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Abstract 

This document is the substantive part of the proposal submitted by the Computer 
Science Department of Carnegie-Mellon University to the Advanced Research 
Pro jec ts Agency of the Department of Defense for continuation of research in 
information processing during 1975-76. It contains a description of the major o n 
going research projects : Artificial Intelligence; Speech Understanding Systems; 
C m m p , the mult i -mini -processor; SMCD, the symbolic manipulation of computer 
descr ip t ions ; and newly initiated work on multiple microcomputers. 
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PREFACE 

This document contains the substantive part of the proposal to the Information 
Process ing Techniques Office of the Department of Defense for the period July 75 to June 76. 
W e have r e p r o d u c e d it for more general distribution, since it gives a good o v e r v i e w of some 
of the c u r r e n t research in the Computer Science Department. 

T h e present vers ion differs from the original in two respects. First, the budget por t ions 
o f the proposa l have been removed, except the part relating to major equipment, w h e r e the 
informat ion is of substantive interest. Second, the original p roposa l ,was p repared under 
cons iderab le time pressure . Thus, the present version has been edited for e r r o r s and 
infel ic i t ies of wr i t ing. References to our own publications, which did not make it into the 
or ig ina l v e r s i o n , have been added. However, the proposal was wri t ten primarily to descr ibe 
o u r o w n ongoing projects rather than to provide a discussion of the general state of the art . 
T h e r e w e r e essential ly no references to work outside of CMU; we have not remedied this 
s ince it wou ld have required substantial modification. Our work, like' that of all o t h e r 
sc ient is ts , depends on and grows out of work done elsewhere in the scientific community. Our 
publ icat ions , c i ted herein, g ive specific credit to these other efforts. 

T h e research going on under APRA is only part of the total research in the Computer 
Sc ience Department at CMU. It is, in volume terms, a rather large part of it, and thus what is 
d e s c r i b e d in these pages is much in evidence. It is important to realize, h o w e v e r , that the 
r e s e a r c h done under ARPA represents a particular style of research: large exper imental 
p r o j e c t s standing at the center of each area, with well defined mileposts and wi th scientif ic 
success t ied closely to the success of specific systems. Around these major systems there is 
much individual e f for t , but the dominant flavor is imparted by the iarge experimental systems. 
T h o u g h there are o f t -no ted dangers to this style of research, we believe that it rep resents an 
important s ty le and one that leads to progress on major scientific issues. 

H o w e v e r , an inference to the totality of research in computer science at C M U cannot be 
made from the sample of this report . For much of the rest of the research fol lows o ther 
s t y l e s . T h e r e is work in operating systems that is experimental, but re lat ive ly small 
(Habermann) ; there is work in security and protection that is primarily theoretical ( Jones ) ; 
t h e r e is w o r k in real complexity theory that is primarily theoretical (Kung, T raub) ; there is 
w o r k in the development of programming languages and programming methodology 
(Habermann, Jones, Shaw, Wulf); There is work on data base design (Eastman, Schkolnick). 
T h e r e is all the experimental and theoretical work in Psychology on cognitive processes, wh ich 
is c lose ly re lated to Artificial Intelligence. 

We take the trouble here in the Preface to enumerate some of these other r e s e a r c h 
e f f o r t s , w i th their somewhat contrasting styles, to be sure that the reader understands that 
the e x t e n s i v e descr ipt ion of research given in this document is still only a part of the total 
r e s e a r c h in our environment and, further, is cast in a particular large-system exper imental 
mold. 

We would like to acknowledge the many members of the department who helped to 
c r e a t e this document and to improve its accuracy. Especially we would like to thank Richard 
J o h n s s o n and Philip Karlton for assisting with the final document production, and B e v e r l y 
Howel l and Mi ldred Black for secretarial help. 
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1. INTRODUCTION 

This proposal is for basic research in computer science by members of the Computer 
Sc ience Department of Carnegie-Mellon University for the Information Processing Techniques 
Of f ice ( IPTO) o t t h e Advanced Research Projects Agency (ARPA) of the Department of Defense 
u n d e r Cont ract F44620-73 -C -0074 , monitored by the Air Force Office of Scientific Research 
(AFOSR) , 

T h e proposal covers the eighteen month period from 1 July 75 to 31 December 76. It 
is fo r the th i rd year (and half of the fourth) of the existing contract, and is a continuation of a 
long term research program. 

This introduction provides a brief description of the scope of the research. It also 
p r o v i d e s br ief o v e r v i e w s of recent results and our specific research targets for the immediate 
f u t u r e . T o ful ly appreciate these results and our immediate goals requires a more robus t 
t reatment than the overv iews provide. Extended discussion will be found in the sections on 
e a c h r e s e a r c h area. However , it seems useful to bring the overv iews to the f ront , w h e r e t h e y 
can act as quick summaries of where our research program has been making p rogress and 
w h e r e it is laying its bets. 

1.1 General Scope and Organization of the Research 

T h e research proposed herein may be organized under the following headings: 

(1) Art i f ic ial Intell igence: To discover the nature of intelligent action and to real ize such 
act ion b y computers. 

Specif ical ly , as a focus for the coming period: 

In research on total system organization: To determine whether product ion 
systems are an appropriate organization for realizing intelligent action in a 
system designed to operate in a general environment. 

In heuristic search: To determine the basic components that make heuristic 
search possible in realistic complex situations, especially how knowledge is 
used for strategic guidance. 

In automatic programming: To automate data base management and access 
tasks. 

In v is ion: To determine how to locate and identify semantic objects in large 
naturalistic scenes. 

(2) Speech Understanding Systems: To recognize by computer f reely ut tered speech . 

Specif ical ly , as a focus for the coming period: 

T o construct systems capable of understanding connected utterances in a 
rest r ic ted task domain (and meeting the ARPA Speech Understanding 
specifications b y (Mov76). 
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(3) C.mmp (A multi-miniprocessor): To determine effective w a y s to o r g a n i z e 
computat ions on systems with multiple processors. 

Specif ical ly , as a focus for the coming period: 

T o br ing C.mmp to a fully operational state with respect to the hardware 
conf igurat ion, the operating system, the software facilities, and the 
accessibil ity to users. 

T o investigate a series of benchmark programs to analyze the to ta l - sys tem 
characterist ics of multiprocessor systems of the C.mmp class. 

T o flex the operating system with respect to its ability to s u p p o r t 
special ized sub-environments, with an emphasis on securi ty and eff ic iency. 

(A) SMCD (Symbolic Manipulation of Computer Descriptions): To descr ibe computer 
sys tems so that the full range of analyses, syntheses, and evaluations of interest to computer 
sc ience can be performed on these descriptions. 

Specif ical ly , as a focus for the coming period: 

T o create a basic set of tools for the description of computers, including a 
computer description language capable of expressing mixed levels of 
abstrat ion, a simulator capable of mixed level simulations, and a global data 
base. 

T o analyze the task of a compiler-compiler that works relat ive to the 
descr ipt ion of the target computer; and to design and implement such a 
compiler -compiler capable of producting quality code. 

T o analyze the task of the design of computer systems from sets of 
modules; and to design and implement such a computer design system 
capable of specifying both control and data flow and of working wi th 
a rb i t ra ry module sets. 

T h e research just listed above is relevant to a substantial fraction of modern computer 
sc ience : to artificial intelligence, and within that speech understanding, to several areas of 
s o f t w a r e systems, to computer architecture and to performance analysis. It r e p r e s e n t s 
r e s e a r c h interests of ten faculty members in Computer Science, and several programs wi th in 
I P T O . From the .v iewpoint of diversi ty and breadth, it has several major thrusts , each focussed 
o n independent l y important scientific questions. 

T h e research is also strongly interdependent, despite its breadth. Each of the major 
p r o j e c t s r e p r e s e n t e d in the proposal has active ties, and in some cases strong dependencies , 
o n w o r k going on in the other projects. The major personnel in the program are i n v o l v e d 
g e n e r a l l y in more than one of the major projects. This is a reflection of the breadth of 
r e s e a r c h interests and talents of these particular scientists, but it is also a ref lect ion of the 
uni f ied nature of the C M U ARPA research effort that it has encouraged and permitted this. 
I n d e e d , it is our contention that we have found a way to bring to bear adequate concerns and 
e x p e r t i s e for computer architecture, performance analysis, software systems, and artif icial 
intel l igence on research problems of basic significance to computer science. We be l ieve 
s t r o n g l y that the present 's tate of computer science, both technologically and conceptual ly , is 
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s u c h that all of these areas are jointly essential to making progress on many fundamental 
sc ient i f ic problems. 

T h e four projects listed above serve to organize the research environment, w i t h 
speci f ic facul ty members responsible for each area, continuing research seminars in each area, 
e tc . H o w e v e r , this organization does not extend to an administrative s t ruc tu re . 
Admin is t ra t i ve ly , w e consist simply of faculty, research associates and graduate students of 
the Computer Science Department, with the facilities divided into an Engineering L a b o r a t o r y 
and a Programming Group (which is also responsible for computer operations). 

T h e pro ject -o r ientat ion of the various components of the research ef for t is genuine . 
W e have formulated what w e believe are important scientific goals in terms of systems to be 
d e v e l o p e d and performances to be obtained. Riding piggy-back on these major goals, of 
c o u r s e , are many scientific issues which can only be addressed given the existence of the main 
s y s t e m and in some cases achievement of system performance goal. 

As is well known, all research is not, and cannot be, so organized into projects . T h o u g h 
computer science lends itself to project formulation (given a certain amount of taste and ca re 
in the select ion of projects so that their accomplishment truly advances the science), much 
e x p l o r a t i o n and individual theorizing and analysis must also go on. Within our env i ronment , 
this occurs across all the areas covered by the research described herein, and b e y o n d them. 
It is out of such explorat ions that our new research efforts arise. Indeed, many of the p r o j e c t s 
of the p resent proposal arose in just such a way. 

1.2 O v e r v i e w of Recent Results 

Each of the four major projects in this proposal has a different maturity and hence a 
d i f f e r e n t standing with respect to its goals. Thus the type of recent results that have been 
o b t a i n e d for each project area have a somewhat different flavor. We list each of the major 
resu l t s in each area without trying to make their full context clear. A more e x t e n s i v e 
t reatment will be found in the appropriate section (though not all the particular facts are 
necessar i l y repeated) . The results are all for 1974, unless specifically noted. 

1.2.1 Art i f ic ial Intelligence 

Product ion systems: We have several production system languages, explor ing d i f fe rent 
arch i tectura l assumptions, and have coded several tasks ranging up to 250 product ions. We 
h a v e p r o d u c e d several simple production systems that grew themselves, i.e., learned. 

Heuristic Search: New theorems were obtained for optimal search strategies in t y p e s of 
task env i ronments quite different from those of previous theorems about search. 

V i s ion : Segmentations of 600*800 pixel three-color (24 bits/pixel) natural scenes have 
b e e n obta ined using a new technique (region splitting) that has not been much exp lo red . 

Automatic Programming: A program has been created within the Buchanan-Luckham 
automatic p rov ing system (created at Stanford) that creates relational data bases def ined 
accord ing to the CODYSYL Data Base Definition. 
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1.2.2 Speech Understanding Systems 

H e a r s a y - l . X . The system has not been appreciably improved over its capabilities in the 
N o v 7 3 mid -course evaluation, though its performance has been analyzed. C u r r e n t 
pe r fo rmance ( in words correct jy recognized) is 39% for acoustics alone, 70% f o r 
acoust ics+syntax , 93% for acoustics+syntax+semantics (Chess task only). Sentence recogni t ion 
is c o r r e s p o n d i n g l y lower , e.g., 90% for the all three knowledge sources. The f igures are f o r 
small vocabular ies (20 -50 words) ; the system is insensitive to vocabulary var iat ion at this s i ze , 
but degrades appreciably at 250 words (33% word recognition). The recognit ion runs in about 
10 times real time on a KA10 (and potentially at real time on a dual processor KL10). 

DRAGON (alternative scheme based on Markov representation of knowledge) became 
operat iona l w i th acoustics+syntax. On same five tasks as Hearsay-1 DRAGON obtained 837. 
w o r d recogni t ion , in about* 50 times real time. 

H e a r s a y - 2 became operational and recognized its first sentence using 9 knowledge 
s o u r c e s (Nov74) . 

H e a r s a y - 2 on C.mmp: L*, the implementation system for Hearsay -2 on C.mmp, became 
operat iona l (Jan75). 

SPS -41 High Speed Microprocessor: The first faster - than- real - t ime program fo r 
ana lyz ing speech signals using the LPC spectra was demonstrated (Apr74). 

T h e full dynamic range 16-bit ADA Conversion device, specially adapted for speech , was 
demonst ra ted (Apr74) . It should replace the analog adaptation techniques cur rent l y in use. 

1.2.3 C.mmp: the Multi -miniprocessor 

T h e 16*16 switch became operational in spring 74. 

In Dec74: (1) The hardware was operating with 5 P D P l l / 2 0 s and 512K p r i m a r y 
memory . (2) The HYDRA kernel was operating routinely, and the initial subsystem was in a 
v e r y e a r l y operational state. Regular user periods of 3 hours/day were initiated, though total 
( h a r d w a r e + sof tware) mean-time-betwejen-failure became unusably short as the number of 
s imultaneous n o n - e x p e r t users grows to 3 or 4. 

A n analysis based on static and dynamic measures of code size and speed on the KA10 
and C.mmp indicated that a full 11/40 version of C.mmp is about 6 Mips (millions of 
inst ruct ions per second) while a KL10 is about 1.4 Mips; and that the cos t -per fo rmance of 
C.mmp (measured in Mips/Mega8) is about 2-3 times that of a KL10. (Memory costs and 
assumptions about pr imary memory capacity required to support effect ive use of p rocess ing 
p o w e r have s t rong effects.) 

T h e C.mmp Hardware Monitor designed and constructed at C M U became operat ional 

(Oct74) . 

T h e PDP11/40 extended at CMU to include a writeable microstore became operat ional 
(0c t74) . This programmable processor is destined to be the the main processor t y p e o n 
C.mmp. It was deve loped wi th partial support from DEC and NSF. 
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1.2.4 SMCD: Symbolic Manipulation of Computer Descriptions 

(Research ef for t initiated in Jul74.) 

ALPHARD, a new programming language for structured programming being d e v e l o p e d at 
C M U , wil l be the basis for the new computer description language. ALPHARD itself is at an 
advanced specif ication stage, usable for manual analysis. 

Related to the Machine-relative compiler-compiler: A book- length monograph on the 
BLISS11 optimizing compiler structure was finished (published Jan75). 

Related to Machine Design with Module Sets: EXPL, a system capable of consider ing 
va r ia t ion in control flow in designing structures using RTMs (Register Transfer Modules, a 
commercial ly available module set) was completed in early 74 (supported b y an NSF grant ) . 
A n ex tens ion to EXPL that designs structures using macromodules (Washington Un ive rs i t y ' s 
module set) is in the advanced debugging stages. EXPL is the nucleus system for the SMCD 
e f f o r t . 

1.3 O v e r v i e w of Research Targets 

We g i ve here the main definite targets for our research efforts for each of the four 
p r o j e c t s . In the body of the proposal we enunciate for each subproject its o w n special 
t a r g e t s and the higher scientific context into which it fits. Some targets are str ict ly means to 
o u r o w n pro jects , but most relate to independent scientific issues. We do not reproduce all 
this he re , for the elements in it are of variable interest and specificity. Rather, we g ive h e r e 
t h e main targets for which we are prepared to be specific as to accomplishments expec ted and 
dates . 

A caut ionary note is in order : Such a list favors the scientific targets that can be t ied 
to the development and completion of systems (e.g., to C.mmp) or that will arise inev i tab ly 
f r o m s t ra igh t fo rward study (e.g., the comparison of two programmable microcoded computers) . 
Tha t science which we have not yet thought of will not be represented — yet w e would hope 
the latter will account for a significant fraction of our scientific productiv i ty during the coming 
p e r i o d . But assuming the following list is recognized for the truncated representat ion that it 
is, w e p resent it. 

1.3.1 Art i f ic ial Intelligence 

Product ion systems: By Aug75 we expect to have finished a study that compares 
(operat iona l vers ions of) production systems for many classic A I tasks against the or iginal 
implementations within other program organizations. 

Product ion systems: By Aug76 we expect to create a production system with 1000 
p roduct ions to perform some frontier A I task. (Production systems, computer system, and task 
a re to be chosen by Aug75.) 

Heuristic search in complex tasks: By Dec75 we expect to have a lemma system f o r 
gu id ing search working in our chess program. 



6 CMU Proposal to ARPA 7 5 - 7 6 

1.3.2 Speech Understanding Systems 

H e a r s a y - 2 : B y Nov75 we expect . i t to be working at 90% w o r d recognit ion leve l , and 
70% sentence level on the 200 word vocabulary Associated Press News Retrieval Task. We 
e x p e c t it to be working, but not well , on a 1200 word vocabulary task. B y Nov76 w e e x p e c t it 
to meet the APRA 5 Year Performance Specifications. 

DRAGON: B y Nov75 we expect to have a fast (SPS41) version working on a 1200 w o r d 
v o c a b u l a r y , but wi th no performance expectations. By Nov76 we expect it to meet the APRA 
5 Y e a r Performance Specifications. 

H e a r s a y - 2 on C.mmp: B y May75 we expect to make a decision on proceeding w i t h the 
c u r r e n t implementation. Given a positive decision, we expect the system to become a faithful 
rep l i ca of H e a r s a y - 2 . B y Nov76 we expect to be able to show the computational t radeof fs fo r 
a C.mmp-l ike multiprocessor implementation. 

1.3.3 C.mmp: the Mini-multiprocessor 

B y Sep75 w e expect the total C.mmp system to be in routine and reliable operat ional 
use b y multiple n o n - e x p e r t users. 

B y Dec75 w e expect to have in operation a system with 16 processors (4 l l / 2 0 s and 
12 microprogrammable l l / 4 0 s ) and 1 million words of primary memory. This will be a s y s t e m 
at about s e v e n eighths of the maximum 5.95 Mips possible with sixteen l l / 4 0 s . 

B y Sep75 w e expect to have initial versions of a collection of benchmark tasks on 
C.mmp, to be able to assess its computational character. 

1.3.4 SMCD: Symbolic Manipulation of Computer Descriptions 

B y Dec75 w e expect to have a first implementation of ALPHARD usable fo r SMCD 
p u r p o s e s . 

B y Dec75 w e expect to have a first specification of the machine-relative c o m p i l e r -
compi ler , w i th a possible expectation of a running version by Aug76. This implies the 
complet ion of a ser ies of studies on the components of the compilation processes to abstract 
them to w o r k from computer descriptions. 

B y May75 w e expect to have a specification for an reg ister - t ransfer level computer 
a ided design system, which works with arbitrary module sets (at the reg is te r - t rans fe r leve l ) 
and designs o v e r both control and data flow. Its expected date of completion depends on the 
speci f icat ions. 

B y A p r 7 5 w e expect to have a comparison of the MLP900 and the microprogrammable 
11/40, to select a path to follow for the high speed portion of the variable level simulator 
associated w i th ALPHARD. 

1.4 Organization of this Proposal 

T h e proposal consists of eight sections including this introduction as Section 1. Sect ions 
2 t h r o u g h 5 descr ibe each of the four research projects. Section 6 describes the facil it ies. 

http://expect.it
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Sect ions 7 and 8 descr ibe two supplementary proposals, one for completion of the phys ica l 
components of C.mmp, the other for a support in the area of multiple computers. 

Thus the main content of the proposal is given in the four research sections. For each 
of these w e descr ibe the goals of the scientific research, both general computer science goals 
and specif ic object ives of the project. We then give the present state of the research , noting 
the accomplishments w e have attained within the last year (1974). Finally, w e descr ibe ou r 
p lans for the research for the coming year and note any specific resources needed. 
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2. ARTIFICIAL INTELLIGENCE (AI) 

2.1 Introduction 

C M U has a long history as a center for research into the nature of intell igence, bo th in 
humans and computers. It is often referred to, along with the laboratories at Stanford , M I T 
and SRI , as one of the four ARPA A I Laboratories (though the work under this contract is much 
b r o a d e r than A I , as can be seen from this proposal). The totality of research at C M U that 
shou ld be discussed under the rubric of Artificial Intelligence actually occurs in three separate 
p laces : the w o r k on human cognition, going on in the Psychology Department and s u p p o r t e d 
b y o ther than ARPA funds; the work in Speech Understanding Systems, which is descr ibed in a 
s e p a r a t e sect ion of this proposal; and the work described in this section, officially labeled 
"art i f ic ial intell igence". 

T h e w o r k descr ibed herein has several distinct concrete object ives, represent ing 
approaches to di f ferent aspects of the total puzzle of artificial intelligence. [Newell 72a, Simon 
7 1 ] T o put them into perspect ive we will provide in this introduction a brief discussion on the 
g e n e r a l scientif ic goals of artificial intelligence. 

2.2 T h e Scientific Goals of Artificial Intelligence 

Art i f ic ial Intell igence is the scientific specialty that attempts to understand the nature of 
intel l igent action and to cdnstruct systems that are capable of intelligent action. 

" Intel l igent action" is shorthand for describing the capability of some systems to b r ing 
k n o w l e d g e to bear in the service of ends in an effective way. As is t rue of any s c i e n c e -
def in ing term, precise definition is not required. Plentiful examples of intelligent act ion, 
v a r y i n g in many aspects, are all that are required. Science, when successful, evo lves adequate 
t h e o r i e s of its domain; it never starts with them. The behavior of some humans some of the 
t ime, and ( b y now) the behavior of some computers some of the time, p rov ide the empirical 
base o n which to erect the science. 

As w i th all sciences, the goals of A I at a particular historical moment ref lect t h r e e 
s o u r c e s : (1) the universal questions asked by any science; (2) the state of scientif ic 
k n o w l e d g e at that time; and (3) the techniques available to answer questions. 

APs ve rs ion of the universal scientific questions: 

Q l . What are the phenomena: What are the types of intelligent action? 

Q2. What gives r ise to the phenomena: 

Q2.1: What are the characteristics of systems that permit (or enable) them 
to show intelligent action? 

Q2.2: What are the characteristics of the environments of tasks that requ i re 
intelligent action? 
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Q3. What is the genesis of the systems that produce the phenomena: How do systems 
capab le of intell igent action arise? 

T h e fol lowing proposit ions summarize v e r y globally the experience of the last t w e n t y 
y e a r s of w o r k (which in fact covers essentially the total relevant scientific h i s to ry ) . T h e y 
induct o v e r investigations in many task environments. Being empirical general izat ions, t h e y 
make no claim to be exhaustive or complete. 

P I . A n essential condition for intelligent action of any generality is the capabi l i ty f o r 
t h e c reat ion and manipulation of symbolic structures. 

T o be a symbolic structure requires both being an instance of a d iscrete 
combinational system (lexical and syntactic aspects) and permitting access 
to associated arbi t rary data and process (designation, reference or meaning 
aspects). 

It is this proposit ion that makes A I a subdomain of Computer Science, since 
the computer is most appropriately v iewed as that man-made system which 
is capable of symbolic representation and manipulation. 

This is perhaps ' the most profound discovery of A I (and Computer Science): 
That what was implicitly created in digital computers was a physical symbol 
sys tem, one which satisfied the fundamental prerequisite for intelligent 
action. 

P2. Intel l igent action requires bringing to bear v e r y large amounts of highly d i v e r s e 
k n o w l e d g e . 

Stated as an impossibility axiom, there is no way to obtain more than 
limited intelligent action from a limited data base, no matter how much 
computation is applied. Therefore, large intelligence requires large amounts 
of "knowledge. 

