
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Proposal for an
Undergraduate Computer Science Curriculum

for the 1980s

Part I: Discussion

Mary Shaw, Steve Brookes, Marc Donner
James Driscoll, Michael Mauldin, Randy Pausch

Bill Scherlis, Alfred Spector

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pa. 15213
20 October 1983

Abstract

The authors propose to the Carnegie-Mellon Computer Science Department a curriculum for
undergraduate computer science. This report sets forth objectives for computer science
education, presents an overview of the content of a curriculum, defines die course structure for a
degrcee program, and outlines a set of courses. The curriculum design is intended to anticipate
the content that will be appropriate at the end of this decade. We have tried to avoid being
unduly prejudiced by traditional courses and organizations.

In addition to proposing a curriculum design for computer science majors, the authors
recommend die development of new curricula to serve other groups of students.

The Curriculum Design Project is supported by general operating ftmds
of chc Carnegie-Mellon University Computer Science Department

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S i

Executive Summary

The Carnegie-Mellon Computer Science Department's Curriculum Design Project has examined the
current state of computer science and computer science curricula, has projected the requirements for
undergraduate education in computer science, and has developed a curriculum suitable for a computer
science major. This report presents our curriculum design.

Carnegie-Mellon currently has a computer science curriculum (a body of courses), but it does not have a
computer science major (a formal degree program).

We recommend that the Computer Science Department adopt a curriculum based on this proposal
We recognize that resource limitations may prevent a complete implementation of the curriculum. We

believe that some reasonable subset of the curriculum could form the basis for a computer science major. We
also recognize that a curriculum is a necessary, but not a sufficient, condition for a major.

We make no recommendation on the question of offering a computer science major at Carnegie-
Mellon.

Goals

Computer science is opening new specialties in many fields, and the pattern of student involvement in
computing is changing. As a result, four different undergraduate populations within the university will
require distinct kinds of education about computer science. These groups are: computer science majors,
students in computational specializations within other disciplines, students who will write programs for
personal use, and students who will make only casual use of computers.

We took as our goal the design of a curriculum for the first group of students: those interested primarily in
computer science. We have formulated a unified view of the discipline, identified a suitable collection of
courses, and defined the content requirement for a major. We chose not to address the university resources
required to support such a curriculum.

The University must also provide for the computer science education of non-majors. This report discusses
the needs of these students and some suitable responses, but it does not go into depth. New curriculum
designs will be required for two of the tiiree groups of non-majors.

We recommend that studies of computer science specializations in other disciplines and of education
for students only casually involved with computing be undertaken as separate projects.

Educational Philosophy

We set out to develop a curriculum that would support a computer science degree of the highest quality.
Such a curriculum requires a balanced blend of fundamental conceptual material and examples drawn from
the best of current practice. In many ways, our educational philosophy is based directly on the Carnegie Plan
for education, which emphasizes an integrated understanding of basic concepts and the application of those
concepts to practical problems. We believe that a curriculum with a small common core and a broad selection
of advanced courses supports a variety of computer science specializations including both terminal and
nonterminal programs.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 11

Results

We have designed a computer science curriculum consistent with this educational philosophy. The
curriculum includes a unified overview of computer science, die content requirements for a computer science
major, and detailed descriptions of a number of computer science courses. The interactions of this curriculum
with offerings in other departments are not yet completely specified.

The design recognizes that computer science is a maturing field with a growing set of increasingly
comprehensive models and theories. As such, it relies very heavily on mathematics, and it has close des to
several other disciplines. Because the field is changing rapidly, students need fundamental knowledge that
they can adapt to new situations. In addition, students must be able to apply dieir knowledge to real
problems, and they must be able to generate tasteful and cost-effective solutions to these problems. In this
curriculum, virtually every course emphasizes the integration of theoretical results and practical applications.

We have sketched outlines for twenty-nine computer science courses. They include seven courses in
systems and design, three courses in programming languages, two courses in algoridims and analysis, three
courses in computer systems, one course in elementary discrete mathematics, four courses in theory and
mathematical foundations, three courses in artificial intelligence, one course in graphics, and five independent
study, project, or seminar courses. Many of these courses are completely new, and the rest are revised from
their present form. As a result, a major effort will be required to implement the individual course designs.

In addition to the courses we define here, we have identified a number of courses in other departments that
present material relevant to computer science. Though such material is often conceptually part of a computer
science education, we did not develop new. descriptions for such courses.

We have also proposed requirements for a computer science major based on this curriculum. These
requirements are the basis for a liberal professional education. The required core is small (five specific
courses plus three courses constrained to specific areas), thereby allowing a variety of specializations within
the major. Additional requirements assure breadth, both by requiring substantial exposure to humanities,
social sciences, and fine arts and by requiring a concentration of study outside the major.

Innovations

Because the design was carried out without prior commitment to course organizations, the resulting
organization is based on the structure of modern computer science rather than on traditional course divisions.
The major innovative characteristics of the resulting curriculum include the following:

• Organization around a core. The curriculum comprises a core of courses that present the basis of
the field and a set of more advanced courses that provide depth of knowledge. The core courses
emphasize the mathematical foundations of the field in practical settings.

• Curriculum integration. The courses are carefully integrated with each other, and strong
prerequisite relations ensure that the material will be presented in a coherent order. Subareas
often have one course that provides a broad introduction and a sequence of courses that provide
for greater depth of knowledge.

• Courses designed around topics rather than artifacts. Topics based on common ideas often are in a
single course, even if the topics are not traditionally taught together. This often entails
rearrangement of traditional course boundaries; it allows integration of tiieory and practice.

AN UNDERGRADUATE COMPUTER SCIENCE CL RR1CUI UM 1 OR Till'. 1980S iii

• Use of proper computer support. Many courses require extensive access to computers and to
software that illustrates points being made in the course. Though the forthcoming campus-wide
personal computer effort will aid in tiiis, we have presented the functional requirements for
computer support rather dian discussing specific ways to use personal computers.

After developing an overview of the curriculum, we derived specific courses from die overview. We have
re-established the need for an elementary sequence much like die one developed at Carnegie-Mellon in the
late 1970s (FUNDAMENTAL STRUCTURES O F COMPUTER SCIENCE i A N D II [211/212]). This provides a solid
foundation for sequences of advanced courses. In many cases, the initial course of an advanced sequence is
eminently suited for a student who wants to use the techniques of an area without specializing in it. The
major new courses and course sequences include

• A sophomore course that provides a concrete appreciation of the nature of computation through a
unified blend of hardware, software, and theory (240).

• A reorganization of the traditional operating systems course that integrates die hardware,
software, and dicorctical views of concurrency, generalizes die resource management aspect of
operating systems, and deals with complex, long-lived data (310, 412, 413).

• A new course chat presents module-level program organizations and software development
techniques; this course fills a gap between the courses that teach data structures or program
fragments and the courses that deal with constructing systems from modules (311).

• A reorganization of the traditional comparative programming languages and compiler
construction courses that focuses first on programming languages and user interfaces, progresses
to the use of advanced software tools for system (especially compiler) development, and
culminates in language design and compiler construction techniques (320, 420, 421).

• A set of courses that present algorithms and the mathematical foundations of Computer Science
with emphasis on integrating the practical uses and consequences of the material with the
presentation of die theory. The courses cover algorithms, logic, formal languages, automata,
computability, complexity, and theory of programming languages (330, 350, 351, 430, 450, 451).

• An artificial intelligence sequence with a first course that covers the fundamentals of both the
psychological and practical aspects of AI and independent follow-on courses providing depth in
cognition and robotics (360, 460, 461).

In addition, we plan joint development of a course for advanced students that establishes a basis for
responsible evaluation of the consequences of computing and for interpreting the technology to laymen (380).

Organization of the Report

The setting for this design is discussed in Chapter 1. Roies for the university to play in die education of
both majors and non-majors arc examined in Chapter 2. Our general educational philosophy is defined in
more detail in Chapter 3. Chapter 4 presents our unified view of the content of computer science. Chapter
5 shows how majors could be created from the courses of this curriculum. Chapter 6 discuss the rationale for
our organization. Summary descriptions of courses appear in Chapter 7. Outlines for the computer science
courses we propose arc presented in Chapter 8. Chapter 9 lists courses from other departments diat cover
material in the area we broadly view as computer science. Since the latter two chapters arc of somewhat more
limited interest than the c.;; licr chapters, thev are bound as <t separate volume.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S
V

Preface

Carnegie-Mellon has had a Computer Science Department and a PhD degree program since 1965, but an

undergraduate major leading to a Bachelor's degree in Computer Science has never been offered. Although a

formal degree is not offered, a set of undergraduate courses is taught, and the Mathematics Department offers

an option that relies heavily on these courses. Undergraduate students who wish to study computer science

usually take mathemades degrees in die computer science option.

On a number of occasions over the past decade, the Computer Science Department has considered offering
an undergraduate Computer Science major. Until recently, the decision has always been negadve. In the
Spring of 1981, however, the Department agreed to consider taking steps toward offering a major.

We decided that the first step should be a thorough review of the existing curriculum. The content of the
present courses has evolved through the years, and a complete review has not been done in quite some time.
Because Computer Science is evolving rapidly, we felt that the changing nature of computers and computing
was not adequately reflected by the existing curriculum. As a result, we decided to reconsider the entire
curriculum, including both computer science courses and courses that will probably be offered by other
departments. Our goals are described in a previous report [12] (reprinted in [13]) and briefly reviewed in
Chapter 3.

To date, die interaction between this project and the university personal computer network project has been
minimal. However, we have tried to identify ways to take advantage of advanced computing technology as we
have developed courses. In addition, we expect to coordinate our plans with those of the university, which
has a growing need to use computers in support of undergraduate education and to develop courses that deal
with computation in fields other than computer science. We hope that by systematically including software
support requirements in course designs we can influence the development of the campus network and justify
software development as an ordinary part of course development

A N U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR TOE 1980S vi

Acknowledgments

A curriculum necessarily spans its discipline; the designers of any such document need all the help they can
get. We have received a great deal. Though it is impossible to acknowledge all of it, we want to express our
appreciation to some of the people who have affected our thinking most significantly. Thanks, tiien:

• To the Carnegie-Mellon Computer Science Department for support and encouragement in this
project.

• To the following people, who contributed significantly to the design of individual courses: Jon
Bendey, Ellen Borison, Jaime Carbonell, Wes Clark, Geoff Hinton, Elaine Kant, Dan Leivant,
Matt Mason, Dana Scott, Chris Stephenson, Bob Wedig, and Bill Wulf,

• To Jill Fain, Cynthia Hibbard, Allen Newell, and Steve Shafer, who provided extensive critical
comments on drafts of the proposal.

• To previous members of this project team, Jon Bendey and Guy Steele. Their participation in the
early stages of the design contributed enormously to the final philosophy and structure.

• To members of the IEEE/ACM Software Engineering Planning Group. Section 1.2 was prepared
while its author was working on both reports, and many of the ideas were developed or refined
during the discussions at die planning meeting in September 1982.

• To the participants of die Sloan Conference/Workshop on the first two years of College
Mathematics, from which the first version of our discrete mathematics syllabus emerged.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM TOR THE 1980S

Table of Contents

Part I: Discussion

1. Setting
1.1 Working Definition of Computer Science
1.2 A View of Future Computing

2. Roles for Universities
2.1 The Audience
2.2 Use of Computing Technology in Education
2.3 The Establishment

3. Objectives
3.1 Premises
3.2 Goals

4. Content
4-1 Basics

4.1.1 Content
4.1.2 Skills

4.2 Elementary Computer Science
4.2.1 Content
4.2.2 Modes of Thought
4.2.3 Skills

4.3 Liberal Professional Education
4.3.1 General Scope
4.3.2 Liberal Education
4.3.3 Areas Related to Computer Science

4.3.3.1 Madiematics and Statistics
4.3.3.2 Electrical Engineering
4.3.3.3 Physics
4.3.3.4 Psychology
4.3.3.5 Mechanical Engineering
4.3.3.6 Management and Information Science
4.3.3.7 Public Policy

4.4 Advanced Computer Science
4.4.1 Control
4.4.2 Data
4.4.3 Systems
4.4.4 Language
4.4.5 Foundations
4.4.6 Process/Design
4.4.7 Communication
4.4.8 Applications

5. Program Organization
5.1 Requirements
5.2 Advice on the Use of Electives
5.3 Example Programs

5.3.1 Balanced Program
5.3.2 Mathematics Concentration

AN UNDI-RCRADUATIi COMPUTER SCIENCE C U R R I C U L U M FOR THE 198

5.3.3 Rlcctrical Engineering Concentration
5.3.4 Psychology Concentration

6. Remarks

6.1 General Philosophy
6.2 Relation to Traditional Courses
6.3 Course Organization and Style
6.4 Course Numbering Scheme

7. Abbreviated Course Descriptions

Part II: Detailed Course Descriptions
8. Course Descriptions

8.1 Basic and Introductory Courses
8.1.1 Computers in Modern Society [100]
8.1.2 Programming and Problem Solving [110]
8.1.3 Discrete Mathematics [150]

8.2 Elementary and Intermediate Computer Science Courses
8.2.1 Fundamental Structures of Computer Science I [211]
8.2.2 Fundamental Structures of Computer Science II [212]
8.2.3 Real and Abstract Machines [240]
8.2.4 Solving Real Problems [300]
8.2.5 Time, Concurrency, and Synchronization [310]
8.2.6 Comparative Program Structures [311]
8.2.7 Languages. Interfaces, and dicir Processors [320]
8.2.8 Algorithms and Programs [330]
8.2.9 Formal Languages, Automata, and Complexity [350]
8.2.10 Logic for Computer Science [351]
8.2.11 Introduction to Artificial Intelligence [360]

