis-
junctive representation of P/Tω nets. We represent places as atomic formulas, use
multiplicative disjunction to encode markings and a clause of the form b1 @ . . . @

bm :- a1 @ . . . @ an for each transitions {{a1, . . . , an}} . {{b1, . . . , bm}}. Since ⊥ is
not available in LO, we simulate it by means of the atomic formula bot, making it
play the role of the empty multiset whenever a rule has an empty postset. Since LO
does not possess a bound context, we encode the initial marking by means of a rule
with no postset, distinguished by the atom stop.

Figure 4 shows the resulting program for the producer/consumer example.

4.3 Implementation in Forum

Forum [7] was designed as an extension to both Lolli and LO. The fragment of linear
logic it mechanizes is the language freely generated from the linear logic symbols
>, N , ⊥, O , −◦, ⇒ and ∀. This set of connectives is indeed complete in the sense
that the remaining linear symbols can be defined on top of it. The operational
semantics of Forum is modelled by means of sequents of the form Γ; ∆ ` Θ where
the functions of the contexts Γ, ∆ and Θ coincide with those of the homonynous
entities of Lolli and LO.

Specific rules
r :- p. % t p
p @ b @ c :- r. % t r
c :- b @ b @ a. % t a
a :- c. % t c

LINEAR r @ n @ n @ b @ b @ b @ a.
Example query

?- p @ n @ n @ n @ b @ c.

Figure 5: A Forum encoding of the producer/consumer net

Figure 5 shows the Forum implementation of the producer/consumer example.
In this case, we can adopt in full the disjunctive encoding. The resulting program
resembles the LO implementation. Since Forum admits ⊥ as a primitive connec-
tive, there is no need for any trick to simulate the behavior of the empty multiset.
Moreover, since there is a distinction between a bound and an unbound part of the
program, a termination predicate like stop is not required in this implementation.
The initial marking is loaded in the bound context by means of the directive LINEAR.

5 Conclusions
In this paper, we reported on an experiment with the major linear logic programming
languages designed in the recent years: Lolli [5], LO [1] and Forum [7]. As a case
study, we considered the representation of a class of Petri nets, P/Tω nets, in each
of these languages. We observed that the obtained code becomes more direct and
elegant as we pass from Lolli to LO, and from LO to Forum. This fact is easily
explained by noticing that the set of linear connectives provided by the languages
in this list becomes more and more suited to our problem as we proceed.

References
[1] J.M. Andreoli, R. Pareschi: “Linear Objects: Logical Processes with Built-in Inher-

itance”, in International Conference on Logic Programming pp. 495–510, 1990.
[2] A. Asperti: “A logic for Concurrency”, Manuscript, November 1987.
[3] I. Cervesato: “Petri Nets as Multiset Rewriting Systems in a Linear Framework”.

Available as http://www.cs.cmu.edu/∼iliano/ON-GOING/deMich.ps.gz.
[4] J.Y. Girard: “Linear Logic”, in Theoretical Computer Science 50:1–102, 1987.
[5] J. Hodas, D. Miller: “Logic Programming in a Fragment of Intuitionistic Linear

Logic”, in Journal of Information and Computation 110(2):327–365, 1994.
[6] N. Mart́ı-Oliet, J. Meseguer: “From Petri Nets to Linear Logic”, in Conf. on Category

Theory and Computer Science, pp. 313–337, LNCS 389, Springer-Verlag, 1989.
[7] D. Miller: “A Multiple-Conclusion Meta-Logic”, in Symposium on Logic in Computer

Science, pp. 272–281, 1994.
[8] W. Reisig: “Petri Nets, an Introduction”, Springer-Verlag, 1985.