T h e problem of representation is fundamental. The problem has many 
facets besides simply encoding knowledge: the acquisition of new 
knowledge, its assimilation to existing knowledge, the accession to 
knowledge that is relevant to the task at hand, the convers ion of the 
knowledge so accessed to increase knowledge about the immediate task, 
and the derivation of new knowledge from the body of knowledge already 
acquired. 

T h e representat ion of knowledge in symbolic structures gives r ise to the 
fundamental dual nature of information processing systems into a 
processing structure and content (i.e., particular symbolic structures) . 

P3. T h e fundamental response of a system to uncertainty — to how to p roceed w i th a 
task o r how to attain a goal — is to create a space within which a resolut ion to that 
u n c e r t a i n t y must lie, and to search that space. 

T h e problem of search is fundamental. It shows up in many guises and wi th 
many variations. Almost all the basic methods used b y intelligent systems 
can be seen as some variation of search, responsive to the part icular 
knowledge available. 
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P4. T h e act of perception — of the formation of an intelligible representat ion of an 
e x t e r n a l envi ronment — requires knowledge equal in breadth and extent to that invo l ved in 
s u b s e q u e n t use of the resulting representation. 

Thus , percept ion is not to be distinguished from cognition as if it w e r e a 
separate preprocessing stage of simpler design. The full knowledge 
available in the system must be able to inform the act of percept ion. 

P5. T h e control of behavior towards ends can be obtained by the use of goals — i.e., 
symbol ic s t ructures that encode the var iety of knowledge pertinent to ends: under what 
condi t ions it will be obtained, what aspects of the task environment are re levant , what 
methods are re levant and have been used, etc. 

Final ly , the current art specifies rather strongly the techniques available for obtaining 
n e w scientif ic knowledge. 

T L AI 's major technique for discovering new knowledge and for ve r i f y ing ex ist ing 
k n o w l e d g e is the construction of systems that exhibit intelligent action in specif ic task 
env i ronments . 

T o d iscover new forms of intelligent action, specify a prev iously unexp lored 
task environment and construct an intelligent system to perform its tasks. 

T o v e r i f y that a collection of mechanisms for intelligence have certain 
proper t ies , construct a system embodying these mechanisms and see 
whether they produce the intelligent action predicted. 

T h e constructed systems of A I (in the current art) are accessible for 
exhaust ive examination and rational analysis. Hence, verif ication of scientific 
knowledge can often be accomplished by detailed examination of a single 
instance. This is a striking property vis a vis most sciences, whose systems 
are much less accessible. 

T 2 . Humans, as the existing naturally intelligent systems, can be studied to d iscover the 
t y p e s of intell igent actions they perform and the mechanisms used to perform them. T h e 
major source of knowledge is, the experimental study of human behavior to d i s c o v e r 
mechanisms, fo l lowed by construction of simulation systems to ver i f y whether the d i s c o v e r e d 
mechanisms do indeed have the properties inferred. 

C u r r e n t l y , the complexity of human structure (the anatomy and phys io logy ) 
precludes direct insight into the structure of these mechanisms. The human 
system is a prime example of one with inaccessible st ructure, so that 
e laborate experimental techniques and designs are often requi red to 
exclude alternative explanations of phenomena. 

T 3 . The cur rent state does not provide formal theories of any power that can be used 
to s t r u c t u r e the main course of scientific development of A I , though formal theor ies do ex is t 
fo r f ragments of the field. Scientific knowledge is most well developed at the level of specif ic 
mechanisms of intelligent action and their effects in task environments of (part ial ly) speci f iable 
character is t ics . 
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A I (and computer science generally) is both constructive in method and basical ly 
c o n c e r n e d w i th system behavior that attains ends. Thus, unlike natural sciences, there is l ittle 
separa t ion b e t w e e n the pure and applied aspects of the science. To produce systems capable 
o f intel l igent action is to produce systems capable of attaining ends, which is to say , sys tems 
that are useful according to someQne's criteria. The distinction between pure and the appl ied 
aspects res ts primari ly on the particular task environments studied. Pure scientists choose 
task env i ronments according to the requirements of discovery or verif ication of va r ious 
scient i f ic proposi t ions. Appl ied scientists choose according to the usefulness as determined b y 
b y e x t e r n a l l y st ipulated go^ls and criteria. 

With this o v e r v i e w as a background, we can describe in a succinct w a y the part icular 
goals of the research cur rent ly being conducted in A I within the present proposal . 

2.3 Production Systems: A n organization for intelligent action 

2.3.1 Scientif ic goals 

What is the appropriate organization for a system capable of general intelligent action? 
T h i s is one of the fundamental questions in A I . We have learned, both in computer science and 
in A I , that a system can be divided into a control structure, on the one hand, and the content 
( i .e. , the symbolic st ructures) that resides within that structure, on the other . The pr ime 
implication of such a division is that, in an important sense, the organizational s t ruc tu re is 
content less , consisting of extremely general processing and encoding mechanisms. As w e 
o b s e r v e d in. the general discussion above, this arises from the essential nature of symbol ic 
r e p r e s e n t a t i o n itself. 

T h e ex t raord inary usefulness of programming languages rests squarely on this pr inc ip le , 
as does the v e r y organization of computers into an architecture and a program residing wi th in 
that arch i tecture . T w o of the most important advances in A I have come from taking this v i e w : 
t h e deve lopment of list processing at the v e r y beginning of the field, and more recent l y the 
deve lopment of the so-cal led Planner-like languages (Planner, QA -4 , Conniver , Poplar) . T h e r e 
is, of cou rse , no indication that the question of organization has a unique answer , nor is that 
important . What is important is that we discover and then understand the basic organizat ion 
r e q u i r e d for intelligent action. 

A candidate organization is that of a production system [Newell 73a] and it is a specif ic 
goal o f our cur rent research to determine whether that is the case. We will f i rst desc r ibe 
b r i e f l y this t y p e of organization, and then return to pose the scientific question in s h a r p e r 
te rms. 

A basic product ion system consists of a set of elements (the productions) and a set o f 
s y m b o l s t ruc tures (the working memory). Each production consists of a condition part , w h i c h 
is sens i t i ve to the contents of the working memory, and an action part, which can modify the 
w o r k i n g memory. The basic operation cycle is "recognize and act" - - namely, recognize w h i c h 
p roduct ions have their conditions true of the current state, select one of these, and then take 
t h e co r respond ing action. Since the action modifies the working memory, indefinite repet i t ion 
of the cyc le moves the system through a trajectory of processing behavior. 

A product ion system is thus a parallel recognizer and a serial actor. The conditions are 
taken to be computationally simple enough so that the selection of a production happens in 
unit time and independent ly of how many productions exist in the system (tens, thousands o r 
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millions). T h e actions are also relatively simple* all conditionality in the system occurs 
t h r o u g h the recognizer , so that actions are not complex subprograms capable of execut ing 
a r b i t r a r y sequences of conditional subactions. 

All programming systems have conditional expressions, often of the form "if C I is t r u e , 
do A I , if C2 is t rue, do A2 ...", which is similar to the structure of a product ion sys tem. 
Similar ly , the notion of having sets of conditional actions sit around being cont inuous ly 
sens i t i ve to the body of data has been receiving considerable attention; they are of ten cal led 
"demons" after an ear ly organizational scheme of Selfridge's called Pandemonium. Demons are 
a p roduct ion system like organization. The characteristic feature of production systems is to 
take this t y p e of control organization to the limit, rather than have it be simply one cont ro l 
mechanisms amonfe many. The recognize-act cycle becomes the most elementary cyc le in the 
total sys tem, replacing the fetch-execute cycle basic to most other systems. This has 
p r o f o u n d ef fects on the system and affects how it might solve a number of its basic problems. 

Severa l important characteristics of productions systems should be mentioned. F i rs t , 
t h e y p r o v i d e a model of the basic human information processing organization. The product ion 
memory is analogous to the human so-called Long Term Memory; the working memory is 
analogous to the human verbal Short Term Memory [Gilmartin 75]; the recognit ion-act cont ro l 
c y c l e co r responds to the human action cycle of 50-100 ms. This model has achieved some 
success in descr ib ing a var iety of human behavior. This correspondence to human organizat ion 
is of prime importance and is serving as an important guide to determine additional 
organizat ional details of production systems. 

Product ion systems provide a homogeneous encoding of knowledge in an active form. 
[Newe l l 72] T h e y represent all control explicitly in terms of the content of the Working 
M e m o r y , a feature which may prove to be extremely important to the self programming and 
d e b u g g i n g of productions systems. [Waterman 74] Production systems prov ide an openness to 
i n t e r r u p t i o n , to e r r o r detection and corrections, and to bringing to bear the total knowledge 
avai lable in the system. Other control structures tend to isolate st ructural ly dist inct 
operat ional environments, controlling unwanted interactions, but not admitting unplanned but 
usefu l knowledge. Production systems provide a simple mode of growth and augmentation (i.e., 
s imply add the production to the set), though no one has yet really capitalized on this 
apparent advantage. 

The consequences of real success in determining an appropriate organization are v e r y 
substant ia l , both in theoretical and in applied terms. This is true whichever of the va r ious 
organ izat ions now being explored (or some new one) turns out to be effective. But w e can use 
p r o d u c t i o n systems to illustrate the impact, since these are the scheme of interest here . 

If product ion systems prove effective, we will have a standard way within which to 
accumulate knowledge in the service of a task. In the construction of applied k n o w l e d g e -
b a s e d A I programs, w e will have a standard way to structure them, so that the job of building 
s u c h programs can look much more like a knowledge-engineering problem than like a s y s t e m -
des ign problem. This is already the approach being taken by others workers in A I (such as 
Fe igenbaum at Stanford) , and their work is beginning to provide a test of this notion. (That 
o n e should be able to begin applying an idea even before it is v e r y thoroughly w o r k e d out 
shou ld not be a surpr ise. ) 

T rad ing on our preliminary understanding of production systems, one can see that such 
an organ izat ion might real ly change the terms on which programs operate, via the system's 
o w n cont inuous monitoring and recovery from er ror and difficulties, b y in some sense 
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unders tanding the computation it was working on. [Waterman 75] That is, product ions 
e m b o d y i n g e r r o r detection and correction knowledge would continuously be sensit ive to the 
ongo ing computations. Production systems would also lead to a form of programming, w h i c h 
can be called "incremental programming", in which one starts by adding product ions 
c o r r e s p o n d i n g to the main functions of a program and then filling out the rest of the p rogram 
(s imultaneously debugging it) b y adding productions that deal with the failure of the part ial 
p r o g r a m to operate . This is similar to the notions being explored at the MIT A I L a b o r a t o r y 
( b y Sussman notably) . With production systems, one can see how incremental programming 
may wel l become the standard way of programming. The processing assumptions under l y ing 
p roduc t ions are suff iciently specialized that they clearly would lead to machine organizat ions 
that real i ze them direct ly (see the subsection below on efficiency). 

Product ions systems are only one candidate among several current ly under intens ive 
invest igat ion in A I . T w o other widely investigated organizations are Planner- l ike systems and 
Semant ic -Net systems; the most recent scheme is that called frames. All of these e x p l o r e 
important var iat ions in basic organization, which will be tested only by extens ive e x p e r i e n c e 
and deve lopment of each basic scheme. 

2.3.2 Specif ic Goals 

We can now turn to the specific subgoals that currently dr ive our attempt to d i scover 
the p r o p e r t i e s of productions systems and to assess their worth as an organization. 

Goal : T o discover the appropriate specific form for production systems. Al though w e 
can enunciate some interesting and useful features of production systems, the fact that t h e y 
seem to model the human organization is of key. importance. For the question is how w e 
shou ld complete the design of the basic architecture — beyond those few features (such as 
the r e c o g n i z e - a c t cycle) which now seem clear. We would wish to complete it in a w a y that 
c a p t u r e s the f lexibi l i ty of the human for dealing with partial knowledge and for handling e r r o r . 
T h u s , f rom a research point of view we wish not simply to pick a specific total design ( w e 
h a v e of course created several operational systems for experimental purposes already) , but to 
e x p l o r e the space of production systems and to attempt to find the regions in that space 
w h i c h c o r r e s p o n d most closely to the human system. Though not part of this proposal in 
terms of s u p p o r t , the parallel investigations into cognitive psychology going on at C M U are a 
requ is i te part of this stragegy. 

Goal : T o construct production systems for a range of intelligent systems. The main line 
of approach is the basic A I experimental strategy of constructing systems and analyzing their 
b e h a v i o r . Our goal here is one step more analytical than usual, in that w e will const ruct 
v e r s i o n s of many existing systems so that we can do a comparative analysis. We thus w i s h 
not s imply to deve lop production systems pell-mell, so to speak, but to spend substantial 
e f f o r t in analyzing them. At some point, of course, this goal calls for creating substantial 
p r o d u c t i o n systems to accomplish a major task requiring intelligent action. 

Goal : - To discover efficient implementations of production systems. A moments 
cons iderat ion shows that the obvious way to realize production systems on a serial machine is 
to i terate th rough the productions at each recognition cycle. This is not a tolerable (much less 
e f f ic ient ) implementation for large sets of productions. One wants the cycle to be v e r y s h o r t 
(u l t imately at the microsecond level for machines) and the number of productions to be v e r y 
la rge ( in the millions). Thus, an intensive analysis of how to realize production systems, bo th 
in s o f t w a r e on serial computers and in hardware in parallel systems, is a necessity. 
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Goal : T o discover .how productions systems can grow themselves. Though w e n o w 
k n o w how to get productions to make additions to themselves (i.e., to learn and g r o w ) w i t h 
de l ibera te product ion-construct ion actions and for task situations which lead to rather simple 
uni form modes of g r o w t h , w e still do not know how to obtain general g rowth . This is one of 
t h e major challenges of production systems and one that will be a focus of e f for t until w e 
f ina l ly so l ve it. 

2.3.3 C u r r e n t status and Recent Results 

Basic product ion systems are not difficult to create for exp loratory purposes , g i v e n 
programming systems with adequate facilities (e.g., Lisp or L*). We have constructed s e v e r a l 
t o t r y var iat ions in architectural assumptions (two, PSNLST implemented in LISP, and P S G , 
implemented in L*, are essentially public systems, the latter also permitting substantial 
va r ia t ion of the architecture through parametrization). 

We now have constructed several production systems in the 200-250 product ion 
c a t e g o r y . These include a system that performs essentially identically to STUDENT [ B o b r o w 
6 8 ] , a p rogram developed some years ago to solve word problems in ninth grade algebra, and 
t w o systems which perform visualization tasks, one in which a person imagines a s t ruc tu re in 
his mind's e y e [Moran 73] and the other in which a person describes an object he can see and 
scan on ly th rough a small peep-hole . [Farley 74] (These latter efforts were attempts to model 
the behav io r of humans on these tasks.) In addition, we have done a large number of smaller 
tasks , such as elementary psychological e'xperiments, puzzles, parsing, and some learning tasks 
( s e e be low) . We are in the midst of doing some detailed analysis on some of these p rogram 
(espec ia l l y the ones that perform identically to an existing A I program), but are not f in ished 
y e t . 

As noted, the question of how prQduction systems learn or grow is an important issue, 
espec ia l l y since some attention has been devoted to it for quite awhile without str ik ing 
success . This year w e have developed some schemes for growing productions and have 
c r e a t e d g row ing systems: one that mimics EPAM, a system for learning verbal materials that is 
a psycholog ica l theory of human learning, some that learn simple sequential concepts , and 
some that g r o w a semantic net. These must be seen as exploratory exerc ises , since the 
learn ing schemes themselves seem much too deliberate in the way they construct n e w 
p roduct ions and salt them away in the existing system. But they represent genuine p r o g r e s s 
o v e r a y e a r ago. 

We have developed several computational schemes for realizing productions systems 
ef f ic ient ly . One scheme (a variant of PSG called PSH) capitalizes on the immense t i m e -
r e d u n d a n c y of the t ruth of conditions; namely, the features of the working memory that make 
a p roduct ion condition true change only slowly with time. We are current ly testing this s y s t e m 
and doing an analysis of its algorithm. 

2.3.4 Plans 

T h e s t u d y of the nature of production systems that we have been car ry ing on fo r the 
last y e a r should be completed by Aug75. This study is based part ly on a thesis ( invo lv ing 
P S N L S T ) and should be a fair ly substantial analysis of the problem. 

Assuming for the moment the general conclusion of the Aug75 study, w e will select a 
substant ia l task to use as a major dr iver for the subsequent work in production systems. T h e 
k e y des ign parameter on the production system itself (and implicitly on the complexi ty of the 
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task demands) is the number of productions. We cannot yet calibrate this measure against 
o t h e r s one might use e lsewhere (e.g., code size, or fact size of a data base). We do have, fo r 
the S T U D E N T product ion system, a characterization of how many propositions are requ i red to 
ho ld all the knowledge implicit in the production system itself. The same order of magnitude is 
r e q u i r e d : 218 proposit ions vs. 257 productions, though the mapping is many-many w i t h 
s e v e r a l product ions reflecting each proposition and several propositions required to s u p p o r t a 
p r o d u c t i o n . . Thus , w e can take a production to correspond v e r y roughly to a proposi t ion. 

We intend to construct a system of about 1000 productions. This should c o r r e s p o n d to 
a p rogram about the size of Winograd's natural understanding program on the t o y blocks 
w o r l d . T h e selection of the task and the production system in which to create it should be 
accompl ished b y Aug75. We should have the system itself up by Summer 76. 

Our general plans are to set goals for increasingly large production systems, since the 
issue under ly ing production systems as an organization (and all other candidates as wel l ) is 
h o w to opera te with large amounts of knowledge. 

It is important that we be able to run large production systems in real time. Thus along 
w i t h the construct ion of production systems will go the attempt to make them v e r y eff ic ient . 
W e plan to exp lo re the implementation of production systems on parallel computing s t r u c t u r e s , 
s u c h as C.mmp. These plans are not so advanced that we are able to set targets. We do , 
h o w e v e r , expect to have the analyses of the efficient realization of such systems b y 
programming means on uniprocessor completed by Jul75. 

2.4 Heuristic Search in Complex Spaces 

Search permeates all attempts at intelligent action, and the study of search will be a 
fundamental area of A I indefinitely. There is no simple single "problem of search" , such that 
o n e could hope to solve it, thus putting the matter to rest. For the general question is how to 
a p p l y w h a t e v e r knowledge one has, however imperfect and obscure, to generat ing the 
d i rect ions through which search might proceed and then guiding the choice of path. As the 
s t r u c t u r e of the task environment and the types of knowledge available change, the "problem 
of s e a r c h " will require distinct scientific treatment. Thus the study of search in A I is a 
sc ient i f ic subf ie ld , in which we can expect a whole body of knowledge to deve lop that 
p r o v i d e s a basis both for understanding the contributions which Search makes in any 
par t icu lar task and for designing effective search components of total systems which behave 
inte l l igent ly . 

T h e e a r l y work on search (which in fact established A I as a scientific field) did p roduce 
some genera l notions, which are now embodied in the basic methods of AJ, such as Generate 
and T e s t , Hill Climbing, Means-ends Analysis, Heuristic Search, etc. These methods show up 
r e p e a t e d l y in all A I programs and applications, and form the basic tool kit of genera l 
techniques . No sooner was heuristic search used in a clear way in the first theorem p r o v i n g 
p r o g r a m s (LT ) , than it was applied to theorem proving in other areas (geometry ) , then to 
symbol ic mathematics (integration), then to some management science problems (assembly line 
balancing, and production scheduling), then to a variety of common sense reasoning tasks and 
p u z z l e s . T h e v e r y way these search methods swept through .a wide range of tasks indicated 
the i r fundamental nature. 

Addit ional methods are being discovered less frequently, but recent work of Walz at M I T 
o n a w a y of manipulating multiple sets of constraints in a visual scene interpretat ion task 
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appears to be another one. We have called it the Range Restriction method, and have 
d i s c o v e r e d that it is the method operating in several tasks (where one thought there was o n l y 
an ad hoc search scheme). 

We are cur rent l y working in two areas which are directly addressed to important 
genera l quest ions of search. One is how to apply knowledge in a complex situation to cont ro l 
the s e a r c h ( the ear ly work, and so also the basic methods, are all bare -bones schemes and do 
not touch the problem at all). The other is how to obtain some theoretical basis f o r 
charac te r i z ing search situations. We take these up separately. 

2.4.1 Guiding Search b y Strategic Knowledge 

T h e problem is how, in a task situation of real life complexity, the d iverse knowledge 
g e t s b rought to bear to guide the search for solutions. Such a question cannot be approached 
in the abstract , since one needs to investigate situations where detailed and h ighly 
in te r re la ted knowledge is available to the problem solver, and to discover how such knowledge 
might be used — the v e r y antithesis of an abstract situation. One of course hopes to d i s c o v e r 
some of the basic processing that is being used, so that this can be extracted and then used in 
o t h e r task situations. One approaches such questions in what has become the hall mark of A I 
r e s e a r c h : selecting a specific task, constructing a program for it, and then analyzing that 
p r o g r a m to see w h y it was able to function. It is often possible (recall the remarks in the 
o v e r v i e w of A I goals) to obtain genuine new scientific knowledge from the analysis of such 
s ing le cases. ( T h e y are never quite single cases, for variation of program st ructure and of 
task s t r u c t u r e is always used to help in the analysis.) 

We are using chess as our task environment. It has been a scientific intuition of the A I 
community that chess is a task situation that will yield a rich harvest of scientific resul ts for 
A L It combines a situation in which the search components are prominent (we all search out 
the consquences when choosing a move) with an immense amount of deep knowledge (which is 
w h y the nov ice often cannot understand why a master moved the way he did). We have not 
b e e n d isappointed, as the development of alpha-beta shows. Thus, chess has become a 
classical task ih A I for the study of search, which has by now a background of scientif ic 
resu l ts that makes it an exceedingly useful task. [Berliner 73] [Berl iner 75b] [Chase 73] 

Let us i l lustrate the situation by discussing a new mechanism for search, which w e call 
lemmas.. [Ber l iner 75a] We are still developing this mechanism, so that our treatment here has 
the form of a scientific expectation, not of a verif ied result. 

A n acute problem in chess searches is that one repeats the same search o v e r and o v e r 
again. T h e same complex threat and counter threat situation is examined many times 
(sometimes hundreds or thousands in actual chess programs), with almost always the same 
resu l t ( the defender is safe, say). Almost all the total search effort may be devoted to such 
redundant analyses. The situation is not actually identical (that would be easy to deal w i th ) ; 
r a t h e r , some small variation has occurred (for chess programs, the moving of any piece at all 
o n the board) , and the consequences of this variation must be worked out. The idea of lemmas 
is to ex t ract from a situation the characteristics upon which the key action depends ( the 
th rea t ) , to demonstrate that only specific changes in these actions can change the evaluat ion 
of the si tuat ion, and then to establish that lemma as a piece of knowledge that can be used in 
examining all fur ther search, so that reexamination never takes place until it is necessary . 
T h e r e is, in ef fect , no mpre repetit ion, though one has paid for this b y an act of analysis in 
d e v e l o p i n g the lemma. 
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When to re -examine a changing situation is a ubiquitous problem, not limited to chess o r 
e v e n to game-l ike situations. Likewise, the fundamental notion behind lemmas — to ex t ract a 
characte r i za t ion in a form appropriate to avoiding reexamination — has equally wide scope . It 
is o f c o u r s e easy to construct trivial abstract situations in which a notion of lemmas can be 
d e v e l o p e d , but without solving the problem of lemmas in realistic situations. Chess genu ine ly 
avo ids that. It is in fact the case that no non-tr ivial lemma-like scheme has been deve loped fo r 
heur is t ic search . We expect that if w e are successful in this attempt to deve lop lemmas in 
s e a r c h that it wil l lead the way to the use of the mechanism generally in A I programs. 