8.3 Advanced Computer Science Courses
8.3.1 Independent Project [400]
8.3.2 Undergraduate Thesis [401]
8.3.3 Research Seminar [409]
8.3.4 Software Engineering [410]
8.3.5 Software Engineering Lab [411]
8.3.6 Resource Management [412]
8.3.7 Big Data [413]
8.3.8 Transducers of Programs [420]
8.3.9 Advanced Programming Languages and Compilers [421]

o ; 8v3;10 Advanced Algorithms [430]
8.3.11 Computer Architecture [440]
8.3.12 VLSI Systems [441]
8.3.13 Theory of Programming Languages [450]
8.3.14 Complexity Theory [451]
8.3.15 Artificial Intelligence — Cognitive Processes [460]
8.3.16 Artificial Intelligence — Robotics [461]
8.3.17 Interactive Graphics Techniques [470]

9. Related Courses

9.1 Mathematics Courses
9.1.1 Introduction to Applied Mathematics [Math 127 / CS 150]

AN U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M FOR T H E 1980S
ix

9.1.2 Calculus I [Math 121] 114
9.1.3 Calculus II [Math 122] 114
9.1.4 Methods of Applied Math I [Math 259] 114
9.1.5 Elements of Analysis [Math 261] 114
9.1.6 Operations Research I [Math 292] 114
9.1.7 Operations Research II [Math 293] 115
9.1.8 Combinatorial Analysis [Math 301 / CS 251] 115
9.1.9 Linear Algebra [Math 341] 115
9.1.10 Numerical Methods [Math 369 / CS 352] 115
9.1.11 Modern Algebra [Math 473 / CS 452] 115
9.1.12 Applied Graph Theory [Math 484 / CS 430] 115
9.1.13 Theory of Algorithms [Math 4 5 1 / C S 451] 115
9.1.14 Numerical Mathematics I and II [Math 704 and 705] 116
9.1.15 Large-Scale Scientific Computing [Math 712 / CS 453] 116

9.2 Statistics Courses 116
9.2.1 Probability and Applied Statistics for Physical Science and Engineering I [Stat 211 / CS 116

250]
9.2.2 Probability and Statistics I [Stat 215] 116
9.2.3 Statistical Methods for Data Analysis I [Stat 219] 116

9.3 Electrical Engineering Courses 117
9.3.1 Linear Circuits: [EE 101 / CS 241] 117
9.3.2 Electronic Circuits I [EE 102 / CS 242] 117
9.3.3 Introduction to Digital Systems [EE 133] 117
9.3.4 Linear Systems Analysis [EE 218] 117
9.3.5 Electronic Circuits II [EE 221 / CS 340] 117
9.3.6 Analysis and Design of Digital Circuits [EE 222 / CS 341] 118
9.3.7 Introduction to Solid State Electronics [EE 236] 118
9.3.8 Introduction to Computer Architecture [EE 247 / CS 440] 118
9.3.9 Fundamentals of Control [EE 301] 118

9.4 Psychology Courses 118
9.4.1 Psychology of Learning and Problem Solving [Psy 113] 119
9.4.2 Information Processing Psychology and Artificial Intelligence [Psy 213] 119
9.4.3 Human Factors [Psy 363] 119
9.4.4 Cognitive Processes and Problem Solving [Psy 411] 119
9.4.5 Thinking [Psy 417] 119

9.5 Engineering and Public Policy Courses 120
9.5.1 Law and Technology [EPP 321] 120
9.5.2 Telecommunications Policy Analysis [EPP 402] 120
9.5.3 Policy Issues in Computing [EPP 380 / CS 380] 120

9.6 Engineering Courses 120
9.6.1 Real Time Computing in the Laboratory [CIT 252] 120
9.6.2 Analysis, Synthesis and Evaluation [CIT 300] 121
9.6.3 The History and Formulation of Research and Development Policy [CIT 401] 121
9.6.4 Cost-Benefit Analysis [CIT 404] 121

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 1

1. Setting

This report presents a curriculum that addresses the needs of computer science education in the 1980s. It is
intended to provide the basis of a computer science education of the highest quality. The curriculum is based
upon our evaluation of the structure of computer science and the educational needs generated by the
maturation of the field. In this chapter, we discuss the nature of computer science and the prospects for
enormous growth in the near future. The second chapter describes university roles in computer science
education. Next we present a succinct description of our overall premisses and goals and a general description
of the content of our curriculum. The remaining chapters describe the curriculum in much greater detail,
including a description of an undergraduate degree program and outlines for courses.

We begin in Section 1.1, which describes the scope of the field we consider to be computer science. In
Section 1.2 we make some projections about the kind of compudng we may be doing ten years hence. On the
basis of these projections, we predict some of the issues the field must face over the next decade and some of
the changes we must anticipate.

1.1 Working Definition of Computer Science

There is no generally accepted definition of the field of computer science, and we do not expect to remedy
that deficiency here. Nevertheless, we need a characterizadon of the discipline in order to focus our
discussions. The curriculum design presented in this report is based on the following working definition.

Computer science is concerned with the study of computers and of the phenomena connected widi
computing, notably algorithms, programs, and programming. A major objective of the discipline is the
formulation of a systematic body of knowledge, theories, and models to explain the properties of computers
and related phenomena. It is often the case that computer (or computational) systems exhibit extremely
complex structure and behavior; techniques for identifying, quantifying and managing complexity are
therefore central to computer science. The discipline is also concerned with producing solutions to
technological (real-world) problems using a detailed knowledge of the properties and the applicability of
current compudng technology. Since there are usually many different ways to solve a problem, an important
engineering activity is the evaluation, comparison, and selection of alternatives on the basis of criteria such as
cost or efficiency. Unlike the natural sciences, computer science studies objects and systems that are artificial;
since both the Riles and the artifacts can be modified by the scientist, this can be both a problem and an
advantage.

A description of computer science should include not only its subject matter, but also its characteristic
paradigms and modes of analysis, reasoning, and problem solving. Computer science borrows heavily from
mathematics, using analytic and synthetic techniques such as inductive definitions and case analysis. But it is
not exclusively a formal, quantitative field, because the need for practical systems suitable for human use
leads the field to rely, for example, on design and modeling techniques from engineering and on techniques
from psychology for the study of human performance and behavior. In addition, the leading edge of
computer science is moving rapidly. As a result, particular examples or techniques become obsolete and
research results move rapidly into the body of pragmatic knowledge.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 2

Using this working definition as a starting point, we conclude that the curriculum must deal with:

• Computers and related phenomena: machines and computations, both real and abstract
• Algorithms, programs, and programming

• Complex structure and behavior of information: how to identify, quantify, and manage it

• Engineering concerns: how to find cost-effective solutions to technological problems and to apply
current technology

• Design tradeoffs: how to compare and select alternatives with respect to given criteria, and some
appropriate criteria for such decisions

• Human performance: the nature of the people who use computers and the ways that humans
manage complex problems

Computer science is a changing field, and the curriculum must be acknowledge this fact. It must be flexible
enough to allow allow adaptation to changes in both technology and current thinking, and it must provide
students with an education of lasting value despite this change. It must be broad enough to train computer
scientists who can interpret the evolution of computer science to laymen. Further, it must make students
aware of the roles of computers in society, because as professionals in a field that will so change society they
must be able to make informed, responsible decisions tiiat will affect the lives of many.

1.2 A View of Future Computing

The nature of computing, and hence of computer science, is changing rapidly. Many topics that now seem
interesting will be obsolete or irrelevant within ten years. If the curriculum we design now is to remain
effective through 1990 or beyond, we must try to understand the forces that are shaping the field and to
anticipate the roles that computing and computer science will play in the future. This section points out some
of the trends that will affect the field over the next decade and describes some of the new phenomena and
issues that may arise.

Computers are becoming smaller and cheaper, and they are being distributed across a wider and more

varied population. Important current trends include:

• Decreasing hardware costs

• Increasing share of computing costs attributable to software

• Increasing expectations about the power and reliability of applications

• Increasing range of applications, particularly those on which lives will depend

• Increasing development of distributed computing and convenient network access

• Increasing availability of computing power, especially in homes

• Widening view of computers as an information utility

• Increasing quality of interfaces to humans (voice, high-performance graphics)

• Increasing exposure of naive people to computers, both at home and in the work place

• Increasing general reliance on computers for day-to-day operations.

• Continuing or increasing shortage of qualified professionals

• Continuing lack of appreciation for the nature of software

• Increasing importance of "intelligent" systems

AN UNDIvRGRADUATH COMPU TKR SC1I-NCI- CURRICULUM TOR TIIH 1980S 3

On the basis of those trends, we can extrapolate some future developments:

• Pervasive Consumer Computing: Computers will be extremely widespread, both as multiple-
purpose machines in homes and offices and as dedicated (embedded) machines for applications
such as household environment control. Most of die users of these machines will be naive —
certainly the majority of them will not be programmers. As a result, most of the users of programs
will not be creators of programs.

• Information Utility: We will come to think of computers primarily as tools for communicating and
for accessing information, rather than primarily as calculating machines. Networks will provide a
medium for making available numerous public data bases, both passive (catalogs, library facilities,
newspapers) and active (newsletters, individualized entertainment). Real-time control problems
will become more visible.

• Broad Range of Applications: The range of applications will continue to broaden, and an
increasing number will be applications in which unreliable computation could lead to risk of
human life. As a result of this and widespread use by nonprogrammers, much of the software will
provide packaged services that require little, if aiiy, programming. There will be substantial
economic incentives for producing general systems that can be tuned to individual, possibly
idiosyncratic, requirements.

• Changes in the Workplace: Distributed systems and networks will facilitate a distributed
workplace, but we doubt that the norm for office workers will be to work at home instead of in an
office — computers will not replace human interaction for decision-making. Electronic work
stations will change die nature of work that now depends on paper flow, and robotics will
substantially change manufacturing.

• Massively More Complex Computers: Some computer networks and large computers will be
replaced by or evolve into massive computer systems with orders of magnitude greater capacity
than any systems now available. These systems may include enormous databases (nationwide
banking records, interactive consumer catalogs, the location and velocity of all ocean-going
vessels, etc.), and be used by millions of people simultaneously. The first steps have already been
taken by airline and hotel reservation systems. Embedded systems will proliferate to a point
where the ordering of software and processors is as important as ordering nuts and bolts when
designing any machine (witness the automobile industry today).

• Intelligent Systems: Intelligent software systems will provide intellectual multipliers that
substantially increase professional productivity in some areas. Intelligent robots will take over an
increasing percentage of the industrial workload, and perhaps even make a dent in the household
chores. Increasingly sophisticated systems will lessen the need for programmers, and perhaps
increase everyone's need for a basic understanding of computers. Otherwise, today's expert
systems may be tomorrow's oracles.

• Impact on GNP: Computing and information will represent a major component of the GNP,
heralding the arrival of a society as dependent on information as on wheat or metal.

Even if this projection is inaccurate, we-can expect a substantial qualitative shift in the role of computers in
the world at large. The nature of education will surely be affected: we can already see the effects of pocket
calculators on the teaching of mathematics. Further, entertainment technology (e.g., Sesame Street and video
games) has raised students' expectations about the educational process.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 4

This view of the future raises a number of issues.

• Consumer Concerns: The use of computers by large numbers of nontechnical people, together
with the increasing number of sensitive applications that involve computers, will raise issues about
the responsibilities of vendors towards their products. These will certainly include analogs of the
familiar problems associated with product and professional liability, merchantability and
warrantability (guarantees), usability and reliability, licensing, copyrights, and product safety (e.g.,
development of an analog to the certificadon that Underwriters Laboratories provides for
electrical products). Other problems, such as security and privacy concerns, will undoubtedly
arise from the special nature of computers.

• Production and Distribution: An expanding role for computers and computer-related products and
services in the retail marketplace will introduce new problems in manufacturing, sales and service,
equitable methods of charging for shared resources, and industry compatibility standards.
Another class of problems will center on how to create software for a mass market, perhaps
including some notion of mass production of software (e.g., by tailoring packages rather than by
writing code).

• Safety and Security: In addition to the consumer-safety issues, we can expect questions concerning
licensing, product and professional liability, and the trustworthiness or integrity of data provided
via public databases. Existing concerns about security and privacy will increase. These concerns
will be particularly acute where life-critical applications are involved.

• Economic Impact: The economic impact of these major innovations must be widespread. Of
particular concern for die computing industry will be the interplay between technological
development and limiting factors, such as productivity, on die growth of the information sector.
Accurate software cost estimates and well considered marketing policies will be vital as the
computer industry matures. One of the most important economic changes will be in personnel,
especially elimination of unskilled positions by automation, or the replacement of unskilled jobs
with positions requiring a high level of technical expertise.

• Human Issues: Currendy, humans deal directly with computers primarily by choice. As
computers become pervasive, humans will interact with them through necessity. There will be a
variety of sociological consequences, including the necessity of systems designed for naive users,
personnel dislocation caused by technical change, and major shifts in the content and style of
education.

• Social Issues: The computer age could bring about a new underprivileged class of the computer
illiterate. Women and minorities might make up the majority of this new class by virtue of
insufficient technical education. Preventing this scenario will require computer scientists to be
aware of the social implications of their work, and a society made aware of the implications this
new technology holds.

In response to these issues, universities must broaden the scope of their computer-related offerings in order to
prepare students to use the new electronic tools and to adapt these tools to a variety of new uses. We believe
that this is best accomplished by teaching students the principles that support current tools; current practices
will rapidly become obsolete, and students must be prepared to adapt.

A N U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR TOE 1980S 5

2. Roles for Universities

Computer science has grown rapidly through its short lifetime. Universides have been major contributors
to that growth, and they bear a major responsibility for dissemination of knowledge about computer science.
Professional education in computer science is growing more rigorous, and we expect an increasing need for
students to master a growing set of fundamental concepts. Mere programming skill will no longer suffice for
most computing professionals. The field will require solid technical expertise comparable to that expected of
engineers, and most development work will require genuine competence in both the application field and
computer science. In addition, many people will need to use computers in sophisticated ways and need to
understand the implications of the spreading computer technology. Universities must begin now to respond
to these emerging needs.

The widespread availability of inexpensive computation will also affect the process of education.
Applications will range from direct implementation of routine exercises to innovative systems that present
material in fundamentally different ways. Courses that make extensive use of computation will take on the
character of laboratory courses; development of computer support, especially of programs suitable for student
use, will be at least as difficult as development of new textbooks.

This chapter discusses roles for computing in universities. It begins with an analysis of the audiences for
computer science education — the groups of students who need some kind of computer science education.
Next, it describes the potential for exploiting computing technology in the educational process. Finally, it
assesses the current state of affairs in the computer science curriculum establishment and argues that existing
curriculum designs are not adequate.

2.1 The Audience

Because of the growing importance of computers in many fields, universities now have a responsibility for
teaching several distinct groups of students about computers and about computer science. In this section, we
examine the pattern of student involvement with computing and suggest that a significant change in that
pattern is taking place. We describe several distinct groups of students and discuss the kind of computer
science education each group needs. We identify one group, the computer science majors, as the focus of this
report, and we recommend that curriculum design efforts be undertaken for two other groups. In the early
1970s many technical students and a few nontechnical students took some kind of introductory programming
course. Perhaps half of these students went on to take a few more computer science courses; these courses
usually emphasized programming languages or programming techniques. Only a few students pursued
computer science to the depth required of a major.

This pattern of student involvement in computing can be illustrated by the histogram of Figure 2-1(a),
whose verticalaxis represents increased technical depth in computing and whose horizontal axis represents
the fraction of the student body involved. In this figure we see three groups: a modest number of computer
science majors, a significant number of students with extensive programming experience and some exposure
to the ideas of computer science, and a large number of students with enough programming ability to use
computers in their own work. It is important to note that most introductory courses and many of the more
advanced courses emphasized computer programming. As a result, the conceptual basis of computer science
and the potential of computers for personal information processing were often slighted.

AN U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M FOR THE 1980S 6

CS n a j o r

Seve r a l computer s c i e n c e c o u r s e s

One programming c o u r s e

Degree of i n v o l v e m e n t

(a) Conventional pattern in the 1970s

CS major

P r o f e s s i o n a l use o u t s i d e o f CS

A b i l i t y t o w r i t e programs f o r p e r s o n a l use

F u n c t i o n a l a b i l i t y t o use compute r s as an i n f o r m a t i o n u t i l i t y

none Degree o f i n v o l v e m e n t

(b) Cross-disciplinary pattern expected in the 1980s

Figure 2-1: Profiles of Student Involvement in Computing in the 1970s andl980s

Students graduating in the 1970s with degrees in computer science or with degrees in other disciplines
coupled with some computing experience were often employed as programmers. Usually, it was expected
that the students would grow into increasingly responsible technical or managerial positions. In most cases
their professional growth cither lay within computer science or involved an explicit change to, for example,
management

In the 1980s, as computing becomes part of general competence and computer science moves from a narrow
specialty to a component of the basic education of every student, this pattern will surely change. There is
currently a documented shortage of computer professionals at all levels, from technicians to researchers [10];
this manpower shortage is projected to continue through the 1980s. We believe that a major component of.,
the demand for bachelor's and master's level computer professionals will soon be for students with advanced
technical competence in computing as an integral component of computing specializations within other
disciplines..^ifih Join^.9duqatiQ,a ; in, computer ,,scjenoe,,and another disci pJineJs.novy seriQusly ncglqQi;9.dfcs

indeed, many of the students who currently select computer science majors might be better served by
computing specializations in other departments. In addition, the criteria for general literacy in the university
at large will require education for large numbers of students who will use a variety of sophisticated programs
and packages but who will do very little creation of programs. . . .

From tiiese predictions and the sketch of future trends in Section 1.2 we can project a very different profile .
for student involvement in computing in the 1980s than we saw in the 1970s. Figure 2-1(b) shows the pattern
of student computing experience that we expect to see in this decade. We expect, as before, a modest number
of computer science majors. These should be students planning on graduate work in computer science or

A N U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M FOR T H E 1980S 7

students who want to work directly within the computer industry. We project the number of computer
science majors to be smaller than the demand currently seen in many schools because we expect much of that
demand to be redirected to the second group — joint majors who master the fundamentals of both computer
science and a second discipline, then specialize in a computational branch of the second discipline. A third
group of students, those who want compudng expertise for more casual use, may need opportunities (e.g.,
short introductions to the use of special packages or particular languages) that are not properly provided
within an academic department Finally, we expect that virtually all students will need an introduction to the
use of computers and the role of computers in modern society.

The primary objective of diis project has been to design a curriculum for computer science majors. We
believe tiiat a single curriculum can suffice for both terminal and nonterminal students. Modern computer
science requires a core of fundamental material for both groups of students, and a program with flexibility in
the use of electives can be tailored to a variety of individual needs.

We also see a need for intermediate-to-advanced computer science training for students who will become
compudng specialists within some discipline other than computer science. Professional specialization of this
sort requires genuine competence in both fields — unlike present applications programming. We see a need
for joint majors with closer cooperation between departments than is usually implied by a double major.
Such joint programs might include scientific computation (in cooperation with a mathematics or physics
department), human-computer interaction (with a psychology department), music synthesis (with a music
department), computer-aided design (with a design or architecture department), or information systems (with
an economics or management department). Students pursuing these joint majors should take at least the
fundamental courses in computer science, die fundamental courses in a second discipline, and additional
courses that deal with computing specialization within the second discipline. Carnegie-Mellon has an
opportunity to make a bold move by declaring computing specializations to be important and by backing up
this declaration with appropriate curricula in a variety of departments.

Many students will want to use computers in personal projects. This will often involve writing programs.
These students can be served by the same basic and elementary courses as students who will become more
deeply involved in computer science. In addition, there will be a need for education about certain computing
topics that do not fall within a computer science curriculum. Many of these are so narrowly directed at
specific programs or programming languages that they should not carry academic credit; for these, a program
of tutorials in a nonacademic arm of the university should be considered.

An educational program must also be developed for students who will make only casual personal use of
computing. The major need is for a fundamentally new introductory course. This course should introduce
the nature of computing, show the social implications of widespread computing, make students comfortable
accessing an information utility, and develop fluency in the use of packaged software. It should not be a
programming course as such, though it should provide some elementary programming experience. This
course could also provide an opportunity to introduce nontechnical students to problem solving, deductive
reasoning and analytic thinking, in a setting where they could get direct experience and immediate feedback.

We conclude that there are four significant roles for universities to play in computer-related education.
These include

AN U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M FOR T H E 1980S 8

• Educating fliture computer scientists at all degree levels,
• Educating non-computer scientists who will bring computing expertise to their own fields of

specialization,
• Educating people who need modest programming skills, and
• Educating the entire university population about the potential and use of computers.

This curriculum design addresses only the first group: the computer science majors. We recommend that
separate studies be undertaken to study computational specializations in other disciplines and computing
education for the University population as a whole. We do not see a major problem with educating students
who need only modest programming skills.

2.2 Use of Computing Technology in Education

In addition to organizing the content of computer science, a modern curriculum design must consider ways
to use computing technology in the educational process. It is no longer unusual to rely on computers to
support courses; applications range from ordinary bookkeeping for course administration through novel
interactive teaching systems. It is important, however, to avoid confusing education about the substance of
computer science with the use of computers in education. In this section, we are primarily concerned with the
use of computers in computer science education. We consider both the use of computers in the general
educational process and the specific needs of computer science courses to use computing facilities as course
laboratories.

At Carnegie-Mellon and a number of other institutions, computer resources are already commonly used for
many of the mundane activities that are part of every course. These include distributing information to
students; electronic mail between students, instructors, and teaching assistants; electronic collection of
assignments; text processing; and record keeping. Further progress in this area requires a substantial
commitment to application software development. This development must involve the users heavily, since
the interface to the users is what makes the computer a worthwhile tool in this area. Carnegie-Mellon's new
University Center for Design in Educational Computing provides a centralized base for innovative uses of
computers in education.

At Carnegie-Mellon, computer support for the students in the courses dates back at least to the 1950s, when
the Graduate School of Industrial Administration (GSIA) introduced the "Management Game" (a computer-
based management simulation of a detergent industry in which student teams competed for simulated
profits). This course (much updated) is still required for second-year Master's students in GSIA. Other
current computer-based instruction at Carnegie-Mellon includes microprocessor support for Physics
laboratory courses, advanced graphics support for fluid mechanics, color graphics tools for art students,
instructional programs for elementary concepts for formal logic, and a data bank of the French Revolution
used in a freshman history course. In addition, plans are being made for an advanced computerized
engineering laboratory in the engineering college, addition of animation and three-dimensional graphics in
the art program, a Computer Music Center for computer-assisted composition and music analysis, and
incorporation of computer support in a campus-wide writing program.

Applications such as these are becoming more common in computer science as well. At Carnegie-Mellon,
interest dates back at least to a proposal for a laboratory of interchangeable components [6]. More recent

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 9

activity in computer science includes simulators for abstract machines such as finite-state automata or Turing
Machines and difficult-to-undcrstand algorithms (e.g., van Dam's work at Brown [3]); program development
environments (e.g., Tcitclbauins program synthesi/.cr [14] at Cornell or Miller's Gnome [9], an adaptation of
Gandalf, at Carnegie-Mellon). We can envision other automated tools, and libraries of programs to read,
modify, or use as elements of assignments.

There arc many more opportunities for imaginative uses here. The more speculative ones include the
transfer of research systems to the classroom, including expert systems, theorem-provcrs, transformation
systems, and intelligent advice-givers with user models and tracking of student performance. We anticipate a
steady increase in die demand for innovative "course-ware/' These applications can support a variety of
courses. Some of the course-specific uses of computing technology for educational purposes are indicated in
the individual descriptions of courses in Chapter 8.

In computer science, computers arc not only pedagogical tools, they arc the subject matter of many of the
courses. Thus, computer science is an experimental science; computer science courses need undergraduate
laboratories, just as physics, chemistry, and biology courses do. Unlike those disciplines, however, computer
science laboratories can often share the physical facilities — the costs of establishing and maintaining the
laboratories will be largely software costs. Undergraduate computer science courses require software support
for the same reasons that more traditional laboratories require construction, maintenance, staffing, and
supplies.

2.3 The Establishment

The ACM [1,2] and the IEEE [8] have made a variety of recommendations on undergraduate curricula.
None of these provides a suitable foundation for a curriculum that meets the emerging needs described
above.

The major shortcoming of the ACM and IEEE designs is that they seem to be merely summaries of existing
curricula rather than projections designed to last for die next decade. We believe, however, that a curriculum
design should play a leadership role. Any actual implementation will involve compromise and dilution, so a
design should provide a level of aspiration and a direction of development rather than simply an inventory of
current practice.

There arc two main reasons why we did not simply develop a curriculum directly based on the ACM
recommendation. First, the ACM proposal is based more on the status quo in computer education than on
any attempt to unify the intellectual content of computer science. Second, the ACM curriculum relegates
mathematics to a totally inadequate position — an attitude perhaps appropriate for a data processing
curriculum, but not for a computer science curriculum.

The IEEE computer engineering curriculum also lacks unity. That design fails to expose the important
common fundamentals joining hardware and software. In addition, its balance of hardware, software, and
theory is heavily biased to hardware, and the result is more suitable to computer engineering than to
computer science.

In addition to these well-known curriculum designs, we are beginning to see proposals about "software
engineering" undergraduate programs as distinct from "computer science" programs. While many

A N U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 10

undergraduate programs are currently centered on the activity of programming, we believe that software
engineering is clearly a subset of what a well-trained computer scientist should know, and we believe that
software engineering alone is too narrow a program for an undergraduate degree.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR TOE 1980S 11

3. Objectives

The curriculum described here was developed in response to objectives set forth in Spring 1982 [12], The

premises and goals from that project plan are reproduced in this section.

3.1 Premises

Certain assumptions about computer science, about education, and about CMU underlie this effort It will

be helpful to make them explicit:

• The major substance of an undergraduate computer science curriculum (as for any subject) should
be fundamental conceptual material that transcends current technology and serves as a basis for
future growth as well as for understanding current practice. This fundamental material should be
reinforced by abundant examples drawn from the best of current practice.

• The CMU Computer Science Department should invest energy in a degree program only if that
program is of very high quality — ranking among the top programs in the country.

• Whether or not the CMU Computer Science Department offers an undergraduate degree, a
complete review of the undergraduate curriculum is in order.

• An undergraduate computer science curriculum design should address the entire curriculum, not
just the courses offered by the Computer Science Department proper or even just the technical
courses related to computer science.

We take as a working hypothesis the proposition that computer science is now mature enough — has
enough intellectual substance — to warrant an undergraduate or master's-level curriculum and degree
program. In this context, the curriculum design process can be thought of as an experiment to test that
hypothesis.