2.4.2 T h e o r y of Search 

Some new theoretical results have been obtained relating to search in s t ructured spaces 
f o r a l l - o r - n o n e goals. [Simon 74] These are quite different search problems than the l e a s t -
cos t or s h o r t e s t - p a t h search problems that have received most theoretical attention in 
art i f ic ial intell igence. The main result is the construction of an evaluation function on the 
e lements of the space that tells the order in which nodes of the space should be searched . 
T h e g i v e n data is the probabi l i ty of finding a goal at a node and the theorem ref lects the 
e x p e c t e d value per node taking info account the structure of the space in terms of what nodes 
can be reached from what other nodes 

This w o r k is an instance of the attempt to construct a theory of search. T h e o r y in A I , 
as it c u r r e n t l y ex ists , is a patchwork. The fundamental difficulty should already be apparent . 
S e a r c h occurs in an immense diversi ty of situations (we have argued in the o v e r v i e w of A I 
goals that it occurs in all attempts at intelligent action). It is controlled b y knowledge, and 
b o t h the details of how it proceeds and its ultimate efficacy depend on the content of the 
knowledge . But theory most easily develops by abstracting from all such details to some 
g e n e r a l feature of the situation which has a determining effect on the success or speed of 
s e a r c h . Normally this just abstracts away from what is in fact important. Thus, on ly s low ly , 
does the A I f ield find ways to build a theory. 

T h e present work is such a contribution and we cannot tell yet where it will lead to. 
W e know it has some applications in some research management situations ( for w e have 
d i s c o v e r e d similar formulations being developed there). We shall be searching for o thers , as 
we l l as t r y i n g to extend the formulation. But this is a good example of an area in w h i c h 
d e v e l o p i n g concrete expectations for future results is extremely difficult. 

2.5 Automatic Programming 

T h e abi l i ty to construct programs automatically, i.e., by means of other programs, is an 
important technical goal, shared by artificial intelligence and by programming general ly , and 
leading to the emergence of a field of automatic programming in its o w n right. Severa l 
s y s t e m s for construct ing programs automatically now exist at vary ing levels of competence 
and taking v a r y i n g types of initial specifications. We have used one of these systems ( the 
Buchanan-Luckham system, developed at Stanford in the A I Laboratory) to conduct an 
invest igat ion of automatically programming sophisticated forms of data bases for management 
informat ion systems. [Gerr i tson 75] 

Expl ic i t ly , w e have taken the CODASYL model for a data base with its DDL (Data 
Descr ip t ion Language) and DML (Data Manipulation Language) as ways of describing a data 
base . T h e s e w e r e formulated in terms of the primitives of the automatic program generat ion 
s y s t e m . It is then possible to generate automatically the programs for var ious genera l i zed 
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r e t r i e v a l requests within the context of a specified data base system. These quer ies 
const i tute in fact the types of programs that data base programmers do wr i te (e.g., in COBOL) . 
It is also possible to start from the queries themselves and induce the relations that should 
fo rm the appropr iate data base to answer the queries efficiently. The system is a r e s e a r c h 
veh ic le , not a product ion program,,but it is operational. 

This w o r k has the appearance purely of an application — of taking some results in A I 
( in this case an actual system emboding a set of notions for how to synthesize programs) and 
f inding an arena in which they might do a task of real world interest. The ef for t cer ta in ly is 
that (or at least a major step in that direction). But it is also more. The critical scientif ic 
quest ions in A I revo lve around how knowledge is brought to bear to get intelligent action. T o 
invest igate the question requires investigating situations of various structures of knowledge — 
abst ract simplified situations will not do, not because they are not interesting, but because 
t h e y simply have different knowledge available. Each so-called application area ( h e r e 
management data bases) is an arena in which the mechanisms discovered in A I can be tes ted 
against new patterns of knowledge. Thus, we we view this work as making important scientif ic 
cont r ibut ions as well as having important applications. 

C u r r e n t plans for the continued work at CMU in this topic are in momentary abeyance . 
T h e facu l ty member involved (Buchanan) will be on leave this coming year , and the g raduate 
s tudent w h o s e thesis was the development of the system (Gerr i tson) has joined another 
u n i v e r s i t y , w h e r e he will continue development of the system. 

2.6 Vision 

Percept ion must occur whenever there is an external environment that p rov ides a 
s o u r c e of knowledge of interest to a system trying to perform some task. Unity in d i v e r s i t y 
o p e r a t e s here , as it does in many other areas of science. Each environment has its o w n 
character is t ic s t ructure — the rates of information influx, the types of laws that relate one 
p a r t of that influx to another, the levels of invariants that can be extracted and the t y p e s of 
no ise that f rust rate attempts at extraction. Each environment, then, is d iverse and must be 
deal t w i th on its o w n terms. But equally, perception exhibits a set of common functions that 
must be per fo rmed and common mechanisms and methods that can perform them (if adapted) in 
all perceptua l domains. So there is unity as well. It is the goal of a work in A I in p e r c e p t i o n 
to d i s c o v e r and understand the total collection of perceptual functions and mechanisms. 

At C M U , speech has provided the main area for investigating perception (as descr ibed in 
the sect ion on Speech Understanding Systems). But we have carr ied along a small e f f o r t in 
v i s i o n as wel l . B y having an active investigation of a similar but different perceptual domain, 
w e p r o v i d e ourse l f with an important perspective on our speech work. It helps to abstract 
f rom the speech work what is fundamental to perception generally, and to avoid attaching the 
w r o n g importance to things which are unique to speech. That our formulation in speech of the 
s y s t e m and its task is not so embedded in the particularities of knowledge about speech (e.g., 
p h o n o l o g y , co-art iculat ion effects) is attributable in part to our maintaining a small 
counterbalanc ing ef fort in vision. 

T h e motivation just described justifies having an investigation on vision. It also just i f ies 
as a genera l focus considering the problem of image understanding in direct analog to s p e e c h 
unders tand ing , namely, how to bring to bear all the sources of knowledge relevant to a v isual 
env i ronment to interpret it relative to a task to be performed. (See the discussion in the SUS 
sec t ion , all of which is relevant to vision as well.) However, it does not determine its specif ic 
sc ient i f ic content , which must arise from the state of the art in visual percept ion research . 
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Research in scene analysis has made its most thorough progress in p l a n e - b o u n d e d 
scenes and the time is r ipe to move to working with natural scenes, which abound is sof t 
e d g e s and tex tures . There is some consensus on this among A I workers in visual pe rcept ion . 
T h e diff icult ies are well known: the size of image increases (the input data - rate problem is a 
p r o b l e m of all perceptual systems), edges become much less important, textures , (which are a 
class of not wel l understood visual patterns) become v e r y important. Thus our goal is to 
d i s c o v e r how to interpret natural colored scenes. 

2.6.1 C u r r e n t state and recent results 

We have a set of programs for working with images. These are formed into a total 
s y s t e m for image understanding as a man-machine scheme. This allows us to invest igate 
par t icu lar aspects of the processing in the context of a total system. 

A major emphasis in our recent work has been the segmentation problem. [Ohlander 7 5 ] 
G i v e n the raw image, which comes as an array of picture elements (600*800 pixels, each w i t h 
24 bits of color and intensity information), the image must be decomposed into reg ions 
c o r r e s p o n d i n g to the entities of interest in the image. In one of the natural scenes w e are 
using these are. doors , windows, roofs, shrubs, sidewalks, etc. of a photograph of an o r d i n a r y a 
c i t y house. ' Recently we have been able to perform such segmentation wi th substantial 
success using a technique called region splitting, which subdivides a given region b y looking at 
the changes in the histograms of each visual feature taken over the hypothes ized subreg ions . 
T h e scheme requi res an hypothesizer , so that it makes sense within the context of a total 
image understanding system. By this technique one is able to successively segment an image, 
b reak ing it into a var ie ty of subregions of interest. 

2.6.2 Plans 

Our image understanding research has advanced to the place where w e think it is 
a p p r o p r i a t e to undertake a major attempt at an image understanding system. We are 
p r e p a r i n g a proposal for such an effort to be presented later this Spring (75). Consequent l y , 
it is not appropr ia te to describe any plans here. 

H o w e v e r , it is appropriate in the context of this proposal to note the issue of scientif ic 
s t y l e invo l ved ; The vision work has matured over the last several years (about 3) under a 
v e r y low head of steam. Now that we have built up a base of expert ise , and have 
demonst ra ted it b y beginning to produce new research results (e.g., the above segmentation 
resu l ts ) , it is time to shift to the project - l ike mode of operation. We are now ready to s p e c i f y 
d ist inct scientif ic goals t o - b e obtained by creating systems with specific capabilities, w i th in a 
reasonab le del ineated time scale. 

2.7 Resources 

T h e A I research involves four faculty members at differing levels of ef for t . Thei r w o r k 
is s u p p o r t e d b y 2.5 research associates, one member of our programming staff and six 
g r a d u a t e students. The work in vision requires the equivalent of an additional 2 people f rom 
t h e programming and engineering staffs plus 2 more graduate students. 

T h o u g h all of A I is only about 16% of the personnel budget, the v e r y nature of the i r 
la rge ( 6 0 - 1 0 0 K ) and computationally complex programs consume 37% of the PDP10 faci l i ty . 
W h e r e a s the v is ion work will require specialized facilities (separately requested) most of the 
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o t h e r A I computing is at present adequately served by the current PDP10 facility. Some of 
this w o r k wou ld prof i t from a large virtual memory system and may require parallel sys tems 
f o r e f f ic iency . 
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3. SPEECH UNDERSTANDING SYSTEMS (SUS) 

3.1 Introduction 

A Speech Understanding System (SUS) is a computer system that receives cont inuous 
s p e e c h and determines the meaning of the utterance within the context of a g i ven task 
env i ronment . 

Since 1971 ARPA IPTO has been engaged in a substantial research program to 
demonst ra te that SU systems are feasible. This effort comes against a background of 
substant ia l ear l ier work in speech recognition which led to an assessment that the prob lem 
w a s e x t r e m e l y difficult, with a general de-emphasis of the field. Continual developments , in 
s p e e c h sc ience, computer science, and especially in artificial intelligence, made the reopen ing 
of the task a good scientific gamble. 

T h e total SUS program was targeted on a specific 5 year goal of creat ing a 
demonst rat ion system with specified characteristics (reproduced in Figure 3 -1 ) . [Newel l 
7 3 b ] T h e program is at the two thirds point and consists of three major ef forts (at BBN, S D C -
SRI , and CMU) plus four supporting efforts. Each of the major efforts is attempting to c reate a 
s y s t e m meeting the specifications. 

Coopera t ion with the other SUS efforts is fostered by means of f requent w o r k s h o p s , 
technical r e p o r t s , and the coordination provided by a steering committee. However the e a r l y 
hopes for cooperat ion through the exchange of programs and data (with the ARPA net acting 
as a cata lyst ) have not been fulfilled. Exceptions are the use of common data for the 
Segmentat ion workshops , the exchange of SPS-41 programs with ISI , and the use of H e a r s a y - 2 
b y U C - B e r k e l e y . The causes for the lack of significant cooperation are: the d i f ferences in 
a p p r o a c h , programs that are not yet operational to permit use by each other , and the 
d i f f e r e n c e s in programming languages and systems. 

T h e C M U ef for t on speech understanding is simultaneously a part of the ARPA SUS 
e f f o r t and a part of our work in A I . Its organization as a project on the same level as the 
C M U A I p ro jec t is appropr iate due to its participation in the ARPA SUS ef for t and due to its 
r e l a t i v e l y large s ize. 

3.1,1 Goals 

Percept ion is the creation of an intelligible representation of a task environment. It is a 
major funct ion of any system capable of intelligent action and can be avoided only in h ighly 
spec ia l i zed systems whose environments have been simplified to the extreme (e.g., a theorem 
p r o v e r whose external wor ld gives it only already well - formed axioms and theorems). 

Thus to d iscover the requirements of a system able to perceive is a major standing goal 
of A I , one that is to be approached repeatedly at successive levels of specif ication. As 
indicated ear l ier , it already seems clear that perception involves bringing to bear all re levant 
k n o w l e d g e available in the system, and that there is not a "perceptual f ront e n d " that is 
iso lated from the rest of the system. Since perception does sit logically at the skin of the 
s y s t e m and certa in ly does contain specialized capabilities to transduce information from the 
e x t e r n a l w o r l d , this has not been an easy lesson to' learn, nor is it completely accepted. 
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Figure 3 -1 : Final Specification of SUS 5 Year Goals 

T h e sys tem should: 

(1) accept continuous speech 

(2) f rom many 

(3) cooperat ive speakers of the general American dialect, 

(4) in a quiet room 

(5) o v e r a good quality microphone 

(6) allowing slight tuning of the system per speaker, 

(7) but requir ing only natural adaptation by the user, 

(8) permitting a slightly selected vocabulary of 1,000 words, 

(9) w i th a highly artificial syntax, 

(10) and a task like the data management or computer status tasks (but not the 
computer consultant task), 

(11) w i th a simple psychological model of the user, 

(12) prov id ing graceful interaction, 

(13) tolerating less than 10% semantic e r ror , 

(14) in a few times real time on a dedicated system. 
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T h e main C M U ef for t is focussed on speech perception. Each perceptual arena o f fe rs its 
o w n chal lenges and opportunit ies for understanding and each is important in its o w n r ight . In 
par t icu lar there are corresponding problems of vision, i.e., of image understanding. [Reddy 
7 3 a ] 

All of the ARPA SUS efforts have in common the assumption that for a sys tem to 
s u c c e e d in recogniz ing speech, it must incorporate in a knowledge base knowledge of many 
kinds and from many levels, e.g., phonetic, semantic and syntactic. Fur thermore such 
k n o w l e d g e or iginates in d iverse , perhaps even independent, knowledge sources. 

T h e main substantive hypothesis of the CMU SUS effort , and one shared b y the o t h e r 
A R P A SUS e f fo r ts , is to demonstrate in detail the multiple-knowledge-source v iew for s p e e c h . 
Th i s is to be done, and in the present art can only be done, by the construction of a sys tem 
that both uses d iverse sources of knowledge and succeeds in understanding speech. Such a 
demonst rat ion , again by its nature, is only one sided; it can not guarantee that systems of 
d i f f e r e n t s t ruc tu re cannot understand speech. 

T h e C M U SUS effort has an additional central hypothesis for how to organize such a 
multiple knowledge source perceptual system, called the Independent Cooperat ive Knowledge 
Sources . [Erman 75] Its central feature is the association of knowledge sources wi th dist inct 
p r o c e s s e s , each operating logically independent of each other (hence in parallel if y o u wish) . 
Coord ina t ion is based on a common global data base that all can read and wr i te . H e a r s a y - 2 , 
the main SUS system under construction, is an implementation of this phi losophy and it wil l be 
i l lust rated in detail there. 

T w o important methodological hypotheses about the organization of research are 
e m b e d d e d in the st ructure of the current CMU SUS program. The first is that in building large 
s y s t e m s which are at the research stage, one must carry along multiple systems as long as 
poss ib le until the uncertainties clear up. This hypothesis guides the total ARPA SUS e f f o r t , 
w h e r e there are three parallel endeavors. It guides our own as well . We have four dist inct 
v a r i a n t s under development. As we will show, there are reasons for each of the four sys tems, 
and the re is st rong interaction between them in terms of the total development of the 
r e s e a r c h . 

T h e second methodological hypothesis is that one should always c a r r y along a 
benchmark program, which has a simple uniform structure and which can prov ide reveal ing 
compar isons against the main systems. This is particularly true where the main systems 
themselves are highly complex and therefore difficult to analyze. The DRAGON system, one of 
o u r four SUSs, plays this role for us. 

3.1.2 Plans 

T h e plans for the SUS effort are dominated by the overall schedule for the ARPA SUS 
p r o g r a m . T h e critical dates are: 

Nov75 : A "dress rehersal" demonstration of the SUSs for each of the major cont ractors . 
T h e actual dates have not been set to within a few months. 

N o v 7 6 : ; The official end of the 5 year program: A final demonstration of a sys tem 
meeting the specif ications. 

A f o l l o w - o n plan for SUS research is being developed by the SU Research G r o u p 
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S tee r ing Committee. Our own plans for additional SUS work beyond Nov76 must await the 
e m e r g e n c e of that plan. 

3.2 Hoar8ay - l .X 

Hearsay -1 was the first operational SUS developed by CMU and also the f irst one wi th in 
t h e ARPA SUS program. [Reddy 73b, 74, Erman 74] It was initially demonstrated in J u n e 7 2 , 
and again at the Nov73 mid-course evaluation. It is an early instantiation of the sys tem 
organ i za t ion hypothesis of Independent Cooperating Knowledge Sources. Hearsay -1 has t h r e e 
components : Acoustics, Syntax and Semantics. It runs current ly on f ive separate tasks: C h e s s , 
Desk calculator , Medical diagnosis, News retrieval and Formant Tracking. Only Chess has a full 
semantic component, and the system is now considered to be a so-cal led "basic" SUS 
consist ing on ly of acoustic and syntactic sources of knowledge. (Several SUSs are beginning 
to e m e r g e in the l i terature, almost all with only these two types of knowledge.) 

3.2.1 Plans 

We have t w o goals for Hearsay-1. The first is for performance analysis. As a sys tem 
that runs rout ine ly and reliably, it can be studied and parametrically var ied with comparat ive 
e a s e . T h e stucture is accessible enough so that substantial improvements can be made, fo r 
example in aspects of its search strategy, and can be evaluated. The sequence of systems s o -
d e f i n e d are known as Hearsay-1.1, 1.2, etc., or generically, Hearsay - l .X . This part of the w o r k 
in go ing o n in conjunction with the work on DRAGON, described below, so that w e are get t ing 
comparat i ve evaluations of two systems. 

A n important aspect of performance analysis on Hearsay - l .X is as a d r y run , so that the 
analys is of H e a r s a y - 2 can proceed smoothly and rapidly when Hearsay -2 matures enough to 
make performance analysis worthwhile. 

T h e second goal is as a back-up system, Under the influence of the per formance 
analysis it keeps evolv ing to a system with higher capabilities. If Hearsay -2 runs into 
insuperab le difficulties, then Hearsay - l .X offers an alternative route, one that is substant ial ly 
less des i rab le because of its poorer organizational structure, but one that could be used. 

3.3 DRAGON 

DRAGON [ J . K. Baker 74, J . K. Baker 75] is a' SUS that represents the speech ut terance 
as the product of a probabilistic Markov process. That is, the speaker is represented as being 
at any moment in one of a set of possible states (each corresponding to the intention to 
c o n v e y a cer ta in meaning, to form a given syntactic phrase, to emit a g iven w o r d of the 
lex i con , to emit a g iven phone, to obey a given phonological rule, etc.). The speaker moves 
b e t w e e n states according to a set of probabilities, thus tracing out a particular sequence. 
D R A G O N finds the Maximum Likelihood solution to what sequence of states might have 
p r o d u c e d a rece ived utterance. The meaning of the utterance can be di rect ly unders tood 
knowing that sequence. 

DRAGON represents a uniform computational approach to speech understanding. It 
s tands in sharp contrast to the attempt to encode and deal with the many complex sources of 
k n o w l e d g e , each in its own terms, which constitutes the essence of the main thrust of ou r 
w o r k on intell igent systems. It does encode many sources of knowledge (it is not a p u r e 
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acoust ic -phonen ic recognizer ) , but they must all be expressed as Markovian networks . 
H o w e v e r , an important feature of the scheme is that the total system can be represented as a 
h i e r a r c h y of networks (corresponding to the usual levels of the speech h ierarchy) and the 
f inal uniform network can be produced automatically. 

3.3.1 Goals 

T h e r e are two goals for DRAGON. One is to produce a functioning SUS to meet the f i v e 
y e a r specif ications. DRAGON represents a genuine alternative to the present work , both he re 
and at the other SUS sites, and it seems important to keep exploring this approach. On the 
basis of p resent evidence (see below) this is an extremely promising path and w e c u r r e n t l y 
e x p e c t the system to make it. 

T h e second goal is for DRAGON to be a benchmark against which our other systems can 
be compared . As we asserted earlier, we believe such computationally simple schemes are 
important in o rder to understand what is being gained by the more complex approaches. T o 
this e n d , the w o r k on performance analysis of SUS systems is being conducted jo int ly w i t h 
D R A G O N and H e a r s a y - l . X . 

3.3.2 C u r r e n t State artd Recent Accomplishments 

DRAGON-1 exists in SAIL on the PDP10 and runs routinely and rel iably. It has t w o 
leve ls of net : Syntax (word level) and Acoustic (phone- level) , and works di rect ly f rom the 
basic 10 ms parametrization of the speech signal (into six bands of amplitude and z e r o -
c ross ings ) . 

D R A G O N - T s performance is shown in Figure 3 -2 over the same f ive tasks as 
H e a r s a y - l . X , the appropriate comparison being with the acoustics-syntax vers ions. It runs 
somewhat bet ter but is substantially more expensive. This expense arises from the uniform 
n a t u r e of the computational scheme, which examines all possible paths through the Markov 
n e t w o r k . ( H o w e v e r , the process does not explode combinatorial^; it is only bilinear w i th the 
number of states and the number of time intervals.) 

DRAGON became operational in Apr74 and the performance measurements w e r e taken 
d u r i n g the fall of 74. 

3.3.3 Plans 

Improvement of DRAGON to meet the goals of the 5 year program involve improvements 
b o t h in s p e e d and accuracy, with concurrent escalation of the tasks on which the sys tem is 
measured . T h e following steps are being taken: 

A sequence of recodings are taking place, whose ulitimate aim is to produce an 
opt imized vers ion , on the PDP11 ELF system, which has part of the system running on the 
S P S - 4 1 , a special ized 10 Mips signal processor. DRAGON-1.1, an optimized vers ion in SAIL ; 
D R A G O N - 1 . 2 , a recoding of 1.1 in BLISS10; and DRAGON-1.3, a version of 1.2 in BLISS11 for 
the PDP11, are all underway. DRAG0N-1.3S, the SPS41 vers ion, is being planned. T h e 
e x p e c t e d date of completion is Dec75. We may initiate a vers ion, DRAGON-1.4, for C.mmp to 
c o m p a r e w i th 1.3S, if comparison seems warranted. 

We wil l exp lo re variations of the algorithm and encodings of knowledge that 6ffer major 
improvements in eff iciency. One path leads to a class of systems, called the HARPY se r ies , 
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Figure 3 - 2 : Dragon / Hearsay-1 Comparison 
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w h i c h do not exp lo re all paths through the state network. These are actually a cross b e t w e e n 
H e a r s a y - 1 and DRAGON, and represent explorations at the search st rategy level . A second 
path leads to using a DRAGON system in conjunction with components of a regular SUS, to 
h a v e it do on l y part of the total job. DRAGON-1.5 takes the segment level as input, using the 
H e a r s a y - 2 segmenter ; the current version in essence does it own segmenting b y taking the 
acoust ic parameters as input directly. DRAGON-1.6 will use a word level net on ly , taking the 
p h o n e labeling, from Hearsay -2 . ^ We expect all these variations to be exp lo red p r io r to 
S p r i n g 7 6 . T h e y not only provide the basis for selecting an appropriate DRAGON var iant to 
cont inue , but they will shed considerable light on the structure and performance of the o t h e r 
sys tems . 

We expect to go to a 1200 vocabulary system in time for the Nov75 demostration. T h e 
improvements in speed expected from the above explorations will permit this. H o w e v e r , w e 
do not expec t the performance to be v e r y good at that time. 

We expect to continue the development of the Nov75 system right through Nov76 , 
making it an e n t r y for the final evaluation. We do believe we will be able to make ra ther 
def in i te statements about the trade-offs to be made with this sty le of system v e r s u s the 5 -
y e a r specif ications. We also will be able to put some basements on the performance in the 
o t h e r tasks. 