3.2 Goals

Our specific objective is a high-quality computer science curriculum for CMU. This curriculum should also
merit national recognition, both for the quality of the students it educates and as an exemplar for curricula at
other schools.

Following the Carnegie Plan for education [4, 5, 7,11], we want to design a curriculum through which a
student can acquire:

• A thorough and integrated understanding of the fundamental conceptual material of computer
science and the ability to apply this knowledge to the formulation and solution of real problems in
computer science.

• A genuine competence in the orderly ways of thinking which scientists and engineers have always
used in reaching sound, creative conclusions; with this competence, the student will be able to
make decisions in higher professional work and as a citizen.

• An ability to learn independently with scholarly orderliness, so that after, graduation the student
will be able to grow in wisdom and keep abreast of the changing knowledge and problems of his
or her profession and the society in which he or she lives.

• A philosophical outlook, breadth of knowledge, and sense of values which will increase the

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM LOR THE 1980S 12

student's understanding and enjoyment of life and enable each student to recognize and deal
effectively with the human, economic, and social aspects of his or her professional problems.

• An ability to communicate ideas to others.

The focus of the.design will be on a liberal professional education with emphasis on problem-solving skills.
Some of die words in the previous sentence are subject to various interpretations. We intend all in a very
positive sense. "Liberal education" is broad, including humanities and social science courses plus technical
courses outside the student's specialty. Liberal education includes communication skills, both for
understanding the work of others and for communicating one's own work. Describing the education as
"professional" recognizes the legitimate motivations of many students who value education because they can
apply it rather than for pure intellectual enjoyment. "Problem-solving skills" refers to the ability to apply
general concepts and methods from a variety of disciplines to all kinds of problems, abstract as well as
practical, whose solutions require thought, insight, and creativity. Thus "problems" can range from the proof
of a theorem to the design and constmction of a specialized computer program and "skills" means creative
intellectual ability, not merely the ability to perform repetitive routine actions.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM LOR THE 1980S 13

4. Content

This chapter surveys the content of computer science. The objective is to present a coherent view of the
conceptual structure of the field and to indicate the scope of our concerns, while indicating connections with
other fields. Chapter 8 shows how the material described here is organized into specific courses.

We realize that a unified discussion of ideas and concepts may not lead directly to a good organization for
courses. That is, the conceptual structure provided here docs not necessarily correspond with the pedagogical
organization that forms the foundation of a curriculum design. It is impossible, for example, to convey
certain ideas without a background of methods and conventions. Some issues (e.g., reliability, optimization,
performance, adaptive design) appear in different forms and a variety of subject areas. Further, courses often
focus on some kind of system (e.g., compilers) in order to use a single rich example to bring out a variety of
related topics.

Computer science embraces a variety of ideas and modes of scientific thought that must be presented
throughout a curriculum for their significance to be conveyed, even though they may appear as a single
element of a conceptual organization. It is important for everyone who teaches the courses to present not only
the concepts themselves but also an understanding of why these concepts arc necessary for a wider
understanding of the science. Because of the importance of these distributed ideas, we mention them
explicitly here.

• Abstraction and representation In a field such as computer science, in which the essential notions
are quite abstract, it is important that certain modes of thought be presented explicitly. Perhaps
the most important of these is the management of complexity through abstraction and
representation. Computer science deals with systems of human design that can appear to be
extremely malleable, particularly when realized in software. This malleability belies the problem
of handling complexity in such systems. The student must be given a firm grasp of how
abstraction is used to control complexity. In this style of thought computer science bears a strong
similarity to mathematics. Because mathematicians also deal with systems built upon human
imagination, they have developed conceptual tools to manage complexity in the mathematical
systems they create. Mathematical maturity and an understanding of how mathematics deals with
complexity are essential for computer science students. Other important modes of thought for
computer science are discussed later in this chapter.

• Recurrent notions. Certain particular ideas, such as naming and addressing, binding, state,
resource management and allocation, and concurrency, recur in different contexts throughout
computer science. It is important for them to be identified as recurrent ideas so students can
consolidate their understanding. In our organization, there will usually be a single course charged
with presenting an overview of a given idea in varied settings. This course should be sufficiently
advanced that the student will have already encountered the topic in several forms; it should be
elementary enough that many students will take it.

• Theory and the practice of computing. A good curriculm must be based on sound theories and
models, and it must also teach these foundations in the context of good engineering practice.
Most ideas in computer science can be presented in both theoretical and practical settings; these
ideas are brought out most effectively when introduced at varying levels of abstraction. This is

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 14

true not only because students easily grasp ideas in a concrete setting, but also because the varying
range of presentations illustrates how abstract notions are realized in the concrete forms of
programs or machines (or, conversely, how practical experience is expressed in abstract terms). It
is for this reason that nearly all die courses in this curriculum make connections between theory
and practice.

• Cumulative experience with ideas. Certain essential ideas must be developed over several courses
for them to be completely assimilated. Students are exposed to the ideas early, but they may not
be expected to articulate them or synthesize them undl much later. For example, students first
encounter data types when they learn to program. At this stage diey are exposed to the idea, but
they do not deal with it as a disdnguishable concept. When the first programming language is
re-examined in more depth, students perceive types as an identifiable programming concept.
Later, students gain experience operating with types, for example by developing realizations for
given type specifications. Only after this experience are students able to create new abstract type
specifications. Since the development of such ideas must be distributed over several courses, it is
necessary that each course instructor understand this progression.

The remainder of this chapter surveys the content of computer science, but without assigning topics to
specific courses. The material is organized into four levels of sophistication in computer science,
corresponding to the four levels of student involvement suggested in Section 2.1.

4.1 Basics

This basic material provides fluency in the use of computers and familiarity with their capabilides that will
be of interest to the broad population of students, not just to computer scientists. Within the next five to ten
years, this material will likely be regarded as an essendal part of a good liberal education in any discipline.
We expect tiiat what is now considered fluency will change from our present notion of programming skill to a
very different style of computer usage as the technology improves. The following basic material is expected to
follow that change.

4.1.1 Content

Carnegie-Mellon' is committed to requiring all students to use computers effectively. The introduction to
computing for all these students should provide not merely the clerical skills required to use the computing
resources, but also facility in logical and algorithmic thinking and an understanding of the notions of
deductive reasoning, cause and effect, time and sequentially, and state transition. This introduction should
also provide students with an understanding of the role of computers in a technological society and of the
responsibilities of a professional in the field.

These subjects constitute minimal literacy for a computer-based society:

• Basic computer literacy (i.e., as a naive user): what computers can and cannot do, dealing with an
information utility (creating and using files), using existing programs and packages.

The office/file cabinet model of computation
Gaining access to simple useful facilities such as

Computer mail
Simple files and campus data bases (the library card catalog, class schedules, etc.)
Personal data bases (calendars etc.)
Text formatting and writing tools (spelling checking etc.)

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM EOR THE 1980S J5

Using interactive programs and packages (interactive spreadsheets etc.)
Non-textual interaction, drawing packages, painting and layout

Networking.and Communication
Using information sen ices (bulletin boards, mailing lists, etc.)
Using data facilities (central file servers etc.)
The implications of information sharing

• Elementary facts about computers: organization, architecture (processors, primary and secondary
memories, communication), concept of stored program.

Processors and memory
The fetch/execute cycle
Storage devices (especially personal dismountabic storage: disks, tapes, etc.)
Representation of information with binary devices

Binary' numbers, encoding (e.g., character sets), instructions as data
Networking, how information is shared between computers

• Elementary facts about programs: concept of algorithm, simple program structures, including
control structures and procedures, declaration and use of data, use of libraries.

Computation and sequential execution (following directions)
Simple programming in a high level language

Using and writing procedures (but not recursion)
Using integers, reals, strings, vectors, records (but not pointers)
File input and output

• Thinking about computers and programs: problem solving ability, programming technique, and
concepts of correctness and performance.

Elementary problem-solving
Mechanics and discipline of writing programs

Simple program forms (filter on text file, summarization of data, etc.)
Documentation
Incremental coding strategy
Debugging strategics, including data selection

Correctness and the fact that programs can be reasoned about precisely
Costs and the existence of time/space tradeoffs

• Role of computers in society: range of potential applications, appropriate and inappropriate use
of computers.

History of computers and their use
View of computers as providing an information utility
Potential future applications (current AI research provides examples)
Social issues (computer crime, security and privacy, consumer issues, etc.)
Ethics of computer use in an electronic community
Careers in computers, technological displacement
Impact of computers and robots on industry and employment
Psychological and social aspects of computation
Examples of applications

4.1.2 Skills

Skills developed in die basic curriculum include problem.solving and simple deductive reasoning, the
ability to carry on simple interactions with a computer such as using selected programs, and sufficient
familiarity with computing to learn more as required.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 16

4.2 Elementary Computer Science

These topics provide the foundation for a computer science degree, but they are relevant to others
interested in computer science as well as to computer scientists. Thus this materia] should be considered for
joint programs with other disciplines.

Generally, this is material for sophomore and junior courses. Many of the topics are fundamental, in the
sense that they form the basis for development of more advanced material. The material also fosters
functional fluency with contemporary systems. These skills are immediately useful; they provide experience
in the use of the fundamental ideas, and the resulting experience makes richer examples accessible.

We organize the material into three rough categories, corresponding to the body of material itself, common
modes of thought that students should be aware of, and skills associated with the material covered.

4.2.1 Content

This section outlines our view of the body of elementary computer science. It should be clear that some of
these topics are drawn from other disciplines (such as mathematics and electrical engineering). Both
theoretical and practical topics are included throughout the categories listed here.

• The nature of computation. Concept of algorithm; relation between algorithm and program.
Elemental automata theory. Supporting material from discrete mathematics.

Time, sequentially, and concurrency
Algorithm, state
Finite-state automata as model of computation (introduce additional power of Turing Machine)
Relations beiween algorithms, programs that express them, and machines that execute them
Probabilistic algorithms and heuristics
Discrete mathematics:

Inductive definitions and proofs
Linear algebra, graphs, functions, relations
Proposiuonal logic and proofs; set theory; boolean algebra

Elemental*}' notions of calculus and numerical analysis

• Computer organizations. The von Neumann model and machine/assembly language.* ISP-level
and PMS-level organizations, elementary network issues. (At this level, the study is fairly
superficial — the objective is understanding the structures in order to use them, radier than to be
able to design new ones. Supporting material from electrical engineering, including electricity,
circuit design, and device characteristics.)

Digital Logic level
Basic digital concepts and terminology
Combinatorial circuits
Discrete time abstraction (clocks)
Circuit family abstraction

Register Transfer Level
Program level

Instruction formats and how they get interpreted
Concept of microcode
Architecture as specification of instruction set

Processor - Memory - Switch level
Properties of processors
Classes of switches (busses, crosspoints, etc.)
Memory technology

Characteristics of disks, tapes, drums, etc.
Memory hierarchy

UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S

Addressing techniques, data representation and register transfer
Physical memory and addressing techniques
Virtual memory and address mapping

I/O and bus structures
Examples

Calculators, microprocessors, and microcomputers
Minicomputers and mainframe computers
Multiprocessors, supercomputers
Control synchronization

• Program organizations. Organization of simple programs and elementary modular composition.
Data structures and some common program forms. Elementary concurrency issues. Reasoning
about correctness and performance. (The objective is design as well as use; the rudimentary
programming skill from the basic material is now refined to a useful level.)

Program development methods
Structured programming
Use of specification and verification
Documentation
Debugging and testing

Program organizations
Data organization primitives (pointers, hashing, encoding, packing, etc.)
Implementations of data types
Abstract data types and their specification
Some classical program organizations (filters, abstract data types,

pattern-matching systems, table-driven interpreters, etc.)
Imperative and applicative programming
Recursion
Matching data with control

Some classical algorithms (sorting and searching, numerical algorithms from linear algebra, etc.)

• Languages and notations. Programming languages. An appreciation of the power of good
notation. Syntax and language description. Examples such as BNF and regular expressions.
(Students should appreciate die language component of any interface design, and be aware of the
influence on design of pragmatic issues. Supporting material from discrete mathematics.)

Language as communication, interface medium, means of shaping ideas
Syntax and semantics
Formal language issues.

Syntax: regular and context-free languages; hierarchies of languages
Semantics: denotational; operational; axiomatic (Hoare-axiom or predicate-transformer)
Formal specification techniques: axioms and models

Classical programming language matters
Organization of program control: iteration and recursion
Functions, procedures, and exception handlers
Data structures and declarations
Scope, extent, and binding, including parameters
Expression evaluation
Abstraction facilities (procedures, types)
Specification

Kinds of languages: applicative and procedural
Specialized languages

Production systems
Query languages
Graphical interaction
Semi-languages such as RPG, Visicalc, Makefile, editors

• Design techniques. Advanced programming and specification techniques. Also, relevant ideas
from hardware design and other design disciplines.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR Till: 1980S

Advanced programming techniques
Specification methods and languages
Decomposing programs inlo modules
Design tools
Documentation
Contemporary approaches to problem-solving
Devising and evaluating alternatives
Evaluation criteria

• Evaluation and analysis. Analysis of algorithms, elementary models for
used for evaluation (correctness, speed, space, reliability, generality,
tradeoffs among them. Supporting material from discrete mathematics.

Correctness
Specification and verification

Performance
Formal models
Bottleneck identification and elimination

Analysis of algorithms
Models and modelling

What models arc and how to use/construct them
Empirical vs analytic models
Validation
Specific models (at this level, introduction only)

Queucing-thcorctic models for operating systems and hardware
Productivity and life-cycle models and their limitations

Human factors

• Advanced personal use of computers. Text manipulation, personal data bases. Using an
operating system (command files, Unix pipes, etc.). Graphical interaction. Access to libraries.
Appreciation of what makes computers easy and hard to use. Supporting material from design
and psychology. Reasonable and unreasonable social behavior; computing as a valuable
commodity.

Small examples of program development
Practical matters:

Program segmentation and linkage
Linkers and loaders
Error recovery techniques
Systems and utility programs

Text retrieval and processing (editing and document preparation)
Introduction to operating systems concepts
Batch, timesharing, and personal (dedicated) systems
Elementary software engineering

Debugging, preventing debugging, test data selection
Organization of programming teams
Program organization for maintainability
Verification
Software libraries

Ethics, privacy, implications of having a user community

• Some larger systems as examples. Study of systems large enough for complexity to become an
issue. (The point here is to generate some elementary familiarity with the systems and some of the
issues — the hard problems of design and analysis come later.)

Compilers (relatively small complex system, but well-understood)
Cognitive models (the human as a complex system)
Data bases (complexity of both size and interaction over time)
Large software systems, such as operating systems (concurrency issues)
Distributed systems

performance. Criteria
complexity, etc.) and

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 19

4.2.2 Modes of Thought

The following paradigms of computer science thinking are illustrated in the topics listed above. Students

will be better able to assimilate the technical material if they perceive the role of these paradigms.

• Hypothesis and test. That is, the classical scientific method. Models and their validation.
Generalization as a technique for refining hypotheses.

• Problem solving. Finding and exploiting structure. Tradeoffs between generality and efficiency.
Heuristic exploration of problem spaces.

• Analysis and synthesis. Managing complex systems by decomposition into parts. Development of
systems on the basis of structural organization. Quantitative techniques.

• Abstraction and realization. Abstraction as control of complexity and detail. Realization as a
process of binding underlying structure to implement an abstraction.

• Inductive reasoning. Drawing conclusions from limited observations.

4.2.3 Skills

There are certain skills that are useful and important for students to have when they interact with the ideas
described above. These skills include simple programming skills such as coding and debugging, basic
hardware logic design techniques, and the various mathematical skills related to discrete mathematics, such as
inductive proofs and an ability to manipulate propositional calculus formulas.

4.3 Liberal Professional Education

These topics serve to make the computer scientist a well-rounded professional, able to appreciate the
significance of work in other disciplines and able to relate his computer science expertise to problems outside
computer science.

This section also provides a taste of the interdependencies between computer science and other areas and
suggests areas in which joint degrees might be appropriate.

4.3.1 General Scope

The curriculum for a liberal professional education must define the general coverage as well as the core
material in the field of specialization. For us, that means a set of inclusive statements about the total scope
and some more specific statements about areas that are related to computer science.

Note that a liberal professional education in other disciplines may require joint majors with or computing
specializations in those fields. In this section we are dealing solely with the problem of a liberal professional
education in computer science itself.

4.3.2 Liberal Education

We believe that students should be broadly educated. Our definition of a broad education includes
mathematics, science, and engineering as well as humanities, social sciences, and the arts. A broad education
is possibly more important in computer science than in other disciplines for two major reasons: First,
computer science is strongly tied to many other disciplines. As computers become more prevalent, the range
of related disciplines can be expected to increase further. Second, there is an overwhelming need for literate
citizens to interpret the field to others.

A N U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 20

4.3.3 Areas Related to Computer Science

The boundaries of computer science overlap with several other areas. Some of the material at the boundary
should be developed (and possibly taught) with other departments. Specific offerings at the boundary should
arise from close cooperation between the interested departments.

The following sections list topics where there is likely to be overlap between computer science and related
fields. However, the list is by no means definitive. If curricula are established to educate non-computer
scientists to specialize in computing aspects of their fields, it is likely that there would be many new courses
that explore highly specific computing problems of various disciplines. Few such courses are included in this
section.

4.3.3.1 Mathematics and Statistics

Related courses in mathematics and statistics might cover such topics as:

• Probability and statistics

• Combinatorics

• Modern algebra

• Linear algebra

• Numerical analysis

• Scientific computation, especially applications of linear algebra and numerical analysis

4.3.3.2 Electrical Engineering

Related courses in electrical engineering might cover such topics as:

• Circuit theory

• Solid state electronics and semiconductor devices

• Communications

• Control theory

• Information theory

4.3.3.3 Physics

Related courses in physics might cover such topics as:

• Electricity and magnetism

• Solid state physics

• Computational physics

4.3.3.4 Psychology

Related courses in psychology might cover such topics as:

• Cognitive psychology and information processing

• Problem solving

• Artificial intelligence

• Human factors

AN UNDERGRADUATE COMPUTER SCIE.NCE CURRICULUM TOR THE 1980S 21

• Psychological linguistics

• Perception

4.3.3.5 Mechanical Engineering

Related courses in mechanical engineering might cover such topics as:

• Mechanical linkages, particularly as they relate to robotics

• Computer-assisted manufacturing

4.3.3.6 Management and Information Science
Related courses and topics in management and information science might cover such topics as:

• Operations research, particularly optimization

• Economics, especially project scheduling and estimation

• Management, especially relating to automation and to high-technology development

• Role of computers in organizations; how organization structures interact with information flow

4.3.3.7 Public Policy

Related courses in public policy might cover such topics as:

• Social implications of large-scale computing

• Consumer issues in personal computers

• Policy issues arising from computing and communications

• Computer models for policy analysis

• Legal issues such as ownership of software, liability, and security

4.4 Advanced Computer Science

This material is of interest to specialists. Whereas all computer science students would be expected to
master die previous material, specialization begins here. The depth intended here is at or just below first-year
graduate level; as a result this material might form part of a master's degree curriculum. This is not to say that
we see an undergraduate education as covering the graduate curriculum, but rather that we believe that a
senior undergraduate should master that depth in selected areas.

The organization given here has been driven by the content of the material; it is not to be misconstrued as a
course organization. For example, a course in software engineering might cover much of the material listed
under "Systems" and "Process" and also reenforce previous topics in the other areas. Likewise, a course
similar to the traditional compiler course might be retained — not to teach compiler building, but to exhibit a
medium-sized system with a well-understood structure and to take advantage of the time invested in the
example by using it to cover advanced material in data structures, application of formal methods (parsing
theory), and interface construction.

Within each of the areas listed below we would expect to find contributions from die traditional areas of
theory, software, and hardware. We hope that this organization will avoid inappropriate
compartmcntalizations. We also hope Uiat it will stimulate thought about the interactions among historically
disparate areas and simplify the inclusion of individual topics that haven't grown into course-sized entities.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM LOR THE 1980S 22

4.4.1 Control

This area includes scientific and engineering aspects of algorithms, especially as expressed in programs
running on computers. Topics such as the function of CPU's, scqucntiality and concurrency of processing,
use and analysis of algorithms, correctness of algorithms, fault tolerance, probabilistic and heuristic
algorithms are all aspects of control.

Many of these concepts appear repeatedly: for example, the notion of concurrent processing appears in
various guises in numerous contexts. These include hardware circuits, interrupts, communication protocols,
software synchronization mechanisms such as semaphores and monitors, software process constructs such as
coroutines and tasks, data base transactions, and operating systems policy for scheduling and allocation.

4.4.2 Data

This area encompasses the manipulation and representation of information, in computation and especially
in computer programs. Thus notions of state, physical storage devices, addressing and accessing methods,
types, representation, specification, encryption, and "quantity" of information arc all included here.

These topics also appear throughout computer science. For example, the notion of naming or addressing
appears in hardware addressing (direct, indirect, virtual), memory hierarchies, program variables (scope,
extent, binding), operating system storage policies (working sets, overlays, virtual memory management),
database models, file directories, and file access methods.

4.4.3 Systems

A system is a regularly interacting or interdependent group of software or hardware modules which form a
unified whole. The study of systems includes the identification, quantification, and management of
complexity in systems, the design and construction of large systems, the evaluation of performance, reliability,
and security of systems, and how systems are distributed and how communication is performed.

4.4.4 Language

The representation of programs (as opposed to the representation of data) characterizes the study of
language. Thus the language area includes the ideas of notation, syntax, semantics and the study of traditional
programming languages and their implementation and specification. This area also includes issues of user
interfaces, human factors, and technologies such as speech and graphics.

4.4.5 Foundations

These topics are predominantly scientific; the results are applied in engineering contexts. At the moment,
they are mostly mathematical and theoretical; there are perhaps many non-theoretical topics which should be
placed here. Also some portions of these topics are included in the elementary computer science section;
inclusion here indicates study at a more advanced level. Sample topics are the study of computability and
complexity, queuing theory, graph Uicory and inform .r'.^n theory. The study of modeling as a tool for
analysis is also included here. The ability to formulate and analyze empirical and theoretical models is
essential.

A N U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M FOR THE 1980S 23

4.4.6 Process/Design

This area covers the management #of complexity, especially when human behavior or performance is
involved. It includes engineering considerations pertinent to development (e.g. readability and
maintainability of code) and techniques for managing the design and development of large systems (e.g.
instrumentation of programs to aid in debugging and performance evaluation). It also addresses the
economics of software including creation costs, maintenance costs, and life cycles.

4.4.7 Communication

This area covers topics related to the transmission of information. As computer architectures become more
distributed, the transmission of information between them becomes a key feature. Personal and home
computers are being used more and more for storing, processing, and sharing information and less for
computational purposes. This area includes both the methodologies used to achieve information transmission
and the implications of widespread access to information. It also covers methods for preventing such access,
i.e. information security.

4.4.8 Applications

These include both applications that depend mainly on ideas from computer science and applications that
are important because of their use of computer science material, but diat are not computer science in and of
themselves. The first category includes applications that are taught to synthesize knowledge from various
parts .of computer science and present these ideas as parts of a working system. Examples are compilers,
operating systems, graphics, and some artificial intelligence programs. The second category includes systems
which are rich in their use of computer science techniques. Examples are large financial systems, airline
reservation systems, commercial database applications, CAD/CAM systems, remote sensing, and CAI.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 24

5. Program Organization

This chapter presents a set of requirements and a suggested curriculum for a complete undergraduate
computer science major. In keeping with our prediction of the responsibilities of future computer scientists,
considerable flexibility is provided to allow for professional breadth and the computer science component
places heavy emphasis on fundamental concepts. To this end, a number of electives are specifically
constrained to matiiematics courses, a number of electives are specifically constrained to be nontechnical, and
a concentradon in an area outside of computer science is required. Even if the curriculum is adopted without
creating a major, this brief discussion of the sort of program that could be based on the curriculum provides a
good global perspective.

Section 5.1 tabulates the requirements for the program. For both philosophical and practical reasons we
have allowed considerable flexibility in the choice of electives. We have done this to provide students and
their advisors with the opportunity to construct focussed programs tailored to students' interests, not as a sort
of permissiveness. Section 5.2 describes our intentions about the use of electives; it takes the form of advice
to advisors. To show that the program is actually achievable, Secdon 5.3 shows how several versions of the
program could be scheduled in four years.

5.1 Requirements

We assume that a normal load is five courses per semester for eight semesters and that college requirements
dominate the first year. The distribution of courses in the last three years is roughly 35% to computer science
and mathematics, 15% to other technical electives, and 30% to humanities, social sciences, and arts. There is
considerable flexibility in the remaining 20%.

We expect that the electives will be used to form focussed, coherent programs; $ many cases computer
science courses will be coupled to specializations in a non-computer science area. Wise use of electives
depends critically on individual advising; electives should be chosen in keeping with an overall plan rather
than as isolated decisions each semester. Good use of the electives may be encouraged by publishing
examples of approved specializations and providing a review and approval mechanism for individual

programs.

A total of 40 courses are required. The distribution is
Freshman year (controlled by college) 10
Computer Science and Mathematics 10

Specific required courses 4
Constrained Computer Science 3xx courses 2
Advanced Computer Science (4xx) 2
Constrained Mathematics courses • 2

Technical courses 5
Nontechnical courses (Humanities, Social Sciences, and Fine Arts) 9
Electives outside the Computer Science Department 6
Non-CS Concentration [constructed from other electives]

Total 40
These course counts can be converted (approximately) to Carnegie-Mellon "units" by multiplying by 9. The

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 25

specific course requirements are somewhat more liberal than the requirements of other departments. The
elective structure provides considerable flexibility for adapting the program to joint degrees.

The specific requirements for the program are as follows:

• Freshman Requirements (10 courses): We believe that college requirements will dominate the
freshman year. This design therefore reserves space for a year's worth of courses required by the
college (including freshman writing and history). Although this delays the student's entry into
computer science courses, it preserves flexibility for selection of a major at the end of the
freshman year. We expect that for students likely to enter computer science the freshman courses
will include at least

PROGRAMMING A N D PROBLEM SOLVING [110],

DISCRETE MATHEMATICS [150],

CALCULUS I [MATH 121],

PHYSICS I [PHYS 121],

two other courses in natural sciences or mathematics
one course each in writing and in history or social science
two other courses

We believe that the six courses not named should be broadly distributed, so we make no
additional constraints.

• Computer Science and Mathematics (10 courses): Four specific courses are required in addition to
those in the college core:

F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE I [211],

F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE II [212],

REAL A N D ABSTRACT MACHINES [240],

ALGORITHMS A N D PROGRAMS [330],

Four more courses are constrained within the computer science department, and two courses must
be taken within the mathematics department These include:

> One 300-level system or software course (from TIME, CONCURRENCY, A N D

SYNCHRONIZATION [310], COMPARATIVE PROGRAM STRUCTURES [311], LANGUAGES,

INTERFACES, A N D THEIR PROCESSORS [320]).