3.4 Hearsay -2 

H e a r s a y - 2 is the main SUS system being developed for the SUS ef for t . [Erman 73, 
L e s s e r 74a] It is our main embodiment of both the general hypothesis about the requirement 
f o r multiple knowledge sources in perception (here, speech), and of the part icular 
organizat ional scheme of independent cooperating processes associated with each knowledge 
s o u r c e . 
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H e a r s a y - 2 has a single common data structure (called the Blackboard), which contains a 
se t of hypotheses interconnected by relations of which hypothesis supports another and 
w h i c h h y p o t h e s e s are alternatives. This leads to a lattice data structure which d i rec t l y 
re f lec ts the t ime-ordered and multi- leveled character of speech. A fragment is s h o w n in 
F i g u r e 3 - 3 . In terms of the representational conventions, all levels — semantic, syntact ic , 
phonolog ica l , etc — are handled identically. 

Each knowledge source is represented by an independent process (as that term is 
used in multiprogramming or multiprocessing). 

Each process is capable of the same set of basic actions on the Blackboard (taken 
of course b y v i r tue of its own special knowledge): to detect when it is re levant 
(i.e., has something to contribute); to create hypotheses to add to the Blackboard 
(and delete those there) ; to evaluate hypotheses found in the Blackboard ( leaving 
evaluat ions for other processes to read). 

Each process can look at as little or as much of the Blackboard as it wishes. From 
a programming v iew, the knowledge processes also satisfy common conventions 
about their creation, modification, debugging and user interaction. The number of 
knowledge sources is expected to va ry between 10 to 100, depending on how 
n a r r o w l y or broadly they are decomposed. The initial set is shown in F igure 
3 - 4 . 

T o the unwary , the general structure of Hearsay-2 may seem so general as to be 
unexcept iona l . But just out of public view is an important problem, called the Subrout ine 
In te rac t ion Problem, which states that (given the current art) there is no w a y to add 
substant ia l new knowledge to an existing system without having it interact with all the ex ist ing 
k n o w l e d g e in the system. Thus the entire system must be modified to make each incremental 
addit ion e f fect i ve . Systems which do not formally suffer from this (e.g, theorem p r o v e r s 
w h e r e knowledge can be added simply by adding propositions), show the effect in the 
inc reased combinatorial explosion of their search, and have not proved effect ive. Thus , the 
H e a r s a y - 2 scheme is an attempt to provide a system that can beat the subroutine interact ion 
p rob lem, b y having each process communicate with the Blackboard and make its cont r ibut ion 
independent l y of the others. Whether this organizational hypothesis is ef fect ive will be 
de te rmined b y whether Hearsay -2 operates effectively (and for what reasons) and, most 
important , whether new sources of knowledge are in fact continually added to the sys tem 
d u r i n g its growth^per iod , without continual readjustment of the other sources. 

The subrout ine interaction problem affects the development of a system, not the final 
s t r u c t u r e . It reveals that the most important aspects of large systems may well be thei r 
deve lopment and modification. The Hearsay-2 organization addresses some of the o ther 
p r o p e r t i e s of development as well : rapid configuration of new systems with a rb i t ra ry sets of 
k n o w l e d g e sources and extensive interactive experimentation. Hearsay -2 is programmed in 
S A I L on the PDP10, and uses that language's associative processing (LEAP) and its facilities fo r 
a s y n c h r o n o u s processing. 

3.4.1 Goats 

We have already stated the two main goals for the Hearsay-2 system: To meet the SUS 
speci f icat ions of Figure 3-1 b y Nov76 and to prove out the system's phi losophy, wh ich , if 
success fu l , will make the Hearsay -2 organization an important contender r f o r other intensive 
k n o w l e d g e based intelligent systems. 
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F igure 3 - 3 : Example Hearsay-2 Lattice Structure (Fragment in the Blackboard) 
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Figure 3 - 4 : A Set of Knowledge Sources for Hearsay -2 
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3.4.2 C u r r e n t State and Recent Results 

H e a r s a y - 2 cur rent l y exists with the knowledge sources shown in F igure 3 - 4 . It 
r e c o g n i z e d its f i rst sentence in Nov74. Current ly it is extremely expensive in both space and 
t ime, taking about 200 times real time and 180K primary memory. 

3.4.3 Plans 

All the major systems aspects must undergo extensive work throughout the per iod f rom 
n o w until Nov76 : developing additional knowledge sources, reducing the space r e q u i r e d , 
increas ing the speed, and generally tuning the system. The following are our c u r r e n t 
e x p e c t a t i o n s : 

T h e system will be running on a 1200 word vocabulary by the Nov75 rehearsal , t h o u g h 
not wel l (i.e., w e have no performance expectations). 

Performance on a 200 word vocabulary will be 90X at the w o r d level and 702 at the 
s e n t e n c e leve l on the AP News Retrieval task. 

We expec t the number of Knowledge Sources to be about 15 for Nov75 and 30 fo r 
N o v 7 6 . T h e semantic and task knowledge sources are current ly the most important and t h e y 
a r e b o t h in p rogress : Semantics will look some like Shank's Conceptual Dependency model. 

T h e space is expected to grow to about 300-500K words even wi th ef for ts at code 
compact ion. This will require a managed segmentation system (our KA10 does not run under a 
paging system). 

We c u r r e n t l y expect to get the time down substantially and believe w e can keep it to 
about 100 times real time for the Nov75 and Nov76 systems. 

A crit ical area, especially for the Hearsay-2 structure, is how to focus attention to avo id 
t h e combinatorial explosion (which will show up rapidly in both space and time if great care is 
not taken). Intensive investigation of this problem is going on, though no precise expectat ions 
can be stated. 

We wil l initiate performance analysis of Hearsay-2 by Jul75 at about the level at that 
f o r H e a r s a y - l . X and DRAGON. The system will not be sufficiently stable (in the per formance 
of its knowledge sources) before then to make evaluation worthwhile. The continuous w o r k on 
pe r fo rmance evaluation of DRAGON and Hearsay - l .X prior to that time shcfuld p rov ide us w i t h 
an a p p r o p r i a t e methodology for dealing with Hearsay-2. 

3.5 H e a r s a y - 2 on C.mmp 

T h e s t ruc ture of Hearsay -2 , in the independence and multiplicity of its knowledge 
s o u r c e s , lends itself to realization on multiprocessor organizations. [Lesser 74b, 75] [Fennel l 
75a ,b ] H o w e v e r , so little experience exists with multiprocessor realizations of complex 
p r o g r a m s , that much remains uncertain. Indeed, we can expect that a multiprocessor v e r s i o n 
o f H e a r s a y - 2 -will reveal much about real-time cooperation of processes in an in te l l igence -
demanding environment. . Communication with the large global data base, for instance, may 
impose s e v e r e restr ict ions on the operation of such a system. 
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From the v iewpoint of applications, multiprocessors, especially those composed of small 
p r o c e s s o r s (minis or micros), appear v e r y attractive in terms of processing cost and the mass 
p r o d u c t i o n of special ized systems (such as SUSs need to be). Actually, the power argument is 
r e l e v a n t in the present situation, since our multiprocessor, C.mmp, provides more Mips, more 
p r i m a r y memory, and more flexible memory management than our K A l O s (see the C.mmp 
sec t ion for an analysis of C.mmp and of the SUS). Thus, a successful implementation w o u l d 
permit much faster evolut ion of Hearsay. (This again harks back to the proposit ion that the 
most important aspects of systems may be their developmental characteristics and not thei r 
f inal conf igurat ions. ) 

C.mmp and, in general multiprocessing implementations are highly exper imental . 
C o n s e q u e n t l y , w e v iew this as a high risk, high payoff implementation. Under no circumstances 
can w e permit this vers ion to become the critical path to the Nov76 deadline, at least w i thout 
major uncertaint ies being resolved. 

T h e implementation of Hearsay-2 on C.mmp will be functionally equivalent at the level of 
the global data base and its operations, and the knowledge sources. We intend to p r o v i d e a 
fo rm of t ransl i terat ion of the knowledge sources, so that no new substantive programming fo r 
them will occur in*the new system. 

T h e system will run under HYDRA, the operating system for C.mmp, and wil l be 
implemented in an interactive implementation system, L*. (See the section on C.mmp for detai ls 
o n bo th of these systems.) 

3.5.1 C u r r e n t State and Recent Results 

T h e sect ion on C.mmp gives details on the status of the hardware and operat ing sys tem 
s o f t w a r e for C.mmp. 

L*C.(B) [Newell 71] is operational on C.mmp, having been brought up within the last six 
months of 74. The initial design of Hearsay in L* exists and has been coded. The p r imary 
prob lems lie in the small address space of the processors (32K 16 bit words) , which is forc ing 
g r e a t attent ion to the problem of memory management. This problem has been anticipated to 
b e a centra l one, and it is inherent in the use of a multi-miniprocessor of the C.mmp t y p e (one 
that does not use hardware devices to create a large homogeneous virtual address space). 

3.5.2 Plans 

We expect the initial version of the basic Hearsay (without knowledge sources) to be 
runn ing suff ic ient ly to test the feasibility of the design by Apr75. Critical decisions to be 
made at that juncture are: 

Is implementation in L* feasible? Many changes are being made relat ive to 
the operational sty le of Hearsay-2 in S A I L There are basic issues of the 
eff ic iency and the addressing problems, which reflect C.mmp basic s t ructure 
as much as the L* implementation system. 

Is implementation under HYDRA feasible? This will be a time and ove rhead 
issue^ since without doubt HYDRA is logically adequate. 

Can Knowledge Source and focus of attention mechanisms be feasib ly 
real ized in L* and under HYDRA? Can the implementation capture enough of 



3 2 CMU Proposal to ARPA 7 5 - 7 6 

the Mips to be more powerful than the KA10? Are the facilities available, 
e.g.,, a sufficiently sophisticated file system, flexible scheduling? 

Assuming posit ive answers to these questions we will set perfomance goals fo r the 
IMov75 rehearsa l . 

3.6 T h e Four Systems in Perspective 

We have now descr ibed the current four SUSs: Hearsay - l .X , DRAGON, H e a r s a y - 2 and 
H e a r s a y - 2 o n . C.mmp. In the introduction we gave some research -s t rategy reasons fo r 
want ing to w o r k wi th multiple systems: That one needs alternatives w h e r e t h e r e is 
uncer ta in ty ; and that one needs a pacing horse, i.e., a benchmark program (DRAGON, in this 
case) . T h e s e t w o principles just i fy in a general way the course w e are taking. Fu r ther , most 
of the p resent e f for t would have been required even if we were building a single SUS. T h e 
fact that w e can study all their alterntives b y devoting less than 20% of the r e s o u r c e s 
(avai lable for SUS research) makes it an attractive option. 

T h e s e principles do not make clear the actual choice of systems (except poss ib l y 
DRAGON} . T h e an$wef*s are implicit in our discussion of the systems separately ; let us make 
them expl ic i t . 

T h e four systems represent a concern along three dimensions of system s t ruc tu re : (1) 
T h e simplicity or complexity of the computational structure; (2) the amount of knowledge used 
b y a sys tem; and (3) the amount of computational power. 

One can think of our four systems as occupying regions in a design space, as s h o w n in 
F i g u r e 3 - 5 . Hearsay -1 , Hearsay -2 and Hearsay-2 on C.mmp all are options for a complex 
computat ional s t ructure ; they represent our bet that such a structure is required. DRAGON, on 
t h e o ther hand, has a simple structure. This is why it is our pacing horse system. 

Hearsay -1 is located at the low end of the amount of knowledge, Hearsay -2 is at the 
h igh end . One might measure this in number of knowledge sources, 3 for Hearsay -1 , 9 (and 
r i s ing ) fo r H e a r s a y - 2 . Here there is no question of preferences — one moves from Hearsay -1 
t o H e a r s a y - 2 as the research develops. From this analysis, the only reason for keeping 
H e a r s a y - 1 act ive is as a back-up in case the organization of Hearsay-2 becomes too complex. 
Note that Hearsay -1 is much simpler in computational structure than Hearsay -2 , e v e n though 
b o t h of them are committed to the "complex" view. In terms of this dimension, DRAGON is 
about at the same place on the knowledge scale as Hearsay-1. Any attempt to press it h a r d e r 
wi l l p r o b a b l y requi re moving it up in terms of the knowledge it uses. 

T h e final dimension is that of computational power required. As the adequacy of the 
s y s t e m increases, it requires more Mips and more memory. This is just as t rue of systems 
r e p r e s e n t i n g the "simple" v iew as of systems representing the "complex" v iew. (Each h o w e v e r 
d e p l o y s its computational resoures differently.) Therefore it is incumbent to address w h e r e 
the p o w e r is going to come from (we should look both at Mips and Mips/S). Techno logy makes 
c lear at the moment that power comes from mini- and micro-processors , combined in 
spec ia l i zed architectures and taken several at a time. Thus, Hearsay-2 on C.mmp is an attempt 
to beg in this explorat ion into more efficient computational processes. In these terms w e h a v e 
in fact p lot ted a f ifth system, which is DRAGON on the SPS-41, which is an analog of doing 
w i t h DRAGON what the use of C.mmp does for Hearsay-2. 
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Figure 3 -5 : SUS System Comparison 
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T h e four systems w e have picked are not the only points in this space, and indeed o u r 
not ions of what the right mix of systems is will change as we get more results of our analyses. 

T h e plane through the 3 - D space in Figure 3 -5 indicates an idealized notion of a plane 
o f constant performance. It is an attempt to illustrate that similar performance can be 
a c h i e v e d b y systems wi th widely varying characteristics. Combinational explos ion can b e 
conta ined b y usinjg more knowledge or more processing power. Simple program organizat ion 
may have to per form many more unnecessary tests than complex ones but can usually do so 
w i t h substant ia l ly lower computational overhead. Thus what counts for a system is not its 
abso lute coordinates, but where it resides relative to the plane of best performance attainable 
in a g i v e n epoch . 

3.7 Support Common to all the SU Systems 

T w o activit ies are used in common by all the four systems. One of them, the Data Base, 
is a requ i red adjunct to any SUS effort . The other, the parameter- independent segmentat ion 
and label ing, represents an instance of a general philosophy of not committing ourse l ves t o 
speci f ic forms of sources of knowledge (here acoustic-phonetic), but w h e r e v e r poss ib le 
cons ider ing a range of alternatives, against which we can do some performance analysis w i th in 
the contex t of actual systems. 

3.7.1 Data Base 

Our goal is to produce a l ibrary of segmented, labeled, and cross re ferenced ut terances 
w h i c h may be used to evaluate the performance of. an SUS as well as for studies to determine 
t h e nature of knowledge sources. These need to be from the main task w e are work ing w i t h 
( the AP News Retrieval task) and need to be graded in the size of vocabulary used from small 
s i z e s all the w a y up to the 1200 vocabulary, which is our current maximum. [Shockey 7 4 ] 

We expec t this to be done by May75. 

3.7.2 Parameter - independent Machine.Segmentation and Labeling 

Our goal is to use a single f ront -end system for all our systems. Furthermore, w e w i s h 
to be able to evaluate different parameterizations — LPC spectra, PARCOR, 1/3-octave f i l ters 
— and to use w h i t h e v e r seem appropriate with any of the systems. 

Our approach has been to use training data (carefully segmented and labeled) and have 
automatic determination of label targets and segmenting thresholds. The scheme is speaker 
and microphone specific. Our intent is for the system to adapt to the speaker and room 
condi t ions on the f l y in any operational system. This constitutes mild training of the sys tem to 
t h e speaker , s ince, though there will not be any specific extensive training sessions, the 
s y s t e m must acpuire some utterances for which it knows the correct interpretat ion in o r d e r to 
l e a r n . 

T h e cur rent system has undergone several iterations from its f irst ve rs ion ( A p r 7 4 ) 
[ G o l d b e r g 74] . The segmentation scheme is in routine operation, w e still expect more 
improvements in labeling, and we have preliminary evaluations of the va r ious 
parameter izat ions . 

B y May75 w e expect to be placing the correct label in the f irst three choices 95% of 



S p e e c h Understanding Systems (SUS) 35 

the time, to have less thap 1% missing segments from phonetic segmentation, and to less t h a n 
10% e x t r a segments from acoustic segmentation. We feel these accuracies are what is 
r e q u i r e d to p roduce the results predicted of the Nov75 systems. 

3.8 Resources 

As the cur rent speech understanding program approaches its Nov76 per formance 
deadl ines , the manpower required to reach them has increased. All of the, ef for ts w i th the 
e x c e p t i o n of H e a r s a y - l . X are at the implementation level and so require more full and p a r t -
t ime programming support . We are clearly implementation, not idea, limited. 

T h e ent i re area direct ly consumes 29% of the personnel budget exclusive of faci l i ty and 
administrat ive costs. The overall direction is assumed by one faculty member. T h e 
H e a r s a y - l . X system is stable and so has only one graduate student devoted to its opera t ion 
and per formance measurement. The DRAGON (ELF-SPS-41) effort requires one staff 
p rogrammer and some graduate student support. Hearsay-2 efforts occupy 6.5 r e s e a r c h 
associates w h o s e contributions cross both the PDP10 and C.mmp versions, wi th emphasis on 
the former . F ive members of the programming staff are also allocated to Hearsay -2 , th ree on 
t h e PDP10 v e r s i o n and t w o on the C.mmp-L* and speech system. Exclusive of eng ineer ing 
s u p p o r t , the relat ive SUS manpower allocation to each of the four systems is as fo l lows : 
H e a r s a y - 1 (3%), DRAGON (12%), Hearsay-2-PDP10 (47%), Hearsay-2-C.mmp (21%), general (17%). 
T h e overa l l program is further supporfed by three engineering staff members and s e v e n 
g r a d u a t e students . A large number of part-t imers provide basic low level suppor t fo r this 
p r o j e c t so a specific allocation of funds for this group is included in this year 's budget. 

Faci l i ty util ization falls into the two categories of the general facility (PDP10) and the 
u s e of specia l ized processors , C.mmp being included in that category for this discussion. T h e . 
p r e s e n t e f fo r t consumes 46% of the PDP10 facility, virtually one of the two processors . T h e r e 
is l i tt le improvement that can be made to this particular configuration. Indeed, the e f fo r ts do 
r e q u i r e a more powerfu l processor , of the order of a KL10 with 512K memory and paging. 
T h i s w o u l d probacy be wor th about a factor of 10 when running the ultimate system v e r s i o n 
w i t h segmentat ion. Budget constraints did not permit requesting of such an upgrade. 

T h e DRAGON ( E L F - S P S - 4 1 ) system is stable on its dedicated PDP11, and could o n l y 
p r o f i t f rom a higher powered specialized processor available by ear ly 76 to y ie ld improved 
per fo rmance . T h e Hearsay -2 effort on C.mmp requires completion of C.mmp, which is dealt 
w i t h e l s e w h e r e in the C.mmp and Budget sections of this proposal. 
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4. C.MMP: MULTI-MINIPROCESSOR COMPUTER SYSTEM 

4.1 Introductiw.: 

C.mmp is a multiprocessor system consisting of up to 16 P D P l l s operating t h r o u g h a 
16*16 c rossbar switch into a primary memory of up to 16 memory modules. Each p r o c e s s o r 
can lay its 32K 16-bit w o r d address space anywhere within the larger 2^ w o r d phys ica l 
address , space in 4 K - w o r d pages. Figure 4-1 shows the structure of the system. [Wulf 7 1 b ] 

C m m p has a f lexible capabil i ty -based operating system, called HYDRA, which permits the 
o p e r a t i o n of many distinct specialized suboperating systems simultaneously. Under HYDRA, 
C.mmp operates in anarchical mode, which is to say that no physical processors h a v e a 
dis t ingu ished ro le (e.g., as master or slave). 

4.1.1 Goals 

T h e fundamental reason for a research group to construct a multiprocessor is the 
g e n e r a l computer science goal of advancing our knowledge of multiprocessors. 

W h y multiprocessors should be studied — out of all the possible regions of the 
computer design space — lies with some fundamental cost and processing considerat ions. 
Mu l t ip rocessors do not of fer any end-user or programming advantage over a un iprocessor of 
equ iva lent parameters : of equal Mips, processor - to -pr imary -memory bandwidth, I/O bandwidth , 
e tc . Indeed there must be decrease in flexibility and increase in programming complex i ty . 
H o w e v e r , for a g iven state of the art of uniprocessor design, there is no w a y to obtain the 
postu la ted equivalence on performance parameters for equal cost. This arises for t w o dist inct 
reasons . F i rs t , for large N, a processor N times as fast as a cur rent ly exist ing fast 
u n i p r o c e s s o r exceeds the art. Second, the cost of relatively small processors , if suf f ic ient ly 
mass p r o d u c e d , becomes much less than N times the cost of feasible but low volume 
p r o c e s s o r s of N times the performance. Thus cost/benefit dr ives out uniprocessors in f a v o r 
of mult iprocessors . An ent i rely independent advantage of multiprocessors is the potential fo r 
h igh re l iabi l i ty due to the multiplicity of components. 

T h e computing wor ld has known this analysis for years , though the number of 
mul t iprocessors wi th more than two processors can be counted on the f ingers of one hand. 
(We do not consider here array or vector processors which have single control stream w i t h a 
multiple data stream, e.g., ILL IAC-4 , CDC Star, e t c ) The amount of general ly unders tood 
scient i f ic knowledge that has emanated from this handful is hardly discernible. It is b e y o n d 
t h e bounds of a proposal to develop the fundamental reasons w h y multiprocessors have not 
b e e n e x p l o r e d . The reasons are complex and relate to alternative options, to re l iabi l i ty 
cons iderat ions , and to the types of processor systems that funding sources have wanted to 
s e e d e v e l o p e d . It remains true that we are now moving through a region of technology space 
w h e r e the cost/benefit arguments for multiprocessors become ever more compelling, but 
w i t h o u t benef i t of any of the years of exploration in how to live effect ively on such systems. 

C.mmp is thus our attempt to generate some of that experience. The t w o most p ress ing 
prob lems that must be addressed in multiprocessor research are (1) the real ization of the 
initial favo rab le cost/benefit ratio; and (2) the realization of effective use without consumption 
o f all the cost/performance advantage to obtain i t 
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T h e basic cost/performance situation is fundamentally determined b y the h a r d w a r e 
s t r u c t u r e . F igure 4 - 2 gives some data for C.mmp, using the KL10 processor as the 
compar ison machine. The figures are based on actual measurements of code densit ies and 
p r o c e s s i n g rates for equivalent programs on C.mmp(l l/20) and the KA10, wi th ext rapo lat ion 
t o C . m m p ( l l / 4 0 ) and to the KL10 as 4*KA10. Primary memory and processor costs are of the 
same o r d e r (and general ly more important than switch and I/O channel costs) , so that 
compar isons depend sensit iv i ty on the assumptions about the amount of pr imary memory 
r e q u i r e d per processing rate (Mp-bits per instructions/sec) and about the cost of memory. 
T h e diagram shows Instructions/sec per dollar system cost for C.mmp and KL10 systems, as 
the cost of memory varies (along the- horizontal axis) and as the ratio of M p - b i t s p e r 
inst ruct ion/sec var ies (the parallel family of curves). To the right, as memory dominates in 
cos t , all systems begin to look alike, purely as a function of amount of memory. To the left , as 
memory becomes cheap relative to processing, all variations of amount of memory p e r 
inst ruct ion/sec become irrelevant and C.mmp becomes equal to about 4 KL IOs in e f f ic iency . 
( I n absolute p o w e r , C.mmp is 5.95 mips to the KL10 at 1.37 mips, a ratio of 4.35.) Severa l 
d ist inct points are laid out on this curve'corresponding to the current KL10 wi th 256 K w o r d s 
(1 meg aby te ) of pr imary memory at current DEC memory prices and at prices equivalent to 
t h o s e paid fo r C.mmp memory; to the projected 16 11/40 C.mmp with 2 megabytes and 4 
megaby tes of pr imary memory. 