> One 300-level theory or approved mathematics course (from FORMAL LANGUAGES,

AUTOMATA, A N D COMPLEXITY [350], LOGIC FOR COMPUTER SCIENCE [351], NUMERICAL

METHODS [MATH 369].)

> Two 400-level computer science courses.

> Two madiematics courses (from COMBINATORIAL ANALYSIS [MATH 301 / CS 251], OPERATIONS

RESEARCH I [MATH 292], LINEAR ALGEBRA [MATH 341], NUMERICAL METHODS [MATH 369],

MODERN ALGEBRA [MATH 473], LARGE-SCALE SCIENTIFIC COMPUTING [MATH 712 / CS 453],

PROBABILITY A N D APPLIED STATISTICS [STAT 211 / CS 250]).

• Technical Courses (5 courses): These may be selected from courses in science and engineering
departments plus selected technical courses in other departments.

• Nontechnical courses - Humanities, Social Sciences, and Fine Arts (9 courses in addition to
freshman requirements): Some of these courses are constrained by college and university
requirements. In addition to those requirements, three courses are constrained as follows:

> POLICY ISSUES IN COMPUTING [EPP 380 / CS 380],

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 26

> A writing course in addition to the freshman writing requirement,
> Another course with a substantial writing component.

• Electives (6 courses): Electives are to be selected to support objectives established jointly by the
student and his or her advisor. These six electives must be chosen from outside the Computer
Science Department.

• Non-CS Concentration: A concentration of at least three related nonintroductory courses in an
area other than computer science is required. Some possibilities will be recommended; students
may propose others for approval. Although the concentration may be in the mathematics
department, mathematics courses taken as part of the Computer Science and Mathematics
requirement may not be used to satisfy the concentration requirement.

Although most of the discussion here has dealt with bachelor s degrees, the curriculum would also support a
master's degree. The 4xx courses provide master's-level depth; we believe that undergraduate students should
achieve this depth in one or two areas. A master's program would require more breadth at that level; it would
also-include a master's thesis. We have not addressed the question of whether specialized topics such as
software engineering are suitable programs for a master's degree; certainly such explicit specialization is more
appropriate at the master's level than at the bachelor's level.

5.2 Advice on the Use of Electives

The design of a degree program might take either of two forms. The course sequence and requirements
could be so tightly constrained and highly specified that a strong program is guaranteed. The disadvantage of
diis style is tiiat only die variations anticipated by the designers are likely to be accommodated by the
program in any reasonable way. As an alternative, the requirements could be left sufficiendy flexible that
many different strong programs can be constructed. The weakness of such a flexible approach is that weak
programs also become easy to construct, either by design or by error.

We have decided in favor of flexibility in this design because we feel that the field of computer science is
still so fluid that we cannot accurately predict what it will look like in a decade. The price of this decision is
that the responsibility of the advisor in helping design the individual course of study is increased. The faculty
advisor must spend considerable time with each advisee, understanding his strengths, weaknesses, and
interests and providing firm guidance to ensure diat each computer science major receives an excellent
education. This will only work if the number of students is small in comparison to the advising faculty. If
individual advisors are responsible for too many students, the flexible alternative may not be feasible. In that
case it would be necessary to specify allowable programs more rigidly.

Because of the cross-disciplinary nature of computer science, every computer science major ought to have
significant exposure to advanced material in some field other than computer science. For that reason we have
introduced the requirement for a non-CS concentration, a sequence of at least three non-introductory courses
in any other field. This concentration may be in a technical or non-technical field. We imagine that the main
areas that will be selected are electrical engineering, mathematics, and psychology, but we also want to
encourage students to consider concentrations in fine arts, humanities, social science, the physical sciences,
business, or any other area offered at an advanced level by the university. As a result of our commitment to

AN UNOI-RGRAOUATHCOMPUTI-R SCII-NCH CURRICULUM I'ORTIlIi 1980S 27

tiiis breadth, our specification of a computer science major has substantially fewer specific requirements than
most other majors. However our intention is to provide a more rigorous, not a less rigorous, overall program.

We intend that most students take more mathematics than is required in the proposed program.
Combinatorial analysis, linear algebra, operations research, numerical methods, graph theory, probability, and
statistics are all extremely valuable in many areas of computer science and arc commended to the attention of
students and advisors.

The typical undergraduate program, as we envision it, draws approximately two-fifths of its content from
computer science and mathematics, one-fifth from other technical areas, and two-fifths from humanities,
social sciences, and fine arts. This appears to be considerably broader than many of the existing technical and
engineering majors at Carnegie-Mellon; we feel that this is appropriate. We expect the number of
introductory courses taken to be fairly small. We strongly discourage the kind of "breadth" that comes from
intellectual dilettantism, particularly when the symptom is a plctiiora of introductory survey courses.

5.3 Example Programs

To show the feasibility of this program and some of the ways it can be adapted to die needs of individual
students, we show plans for a few particular instantiations. These plans should be interpreted as one way, but
certainly not the only way, to schedule courses into semesters and to satisfy requirements. Naturally, courses
may be reordered as long as prerequisite requirements are satisfied. In particular, electives shown in the
senior year may be exercised earlier, courses restricted to particular topics may be taken in the senior year,
and the non-CS concentration may be taken at some time other than tiiat shown here..

The first example shows how a reasonably balanced program could be organized. The remaining examples
are extreme cases, designed to illustrate the flexibility of the program: they arc not suggested programs.
These examples are a mathematics concentration, an electrical engineering concentration for a student who
wishes to take as many technical courses as possible, and a psychology concentration for a student who enters
the computer science program late, after pursuing die social sciences for three semesters.

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 28

5.3.1 Balanced Program

The sample program shown here might be designed by a student seeking a balanced program. In this

example we have assumed an interest in systems, but not one that is so overriding as to produce a skewed

program.

Freshman
Fall I Spring

Sophomore
Fall | Spring

Junior
Fall | Spring

Senior
Fall | Spring

CS 110
Program'g &
Prob. Solving

CS150
Discrete
Math

CS211
Fundamental
StrucI

ICS 212
j Fundamental
Struc II

| CS 330
| Algorithms &
I Programs

| CS 320
| Lang, Int
& Processors

| CS 412
[Resource
| Management

CS420
Transducers
of Programs

Math 121
Calculus I

Math 122
Calculus II

CS240
Real&Abstr
Machines

I Elective | CS 310
| Time, Synch
j Concurrency

| CS 350 | Math 341
| Formal Langs | Linear
| Aut, Cmplxty | Algebra

CS400
Senior
Project

| Phys121
| Physics I

| Freshman
| Year
j Requirement

| Stat 211
j Probability
| & Statistics

| Math 301
j Combin-
| atorics

i i i
. 1 < Non CS Concentration >

1 1 1

Elective

| Freshman
| Year
j Requirement

| Freshman
| Year
j Requirement

| Writing
j Course

IH&SS
| or CFA
j Elective

| Another | CS/EPP 380 | H&SS
j Writing j Policy Issues | or CFA
| Course j in Computing j Elective

H&SS |
or CFA |
Elective

| Freshman
|Year
j Requirement

| Freshman
| Year
| Requirement

i . i i i i
< Humanities, Social Sciences, and Fine Arts (subject to college restrictions)

1 1 1 1 1
>

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 29

5.3.2 Mathematics Concentration

The example program below might be designed by a student with a strong interest in computer science and
mathematics. The concentration requirement is fulfilled by either the sequence of physics or chemistry
courses or by a selection of the mathematics elcctives. Many students currently at Carnegie-Mellon major in
mathematics with a concentration in computer science. For many of these students, this would be an
appropriate course of study.

| Freshman
I Fall | Spring

Sophomore
Fall | Spring

Junior
Fall | Spring

Senior
Fall | Spring

| CS 110
1 Program'g &
| Prob. Solving

| CS 150
j Discrete
1 Math

| CS 211
j Fundamental
| StrucI

| CS 212
I Fundamental
| Struc II

I CS 330 | CS 351 | CS 450
| Algorithms & j Logic | Theory
j Programs jforCS jofPLs

ICS 451
j Complexity
1

| Math 121
| Calculus I
1

| Freshman
| Year
j Requirement

| CS 240
| Real&Abstr
j Machines

| Math 301
j Combin-
| atorics

I CS 350 | CS 3xx | Math 341
| FLAC j Restricted | Linear
1 1(310,311,320) | Algebra

| Math 473
I Algebra j
1 I

| Phys121
| Physics I
1

| Freshman
| Year
I Requirement

| Stat 211
| Probability
| & Statistics

| Math 259
| Ordinary
JDiffEqns

! 1 1

1 < Physics or Chemistry Electives >
1 1 1

| Math 369 |
j Numerical j
| Methods |

| Freshman
| Year
j Requirement

| Freshman
| Year
j Requirement

| Writing
I Course

I H&SS
| or CFA
| Elective

I Another | CS/EPP 380 | H&SS
j Writing j Policy Issues | or CFA
I Course | in Computing j Elective

| H&SS |
| or CFA |
Elective |

| Freshman
I Year
| Requirement

| Freshman
| Year
j Requirement

j 1 1 I ~ |
1 < Humanities, Social Sciences, and Fine Arts (subject to college restrictions)
1 i 1 1 1

I
>

I

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM LOR THE 1980S 30

5.3.3 Klectrical Kngineering Concentration

In this case will will assume a student with a strong interest in electrical engineering that wishes to take the
maximum number of technical courses as soon as possible. This example is quite rigorous, involving one of
the more difficult sequences from Klectrical Engineering. This is only one example, many others could be
constructed.

| Freshman | Sophomore | Junior
| Fall | Spring

1
| Fall

Senior |
| Spring |

ICS 110
| Programg &
j Prob. Solving

| CS 150
j Discrete
| Math

| CS 211
j Fundamental
j Struc 1

ICS 212
j Fundamental
| Struc 11

| CS 330
| Algorithms &
| Programs

| CS 3xx
j Comp Sci .
| Elective

| CS 440 | CS 441 |
| Computer | VLSI |
j Architecture j

| Math 121
| Calculus 1

| Freshman
| Year
| Requirement

| CS 240
| Rcal&Abstr
| Machines

| Electrical
I Engr

| CS 3xx
1 Restricted
1(310,311,320)

| CS 3xx
j Restricted
| (350.351,369)

| Elective
1
1

| CS/EPP 380 i
j Policy Issues
j in Computing

|Phys121
| Physics 1

| Freshman
| Year
j Requirement

| Stat 211
| Probability
j & Statistics

| Math 259
| Ord Diff
| Eqns

| Elective | Writing
j Writing
1

| Another
| Course
1

| H&SS |
| or CFA
j Elective

| Freshman
| Year
j Requirement

| Freshman
| Year
| Requirement

| EE 101
| Linear
j Circuits

| EE 102
| Electronic
| Circuits

| EE 221
| Electronic
| Circuits

| EE 222
| Digital
j Circuits

III&SS
| or CFA
j Elective

IH&SS
| or CFA
| Elective

Freshman
Year
Requirement

Freshman
Year
Requirement

Physics Physics < Humanities, Social Sciences, and Fine Arts
i I I

AN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM FOR THE 1980S 31

5.3.4 Psychology Concentration

Here we will assume a student with interests in cognitive psychology and artificial intelligence. To illustrate
the flexibility of the program we will assume diat the student has interests in social science and public policy,
and decides to enter the computer science program after taking only Calculus I but no other relevant courses
in the first three semesters.

| Freshman
| Fal l | S p r i n g

Sophomore
Fall | Spring

Junior
Fall | Spring

Senior
Fall | Spring

Freshman
Year
Requirement

Freshman
Year
Requirement

H&SS
Course

I C S 110

| Program'g &
| Prob. Solving

| CS 211
I Fundamental
I Struc 1

I C S 212
| Fundamental
I S t r u c II

| CS 330 | CS 460
| Algorithms & j Cognitive
j Programs j Processes

Freshman
Year
Requirement

Freshman
Year
Requirement

H&SS
Course

|CS/M 150
j Discrete
I Math

| CS/EE 240
| Real & Abstr
| Machines

I C S
| Restricted
1(350,351.369)

| CS 3xx
I Restricted
1(310,311,320)

| CS 461
Robotics

Freshman
Year
Requirement

Freshman
Year
Requirement

Math 121
Calcl

I Math 122
I Calc II

| Stat 211
| Probability
& Statistics

| Math 301
I Combin
atorics

| CS 360
I Artificial
j Intelligence

| CS 3xx
I Comp Sci

Elective

Freshman
Year
Requirement

Freshman
Year
Requirement

PSY 113
Problem
Solving

| PSY 213
| Inf Proc
I and AI

| | | CS/EPP 380
< Technical Elcctives > | Policy Issues

I | | in Computing

Freshman
Year
Requirement

Freshman
Year
Requirement

i i I I i
Humanities, Social Sciences, and Fine Arts (subject to college restrictions)

A N U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 32

6. Remarks

The curriculum presented here departs from traditional curricula in a number of ways. Further, some of
our objectives do not appear explicitly in the design. This chapter presents remarks about the curriculum that
may help die reader to interpret and evaluate it.

6.1 General Philosophy

We believe that previous computer science curricula have been too compartmentalized. They contain many
courses focused on specific areas, but offer little or no overview of the material. We attempt to organize
courses by coherence of the content, not necessarily following traditional boundaries. We also attempt to
blend theory and practice in all courses. We believe that a strong emphasis on recurring themes (e.g.
abstraction and reliability) will help to bridge the gaps between topics that, on the surface, may seem
unrelated.

Though we stress "foundations" and "unifying concepts", we also intend to teach students to appreciate and
produce specific solutions to specific problems. We realize that in many respects this is best achieved by
exposing students to a wealth of examples of good "engineering solutions" and by providing large amounts of
supervised "hands on" experience of the sort that lectures and examinations simply can not provide.

We also feel that the "liberal professional" goal is best served by breadth. An undergraduate who
overspecializes can graduate unable to learn on his own, and unable to communicate his knowledge to
laymen. We believe that specialization can and should happen after graduation, whether the student enters
the work force or graduate school. Our goal is to produce an individual with a broad base on which to build
additional knowledge, not a worker with skills that may be obsolete shortly after graduation.

Certain "themes" run throughout the curriculum, and are discussed in Chapter 4. Although these topics are
not mentioned explicitly in most courses, all carry the responsibility to convey those ideas through their tone
and examples.

We strongly feel that a curriculum for computer science must have support from current technology.
Software support for undergraduate courses is essential. Section 2.2 discusses this in more detail. Students
must have convenient and substantial access to computer resources. This access is vital. Computer technology
can also be applied in more enterprising applications than those common today. In addition to routine
applications, computers can be used in creative settings; examples include teaching via intelligent, advice-
giving programs, and other kinds of computer-aided instruction. Extensive experience with current
technology at this early stage will prepare the student for the real programming world.

6.2 Relation to Traditional Courses

Many of the concepts of computer science appear in nontraditional contexts in this curriculum. This is
often because older courses were organized around artifacts such as computers or software systems, whereas
our design tends to be organized around ideas.

As a particular instance, there are no courses specifically about operating systems or compilers. Both of
these traditional courses take as an integrating theme a complex system such as a compiler or operating system

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM LOR THE 1980S 33

from which most of the main ideas arc naturally motivated. This curriculum, however, organizes these topics
by grouping similar abstract ideas. As a result, the major concepts from an operating systems course appear in
TIME, CONCURRENCY. A N D SYNCHRONIZATION [310], COMPUTER ARCHITECTURE [440], and RESOURCE

M A N A G E M E N T [412]. The topics from traditional compiler and comparative languages courses are distributed
through LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320], TRANSDUCERS OE PROGRAMS [420], and
A D V A N C E D PROGRAMMING I A N G U A G E S A N D COMPILERS [421].

F U N D A M E N T A L STRUCTURES OF COMPUTER SCIENCE i A N D II [211/212] is the introductory sequence for
computer science students, tt replaces what is usually a second programming course with one that introduces
many important concepts (abstraction, representation, correctness, performance analysis) as early as possible.
It also has a significant programming component. This sequence has been taught at Carnegie-Mellon for
several years, and we are very satisfied with it as an introduction to computer science and a foundation for
further study.

Early courses usually deal with building programs from individual statements, while a software engineering
course (e.g. SOFTWARE ENGINEERING [410]) deals with the Interaction of whole modules in a complete system.
A new course, COMPARATIVE PROGRAM STRUCTURES [3ii], is intended to cover the intermediate stage. Its
emphasis is on the common frameworks for building modules from code fragments.

Two courses in this curriculum are descendants from traditional courses, but with a significant shift in
emphasis, REAL A N D ABSTRACT MACHINES [240] is an introduction to hardware that includes relevant material
from programming systems and automata theory with the explicit intention to bridge the normal distances
among those areas. ALGORITHMS A N D PROGRAMS [330] is an algoridims course with a highly pragmatic bent
— blending the more usual "Abstract Algorithms'' and "Advanced Programming" courses.

Several of the intermediate courses are derived from traditional courses widi modest changes in emphasis.
These include FORMAL LANGUAGES, AUTOMATA, A N D COMPLEXITY [350] and INTRODUCTION TO ARTIFICIAL

INTELLIGENCE [360],

6.3 Course Organization and Style

By longstanding tradition a "course" is a series of lessons long enough to fill a semester and containing a
reasonable amount of intellectual content. The honor accorded by tradition should not be permitted to mask
inadequacies of the course format; nor should skepticism be permitted to destroy die well-reasoned product
of our predecessors. This curriculum focuses on the course as the atomic unit of instruction, not because of a
blind devotion to tradition, but because we found no compelling alternative. Our commitment is to
excellence in instruction of the next generation of computer scientists, not to the provision of particular
courses or degrees.

We are not certain that every aspect of computer science education is best served by the traditional course
structure. Alternatives to the traditional emphasis on the "course" include the Oxford/Cambridge tutorial
model, various work/study programs, and the competency examination model. This curriculum should be
seen as an interim solution, realizing that some concepts may be best taught via structures not yet imagined.

Computer science courses often resemble physics laboratory courses in their need for direct observation and
manipulation of the phenomena of computer science. Consequently, computer science courses depend on

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 34

laboratory facilities and staff to create and operate those facilities; including machines, working space, and
programmers. They also require numerous development tools, libraries of examples, and instructional
software.

Parallels can also be drawn to literary criticism courses, where students learn to write by reading the writing
of others. This example supports the belief that people can best learn to program by reading programs. Thus
courses involving reading good example programs might be very productive.

More difficult is the challenge of teaching those lessons that by their very nature span more than the
semester duration of a traditional course. The true value of good programming practice and detailed
documentation are learned only when a programmer has to modify a program months or years after he has
written it, a situation that most students never face. It may be possible to design a sequence of courses
requiring the student to examine or use his previous programs to motivate the need for these habits.

Two brief notes on mechanics: Firsdy, our prerequisite structure is intended to be stricdy observed. We
recommend that a letter grade of "C" or better be required to satisfy a prerequisite. Secondly, we feel classes
should be restricted to a manageable size. The report of the 1980 CMU Computer Science Undergraduate
Program Committee [15] recommended the following limits on the size of course sections: 50-60 students in
second year courses (2xx) and 20-30 students in upper division courses (3xx and 4xx). These limits were
independent of issues related to degrees. We strongly endorse these limits.

6.4 Course Numbering Scheme

A rational system of course numbers provides a quick hint about the level and content of each course. Our
scheme is derived from the Carnegie-Mellon system, and is similar to those in use at many universities, The
level of a course is the year of the average student taking the course (lxx for freshman courses, 2xx for
sophmores, and so on), except that 4xx courses are for suitable for both seniors and graduate students. There
are no 5xx courses.

A three-digit course number JKL is interpreted as follows:

• The first digit / indicates the level of the course:
lxx Basic, introductory, or general literacy
2xx Elementary computer science
3xx Intermediate topics focussing on individual ideas
4xx Advanced or specialized topics integrating individual ideas

• The second digit Vindicates the general subject matter of the course:
xOx General
xlx Systems
x2x Programming Languages
x3x Algorithms and Analysis
x4x Computer Systems; Hardware
x5x Theory and Mathematics
x6x Artificial Intelligence and Psychology
x7x Design, Graphics, and Computer-Aided Activities
x8x Management, Economics, Policy
x9x Applications

A N U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S
35

• The third digit is assigned arbitrarily to distinguish different courses within a category.
In the rest of this document we will often refer to courses offered by other departments. For this, we will

generally use the Carnegie-Mellon course numbers, which do not necessarily adhere to this convention. Such
course numbers are either prefixed with a department name (e.g. CIT 300), or by a two-digit department
code (e.g. 39-300).

A N U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M FOR THE 1980S 36

7. Abbreviated Course Descriptions

This chapter contains brief descriptions of the courses we have designed. These descriptions contain the
same level of detail as a college catalog. More complete course outlines are given in Chapter 8, in a separate
volume. Courses in other departments that are of interest to computer scientists are listed in Chapter 9. An
overview of the course structure, including course names and prerequisites1, is given in Figure 7-1.

7.1. Fundamental Structures of Computer Science I [211]

Prerequisites: P R O G R A M M I N G A N D PROBLEM SOLVING [no]

DISCRETE MATHEMATICS [150]

This course introduces students to the fundamental scientific concepts that underlie computer science and
computer programming. Software concepts such as abstraction, representation, correctness, and performance
analysis are developed and are related to underlying mathematical concepts. Students are asked to apply
these concepts to programming problems throughout the course.

7.2. Fundamental Structures of Computer Science II [212]

Prerequisites: F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE I [211]

The course is a continuation of F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE I [2ii]. It comprises

five major parts: data abstraction, implementation of data types and corresponding algorithms, models of

computation, topics in computer implementations, and a brief introduction to LISP. In addition to lectures

on these areas, students are asked to complete a number of programming assignments that are an integral part

of the course. They are often the first programs that are large enough to force the student to deal with

abstraction (by necessity), and they give the student an opportunity to apply algorithms and abstraction

techniques that are presented in class. Students are asked to program and think about programming during

die entire course.

7.3. Real and Abstract Machines [240]

Prerequisites: P R O G R A M M I N G A N D PROBLEM SOLVING [n o]
DISCRETE MATHEMATICS [150]

In this course the student is introduced simultaneously to the theoretical models and the hardware instances
of machines that compute. The notion of layers of virtual machines and their realization in various
combinations of hardware and software are major themes. Beginning with primitive computations, the
mathematical concept of function is used to capture the capabilities of combinatorial digital logic circuits.
From that base, finite automata are introduced as tools for understanding, analyzing, and designing finite
state machines. After that, Turing Machines and, more appropriately, register machines are introduced and
related to the architectures of real computers. Finally, microcode, machine/assembly language, and general-
purpose programming languages are positioned in this hierarchy. The laboratory component of this course
will require about three hours of lab work per week and will expose the student to simple instances of some of
the machine types. Students will simulate several classes of machine and will design and construct simple
combinatorial circuits and a simple finite state machine.

prerequisite structure is complete only for computer science courses.

110:
Programming
& Prob Solv

150:
D iscrete
Mathematics

(TO

n
o
c

<T>

D

" 0

O
0 0

o
H
3

211:
Fund Struc
of CS I

240: S t a t 2 t l :
Real & Abstr- P robab i l i t y
act Machines & S t a t i s t i c s

M301: ' Psycr
Combinatorics Into

& AI
Proc

212:
Fund Struc
of CS II

300: 310: 311:
Solving Real Time. Synch, Comparative
Wrld Probs & Concurrency Prog Structs

212ftwo

FF101 101:
C i r c u l t s
Courses

M341:
Linear
Algebra

M369:
Numerleal
Methods

Psych 363:
Human
Factors

3xx thy

320:
Ianguages
& Interfaces

330: EF221.222: 350: 351: 360:
Algorithms Flee & Dig Forml Langs log ic for A r t i f i c i a l
& Programs C i r c u i t s & Complexity Comp Sci In te l l igence

380: .
Pol icy
Comput

3xx

for
Ing

400,401:
Indep ProJ
& thesis

212ftwo

409:
Research
Seminar

410:
Software
Engineering

(var ies)

411:
Software
Eng. Lab

St211
412: /
Resource
Management

413:
Big Data

420:
Transducers
of Programs

350,
360

M301
430: / 440:
Advanced Computer
Algorithms Arch i tec ture

421:
Adv PLs &
Compilers

441:
VLSI Design

M473
Advanced
Algebra

M301

451:
Complex1ty
Theory

450;
Thy of
Prog langs

M712:
Sc ien t l f 1c
Comput ing

460: | 470:
AI: Cognit ive Computer
Processes | Graphics

Calc II
L1n Alg

T V
461:
AI: Robotics

2
D

o

a

H
tTJ n o
-a

tn
GO

o
z
o
m
o
a

n a
r

3
70

tn

o
CO

AN U N D E R G R A D U A T E COMPUTER SCIENCE C U R R I C U L U M FOR THE 1980S 38

7.4. Solving Real Problems [300]

Prerequisites: . F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE II [212]

REAL A N D ABSTRACT MACHINES [240]

This problem-oriented course provides students with an opportunity to solve real-world problems under the
guidance of an instructor. Skills from a variety of areas both within and outside of computer science will need
to be brought to bear on class examples and assignments posed as problems by the instructor. The emphasis
is on the techniques used in obtaining the solution, ratiier dian the solution per se. While proper software
engineering techniques will, of course, be expected for all solutions involving software, it should be noted that
the emphasis in the course is problem solving, not software engineering.

7.5. Time, Concurrency, and Synchronization [310]

Prerequisites: F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE II [212]

REAL A N D ABSTRACT MACHINES [240]

PHYSICS I [PHYS 121] (MECHANICS)

This course conveys the fundamental notions of flow of dme and control of temporal behavior in computer
systems, both at the hardware and the software level. The fundamental issues of synchronization, deadlock,
contention, metastable states in otherwise muldstable devices and related problems are described. Solutions
that have been evolved, like handshaking, synchronization with semaphores, and others are described and
analyzed so that the fundamental similarities between the software and hardware techniques are exposed.
This course has a significant laboratory component.

7.6. Comparative Program Structures [311]

Prerequisites: FUNDAIMENTAL STRUCTURES O F COMPUTER SCIENCE II [212]

This course covers a variety of common program organizations and program development techniques that
should be in the vocabulary of a competent software engineer. The student learns advanced methods for
programming-in-the-small including implementation of modules to given specifications and some common
program organizations. The course also covers techniques for reusing previous work (e.g., transformation
techniques and generic definitions) and elementary' design and specification.

7.7. Languages, Interfaces, and their Processors [320]

Prerequisites: F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE II [212]

REAL A N D ABSTRACT MACHINES [240]

This course examines the nature of programming languages and the programs that implement them. It
covers the basic elements of programming language organization and implementation; it also touches on the
design of interactive interfaces. The emphasis is on the elements of general-purpose programming languages
that are common to many programming languages and on ideas that are also applicable to specialized systems.
Implementation techniques covered include lexical analysis, simple parsing, semantic analysis including
symbol tables and types, and interpretation for elementary arithmetic expressions. Programming projects-
include a simple interpreter and an interactive program.