T h e cost/performance figures of 4-2 are determined by the hardware s t ructure , and are 
essent ia l l y f i xed at design time. The other fundamental question — using the arch i tecture 
w i t h o u t using up all the advantage — is only determined at the end of a more tor tuous path . 
It depends on car ry ing through the design to a functioning computer system of adequate 
re l iab i l i t y , prov id ing an operating system, providing software facilities, and br inging the 
s y s t e m to full use on a range of applications, where final usefulness can be demonstrated and 
final net advantage can be measured. This list essentially constitutes the intermediate goals of 
the C.mmp ef fo r t . And in fact the system was realized in conservative technology (e.g., ne i ther 
t h e p r o c e s s o r s nor memory modules employ current ly available LS I integrated c i rcui t 
t e c h n o l o g y ) prec ise ly because all these other steps need to be attained without undue de lay , 
if the total scientific goals are to be realized. 

4.1.2 Plans 

T h e general plans for C.mmp are dominated by the point in the life cyc le at wh ich w e 
n o w f ind ourse lves . With the system just coming into operational state, all of our concerns are 
t o make it a system on which a large amount of experience can be gained and to shape that 
e x p e r i e n c e so that it illuminates the basic issues of multiprocessor structure. We are at that 
cr i t ical juncture where the most important question is the short - term one of how long the 
t rans ient wil l be until effect ive operation. 

T h e rest of this section takes up each of the subcomponents of the total e f for t in t u r n : 
T h e h a r d w a r e system; the operating system; the software facilities; and application programs 
and per fo rmance analyses. 

4.2 Hardware System 

T h e basic configuration is shown in Figure 4-1. A few additional facts about the s y s t e m 
are g i v e n in F igure 4 -3 . The system was designed for the PDP11 processor . Each 
p r o c e s s o r model requires separately designed relocation registers and modifications (not 
e x t e n s i v e ) . T h e original processor was the 11/20. We have since decided that 11/40, w h i c h 
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Figure 4 -2 : Cost Performance of Cmmp 
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w a s announced after the original design was f rozen, is a more suitable processor . T o capital ize 
o n the l l / 4 0 * s speed relative to the tr ip through the switch, it is necessary to add a cache to 
t h e re locat ion registers . (Little extra gain is made by using 11/45s, since the e x t r a h i g h 
s p e e d bus cannot be exploited.) As we describe below, the 11/40s w e will uti l ize wil l h a v e 
dynamica l l y wr i teab le microcode. 

f i g u r e 4 - 3 : Added Facts about C.mmp 

(1) Up to 16 PDP11/20 or P D P U / 4 0 processors 

(2) P D P f l / 4 0 ' s may have writeable microstore 

(3) Up to 16 ports each containing up to 10^ 18 bit words 

(4 ) 16x16 crossbar switch allowing up to 16 simultaneous p rocessor -memory 
connections 

(5) 200 nanosecs (roundtr ip) delay for going through the switch 

(6) Maximum switch bandwidth: 5*10** bits/sec 

(7) Each peripheral device associated with a single processor 

(8) Non-demand paging to fixed head, ze ro latency disks; capacity: 512k w o r d s 
( « 128 pages) per disk; transfer rate: 1 page per i 6 ms 

(9) Other per ipherals : standard PDP11 devices 

(10) Communication links t9 front end terminal processor and PDP10A 

(11) Imp host ( interface under construction) 

(12) C u r r e n t s tate ; 5 PDP11/20 processors functioning; 700k words memory 
availabe in 12 ports; 4 IMS paging disks; 2 RP03 disks (40 megawords) 

T h e 11/40 is real ized as a horizontally microprogrammed processor wi th 256 5 6 - b i t 
w o r d s . Another 1024 words of writeable microcode can be added at any time, w i thout 
modif icat ion to the 11/40. We have designed and augmented the 11/40 system to c o n v e r t 
w h a t was or ig inal ly a rather special microprocessor into a general ly useful dynamical ly 
microcodable p r o c e s s o r * This has involved adding a general mask-shift unit, a m i c r o -
s u b r o u t i n e faci l i ty wi th stack, an emit field and extended branching capabil ity. With these 
addit ions the re is enough micromemory to do extended arithmetic (both 32 and 64 bit data 
t y p e s ) , to incorporate many HYDRA kernel functions (with reliability checking), and to form L* 
o r L isp special izations. 

T h e des ign of the IMS fixed head swapping disks should be noted. We achieve z e r o 
l a t e n c y b y mapping the C.mmp page (4K words) exactly onto a single track of the disk. T h e 

*DEC suppl ied the 11/40 and NSF supplied the writeable microstore. 
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disk cont ro l le r has been modified to permit the data transfer to begin immediately, w h a t e v e r 
the initial posit ion of the platter. 

4.2.1 C u r r e n t State and Recent Results 

C.mmp has been available to sympathetic users with the 16*16 switch since Nov74. It 
c u r r e n t l y has 5 l l / 2 0 s , 700K primary memory through 12 ports (512K through 11 p o r t s 
r o u t i n e l y functional) , and 4 IMS paging disks. The system is connected to terminals v ia the 
Communcations F r o n t - e n d (see Facilities section), in addition goes directly to the PDP10A v ia a 
4800/300 baud link. 

T h e design for the 11/40 relocation registers, cache and processor modifications is 
complete and the initial vers ion is being implemented. There are 5 l l / 4 0 s in-houste dest ined 
f o r C.mmp. (No more l l / 2 0 s will be put on C.mmp.) These additions and modifications are 
independent of whether the 11/40 is equipped wih writeable microstore. 

A n initial vers ion of the programmable microcoded 11/40 has been operational s ince 
0c t74 . We have done a study of its use for the XGP Xerographic Printer. We are c u r r e n t l y 
s t u d y i n g the amounts of speed up available for C.mmp generally, i.e., for HYDRA and basic 
programming processes. Preliminary results indicate a factor of 4 -5 is available in some 
sect ions of HYDRA b y rewrit ing these functions directly in microcode. This leads to an 
est imate of as much as a factor of two in overall performance of the system under HYDRA. 
T h e s e resul ts are v e r y recent (Dec74) and will be checked. They do form the basis of ou r 
dec is ion (see Plans below) to go ahead with the proposal to put writeable microstores on all 
the l l / 4 0 s on C.mmp. 

[ T h e performance analysis of Figure 4-2 does not take into account that the 11/40s 
w o u l d be microcoded. This would not show up in the raw instructions/sec (which must 
actual ly decrease with the microcoded 11/40 if it spends time in the specially microcoded 
funct ions) . It will show up in the equivalence ratios of how much a KL10 instruction is w o r t h , 
f o r a g i ven computation, vs a simple 11 instruction (they happen to be nearly equivalent) v s a 
microcoded 11/40 instruction (which will increase by some factor large enough to o v e r r i d e the 
l o w e r e d instruct ion rate and yield a net increase in effectiveness). This will in fact p roduce a 
more favorab le picture for C.mmp, but the estimates of the effectiveness of the microcoded 
11/40 are still too unreliable to justify plotting it.] 

4.2.2 Plans 

B y Jul75 w e expect to have the total system of components that are in -house in the 
s y s t e m : 4 l l / 2 0 s (The 5th 11/20 now on C.mmp will be swapped for an 11/40) plus 5 
11/40s, 1 of which will have a writeable microstore, 700K words of primary memory, 7 IMS 
paging disks, the IMP connections and a 9600 baud connection to the F ront -end . 

We plan a complete system that consists of 16 microprogrammable l l / 4 0 s w i t h 1 
M e g a w o r d p r i m a r y memory, and 9 paging disks (providing a paging ratio of 4 -5) . T h e 
just i f icat ion for going to a maximum processor system, balanced with respect to o the r 
character is t i cs , rests both on the need to investigate a full multiprocessor and the need for 
t h e la rger amounts of processing power with respect to applications. (See subsect ion on 
App l i cat ion Programs and Performance Analysis.) 

T o this must be added the secondary memory requirements. Our cur rent v iew makes 
C.mmp heav i ly dependent on the PDPlOs for secondary storage, i.e., for on - l ine disk s to rage 
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( the IMS disks are str ict ly for paging). This requires high speed communication b e t w e e n 
C m m p and the PDP10, to be achieved by two DA28s (which provide a total of 8 * 1 0 6 b i ts/sec) . 
H o w e v e r a minimal amount of secondary storage must be available on Cmmp itself. T h i s 
cons is ts of t w o RP04s (each 40 Megawords), each with its own controller. The capabi l i ty fo r 
t w o separa te systems is required so that the two independent partitions of Cmmp can r u n 
s imultaneously . ( The ability to partition the configuration has already p r o v e d to be of major 
va lue in making progress . ) 

T h e rate at which Cmmp goes to completion depends mostly on obtaining the funds fo r 
acquis i t ion (see Resources, below). The acquistions asked for in this proposal will br ing the 
s y s t e m to 4 11/20s plus 12 microcoded 11/40s, with one million words , and wi th both RP04 
disks. We would expect to have this installed by Dec75. The remainder will come along as fast 
as funds are obtained. 

T h e creat ion of the microprogrammable 11/40 offers the possibil ity of creating h ighly 
spec ia l i zed processors (as opposed to the sort of specialization which we •will be putt ing into 
most of our " regular" 11/40s to adapt them to HYDRA and general use). We have b e e n 
s t u d y i n g possibi l i t ies, such as L* processors. Plans are not firm at the moment about 
under tak ing any particular project of this sort. (We should point out that HYDRA was des igned 
w i t h an envi ronment of non-homogeneous processors in mind.) 

4.3 H Y D R A : The Operating System 

We know little about multiprocessors. We know even less about mult iprocessing 
Operat ing systems, for the problems they pose can only be understood, and the p r o p o s e d 
so lut ions tested and ver i f ied, in the wor ld of routinely running multiprocessors w i th a 
community of users. 

We do know that the demands of a multiprocessor on an operating system are s e v e r e . 
Th is fo l lows from the central core functions that operating systems per form: allocation of 
r e s o u r c e s and the creation of safe and sane computing environments. Divers i ty of resources 
and of concur rency have always been the instigators of our difficulties wi th operat ing 
s y s t e m s , both qualitatively and quantitatively. Multiprocessors increase both b y a large factor 
o v e r un iprocessors . 

Thus , an operating system for a multiprocessor must itself be a major piece of r e s e a r c h 
into all of the classic operating system issues. At least it must be so if the operat ing sys tem is 
not , all b y itself, to make it exceedingly difficult to obtain flexible end -use computing w i thout 
squander ing all the cost/performance gain. This is no idle concern. Experience has r e p e a t e d l y 
s h o w n that an operating system can take a major share of the cycles of a system (the 90% 
o v e r h e a d s that formed the horror stories of software history). 

We st ress this point to underline that research on multiprocessors (and in part icular o u r 
o w n research ) is not just research on computer structures. Four links, at least, exist in the 
total r e s e a r c h chain: the architecture + the operating system + the software facilities + the 
task -decompos i t ion and application programs. To these must be added two others : re l iabi l i ty 
o f total operat ion and analysis of performance. All six require significant research e f fo r ts and, 
desp i te any problems of keeping the whole in focus, none can be assigned to the status of 
s imply an "auxi l iary" or "support ive role". The point is appropriately made here , w h e n 
descr ib ing the second link in the chain after the hardware structure. We will add shor t 
reminders as w e proceed to the other links. 
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4.3.1 Goals 

C lea r l y , from the above discussion, the main goal is to create an operat ing sys tem 
adequate to the demands of a genuine multiprocessor environment. These demands seem to 
b e (1 ) adequate protect ion and security ; (2) allocation of resources, including guarantees o n 
the amounts of resources made available in specified time periods; (3) rel iabi l i ty and 
r e c o v e r a b i l i t y ; (4) the creation of specialized operating environments; and (5) the suppor t of a 
g e n e r a l user environment. The first three of these are classical operating system funct ions ; 
w h a t mult iprocessors add are new forms and complexities in the demands. T h e last t w o , 
t h o u g h perhaps familiar, require some explanation. 

As an oversimplif ication, the exploitation of a multiprocessor can take one of t w o forms. 
In one , the operat ing system effectively creates for the user an uniprocessor sys tem — 
e x c e p t for the performance characteristics (Mips, etc) and charges, he does not know he is on 
a mult iprocessor . In the other, the multiprocessor facilities are not masked. In fact, t h e y are 
h o p e f u l l y augmented to be conveniently at the command of the user who is willing to adapt 
t h e s t r u c t u r e of his algorithms in order to exploit the full capabilities of the part icular 
mul t iprocessor st ructure . This latter form is the one intended for C.mmp. It is the one 
cons is tent w i t h the attempt to explore how multiprocessors are used; it is the one that 
maximizes the chances of solving the basic problem of not giving up all the cost/performance 
advantage to make a multiprocessor system habitable. There must always be a s ingle 
o p e r a t i n g system on a machine at some level, if only to give the system away to var ious users 
f ro m time to time. This strategy forces the kernel operating system to permit such 
specia l i zat ion b y users — and by different users in different ways. Thus, one a r r i ves at 
o rgan i za t ion that permits multiple specialized operating systems operating simultaneously. 

It is a myth that specialized computing avoids providing all the facilities (and facing all 
the problems) of a general user facility. Specialization buys power and economics; it does not 
a v o i d p rov id ing facility. To construct and use a complex program on a computer implies the 
n e e d for all the sof tware and interactive facilities that we have come to associate wi th a g o o d 
g e n e r a l p u r p o s e system. Big systems, though they may be specialized in their final e f fec ts , 
a re genera l purpose in their demands. Just to make the point we have listed in F igure 4 - 4 a 
la rge number of system and software facilities. Having all these is what character izes the 
modern general purpose computing facility. They are needed on C.mmp, it systems of any 
complex i t y are to be programmed for it, made to run, and their performance analyzed. 

T o be sure , the economics may indicate that the general user facilities are not t e r r i b l y 
e f f ic ient , since the main computing is whatever the central engine does well . But they must 
stil l be there . Also, it may be possible to provide these facilities in an associated s tandard 
g e n e r a l p u r p o s e computer. This is the tactic of systems such as ILL IAC-4 , and indeed it is the 
s t r a t e g y adopted for C.mmp in several respects (BLISS11 code is compiled and loaded on the 
PDP10; most C.mmp file space will be on the PDP10 systems). But there are limits to this 
s t r a t e g y , for it introduces rigidities which may predispose the use of the special ized sys tem 
( h e r e C.mmp) to a narrow preconceived style. 

A single il lustration might suffice to make the point. C.mmp, we assert, must permit 
g e n e r a l t ime-shared use. Many people should be able to work on it simultaneously, bo th on 
aspects of a single major application sysfem or on many different systems. The classical p loy 
t o avo id this is to think of C.mmp as a glorified processor (much as I LL IAC -4 is thought of ) and 
to allot its time in exclusive intervals to a single user. Without going through a detai led 
calculat ion, the rate of utilization of C.mmp under these latter conditions would p r o b a b l y be 
less than a twent ieth of what it will be under the multiple use time-sharing regime — maybe 
e v e n much less than that, considering how inefficiently a single user employs a computer. 
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Figure 4 -4 : C.mmp Software Facilities 

(1) System status reports 
(2) User recognition 
(3) File manipulation and status reports 
(4) File display (terminal and line printer) 
(5) Backup of secondary storage 
(6) Process creation, monitoring and debugging 
(7) Resource allocation 
(8) Space management 
(9) Time arid space accounting 
(10) Editor 
(11) Assembler 
(12) Compilers 
(13) Interpreters 
(14) Process save and restart 
(15) "Intell igent" command interpreter 
(16) Network communication 
(17) Mail to local and network users 
(18) Onljne documentation 
(19) Terminal session recording 
(20) Script execution 

HYDRA's design incorporates an extensible capabii ity-based protect ion s t ruc ture w h i c h 
permits implementation of non-hierarchical protection schemes which are essential to attaining 
a n y real d i ve rs i t y of specialized systems. Capabil i ty-based operating systems are just coming 
into being and HYDRA is therefore in this respect also pushing into new te r r i to r y . Thus , it is a 
major goal of the research on HYDRA to explore the costs and benefits of a fu l l - sca le 
c a p a b i l i t y - b a s e d system. As will be discussed later, the protection s t ructure of HYDRA 
faci l i tates the simple and flexible construction of operating system components as normal user 
p r o g r a m s . 

A dist inct ly separate subgoal is to explore the role of capabi l i ty -based operat ing 
s y s t e m s in solv ing real secur i ty problems. 

T w o methodological goals also exist for HYDRA, both related to general computer 
sc ience goals of how to produce good software. One is to provide a case example of a large 
sys tem that was produced b y the using the structured programming methodology. It wi l l 
p r o v i d e some evidence, though not formally, on how well that methodology works . The s e c o n d 
is the goal of constructing operating systems that can be formally ver i f ied . This is an 
important goal of current operating system research. It is not a primary goal of this r e s e a r c h , 
s ince the ver i f icat ion art has not advanced to where it can be insisted upon. But ver i f i cat ion 
attempts o n HYDRA will be made as effort permits. 

4.3.2 S t ruc tu re of HYDRA 

HYDRA [Wulf 74, 75a] consists of a Kernel and a collection of Policy Modules and 
Subsystems. T h e Kernel is structured around the capabil i ty -based protect ion mechanism it 
n c o r p o r a t e s . [ Jones 73, 74] The Kernel includes those basic extensions (of the bare h a r d w a r e 

conf igurat ion) that will permit multiple operating systems to coexist on the same s h a r e d 
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h a r d w a r e . Thus the Kernel includes the protection mechanisms, the lowest level r e s o u r c e 
management which distributes resources to the processes executing under the aegis of 
d i f f e r e n t operat ing systems, and the primitives to permit controlled communication and 
s y n c h r o n i z a t i o n of processes (and i/o devices.) 

In a capabi l i t y -based operating system, rights to access a resource are associated w i t h 
t h e accessor , not the resource itself as in many second generation operating systems (e.g., the 
PDP10 System, DEC's TOPS TEN). Because of the HYDRA protection mechanism des ign, all 
r e s o u r c e s can be protected in a homogeneous fashion. Users can create new 'abst rac t ' 
r e s o u r c e s ; and access to these new resources can be protected using the same basic 
p r o t e c t i o n mechanism with no extension. The advantage of a capability based system is the 
f ine discriminations it permits with respect to what processes can do to what sorts of things. 
T h e r e are t w o new dimensions of freedom. Accesses can be tailored to the resources 
i n v o l v e d — a s opposed to the crude uniform read-on ly/wr i te -on ly/read-wr i te dist inct ions 
a l lowed in many second generation systems. Capabil i ty -based systems also permit n o n -
h ierarchia l protect ion schemes so that there need not be a succession of concentric c irc les of 
un i fo rmly g reate r access rights. 

T h e Kernel is quite primitive and for it to be conveniently useful requires the addit ion 
of a po l icy module and subsystems which make up the bulk of what the user v iews as his 
o p e r a t i n g system. 

T h e dist inction between the kernel and the policy modules and subsystems co r responds 
e x a c t l y to the operating system facilities that must always be there and the special izations 
that are permissible. Thus the key issue is what facilities reside outside the kernel , hence 
may be separate ly specialized. A Policy Module contains a scheduler and a pager. Hence 
t h e s e t w o fundamental aspects are under the complete control of the user. The pol icy module 
is also respons ib le for administering the resource allocation of the processes which run under 
its aegis. 

A long wi th the policy module the user would probably find it convenient to have a 
Command Language, a Directory System, and File System. Thus most of the functions one 
usual ly associates with an operating system can be specialized for each user sys tem if 
d e s i r e d . T h e exceptions are understandable: There must be a protection system that is 
p r imi t i ve to all subsytems — they must be protected from each other. Special ization of 
p r o t e c t i o n occurs because the design of the capabil ity-based system permit the passage of 
a r b i t r a r y forms of access rights to a subsystem, which in turn can then become a 
subpro tec t iOn system and pass out further access rights. The other exception is the pr imit ive 
r e s o u r c e allocator, since someone must own the basic physical resoures and distr ibute them to 
t h e subsystems. 

4.3.3 C u r r e n t State and Recent Results 

T h e Kernel has been operating routinely since early 73 (originally on the 4*4 p r o t o t y p e 
h a r d w a r e system that preceeded the 16*16). The first policy module, PMO, and the f i rst set of 
u s e r subsystems have been available to sympathetic users since Nov74. The facilities in these 
s u b s y s t e m s are still rather incomplete (e.g., there is no file system, so that all files are kept on 
the PDP10). Regular user periods have been scheduled e v e r y day since Nov74. M e a n - t i m e - t o -
fa i lu re is still v e r y low (10 minutes with half a dozen relatively unsophisticated users ; about 
30 minutes wi th a single sophisticated user); but is gradually lengthening. E r ro rs are w i d e l y 
d i s t r i b u t e d across hardware, software and operations. 
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4.3.4 Plans 

T h e f i rst iteration on HYDRA is complete, but there are a number of improvements and 
addit ions w e need to make. Short term plans all revolve around getting an adequate user 
env i ronment up and running routinely. There are several primary targets. One is ex tend ing 
p r o t e c t i o n to confinement (assuring that no data can leak out of a procedure , especial ly an 
unre l iab le one) and to revocation (taking back a right of access given to someone ear l ie r ) . 
A n o t h e r is to time heavi ly used functions and to recode to reduce critical overheads . Th is 
i n v o l v e s use of the Hardware Monitor (see below). Besides these, the adding of facil it ies 
w h i c h wil l be highly responsive to user demands is important. We expect the critical p e r i o d , 
w h e n the sys tem appears a monster to work with, to last until about Jun75. 

Longer term plans must wait until after the transferral to the small C.mmp S o f t w a r e 
G r o u p (see be low) of the responsibil ity for satisfying short - term user demands, wh ich are 
c u r r e n t l y all encompassing (and proper ly so). At that point, a v e r y large number of 
a l ternat ive fundamental issues can be tackled, many corresponding to f lexing degrees of 
f r e e d o m in HYDRA that have not yet been touched in the code that is running. Other issues to 
b e addressed include improving HYDRA's resiliance to hardware malfunctions, incorporat ing 
r e s o u r c e guarantees and exploiting the 11/40 writeable microcode. 

4.4 Software Facilities 

T h e r e is little question about the need for software in addition, to a good operat ing 
s y s t e m , to make a computer system habitable. Nor is there much question about the e f fo r t it 
seems to take to produce it. This, along with similar statements that hold at the level of the 
substant ia l application systems, provide the ingredients for the so-cal led sof tware cr ises . T h e 
prob lems are especial ly acute for one -of -a -k ind systems, where there are not e v e n the 
p leasures of amortization to average frustration down to tolerable levels. C.mmp is a o n e - o f -
a - k i n d sys tem, for all momentary purposes. The problem of obtaining sof tware faci l i t ies, 
h o w e v e r , will not go away and it must be faced. Failure to provide adequate s o f t w a r e 
faci l i t ies, support ing all the functions implicit in Figure 4 -4 , will result in failure to d e v e l o p a 
u s e r community that can put substantial applications on the system. 

It is time to remind the reader that each of the four links (hardware system, operat ing 
s y s t e m , s o f t w a r e facilities, application systems) is not only* a co -par tner in being crit ical, but is 
a c o - p a r t n e r in being subject matter for research. Each link has independent research goals , 
that come from domains of Computer Science not tied to multiprocessor research. This is t r u e 
o f operat ing sytems. This is perhaps even more true of software facilities, where the s o f t w a r e 
cr is is is seen as pervas ive . We see several research challenges in solving the s o f t w a r e 
p rob lem, as wel l as it being just a critical link in the total multiprocessor ef for t than must ge t 
p l u g g e d . 

4.4.1 Goals 

Thus , the goal is to produce adequate software systems for C.mmp. With respect to 
t y p e , w e take this to mean essentially the list of Figure 4-4. With respect to quality, w e take 
this to mean state of the art, which in practice means equivalent to facilities on the PDP10, In 
some respects demands are more stringent than on the PDP10. With HYDRA w e already have 
an opera t ing system that is fundamentally better than those available on the PDP10, and the 
s o f t w a r e tools must be adequate to support this. For instance, the ability to create schedulers , 
p a g e r s , f i le systems, etc., implies systems implementation facilities. Along another dimension, 
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t h e e x t r a complex i t y of multiprocessors implies that debugging and program analysis 
techniques (e.g, performance monitors), must be better than on a uniprocessor for equivalent 
ra tes of p rog ress . In some respects, the demands are less stringent. The col lection of 
appl icat ion programs can. be much smaller, since the range of interests of the C.mmp 
programming community will be much narrower than a general user community. 

Against the background of the known quagmire in constructing substantial s o f t w a r e 
faci l i t ies, the key issue is what approaches we have to obtaining the software and at what 
costs . Our present s t rategy has six distinct strands, which we outline immediately be low. T h e 
f i r s t four const i tute sensible software engineering practice, but do not c a r r y wi th them any 
r e s e a r c h impact. The last two essentially contain a research component, so that success o r 
fa i lure of them is of interest from a wider view point. As noted in the final paragraph of this 
s u b s e c t i o n , the amount of manpower being devoted directly to the software acquisition is 
qu i te small. Consequent ly , we do believe that the general success of this ent i re s o f t w a r e 
acquis i t ion will have some value as a case example. Certainly, failure in it (i.e., being f inal ly 
caught up in the quagmire), will lead to unwillingness on our part to proceed wi th another 
s u c h p r o j e c t without having developed a substantially more adequate approach. 

T h e six strands are: 

Use of higher level implementation languages: The main implementation language is 
B L I S S l l i wh ich is a vers ion of BLISS [Wulf 70, 71a, 72, 75a] (whose original incarnation is as 
a PDP10 system) for the PDP11, and which produces appropriate code for C.mmp. BLISS (and 
w i t h it BLISS11) was of course a research venture, involving goals not only of programming 
ease for system building, but also of highly efficient code (more on this in the SMCD sect ion) . 
But BL ISS has been working successfully for several years, and BLISS11 for o v e r a y e a r , and 
the w o r t h of these systems is not in question in the present effort . HYDRA is implemented in 
BL ISS 11 and the code product iv i ty there (26 debugged instructions per man/day for a 56 K 
ins t ruct ion system) are v e r y good with respect to the software production art. It should be 
n o t e d that BLISS11 was a component of the total C.mmp effort and that the decision to 
p r o d u c e an 11 vers ion of BLISS was specifically made as part of the total C.mmp r e s e a r c h 
s t r a t e g y . 

Use the PDPlOs to avoid building software on C.mmp: In particular, use this s t r a t e g y to 
keep the development of C.mmp itself off the critical path. The prime example of this is 
B L I S S i l itself, which resides on the PDP10, compiles and loads there, with only absolute bits 
f low ing into C.mmp. This has been critical to the development of HYDRA, of course , w h e n 
C.mmp was a completely nascent system. An important part of this strand is having the 
s o f t w a r e exist in both PDP10 and PDP11 forms. Thus, programs can be (often are) coded in 
b o t h BLISS10 and B L I S S i l (there being minor dialectical differences) and run on bo th 
machines. (See the discussion of DRAGON in the SUS section for another example.) 

Reliance on the natural growth of systems: In an advanced computer science user 
popu lat ion , especial ly one populated by students, systems just naturally g row. This is not a 
so lu t ion o p e n general ly in the development of software, but it is of great importance (and has 
b e e n histor ical ly ) in the development of software. That it seems managerially untidy is beside 
the point . Related to capitalizing on this is the first strand — namely to have good genera l l y 
avai lable system implementation facilities. [Newell 75] 

Acquisi t ion o f PDP11 systems from elsewhere and their adaptation to C.mmp: A 
s ignif icant advantage of having adopted a major minicomputer as the C.mmp processor , is that 
an immense amount of software exists and continues to be generated for it (see the discussion 
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o f a lgebraic languages, below, for an example). Adaptation comes in two stages. In the f i rs t , 
o n e must simply bring the new system up under HYDRA. This is not much dif ferent ( for ease 
and for t roub les ) to bringing up any program under a new operating system, w i t h the 
e x c e p t i o n that minicomputer programs tend to assume total occupancy of the computer and 
d i r e c t command o v e r all systerti functions. The second stage is to develop mult iprocessor 
v e r s i o n s of the system that can simultaneously use multiple processors. This task is genera l l y 
a c r e a t i v e one and constitutes, from the present vantage point, an exercise in the s t u d y o f 
mult iprocessing (see the subsection later on benchmark programs). Consequent ly , ou r main 
c o n c e r n in this strand is with the first stage, letting the second stage take place w h e r e 
someone's research interests evokes their desire to address this problem. 

Right St ructure Hypothesis: The fifth strand is built around an hypothesis that if the 
s t r u c t u r e of the operating system is right, then the production of the middle level s o f t w a r e 
( i .e. , F igure 4 - 4 ) will be signficantly easier than under current operating sys tems. 
Operat iona l l y , the notion of "right structured" is taken to be the structure of HYDRA, and it is 
p r e d i c t e d that the time it takes to produce software facilities on C.mmp will be much s h o r t e r 
than extrapolat ions of current experience on systems under second generat ion operat ing 
sys tems wou ld predict . To understand this hypothesis it is necessary to note that almost all 
the items in F igure 4 - 4 have significant interaction with the operating system. This interact ion 
const i tu tes an important component of the complexities in such systems, though it does not 
necessar i l y account for much code. But often such software facilities must be w a r p e d in thei r 
v e r y des ign in order to fit them into the constraints of the existing operating system. T h e 
t y p e of ev idence that will come forth on this will be, naturally, an analysis of cases. T h u s , it 
wi l l b e to some extent mixed with other effects, such as the efficacy of the implementation 
s y s t e m s , and b v the quality of the data on similar software facilities created on other systems. 
St i l l , w e are looking for striking results and expect to be able to der ive some conclusion about 
w h e t h e r this hypothesis is true and why it failed if indeed the expected ease is not 
substant iated . 

A l te rnat i ve implementation system (L») : L* [Newell 71] is an interactive system in w h i c h 
the user constructs new systems on-l ine by growing them from the inside, so to speak. T h e ' 
faci l i t ies available within L* (as an implementation system) are adapted, augmented and 
modif ied to become the facilities of the final application system. L* is itself g r o w n from a small 
k e r n e l , the central core of which is a general symbolic list processing facility (e.g., as in L isp) , 
s o that all of L*'s facilities are built within the system itself and are open to easy adaptation 
and g r o w t h . The basic L* language is interpretive, and efficiency is to be obtained b y 
s e l e c t i v e assembly and compilation (facilities for both being built up within L* itself) . In 
o p e r a t i o n , L* has the f lavor of a good interactive Lisp. 

L* was or iginal ly developed on the PDP10, where it has been used for implementing 
v a r i o u s A I systems (e.g., PSG, a production system language [Newell 72a], Merl in [Moore 73]) . 
It has been undergoing an evolutionary design in order to discover the most appropr ia te 
ke rne l f rom which to g row the system. Thus, as with BLISS, the implementation language 
e x i s t s on both the PDP10 and C.mmp, with the consequent ability to work back and fo r th and 
d e b u g On ei ther machine. 

L* and BLISS represent different philosophies for what is needed in an implementation 
s y s t e m : L* is interact ive, symbolic and grows its target systems; BLISS is compi lat ion-or iented, 
a lgebraic and produces its systems as code entities distinct from itself. While BLISS is in the 
main st ream' of implementation system development, L* is much less accepted as a scientif ic 
h y p o t h e s i s about how, implementation of systems, should be accomplished. It seems unl ikely 
that ev idence will come forth that one complex set of underlying assumptions (the BLISS se t ) 
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dominates o r is dominated by another complex set (the L* set). But we expect C.mmp to be an 
a rena in wh ich w e may find out a good deal about the space of implementation systems. 

One special attraction of L* for C.mmp is the solution it offers to where all the s o f t w a r e 
faci l i t ies wil l come from. With L* they all exist in the implementation system itself, as it is 
b r o u g h t up initially, and they become immediately available to the user. Thus, once an L* 
s y s t e m is running at all, all the facilities of Figure 4-4 become available (except those wh ich 
r e p r e s e n t functions outside a particular subsystem). 

T h e implementation of the total strategy outlined above for obtaining sof tware facilities 
is d i s t r ibu ted among many groups in the C.mmp community. They all complement each o t h e r 
and can in general proceed along independent developmental paths. (The linkage to the 
P D P l O s is perhaps an exception, but this part is already operational and has been a 
fundamental component of the C.mmp total system strategy from the beginning.) T h e r e is a 
small s o f t w a r e g roup associated with C.mmp, whose function it is to provide the requ i red user 
s y s t e m s , especia l ly at the level of adaptations of Policy Modules and Subsystems. Until now 
t h e r e has been no such group, but with C.mmp developing a community of users , some 
r e s o u r c e s d e v o t e d to day to day smoothing of the way is necessary. We think of this small 
g r o u p as cr i t ical , but not as having anything like the exclusive burden for car ry ing out the 
total s t r a t e g y . T h e y wil l , of course, operate to coordinate it, in so far as that is necessary . 

4.4.2 C u r r e n t State and Recent Results 

B L I S S i l , the pr imary implementation system, has been fully operational since 73. It 
t u r n s out highly optimized code, namely, as stated, better code for large systems than 
profess iona ls produce. (This aspect, by the way, is critical, even ear ly on , for its use in 
HYDRA.) 

A n L* system is operational on C.mmp that has most of the facilities of Figure 4 -4 . T h e 
f i r s t v e r s i o n brought up was a stand-alone version on C.mmp in Apr74, in a month- long 
s o f t w a r e exper iment to demonstrate the system generation capabilities of L*. The c u r r e n t 
v e r s i o n , L*C(B) , works under HYDRA. !t is being used for the SUS effort (see below). 

4.4.3 Plans 

T h e small sof tware group (1 research associate + 1 programmer + 2 graduate students 
+ p a r t - t i m e students) is just being organized. It is expected to be operational in Apr75. Th is 
g r o u p is independent of the main continuing work to develop HYDRA. It will be d r i v e n b y 
immediate user needs. 

Plans for the exact software facilities to be added and in what order are not ye t f i rm, in 
p a r t because the software group does not yet exist and in part because the facilities will be 
d e f i n e d i te rat ive ly as a function of need. This is essential in a v e r y small group which is to be 
h igh l y u s e r - r e s p o n s i v e to a user community which is just forming. The following can be said at 
this t ime: 

T h e SUS group , which is the major application system being put on Cmmp (see 
subsec t ion be low) , is taken care of by L*. 

T h e r e is a need to make available a regular algebraic language of the F o r t r a n - A l g o ! 
v a r i e t y . (BLISS, though an algebraic language, is Sufficiently oriented toward implementation 
issues that it does not se rve the required functions; L* is not an algebraic language.) T o argue 
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w h y a s tandard algebraic language is absolutely required is essentially to rehearse the 
argument about w h y any substantial specialized computer system must include general user 
faci l i t ies. For standard languages one adds the ability to import programs from e lsewhere . T h e 
dec is ion on which languages is a pragmatic one, depending strongly on the ex is tence of 
v e r s i o n s fo r the PDP11 which can be brought up under HYDRA. Candidates are a C M U v e r s i o n 
of A L G 0 L 6 8 [Kneuven 75], which current ly exists in BLISS11, though no run time system ex is ts 
y e t ; FORTRAN, for which interpretive and BLISS11 versions exist, PASCAL, fo r w h i c h 
mult iprogramming vers ions for the PDP11 are being developed by Brinch Hansen at C a l T e c h ; 
and SAIL> for which vers ions for the PDP11 are being developed at Stanford. 

4.5 Application Programs and Performance Analysis 

Th is subsect ion stems from a special point of v iew: For an OK system (either in terms of 
a rch i tec tu re or operating system) application programs and systems can act as measuring 
tools . T h e y revea l the propert ies of the system. Thus, one wants to del iberately genera te a 
cont ro l lab le set of such application programs and systems. This stands in marked contrast 
w i t h the normal v iew about computers, which is that their uses are dictated b y the des i res and 
needs of the user community; one does not deliberately seek "applications1'. 

We expec t our user community to make use of C.mmp in a diverse set of w a y s , and in 
fact e x p e c t much of the knowledge about whether and how a multiprocessor can successfu l l y 
b e use to ar ise from this spontaneous use. However, this section concentrates on o u r 
de l ibe ra te plans for obtaining useful performance analyses of C.mmp. 

T h e r e are several important dimensions of analysis. First, are the possibi l i t ies f o r 
paral le l decomposit ion of a particular computing task, and how this maps onto the s t ruc tu re of 
a part icular multiprocessor under study (here C.mmp). Second is the contr ibut ion of the 
v a r i o u s aspects of the total multiprocessing system to the computing cost. This includes 
m e m o r y content ion, process evocation, protection, other operating system overheads and 
programming efficiencies of various kinds. Third is the degree of processor uti l ization and 
memory uti l ization. Fourth is the bandwidth requirement for communicating b e t w e e n 
p r o c e s s e s . 

Measurement tools are required in order to determine actual performance and to permit 
re lat ing the performance throughout the vertical range of the system — from h a r d w a r e 
content ion th rough the operating system to the program structure imposed b y the 
decomposi t ion scheme. The primary tool is a hardware monitor [Swan 75, Fuller 73a, b ] that 
permits measurements at the level of the memory access, but lets them be corre lated w i t h the 
b e h a v i o r of the software (the operating system or higher). This more sophist icated 
measurement is necessary since the current art of hardware monitoring usually permits o n l y a 
l o w - l e v e l analysis with no correlation of gross level statistics with higher level behavior . 

With the except ion of the physical measurement tools (and of course the requis i te 
mathematical and statistical techniques), the primary requirement of analyzing the per formance 
of a complex system are the judicious and inspired selection of tasks to program and ana lyze , 
and the wil l ingness to spend a substantial amount of effort in carry ing the analyses t h r o u g h 
f ro m task decomposit ion to programming to measurement to modeling of performance. 
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4.5.1 C u r r e n t State and Recent Results 

We have designed and built a Hardware Performance Monitor wi th the requis i te 
p r o p e r t i e s . It has capabilities as advanced as any monitor in existence or being p r o p o s e d (and 
cos t us approx imately a fifth of existing high performance monitors). It has been operat ional 
s ince Oct74 and is beginning to be used to take performance measures on C.mmp (it was used 
t o obta in some of the C.mmp measures used for Figure 4-2). 

Benchmark tasks are small wel l -understood programs whose behavior can shed light on 
aspects of multiprocessor performance. To be really useful, benchmarks must also be 
cont ro l lab le in the sense that they can be readily adjusted to probe or stress va ry ing par ts of 
the computer system. We current ly have a collection of four under investigation, though w e 
a re a lways on the lookout for additional interesting ones: 

T e c h n o l o g y chess program [Gillogly 72]: This is typical of sophisticated heuristic search 
p r o c e d u r e s . T h e r e are important algorithms (e.g., the so called alpha-beta p rocedure ) that 
e xp lo i t the sequential i ty of search. The key question is whether parallel search systems (as is 
natural on mult iprocessors) can surv ive this challenge. 

F F T (Fast Four ier Transform): This is a classical and important calculat ion- intensive 
task, wh ich appears to be ideal for SIMD machines (Single Instruction stream, Multiple Data 
s t ream systems) , such as ILL IAC -4 and CDC Star. The key question is whether such v e c t o r -
o r i e n t e d task are amenable to effective solution on multiprocessors and how these solut ions 
compare w i th those on the SIMD machines. 

Pat tern recognit ion: The algorithms in question are the classification procedures being 
used in cu r ren t image processing work that involve essentially nearest -neighbor calculations 
in 4 - s p a c e . T h e actual procedure being analyzed and programmed is one cur rent l y running on 
I L L I A C - 4 work ing on satellite photographs. The key question is the same as in the F F T : to 
a n a l y z e mult iprocessor performance on problems supposedly ideal for a r ray p rocessors 
(S IMD) . 

In teger programming and related optimization techniques: The key question is how a 
task area character ized by a set of simultaneous equations and constraints can be 
implemented on a multiprocessor. For instance, will it be necessary to shift to b r a n c h - a n d -
b o u n d search techniques to achieve the desired parallelism. 

We can distinguish application systems from application programs on the basis of the 
complex i t y and multiplicity of the functions to be performed (e.g., so that no simple analysis of 
the "essent ia l" inner loop of the system can suffice). Since these are total systems, it is a 
major decis ion to actually implement one and study it, a decision that has t o ' b e s u p p o r t e d b y 
independent research interest. 

T h e one application system is Hearsay-2, which was described in the SUS section. This 
is in fact the major dr iver for bringing C.mmp into the world as a functioning system, since the 
S U S e f f o r t is operat ing under stringent deadlines. The natural correspondence be tween the 
s t r u c t u r e of Hearsay -2 and the multiprocessing structure makes it an appealing case. On the 
o t h e r hand, the total system character of Hearsay-2 (for debugging, interact ion, 
exper imentat ion , evolut ion and multi -person development) puts substantial stress on the ent i re 
r a n g e of so f tware facilities, and forces them all to be developed simultaneously. 
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4.5.2 Plans 

We expec t the FFT benchmark to be implemented and evaluated by Jun75. Of the o t h e r 
benchmarks l isted, w e expect to have a first iteration completed b y Sep75, which will encode 
them in the s t ra ight forward way. Later iterations will look for good, as opposed to o b v i o u s , 
w a y s to decompose the tasks. 

We expect to start a benchmark in the area of fluid dynamics simulation or in s t ructura l 
analys is , wh ich deal with numerical solutions to partial diffential equations. These problems 
a r e r e p r e s e n t a t i v e of uses of computers in large government laboratories, and have a lways 
b e e n an important class of computations (in fact they have often been the d r i ve r in the 
deve lopment of new computer systems). 

We are considering substantial application systems in several areas. One is image 
understanding , for which w e have an active interest at the moment as a future r e s e a r c h 
d i rec t ion , analagous to our work in SUS. The small benchmark task on pattern recognit ion has 
b e e n chosen in part to shed some light on this for planning purposes. 

We have also been considering the possibility of an Experimental Integer Programming 
Faci l i ty . Our interest stems from an interest by operations research scientists in the Graduate 
School of Industr ial Administration. 

Neither of the applications systems have advanced to the place where specific plans, 
much less dates of accomplishments, are presentable. 

4.6 Resources 

T h e C.mmp operating system, HYDRA, and related software development ( including 
d iagnost ics ) has, to date, been carried on by one staff programmer and a dedicated g r o u p of 
13 graduate students under the direction of one faculty member. It is our intent to shift much 
of this e f fo r t to a programming group whose main responsibility is to be responsive to user 
demands as the system matures. To this end, a research associate has recent ly been added 
and a new ful l - t ime programmer is being requested in the new budget. There is also a modest 
r e q u e s t for par t - t ime programming and operational personnel associated with suppor t ing 
C.mmp. T h e performance analysis task so critical to the measurement of success of this e f f o r t 
is p r e s e n t l y staffed by 4-5 graduate and undergraduate students under the superv is ion of one 
facu l t y m e m b e r No additional manpower is required for this aspect of the pro ject . T h e 
engineer ing ' staff provides the equivalent of about one engineer dedicated to C.mmp 
deve lopment besides what is extracted from the facility costed expenses for maintenance 
p u r p o s e s . This personnel allocation to C.mmp represents 17% of that total budget. 

This pro ject does much of its software development compilations on the PDP10 faci l i ty , 
bu t its total usage represents only about 6%. The greatest facility requirement is in the 
complet ion of C.mmp itself and the ability adequately to partition it into two useable sys tems 
f o r developmental and maintenance purposes. We have requested enough hardware to 
ach ieve the latter and approach the former. 

T h e funds available in this year 's budget are not sufficient to acquire the total sys tem 
d e s c r i b e d in the previous section. Thus, we have put in this budget the most important 8339K 
w o r t h of equipment. We have listed in a supplementary section (Section I) the total remaining 
equipment that w e now see as appropriate for C.mmp. This is done in order of desi rabi l i ty so 



C.mmp: Mult i -Min iprocessor Computer System 53 

that any amount of additional funds can be applied to acquire the appropr iate additional 
equipment . 
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5. SMCD: SYMBOLIC MANIPULATION OF COMPUTER DESCRIPTIONS 

5.1 Introduction 

T h e SMCD research effort is the attempt to conduct the study and construct ion of 
c o n c r e t e hardware and software systems at a level that uses a symbolic descr ipt ion of 
compute r systems. Techniques so developed can be applied to a range of computer sys tems , 
g i v e n o n l y that they have been suitably described. 

T o understand the force of such a proposal one needs to contemplate that w h e n humans 
are g i v e n a descr ipt ion of something (necessarily, of course, a description in symbols) , t h e y 
use it for w h a t e v e r problems they wish to address. But the situation is quite o therwise w i t h 
descr ip t ions dest ined for use by computers. Here the rule is to use a descr ipt ion for o n l y a 
s ingle pu rpose . A FORTRAN program is certainly a description of an algorithm for so lv ing a 
p rob lem. But it is destined to be used by the computer in only one w a y : to execute the 
algor i thm. T h e r e are many other things that might be done with the algorithm: it might be 
s impl i f ied, it might be ver i f ied, it might be made more efficient, it might be general ized, it might 
b e unders tood , it might be used to illustrate a larger class of algorithms, it might be 
t r a n s f o r m e d to y ie ld a counter example to some problem, it might be used to evaluate the 
i n t e r p r e t e r of the algorithm, and so on. It is necessary to make the list rather long, s ince 
famil iar i ty w i th programming languages breeds acceptance of their single purposeness . This is 
s t r o n g l y built into the descriptions themselves, not just into the computers that i n t e r p r e t 
them: Note how few things humans will use a FORTRAN program for. 

A second feature should be noted: Most descriptions for use on computers lead to 
computat ions (i.e., the computer's use of them) that are one level more instantiated than the 
or ig inal descr ipt ion . We wr i te general algebraic expressions in our computer programs, but 
t h e y instruct the computer only to make numerical calculations. 

T h e r e is little caricature in the above, taken generally, though it is wide of the mark in 
s e v e r a l areas of computer science. Symbolic mathematical manipulation is done on a 
substant ia l scale; ver i f icat ion of programs, which implies their use symbolically, is an important 
f ie ld ; A I in general is committed to exploring symbolic reasoning in ways reflecting the multiple 
manipulations carr ied out b y humans. 

We are interested in the uses of descriptions of computer systems. Many computer 
languages have been developed to describe computers. But here the character izat ion g i v e n 
a b o v e stands. All these languages are essentially simulators. They take the symbol ic 
d e s c r i p t i o n of a computer system and pferform a single calculation, which is instantiated one 
leve l more concrete ly : to compute out a specific behavior path of the system g i v e n a 
complete ly speci f ied initial memory state (i.e., the exact bits). 

Simulation is in fact a useful thing to do with a description of a computer, but it is not 
t h e on l y thing to do. One also wants to design, analyze, ver i f y , abstract, maintain, debug , 
modi fy , e x p l o r e , understand, program, summarize, document, compare, classify, evaluate and so 
o n . 

T h e task of working with computer descriptions is more important to computer sc ience , 
b o t h p u r e and applied, than even the remarks made so far indicate. Many of our act iv i t ies, 
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b o t h intel lectual and practical, are performed in the context of specific computer systems, o v e r 
and o v e r again. T o pick only the most obvious example, repeatedly we program computers , all 
of w h i c h bear a strong family resemblance but differ in their detailed descriptions. G i ven the 
s t ream of new architectures, the problem is actually a pressing one. We need genera l l y to 
r i se a b o v e specific computers and deal with them relative to their abstract descr ipt ions. As 
human scientists w e often do this informally and even formally — on paper. But, as computer 
sc ient is ts know full wel l , the full assimilation of working at such a level of abstraction requ i res 
that w e learn to do it With computers. 