AN UNDERGRADUATE COMPU II R SCIENCE CURRICULUM I OR Till- 1 9 8 0 S 39

7.8. Algorithms and Programs [330]

Prerequisites: F U N D A M E N T A L STRUCTURES OL COMPUTER SCIENCE II [212]

An introduction to abstract algorithms and to their design, analysis, and realization. The goal of die course
is to develop skill with practical algoridim design and analysis techniques and to develop the ability to apply
these techniques to die construction of real systems. The student is presented with a collection of useful
algorithms and with design and analysis techniques. Like all models, abstract algorithms do not always match
real problems exactly, and some skill is required to use them well.

7.9. Formal Languages, Automata, and Complexity [350]

Prerequisites: . F U N D A M E N T A L STRUCTURES OE COMPUTER SCIENCE I [211]

An introduction to the fundamental material on formal languages, automata, computability, and complexity
theory. Practical applications and implications of the material arc emphasized.

7.10. Logic for Computer Science [351]

Prerequisites: F U N D A M E N T A L STRUCTURES OF COMPUTER SCIENCE I [211]
One 300-lcvcl mathematics or tiicorctical computer science course

The basic results and techniques of Logic arc presented and related to fundamental issues in computer
science.

7.11. Introduction to Artificial Intelligence [360]

Prerequisites: F U N D A M E N T A L STRUCTURES o r COMPUTER SCIENCE II [212]

Or INFORMATION PROCESSING PSYCHOLOGY A N D AI [PSY 213]

This course teaches the fundamentals of artificial intelligence, including problem solving techniques, search,
heuristic methods, and knowledge representation. Ideas are illustrated by sample programs and systems
drawn from various branches of AI. Small programming projects will also be used to convey the central ideas
of the course.

7.12. Independent Project [400]

Prerequisites: F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE II [212]

Two more courses (beyond 212) with Bs or better
Instructor's permission, based on acceptance of project proposal

This is an independent project laboratory for die most advanced students. ITie student will design and
construct a substantial software or hardware system under the supervision of the Project Lab faculty. Before
constmction of die project may proceed, a detailed design proposal must be submitted to and accepted by the
faculty member running die course. A design review with die lab faculty and TAs will be held at mid-term
time. A final review of the functioning system and its supporting documentation will be held at the end of the
semester. The intent is to permit the best students to exercise their design skills in the construction of a real
system, so good design practice and good documentation arc mandatory. The production of a functioning but
undocumented system will not be sufficient. The instructor may accept projects intended to last two
semesters, in which case die review at the end of the first semester will be another major design review.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 40

7.13. Undergraduate Thesis [401]

Prerequisites: F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE II [212]

Two more courses (beyond 212) with B's or better
Instructor's permission, base on acceptance of proposal

This is an independent study and research course for the most advanced students. The student will write an
undergraduate thesis or carry out a program of directed reading. Objectives for the course of study will be
established by die student and a faculty advisor. With concurrence of a faculty advisor, an undergraduate
thesis project may be planned for two semesters

7.14. Research Seminar [409]

Prerequisites: F U N D A M E N T A L STRUCTURES O F COMPUTER SCIENCE II [212]

Two more courses (beyond 212) with Bs or better
Students attend the regular research seminars of the Computer Science Department and submit short

written summaries. The Computer Science Department conducts a rich and varied set of public seminar
series throughout the academic year. Undergraduates with sufficient maturity and experience in the field can
benefit from attending, even if they do not completely understand the material presented. Attending these
seminars is a good way to learn about very current ideas and to appreciate the scope and excitement of the
field.

7.15. Software Engineering [410]

Prerequisites: COMPARATIVE PROGRAM STRUCTURES [311]

LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320]

The student studies the nature of the program development task when many people, many modules, many
versions, or many years are involved in designing, developing, and maintaining the system. The issues are
bodi technical (e.g., design, specification, version control) and administrative (e.g., cost estimation and
elementary management). The course will consist primarily of working in small teams on the cooperative
creation and modification of software systems.

7.16. Software Engineering Lab [411]

Prerequisites: vary with the individual arrangement
SOFTWARE ENGINEERING [410]

This course is intended to provide a vehicle for real-world software engineering experience. Students will
work on existing software that is or will soon be in service. In a work environment, a student will experience
first-hand the pragmatic arguments for proper design, documentation, and other software practices that often
seem to have hollow rationalizations when applied to code that a student writes for an assignment and then
never uses again. Projects and supervision will be individually arranged.

7.17. Resource Management [412]

Prerequisites: TIME, CONCURRENCY, A N D SYNCHRONIZATION [310]

PROBABILITY A N D APPLIED STATISTICS [STAT 211 / CS 250]

This course provides a synthesis of many of the ideas that students have learned in earlier courses. The

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 41

vehicle for this synthesis is the exploration of at least one instance of a real operating system in great detail.
Taking the view that an operating system is a resource manager, we will explore some resource issues and how
they may be handled. The primary issues are resource classes, properties, and management policies. This
course has a substantial programming laboratory component in which an existing operating system will serve
as an experimental testbed.

7.18. Big Data [413]

Prerequisites: LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320]

RESOURCE M A N A G E M E N T [412]

The central theme of this course is the storage and retrieval of large amounts of data. Topics include user
data models, underlying data storage techniques, data representations, algorithms for data retrieval,
specialized data manipulation languages, and techniques for providing reliability and security. Systems that
permit the storage and retrieval of large amounts of data are exemplified.

7.19. Transducers of Programs [420]

Prerequisites: COMPARATIVE PROGRAM STRUCTURES [311]

LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320]

This course studies ways to gain leverage on the software development process by using programs to create
or modify other programs, by reusing previously-created software, and by using automated tools to manage
the software development process. Examples are drawn from the tools locally available. Students use these
tools in projects that lead to useful software components. Special emphasis is placed on the use of integrated
systems of compatible tools.

7.20. Advanced Programming Languages and Compilers [421]

Prerequisites: FORMAL LANGUAGES, AUTOMATA, A N D COMPLEXITY [350]

INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]

TRANSDUCERS O F PROGRAMS [420]

This course is intended for students seriously interested in the construction of compilers for general-
purpose programming languages. The student studies an optimizing compiler as an example of a well-
organized system program, studies algorithms and data structures appropriate to the optimization process,
examines code generators, optimizers, and their interactions. The student also studies comparative
programming languages with emphasis on the interaction between language design and implementation
considerations. Compiler-generator technology is used to build a compiler, thereby demonstrating the use of
system-building tools.

7.21. Advanced Algorithms [430]

Prerequisites: ALGORITHMS A N D PROGRAMS [330]

COMBINATORIAL ANALYSIS [MATH 301 / CS 251]

A second course in the design and analysis of algorithms, this course is intended to familiarize the student
with the unifying principles and underlying concepts of algorithm design and analysis. It extends and refines
the algorithmic concepts introduced in ALGORITHMS A N D PROGRAMS [330]. Here a more abstract view is taken,

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR H I E 1980S 42

with emphasis on the fundamental ideas of problem diagnosis, design of algorithms, and analysis. The course
assumes familiarity with material on combinatorial analysis.

7.22. Computer Architecture [440]

Prerequisites: REAL A N D ABSTRACT MACI IINES [240]

or INTRODUCTION TO DIGITAL SYSTEMS [EE 133]

This course teaches the important concepts in computer system hardware design. System architecture is the
focus of this course, so the technological details of the components from which such systems are constructed
arc avoided except where they are crucial to design goals like capacity and performance. The topics that are
taught include design models including the Register Transfer Level model, Instaiction Set Processor model,
and PMS model. Analytic tools taught include notions of quantity of data based on Information Theory,
Queucing 'Theory concepts, and Performance Evaluation techniques.

7.23. VLSI Systems [441]

Prerequisites: COMPUTER ARCHITECTURE [440]

ALGORITHMS A N D PROGRAMS [330]

This course introduces the technology of VLSI and its use in system design. A broad survey of current
technologies and simple design methodologies is given. The emphasis throughout is on practical issues, and
the student will learn how to design projects and implement them on a chip. Some ideas of die potentials and
limitations of VLSI design will be given, and special-purpose VLSI designs for a number of application areas
will illustrate diese points.

7.24. Theory of Programming Languages [450]

Prerequisites: LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320]

FORMAL LANGUAGES, AUTOMATA, A N D COMPLEXITY [350]

LOGIC FOR COMPUTER SCIENCE [351]

This course brings together fundamental material on the theory of programming languages. Techniques for
assigning mathematical meanings to programs and for reasoning precisely about program functionality and
behavior are described. Some indication is given of the influence of formal mediods on programming
methodology and programming language design.

7.25. Complexity Theory [451]

Prerequisites: ALGORITHMS A N D PROGRAMS [330]

FORMAL LANGUAGES, AUTOMATA, A N D COMPLEXITY [350]

COMBINATORIAL ANALYSIS [MATH 301 / CS 251]

This course extends in much more detail die material first introduced in FORMAL LANGUAGES, AUTOMATA,

A N D COMPLEXITY [350]. After a quick review of the basic ideas of complexity dicory, the course introduces
some of the advanced results and open questions of abstract complexity theory, and the techniques used in
proving these results. Emphasis is made on relating these results and open questions to their theoretical and
practical implications for Computer Science; the study of computability leads to theoretical limitations on
what a computer can in principle (given enough time and space) do, while the study of complexity yields
limitations on what is feasibly computable: if we arc restricted to using only a limited amount of time or
space, die class of problems solvable by computer is restricted.

AN UNDERGRAIXJATE COMPUTER SCIENCE CURRICULUM LOR THE 1980S 43

7.26. Artificial Intelligence — Cognitive Processes [460]

Prerequisites: INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]

Or INFORMATION PROCESSING PSYCHOLOGY A N D AI [PSY 213]

Covers more advanced aspects of the cognitive side of AI, including natural language processing, use of
knowledge sources, and learning and discovery. The use of computer programs as psychological models will
also be discussed. Students will implement a large AI system as a semester project.

7.27. Artificial Intelligence— Robotics [461]

Prerequisites: INTRODUCTION TO ARTIFICIAL INTELLIGENCE [360]

LINEAR ALGEBRA [MATH 341]

CALCULUS II [MATH 122] (MULTIVARIATE CALCULUS)

Covers Artificial Intelligence systems that deal in some way with die physical world, cither through visual,
acoustic, or tactile means. Topics include vision, speech recognition, manipulation, and robotics.

7.28. Interactive Graphics Techniques [470]

Prerequisites: LANGUAGES, INTERFACES, A N D THEIR PROCESSORS [320]

ALGORITHMS A N D PROGRAMS [330]

A course in die creation and use of graphical information and user-interfaces.

AN U N D E R G R A D U A T E COMPUTER SCIENCE CURRICULUM FOR THE 1980S 44

References

1. ACM Curriculum Committee on Computer Science. "Curriculum 68: Recommendations for Academic
Programs in Computer Science." Communications of the ACM If 3 (March 1968), 151-197.

2. ACM Curriculum Committee on Computer Science. "Curriculum 78 : Recommendations for the
Undergraduate Program in Computer Science." Communications of the ACM 22, 3 (March 1979), 147-166.

3. Marc H. Brown, Norman Meyrowitz, and Andries van Dam. Personal Computers Networks and
Graphical Animation: Rationale and Practice for Education. ACM SIGCSE 14th Annual Technical
Symposium, Association for Computing Machinery, February, 1983.

4. CMU Graduate School of Industrial Administration. Announcements for 1954-1956. CMU Catalog.
Pittsburgh PA, ,1954.

5. Carnegie-Mellon University. Carnegie-Mellon University Undergraduate Catalogue 1981-1983. CMU
Catalog. Pittsburgh PA, ,1980.

.6. W. Corwin and W. Wulf. SL230 - A Software Laboratory Intermediate Report. Carnegie-Mellon
University Computer Science Department, May, 1972.

7. Robert E. Doherty. The Development of Professional Education. CMU, Carnegie Press.

8. Education Committee (Model Curriculum Subcommittee) of the IEEE Computer Society. A Curriculum
in Computer Science and Engineering. IEEE Computer Society, November, 1976. Committee Report

9. Philip Miller. GNOME: An Introductory Programming Environment, in preparation.

10. National Science Foundation and the Department of Education. Science and Engineering: Education
for the 1980's and Beyond. U.S. Government Printing Office, Washington, D.C.

11. Frank W. Paul, Donald L. Feucht, B.R. Teare, Jr., Charles P. Neuman and David Tuma. Analysis,
Synthesis and Evaluation -- Adventures in Professional Engineering Problem Solving. Proceedings of the
Fifth Annual Frontiers in Education Conference, IEEE and the Amer. Soc. for Engr. Ed., October, 1975, pp.
244-251.

12. Mary Shaw, Stephen Brookes, Bill Scherlis, Alfred Spector, and Guy Steele. Plan for Developing an
Undergraduate Computer Science Curriculum. CMU CS Curriculum Design Note 82-02.

13. Mary Shaw. Working Papers on an Undergraduate Computer Science Curriculum. Tech. RepL CMU-
CS-83-101, Carnegie-Mellon University, Computer Science Department, February, 1983.

14. Tim Teitelbaum, Thomas Reps, Susan Horwitz. The Why and Wherefore of the Cornell Program
Synthesizer. Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation, Cornell
University, June, 1981, pp. 8-16.

15. The CSD Undergraduate Program Committee. Initial Report on an Undergraduate CS Program. CMU
internal memorandum.