T h e s e remarks sketch out a research focus, one that is clearly in need of much 
e x p l o r a t i o n and offers many untrod paths, but not one that is totally new b y any means. As 
ment ioned, the thrust to do symbolic calculations and manipulations on computers is a 
p e r v a s i v e aspect of computer science and AI . This research area only proposes to c a r r y out 
that genera l program in the domain of computer descriptions. Even the specific goals w e 
c h o o s e be low are not new, for the field has been attempting to do automatic design and 
automatic compiler writ ing for a long time. This research only proposes to take a specif ic cut 
at this genera l area commensurate with current art, one that has better chances of success 
than p r io r t r ies and no doubt less chances than the attempts that will follow at some later 
t ime. 

With this general background we can now describe the particular research program w e 
h a v e out l ined for ourselves in this area. 

5.1.1 Goals 

T h e main goal of the SMCD effort is to create symbolic descriptions of computers that 
can be used in a wide range of tasks. [Barbacci 74] The approach must meet t h r e e 
requ i rements . First , it must be experimental, involving actual construction of programming 
s y s t e m s to c a r r y out the various tasks. Second, the tasks must be ones of actual importance in 
the conduct of computer science. This requirement is motivated as much b y the necess i ty to 
face the t rue sources of complexity and difficulty, as by the possibil ity for important 
appl icat ion, though this latter feature is not unwelcome. Third, there must be severa l such 
tasks of d i v e r s e nature to avoid the pitfall of again producing one-use computer descr ipt ion 
schemes. 

T h e second requirement, that of realistic tasks, implies that the total SMCD ef fo r t will 
conta in subef fo r ts of substantial magnitude and of a degree of independent importance that 
may r ival the overal l goal of SMCD in scientific and practical importance. It also implies that 
t h o u g h a number of small individual efforts will exist on various tasks for using symbol ic 
computer descr ipt ions, these larger ones will have to be launched only with due del iberat ion. 
T h u s , the number (and hence divers i ty ) of tasks (the third requirement) can g row only s lowly . 

T o g ive a feeling for the tasks we think potentially satisfy our requirements, w e 
p r o d u c e in F igure 5-1 a list of tasks adopted from the 74-75 proposal (which was the initial 
p r o p o s a l for the SMCD research effort) . Current ly , we are working on just two of these tasks: 
the Compi ler -compi ler (1) and the Design of modular systems (5). These two projects p r o v i d e , 
in e f fec t , t w o independent subgoals of the total SMCD effort , with their o w n independent 
sc ient i f ic merit. 

A goal of the project is to create the tools, both for analysis and synthesis , to p e r f o r m 
t h e s e tasks. It can confidently be expected that these tools, if created with sufficient c la r i t y , 
w i l l be major embodiments of what new computer science knowledge is deve loped b y the 
r e s e a r c h . 
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Figure 5-1: Tasks for SMCD 

(1) Compiler -compiler . A system that takes as input a description of a language and a 
descr ipt ion of a computer and outputs a compiler for that computer. G i ven the 
cur rent art , the language would probably be restr icted to be Algol - l ike. 

(2) Machine Relative System Programming. A software production facil ity that enables 
one to produce system programs such as editors, display programs, command 
languages, device handlers, e.tc. given the description of a machine. (Distinct f rom 
compiler -compiler because the type of program; distinct from automatic 
programming because the concern with the computer description, not wi th how the 
problem is specified.) 

(3) Ver i f icat ion of I/O Programs. Given an I/O program, such as a device handler , and 
a descr ipt ion of both the computer and the hardware device control ler , v e r i f y that 
the program works. (A specialization of the general verif ication problem, bo th in 
t y p e s of machines and types of programs.) 

(4) Programming of Microcoded Special Computers. The ability to create specia l i zed 
computers economically to perform particular narrow classes of algorithms (e.g., 
signal processing) poses an immense problem in dev ice -dependent one - t ime 
programming of highly optimized and hence difficult machines. The task is to 
construct programming systems that operate relative to descript ions of such 
machines. 

(5) Design of Modular Systems. Given a desired machine in terms of some specif icat ion 
language, and given a space of machines defined by a class of R T - l e v e l modules, 
design a machine according to various constraints and cr i ter ion functions. This is a 
classic design situation, and one that would be well wor th making progress on , bo th 
in terms of understanding the nature of design and in terms of automating 
computer design. 

(6) Design to Specification. Given a functional specification for a computer and a 
space of computer systems defined by a computer description language, des ign a 
computer that performs to the specification. This is another form of classical 
design task, where the starting point in a performance specification, not at h igher 
level s t ructure (e.g., the instruction set) 

(7) Design Verif ication. Given a specification for a computer and a descr ipt ion of that 
computer in the language, ver i fy that the computer satisfies the specif ication. 

(8) Manual Generation. Given a computer defined in a language, create the 
documentation for the computer, i.e., an operating manual, a maintenance manual, a 
general introduction, etc. This task is quite different from the ones above , but also 
involves understanding and manipulating a computer description. 
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T h e pr imary tool of course is the language (or languages) for describing computer 
s y s t e m s ( they are general ly called CDLs). It is a goal of the effort to design one or more CDLs. 
Th i s act iv i ty cannot, however , dominate the research effort , despite its seeming " logical" 
p r i o r i t y . Many CDLs have been created (and we ourselves have created some, namely ISP, fo r 
d e s c r i b i n g instruct ion sets and PMS, for describing the major hardware conf igurat ional 
s t r u c t u r e s ) . A n y attempt to put the design of a CDL at the top of the pr ior i ty list will s imply 
resu l t in pol ishing existing languages. Instead, the language design effort must be d r i v e n b y 
t h e major task ef for ts , i.e., b y an analysis of the types of uses (other than simulation) that the 
C D L must suppor t . 

A second tool is that of a good simulation system. Given the historical dominance of 
simulation as the unique task to be performed given a symbolic description of a computer 
s y s t e m , simulation canpot be taken as one of the major tasks to be performed (e.g, it does not 
a p p e a r in F igure 5 -1) . It is still an important task and must be performed well for any CDL 
that is deve loped . A requirement that is relatively new, is that that simulation be poss ib le 
w i t h mixed level descriptions, namely, with descriptions of computer systems that are not of a 
uni form d e g r e e of detail (some parts being described at a gross parametric level , some at a 
programming leve l , some at a register - t ransfer level and some at a crude (i.e., r i se - t ime) 
c i rcu i t level ) . 

A final tool -goal is that of providing an appropriate global data base so that many 
r e s e a r c h e r s can get access to the same body of data and techniques. With several somewhat 
independent research groups working it is important to find a way of making what one 
r e s e a r c h e r does available to others, not only as a general facility way , but in terms of 
encod ings of machines and the programs that manipulate them. 

5.1.2 C u r r e n t State and General Plans 

T h e SMCD ef for t started only in JJI74, with the overall goals we have just descr ibed . It 
n o w has a definite shape, given by the five subsections to follow: three on core tools , 
C o m p u t e r Descr ipt ion Languages, Variable Level Simulation and the Global Data Base; and t w o 
appl icat ion areas, Compiler-compiler and Machine Design with Module Sets. The specific plans 
a re g i v e n wi th each subsection. 

We do have an overall plan for how the research should develop. The d r i ve rs of the 
r e s e a r c h wil l be the major application tasks we take on. We have two now; w e will seek to 
add o thers as interest and talent offer the opportunities. The list in Figure 5-1 is suggest i ve 
o n l y , and w e would be happy to take on others. We have a predilection, stated ear l ier , fo r 
moving t o w a r d real ist ical ly -s ized programming and design tasks, but they must be good bets in 
terms of the probable light they will throw on basic computer science conceptual issues. We 
wi l l i terate the design of CDLs and other basic tools, but we see this as happening in r e s p o n s e 
to these applications, rather than proceeding in its own right. (Such a statement of r e s e a r c h 
intent is, of course , somewhat r isky, since research is in fact responsive fundamentally to g o o d 
ideas.) 

T h e SMCD research makes contact with a large fraction of central computer sc ience, 
espec ia l l y since some of the efforts that occur "within" it, that is, the arenas in which to attain 
the goals of SMCD, are within some other domain of computer science, which itself is of 
independent and fundamental interest. Thus research efforts supported b y other funds are 
l ike ly to become affiliated with SMCD, to the mutual benefit of both. This is already t rue of 
the p r e s e n t e f fo r t . The work on machine design with module sets is an independent focus of 
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an NSF grant ,* and part of their interest coincides with the application, area descr ibed be low. 
W o r k o n s t ruc tu red programming is the focus of another NSF grant,* for which the centra l 
in te res t is ALPHARD as a vehicle for exploring structured programming. However ALPHARD 
has become a main pillar of our effort to construct a new CDL. In all cases there is a need to 
r e t a i n an independent focus of each research effort. But even beyond the standard ( though 
important ) assert ion that such scientific cooperation is symbiotic, the SMCD pro ject needs such 
aff i l iations if it is to get a sufficient set of substantial d iverse applications going and 
maintained, each of which needs to be a first rate research effort in its o w n r ight. 

5.2 Computer Description Languages 

T h e goal* is to produce a language that can describe computer systems at all levels of 
abst ract ion . This include both vary ing levels and mixed levels within a single descr ipt ion. T h e 
language shall be computer manipulate, which provides the essential cr i ter ia against w h i c h 
success and fai lure can be determined. 

Exist ing CDLs, of which there are a great many, provide an essential ly adequate 
e x p l o r a t i o n into the basic representation of fully instantiated computer st ructures at the logic 
and R e g i s t e r - T r a n s f e r levels. Current work has not dealt successfully with higher levels nor 
w i t h mixed levels of abstraction. And, as we mentioned, the only use for almost all of these 
languages has been simulation. (Indeed, many of them are embeddings of descr ipt ive schemes 
in s tandard languagues such as FORTRAN and APL:) We ourselves tend to favor a P M S - I S P 
t y p e of notat ion, a language system we introduced for purely descript ive (as o p p o s e d to 
simulation) purposes several years ago. [Bell 70, 71] 

Our candidate CDL is ALPHARD. [Wulf 74] The central focus in ALPHARD is on stat ing 
abst ract ions of systems, 'to make possible execution of incompletely defined s t r u c t u r e s , 
ve r i f i ca t ion , and extension and manipulation to more complete definitions of sytems (i.e., 
s t r u c t u r e d defcign). The central language construct is the "form", which is a schema fo r 
def in ing an abstract component of a system, either process or a data structure. 

ALPHARD is semantically extensible, using the form. It also has a primitive control basis , 
w h i c h permits the descript ion of new control structures. The definition of new contro l is 
p e r h a p s the other greatest lack of existing CDLs (in addition to their being locked to a g i v e n 
leve l of instantiation). ( In fact the two are related, since there is no sense having too much in 
the w a y of var iable and mixed level descriptions if diverse control s t ructures cannot be 
adequate ly descr ibed. ) 

T o our cur rent w a y of thinking ALPHARD provides the right ingredients to add to 
ex i s t ing CDL langauge constructs to form the next non-tr ivial extension of CDLs. 

*Research on Computer Organization and Large Modules, NSF Grant [GJ32758X] , D. S iewiorek , 
pr inc ipal invest igator . The research has been going since mid 1972. About 840,000 of the 
g r a n t s u p p o r t s w o r k related to the Machine Design with Module Sets section of the SMCD 
r e s e a r c h . 
*Sof tware and Programming Systems, NSF Grant [DCR 74-04187], M. Shaw, W. Wulf and A. 
J o n e s , pr incipal investigators. The grant has just begun in late 1974. About 830,000 of the 
g r a n t is e x p e c t e d to support work related to the ALPHARD aspects of the CDL section of the 
S M C D r e s e a r c h . 
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5.2.1 C u r r e n t State and Recent Results 

We have a ful ly operational ISP compiler, with two versions (BLISS10 and BLISS11). It 
compi les into BLISS code of the appropriate type. This will permit experimentation pending an 
A L P H A R D implementation. 

ALPHARD specifications exist. We are using ALPHARD for manual analysis to i terate its 
d e s i g n . 

5.2.2 Plans 

We expect to construct an initial compiler for ALPHARD by compiling into the common 
in te rsect ion of BLISS10 and BLISS11 plus POOMAS. (POOMAS is a poor man's SIMULA on the 
PDP10, which was developed at CMU. It adds the simulation capabilities that are not par t of 
B L I S S cu r ren t l y . ) It will permit running on either the PDP10 or PDP11. This implementation is 
a s t o p - g a p solution to obtain a running version of ALPHARD rather quickly. It wi l l , fo r 
example , compile s lowly . We wiH eventually construct the compiler correct ly . We expect the 
speci f icat ion to be complete by May75, with implementation to follow direct ly . A date fo r 
complet ion does not make sense until the definition is completed, but the total job should not 
take much more than half a man-year. 

5.3 Var iable Level Simulation 

A v e r y good simulator is a requirement for SMCD. The simulator must be capable of 
simulating at any level of abstraction possible in the C D L It must, handle a mixed - leve l 
s imulation, w h e r e a system is described by an arbitrary mixture of levels. It must operate in a 
unifom w a y o v e r all levels. Finally, it must be highly efficient. Efficiency is requi red not o n l y 
because one wants to handle realistically large systems, but because in a mixed - leve l 
simulation it takes many cycles at the lower levels to produce consequences of interest at the 
h igher levels . 

Many simulators have been constructed, so many in fact that w e character i zed 
simulation as the single use of CDLs, and as the contrast point for the initiation of our o w n 
w o r k on SMCD. Thus, we do not count simulation as one of the uses to be made of a CDL in 
enumerat ing our d iverse applications. But it remains a critical tool, and one that we must have 
meeting the four cr i ter ia above. 

T h e task of obtaining a simulator would be strictly a tool building task, except for the 
requ i rements of mixed- level simulation and possibly for the requirement of eff ic iency. (We 
w o u l d in any event have to interface a simulator to our CDLs, e.g., ALPHARD.) There has been 
almost no w o r k in mixed level simulation (though we know of one effort ) , and this p resents 
some important problems in how to communicate results across the interfaces b e t w e e n 
d i f f e r e n t levels . Due to their recent availability, efficiency today is to be obtained b y using a 
microcoded computer. So far there have been few such simulators built. However , a p lethora 
of such simulators over the next few years can be anticipated. 

Our general approach is to translate into BLISS code from the CDL (ALPHARD). T h o s e 
aspects w h e r e interactive modification is needed will be run interpret ively ; compiling the 
B L I S S code wil l occur where appropriate; and the lowest levels of the simulation will be done 
o n a programmable microcoded machine to obtain the necessary speed. The simulator will be 
able to handle descriptions done to the gate and signal level. 
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5.3.1 C u r r e n t State 

T h e state of ALPHARD was covered in the CDL subsection. 

We are cur rent l y making a feasibility study of the two microcoded systems to which w e 
h a v e access. [Oakley 75] The MLP900 at ISI is used over the ARPANET is easy to genera te 
c o d e f o r this vert ical ly microcoded machine which has a wide data -word (36 bits) ; it is 
c o n s t r u c t e d in a fast technology and is a one -o f -a -k ind machine. The programmable 
microcoded PDP11/40, which has been discussed already under C.mmp, is an in -house machine. 
It is re la t i ve ly difficult to generate code for this horizontally microcoded machine, which has a 
n a r r o w d a t a - w o r d (16 bits); it is constructed of a somewhat slower technology, and the re are 
potent ia l l y many copies of the machine (both locally and at large). 

5.3.2 Plans 

We plan to complete the benchmarks on the MLP900 and the programmable microcoded 
11/40 b y Apr75 . These will serve as the basis for deciding which microcoded system to use. 
(We wil l make this benchmark study generally available.) The microcoded part of the simulator 
is not on the critical path for the simulator and we will develop a schedule when w e make the 
dec is ion . T h e simulator design will interact heavily with the compiler design so that h igher 
leve ls of abstract ion can be executed directly as compiled code. More detailed levels wil l be 
Simulated as a primitive sequential machine. Much will depend on the what w e find out about 
the ease of use of both systems. In any event we do not anticipate that this is more than half 
o f a m a n - y e a r of work . 

T h e general plans for the system is described indirectly in the discussion of the 
compilat ion of ALPHARD. 

5.4 Global Data Base 

A feature of the SMCD research is the gradual growth of several groups each t r y i n g to 
d o S M C D - r e l a t e d work. There arises then a problem about the common use b y these var ious 
g r o u p s of the tools and computer descriptions that have been generated. 

It is neither possible nor desirable to force all the tools and descriptions to be formed 
in a common language, either a common CDL or a common programming language. The d i v e r s i t y 
o f in terests will imply that the groups will use different programming languages (e.g., BL ISS , 
S A I L , L ISP, L* ...), and indeed these different languages may each tie into uses being made of 
them in o ther research efforts. (Like most other advanced computer laboratories, the C M U 
community is multilingual with over a half .dozen languages used substantially.) Even a s ingle 
C D L cannot be assumed, though .one is likely to be dominant to begin with (ALPHARD). CDLs 
a r e a topic of research and variant CDLs will get generated to t r y out new representat ional 
ideas. T h o u g h d ivers i t y is necessary, so is the need for using each others results. Encoding a 
l a rge computer system should only have to be done once, though it might be necessary to 
t rans late and embellish it for new purposes. 

T h e goal of this component of SMCD research, then, is to make the common use of 
resu l t s possib le . It is a tool effort . The essential idea is the creation of a common global data 
base in wh ich everyone 's CDL data structures can reside, and can be operated on b y 
programs coded in many different languages. 
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G iven the incompatibility of different representations of the same thing, there is no 
magic common data structure that can encode information in arbitrari ly di f ferent languages. 
M o r e p rec ise ly , a common data structure (e.g., bit arrays) is so elementary that it assures 
noth ing about inter -usabi l i ty . The best one can do, it seems, is to prov ide a faci l i ty w i t h 
common e lementary handling and display functions, with the ability to create shared 
representa t iona l s t ructure to any desirable depth, and with good facilities for mapping 
rep resenta t ions in one structure into another. To this must be added the abil ity to let 
p r o g r a m s in any programming system operate on the data structures of the global data base. 
Th is requi rement , again, cannot be guaranteed in advance for unknown programming sys tems, 
b u t cer ta in l y can be for the common programming systems in the environmment. 

T h e condit ions set for th above still pose a challenging software puzz le , whose d e g r e e of 
so lu t ion is uncertain. Thus we envision a succession of experimental global data bases, as w e 
t r y to obta in as much commonality with ease, as possible. 

5.4.1 Plans 

We c u r r e n t l y are planning a global data base in L*. An experimental vers ion should be 
u p and running b y Jul75. This effort is not on the critical path for any of the main activit ies of 
S M C D , such as ALPHARD err the substudies for the Compiler-compiler and machine designs w i t h 
module sets . 

5.5 Compi ler -Compi ler 

T h e goal is to construct a production-level compiler-compiler that operates f rom a 
d e s c r i p t i o n of the target computer. The source language will be a standard algebraic 
language. This is the only t ype of language for which there has been extensive development 
of compi ler -compi lers . 

T o be. more specific, the system shall take as input: language syntax; language axioms 
that descr ibe the semantics; a machine description (in a CDL); and machine axioms that 
d e s c r i b e the behavior (which also will be expressible in the CDL). It will produce a compiler 
that t ranslates source language to the machine language of the target machine. (What machine 
the compiler itself runs on is an independent matter, it can be on a third machine itself o r on 
the target machine, though the latter clearly takes two cycles of the system.) The code that 
the compiler creates shall be production quality, i.e., of the quality of B L I S S i l or F O R T R A N - H 
and bet te r than assembly language programmers produce for tasks of moderate s ize. 

T h e problem of compiler-compilers is an old problem in the area of programming 
languages, act ive some years ago and not currently receiving much attention. Such t ranslator 
w r i t i n g systems (including variations which are more system generation tools than total 
automatic systems) are in routine use, especially for producing compilers for s tandard 
languages such as FORTRAN on new machines. The chief limitations are that they w o r k o n l y 
o n convent ional algebraic languages, that the compilers so produced generate low qual i ty 
c o d e , and that they are tailor-made for a given target machine. The present w o r k thus 
p r o p o s e s to leave basically untouched the scope of the languages accepted, but to push the 
o t h e r t w o limitations substantially. The code quality issue, in particular, seems a requirement 
to make the research results of genuine applied interest 
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5.5.1 C u r r e n t Structure and Recent Results 

T h e BLISS11 compiler provides a statisfactory model on which to base a c o m p i l e r -
compi ler e f fo r t . As has been mentioned, it does produce highly optimized code and in c reat ing 
it w e have attended in some detail to the question of how to obtain high quality compilation. 
A monograph on BLISS11 has just been published, describing this [Wulf 7 5 J T h e genera l 
s t r u c t u r e of the BLISS11 compiler is shown in Figure 5-2 . Thus, we start the research into 
a machine - re la t i ve compiler-compiler with what we believe is an adequate position along one 
o f the crit ical dimensions, namely how to produce high quality code. This is an e x t r e m e l y 
important point wi th respect to the total chances of success on the total e f for t . 

Figure 5 - 2 : Structure of the BLISS11 compiler 

L E X S Y N F L O 
Inputs source program in character string form 
Performs lexical analysis 
Processes declarations 
A n a l y z e s syntax to produce parse tree 
A n a l y z e s f low of control and data 

D E L A Y 
Determines the features that can be used to simplify code 
Estimates the cost of each program segment 
Determines the order of evaluation for expressions 

T L A , RANK, PACK 
Al locates memory locations, both fast registers and memory cells. 

C O D E 
Produces locally optimal code for each node in parse tree. 

F I N A L 
Analyzes , actual code produced by CODE to eliminate inefficiences 
Outputs final listings and code files 

As mentioned e lsewhere, BLISS11 .became fully operational in 74, and is rece iv ing 
e x t e n s i v e use .locally (on C.mmp, HDYRA, etc.). BLISS11 is also a DEC supplied and maintained 
s y s t e m , so that it is available to PDP11 users generally and is receiving wide use. Thus , w e 
h a v e substantial confidence in this basic component of the new research ef for t . 

With an overal l st ructure in hand, the important problems are to d iscover how to do 
e a c h of the parts of the task, given only a description of the computer, rather than (as in 
machine-spec i f ic compilers such as BLISS11) having knowledge of the target machine permeate 
t h e compiler , code itself. We are current ly considering three of these problems in some detai l . 

Ana lys is of the ISP structure of the machine (i.e., its instruction set) to d i scover the 
c o d e sequences that provide the potentiality for optimization. Optimization is poss ib le 
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p r e c i s e l y because there is more than one way to code a desired function. All instruct ions 
se ts , especia l ly r ichly endowed ones, provide many special ways of doing things and an 
important par t of "understanding" a specific machine is to know these. The object ive here is to 
p r o d u c e a running computer program that carries out the d iscovery procedure . A thesis o n 
this topic is complete [Newcomer 75} 

T h e so -ca l led register allocation problem in compiler design is how to use a limited set 
o f fast reg is te rs , minimizing the amount of extra processing that has to be per fo rmed to 
shuf f le data in and out of these registers. The problem for the current research e f fo r t is to 
do this for a rb i t ra ry t ypes of machines, where the limitations on the scarce resources ( the 
r e g i s t e r s ) may be of various types. A thesis on this is in mid-stream. 

T h e F INAL pass of the BLISS 11 compiler (see Figure 5 -2) does what is called " p e e p h o l e " 
opt imizat ion , looking at the final code and finding ways to improve it locally. T h e r e are a wel l 
k n o w n col lect ion of techniques for doing this. The problem for this research ef for t is how to 
do such peephole optimization having only a description of a machine. There is a thesis on 
this in mid-stream. 

T h e s e three subtasks illustrate the point that, having a framework for the total compiler 
orgianizat ion, w e are able to put the major part of our attention into detailed studies of the 
v a r i o u s components. Such indepth analysis is an absolute requirement for producing, not just 
a machine - re la t i ve compiler-compliler that turns over , but one that produces high qual i ty code. 

5.5.2 Plans 

One of the three areas (Analysis of ISP structure) is finished. The other t w o h a v e 
e x p e c t e d completion dates of Dec75. These three constitute an important fract ion of the 
funct ions in F igure 5 - 2 , but not all. The additional ones, e.g., syntax analysis, must be init iated. 
W e expec t to get the rest of them underway during the spring of 75. Their exact complet ion 
dates cannot be specif ied in advance, though none of them are more difficult than the ones w e 
h a v e done, e.g., about a man-year of effort once the problem is structured. 

We will design and specify an initial version of the compiler-compiler after the pieces 
a re p r e t t y much available. We will initiate that during Fall of 75. This could produce a ta rget 
date for the f i rst vers ion of the compiler-compiler of Aug76. The style of operat ion will be to 
s ta r t w i th a system with heavy manual intervention and then gradually eliminate the manual 
components as the task becomes successively better understood. (This design phi losophy of 
incremental simulation is being used successfully in many complex systems, e.g., in the B B N 
SUS. ) One effect of this methodology is to make it unclear just when a system becomes 
operat iona l . 

T h e f i rst testbed for the compiler-compiler will probably be the re- implementation of 
BL ISS10 . T h e r e are several reasons for this choice: (1) We understand both the language and 
machine thorough ly ; (2) the existing implementation will provide a standard against which the 
qua l i t y of the result ing code can be compared; (3) the current implementation of BLISS10 is 
f a i r l y o ld , represent ing our first attempt at a Bliss compiler, and it would be nice to redo it in 
a n y case; and (4) the compiler-compiler will be coded in BLISS, hence it should be s e l f -
compilable. T h e last point implies that by altering the machine description it should be 
poss ib le to have the compiler-compiler compile itself for another machine. Thus the 
implementat ion ,should prov ide both a test of the ideas as well as an exportable sys tem 
avai lable for d i rect use in other environments. 
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5.6 Machine Design with Module Sets 

T h e basic goal of this component of the SMCD research is to design computers 
automatical ly from module sets. [Siewiorek 72, 74] This involves a combination of s yn thes i s , 
analys is and housekeeping techniques applied to a developing computer descr ipt ion. 

t h i s is a vers ion of. a classical computer science goal. Its fundamental just if ication l ies, 
o n the p u r e s ide, in the understanding of computer structures that will come through analyz ing 
the i r s t r u c t u r e to the point of being able to synthesize them. On the applied side, it lies in the 
benef i t s of speed , reliabil ity and cost that can come from successful automation. 

T h e focus on module sets reflects the current state of the art of digital techno logy . 
What manufacturers produce today, under the impress of MSI and LSI technology , are 
col lect ions of large functional units. Except in rare cases, the designer of a digital systems is 
faced w i t h at most a two stage design process: first, the selection of a module set f rom among 
a small set of alternatives made available by semiconductor manufacturers; second , the 
assembling of these to do the desired task. Thus module sets are the natural g ivens fo r the 
automatic design task. 

Much attention has been paid to the automation of computer design and a w ide 
s p e c t r u m of w o r k fits under its rubric. The design problems of interest here can be seen f rom 
enumerat ing what is g iven about the design and what is desired, what are the t y p e s of 
modules that can be employed, and what are the evaluation criteria. 

For problems: 

(1) Given the ISP description of the final system and the module set , obtain 
an implementation of that machine. 

(2) G iven functional and performance specifications for a task, obtain an ISP 
descr ipt ion of the desired machine. The module set may be a conditioning 
side factor influencing the ISP indirectly. 

For components: 

(A) Closed sets of register transfer modules, such as RTM (the DEC PDP16) 
or Macromodules. 

(B) Open sets of register - t ransfer level components, such as the T I 
Handbook. 

(C) Higher level (PMS level) e x p o n e n t s , such as CMs (Computer Modules) 
and computers -on -a -ch ip . Here the units all have programmed control of 
some sort . 

Fo r evaluat ion cr i ter ia: 

( i ) Cost (ii) Speed (iii) Reliability ( iv) Testability (v ) Chargeabil ity 

T h e design task becomes successively more difficult and less well understood as w e g o 
up each scale successively , e.g., a ( l ) - ( A ) - ( i ) problem is the easiest and a ( 2 ) - ( C ) - ( v ) p rob lem is 
h a r d l y unders tood at all at this stage. We are interested in this entire space of des ign 
p rob lems , though w e are working from the better understood end. 
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From an applied v iewpoint , several aspects of the current practical w o r l d of computer 
des ign and construct ion are relevant to the present research. Because of rapid evo lu t ion , 
t h e r e is a great need to attain independence from any specific technology. This is the 
h a r d w a r e analogue of the problem of having to program a succession of new machines. Th is 
same rap id rate of evolut ion increases the need to shorten the delay time b e t w e e n the 
in t roduct ion of a technology and its effective use in new computing systems. A n ef fect that 
comes f rom the associated decrease in the cost of technology is the role of ad -hoc and o n e 
time designs, of ten for exp loratory purposes. These need to be done much more rap id ly , if 
the potent ia l i ty of the improving technology is to be actualized. 

In concordance with the attitudes expressed elsewhere in this pro ject , w e are 
i n t e r e s t e d in tackling realistic designs. Our motivations are, in part, that only b y accepting 
real problems does one avoid missing the true difficulties, e.g., as can happen b y making a bad 
abst ract ion In par t , there is also a desire for our research to have applied consequences. 

5.6.1 C u r r e n t State and Recent Results 

We have developed a system, EXPL,* in which design specifications for specific r e g i s t e r -
t r a n s f e r module sets can be explored using heuristic goal -or iented techniques. [Barbacci 7 3 ] 
EXPL engages in modifications of the control flow of the system in o rder to obta in 
opt imizat ions (actually, design is done in terms of trade-offs between cost and performance) . 
EXPL is fu l ly operational (late 73). It is tied to a specific module set, RTMs. 

A s tudy has been completed of variability in data structures (at the r e g i s t e r - t r a n s f e r 
leve l ) . This is independent of any particular module basis. It has not been implemented in a 
s y s t e m . 

5.6.2 Plans 

We are investigating the extension of EXPL to Macromodules, the other main r e g i s t e r -
t r a n s f e r level c losed module set. This will force us into a major act of abstraction, and is 
important in attaining general i ty in this approach. We can expect to have such an ex tens ion 
b y May75. That is, it should be capable of producing designs for the same class of problems 
as EXPL now produces with RTMs. 

A test for well st ructured control flow (deadlock free, live) that se rves to check 
candidate descr ipt ions is in the advanced debugging stage and should be available b y May75. 
A simulator, a microcode generator (for an RTM microcode control ler) , and an RTM w i r e - l i s t 
g e n e r a t o r will be completed by Aug75. A testability measure, which correlates wel l w i t h 
actual test generat ion effort , has been developed and should be running b y Aug75. 

B y Dec75 w e intend to have a system that incorporates all the above programs. G i v e n 
a descr ip t ion in ISP a design, in terms of a wiring list (RTMs or Macromodules) or microcode 
( R T M ) , will be deve loped according to designer-given trade-offs in cost, speed, and testabi l i ty . 

*EXPL and, in general , the work in this area prior to the initiation of SMCD, have been ca r r ied 
out under NSF Grant GJ32758X, mentioned earlier. The division of labor be tween the NSF 
Grant and SMCD is that the NSF grant is centrally focussed on understanding computer des ign 
and the s t ruc tu re of module sets; SMCD is centrally focussed on understanding the w a y s 
computer descr ipt ions can be manipulated. Each instance of an application of SMCD, such as 
this Machine Design subproject , must be driven mostly by its own problems, not b y the 
ind i rect goal of obtaining another diverse use of symbolic computer descriptions. 
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A simulation will be possible and the well structuredness of an algorithm will also be 
g u a r a n t e e d . 

We are beginning the design of a second iteration of the total reg i s te r - t rans fe r leve l 
s y s t e m fo r computer aided design. This system must show the ability to : (1) w o r k w i t h 
v a r i a b l e module sets; (2) optimize over control flow; and (3) to optimize o v e r data f low. We do 
not h a v e wel l g rounded expectations yet for how large a system it should be able to des ign 
(measured , say , in terms of number of modules in the final design). EXPL produces designs of 
t h e o r d e r of 50 control steps and a dozen data modules, which is enough to reach s tudent 
e x e r c i s e s in reg is ter transfer design (e.g., in [Bell 73]. 1973). An order of magnitude g r e a t e r 
than that exceeds the domain in which special purpose register - t ransfer module systems are 
pract ical in today 's market. We expect to have an initial specification document b y A p r 7 5 . 

A leading candidate for the structure of this system is the Independent C o - o p e r a t i n g 
K n o w l e d g e Sources structure being developed for Hearsay-2. The same conditions seem to 
p r e v a i l , namely that there is a large number of types of knowledge each of which must be 
r e p r e s e n t e d and handled on its own terms. One desperately wants to be able to build such a 
des ign sys tem and then to add to it new knowledge sourcess whose detailed s t ructure was not 
ant ic ipated in advance, and to revise radically existing knowledge sources — all the whi le 
keeping a system which always does the best with what its got. The data s t ruc tu res 
a p p r o p r i a t e to computer representation and to speech (in the Hearsay -2 global data base) are 
suf f i c ient l y d i f ferent that it seems doubtful that one can capitalize on the actual p rog ram 
s t r u c t u r e . But the design itself may follow v e r y similar lines. 

5.7 Resources 

This research area draws upon the contributions of four to f ive faculty members at 
v a r i o u s levels of ef for t . There is one research associate and 13 graduate students ass igned 
to it. This grouft totals only about 127, of all budgeted personnel expenses. The largest 
s u b a r e a is the computer description language devleopment, ALPHARD, which involves t h r e e of 
the facul ty , the research associate and two graduate students. No additional manpower is 
r e q u i r e d on this ef for t . The compiler-compiler subproject is supported solely b y graduate 
s tudents . Should there be a need to produce earlier results here, it would requi re additional 
manpower in the form of a research associate and/or staff programmer. Similarly, the var iab le 
leve l simulation subgoal is present ly primarily a graduate student effort . Machine design w i t h 
module sets is again supported by a larger, more diverse group including some ef for t b y t w o 
facu l t y and .several of the hardware oriented graduate students. 

T h e individual efforts applied under this proposal to this area interact but do not 
o v e r l a p w i th t w o NSF grants in the department. Machine design with module sets relates to 
e f f o r t s under Research on Computer Organization and Large Modules and the ALPHARD g r o u p 
interact w i th the ef for ts of an NSF grant for Software and Programming Systems. 

T o date, SMCD research has been adequately served by the PDP10 facil ity, absorb ing 
about 117* of it.- Its needs should continue to be adequately covered except for some poss ib le 
requ i rements for special facilities: large memory for global data base work , network use of 
t h e MLP900, and perhaps additional or alternate microprocessors. 
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6. FACILITIES 

6.1 Introduction 

T h e computational facility provides a range of computational resources to the Computer 
Sc ience research community. In general, resources are available for whatever r e s e a r c h 
d i rec t ions are being pursued. 

F igure 6-1 summarizes the current configuration of the facility. It consists of t w o 
large PDP10 KA10 systems, connected to the external world by a communications p rocesso r 
(C.communication) and by the IMP to the ARPANET. C.mmp is listed to make the p ic ture 
complete , although it does not yet provide generalized computing. Essentially, it is still in a 
deve lopmenta l state though it has user time scheduled. 

6.2 C u r r e n t State 

T h e t w o PDPlOs systems are mature, running 997, of a scheduled 22 hour day , 7 day 
w e e k , for a user community of 250. We have just begun to get response measures (as 
o p p o s e d to load measures, which have always been available) from our system. Table 6 - 2 
g i v e s a few statistics. The average response times of 2.2 seconds during the peak p e r i o d 
c o r r e s p o n d to a fair ly high fraction of annoyingly long delays even when doing tr ivial things 
(wai t ing for editor response, sending a mail message, etc.), say above 10-15 seconds. 

T h e C.communication is just becoming operational (Jan75) and it still handles only a part 
of its intended function. 

In terms of s ty le of operation, the systems run totally in interactive mode. We use the 
p r i n t e r s p r e t t y much for immediate scratch work, all permanent material is produced on the 
X G P p r in te r (as was this proposal). 

6.3 Plans 

T h e exist ing PDP10 systems are essentially complete, except for additional disk space. 
We intend to upgrade our 6 RP02s to RP03s, which essentially doubles our amount of space 
p e r disk and adds a total of 30 megawords. 

C.communication requires piodest upgrading. An IMP interface would re l ieve the C M U 
hosts of Te lnet protocol overhead. This would actually be significant since there is h e a v y net 
t raf f ic b e t w e e n the 10A and 10B systems. Also disk storage is needed fo r 
t ranscr ipt ion/ro l lback of terminal i/o scrolled off small-window video terminals. This faci l i ty , 
w e be l ieve , would permit more use of video terminals in offices (where they are essent ia l ly 
p u r e s o f t - c o p y devices) , with a consequent increase in productivity. No funds are included for 
this in the cur rent budget, due to the pr ior i ty of completing C.mmp. 

T h e 10B system contains 5 of the high quality graphics terminals, which are used 
pr imar i l y for speech and vision research, and are available only incidentally for others . We 
n e e d at least one additional high quality graphics terminal for the 10A, to sat isfy a s t rong 
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Figure 6-1: Facility configuration 

PDP10 Systems 
> PDP10A 

> KA10 Pc 
> 2 4 0 K M p 
> 800K Swapping Drum 
> 60 megawords DSK 
> 5 Dectapes 
> 2 Magtapes 
> IMP host connection 

> PDP10B 
> KA10 Pc 
> 2 5 6 K M p 
> 800K Swapping. Drum 
> 70 megawords DSK 
> 5 Qectapes 
> 2 Magtapes 
> IMP host connection 
> Real-t ime speech devices (ADC, DAC, ZCC, AMS) running at 20kHz 
> Link to l l . X G P 

> User system interface 
> Embellished TOPS-10 operating system 

> Full Telnet and FTP protocol implementation 
> C M U graphics support 
> Real-time devices and scheduling support 

C.mmp cur ren t state (Mar75) 
> Processors 

> 5 P D P l l / 2 0 s functioning 
> Designing P D P l l / 4 0 relocation box, cache and modifications for 5 P D P l l / 4 0 s 

> Pr imary Memory 
> 700K available on 12 ports 

> 512k on 11 ports functioning Dec74 
> Swi tch 

> 16x16 operating routinely 
> Secondary Memory 

> Paging disk: 4 of 7 IMS disks (2*10 6 words) operational 
> Disks for secondary storage: 2 RP03s (40 megawords) 

> Communication 
> 2 4800/300 baud links to PDP10A 
> F r o n t - e n d connection via 4800 baud asynchronous lines 
> IMP connection under development 
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Figure 6 -2 : Facility Performance and Capacity 
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A v e r a g e time users wait for their jobs to do terminal ouput after either a command is issued 
to r u n a j o b , or terminal input is given that removes the job from terminal input wait state. 

demand for such a terminal from the non-speech part of the user community. Again, no funds 
h a v e been included for this. 

As far as regular terminals are concerned, we continue to acquire a small number each 
y e a r , p rov id ing a gradual transition from a purely teletype environment of a few years ago. 
T h e most important terminal at this time is the portable hardcopy terminal* which can be used 
at home in the evening. Distributing these to heavy users produces a noticeable shift in thei r 
comput ing to the late night and early morning hours, with a consequent relief of computing 
d u r i n g the peak daytime and evening periods. T h u s , these terminals actually genera te 
inc reased computational efficiency, of the facility. We include a small number of such h a r d c o p y 
terminals along wi th the addition of a few alphanumeric terminals. 

6.4 Resources 

Operat ion and maintenance of the facility accounts for 187, of the total personne l 
budget . This includes hardware maintenance of all equipment from processors to terminals, 
and operat ions on a 24 hours per day, 365 days per year basis. The composition is the 
equ iva lent of 3.6 members of the programming staff, 5.3 from the engineering g r o u p and 2 in 
o p e r a t i o n s , w i th corresponding part -t ime budgets in each area. 

Approx imate ly 127 of the PDP10 facility is used in maintaining the total facil ity. Th is 
includes the cost of system modification, generation, accounting, batch and pe r iphera l 
p r o c e s s i n g programs, and ARPA network server functions. 



70 CMU Proposal to ARPA 7 5 - 7 6 

7. COMPLETION OF CMMP HARDWARE 

T h e major equipment is concentrated almost exclusively on t ry ing to complete C m m p . 
T h e items in the budget all meet the needs discussed in the proposal p r o p e r ( C m m p 
Resources ) . T h e size of the acquisition shown below for Cmmp is dictated b y the imposed 
limit o n the s ize of the total budget and not by the nature of Cmmp itself. We present on the 
n e x t page a supplementary budget that gives the remaining items w e would like to obta in f o r 
C m m p . 

3 8 8k Memory modules 1,300 49,400 
300 k more, prov ides 1M words 

4 P D P l l / 4 0 ' s 11,696 46,784 
br ing Cmmp level up to 13 processors 4 l l/20*s, 9 
1 l/40's 

8 11/40 Cmmp mods 5,000 40,000 
re loc , local clock, p r o c mods, cache (4 for above 
1 1 / 4 0 % 4 for other 11/40's in house, one will be done 
on 7 4 - 7 5 budget) 

2 w r i t e a b l e control stores 4,800 9,600 
simulation shows up to a factor of two performance 
increase o v e r standard 11/40 (obviously depending 
upon special ized function utilization) 

1 full duplex D R U B 11 to l l ' D M A intf. 5,292 5,292 
for A I - 1 1 to Cmmp 

2 full duplex D R U B 11 to 11 DMA intf. 5,292 10,584 
for f r o n t - e n d to C.mmp 

1 DEC RP04 disk control ler 6,397 6,397 

1 DEC RP04 disk dr ives 23,310 23,310 
(100 million bytes ea.) 

5 V ideo terminals 3,150 15.750 

Tota l 207,117 
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T h e supplement below will yield a completed configuration for C.mmp. The c o n v e r s i o n 
to all P D P l l / 4 0 s will maximize the capacity and cost effectiveness of the architecture. We 
also need to attain a swapping ratio of 4-5 to primary memory. Further expansion of the disk 
s y s t e m and a small increment in allocated video terminals will serve to make C.mmp a more 
i n d e p e n d e n t l y operational system by reducing its reliance on PDP10 facilities. 

T h e itemized list below describes and budgets these items in order of descending 
importance to achieve a complete system. 

4 P D P l l / 4 0 s 11,696 46,784 
Upgrade 11/20's enables writeable control stores on 
all p rocessors permitt ing free distribution'of operating 
sys tem functions among them. Allows cache 
implementation on all processors. Reduces maintenance 
costs b y increasing replication. Upgrades system to 14 
1 1 / 4 0 V 

4 11/40 C m m p mods 5,000 20,000 
Reloc, local clock, processor, mods, cache for above. 

4 Wr i teab le control stores 4,800 19,200 
For above processors. Simulation shows up to a factor 
of t w o performance increase over standard 11/40 
(obv ious l y depending upon specialized function 
uti l ization). 

2 IMS swapping disks 12,000 24,000 
500k w o r d disk and controller 

1 DEC RP04 disk dr ives 23,310 23,310 
(100 million bytes each) 

3 High performance video terminals 

Tota l 

3,150 9,450 

142,744 
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8. RESEARCH INTO MULTIPLE COMPUTER SYSTEMS 

8.1 Introduction 

W e wou ld like to obtain funding for continued explorations into computing wi th multiple 
computer s t ructures . 

We need to prov ide one additional item of background information to add to the v i e w of 
o u r r e s e a r c h as seen in the main body of this proposal. Then we will lay out the total 
p r o p o s a l d i rect ly , re ly ing on the general background to guarantee that our aims are scientif ic 
and that the qual i ty of our science is to be respected. After that w e do prov ide a list of the 
major t y p e s of scientific questions to be asked in multiple computer research. Final ly w e 
p r e s e n t a budget . 

8.2 C M Machine 

We are cur rent l y involved in one attempt to move ahead with the invest igat ion of 
multiple computer structures. [Fuller 73]. We are in the ear ly stages of the des ign and 
cons t ruc t ion of a 100 processor system with processors of the size of a PDP11/20 (0.18 
MIPS) . This is part of the research effort to understand modules for computer s t r u c t u r e s , 
in i t iated in 1972 b y Gordon Bell, Dan Siewiorek and Sam Fuller and supported b y a small NSF 
g r a n t . T h e name g iven to the structures they have investigated are CMs, for Computer 
Modules . T h e ef for ts under NSF grant GJ-32758X are about equally divided be tween des ign 
automation and modular computer structures. The current effort is being carr ied out jo in t l y 
w i t h DEC, who is supplying the physical structure, using one of their c u r r e n t L S I 
implementations of the PDP11 (which realizes the computer in f ive chips). 

T h e s t ruc ture , which is now undergoing detailed design, essentially consists of t w o 
t y p e s of components. First , the computer module: an LSI 11 with 4K to 32K of memory; and 
s e c o n d , a component which acts as the in ter -CM switch, mapping memory requests across the 
s t r u c t u r e . T h e switch component is being designed around the Intel3000 microcomputer chips 
set . T h e s t ruc tu re permits an arbitrary number of computers to be interconnected in a w a y 
that lets them share an address space, hence be a multiprocessor organization. T h e r e wil l be 
a cost associated with more distant communication, so that issues of programming locality wil l 
b e of the essence. This is in contrast to the classical multiprocessor architecture in w h i c h the 
random access character of the address space has to be carefully p reserved at the h a r d w a r e 
leve l . W e attach a summary of an initial design exercise as an appendix to this sect ion . 
A l though the cur rent design is slightly different from those in the appendix, w e only intend to 
c r e a t e a f lavor for CMs sufficient for the remaining discussion. 

We expect to come up with a 10 processor version of the system in one y e a r and, if 
that goes wel l , to move to a structure with about 100 processors in another 18 months after 
that . 

T h e sor ts of tasks that we will be investigating on the C M machine are similar to the 
benchmarks and application systems discussed for C.mmp. We do not y e t have a major 
appl icat ion as a d r i ve r for the structure, in part because the design has remained h ighly 
v a r i a b l e as w e have i terated with different technological specifications. 
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8.3 T h e Proposal 

We can now express succinctly the essential points of this supplemental proposal . T h e 
main proposa l has discussed the basic research issues about multiprocessors in the context of 
C m m p . T h e s e issues apply equally to multiple computers generally. The main proposal has 
also p r e s e n t e d evidence about our way of approaching such research problems. 

(1) Multiple small mass-produced LSI computers potentially prov ide an o r d e r of 
magnitude improvement in cost-effectiveness over conventional uniprocessor computer 
sys tems. 

(2) We know almost nothing about how to realize the gains of such systems. T h e 
t e c h n o l o g y , wh ich keeps moving ahead, adds to what we know nothing about b y creat ing new 
archi tectura l possibil it ies. What we want to know is how to create useful total user systems 
w h i c h real ize the cost -performance gains attainable with LSI memory and microprocessor 
components . 

(3) What is needed is to obtain substantial amounts of experience with such s t ructures . 

(4) T o be worthwhi le , that experience must attend to all aspects of the problem the 
a rch i tec tu re , the operating system, the software facilties, the task decomposition and analysis , 
the total system reliabil ity, and the measurement and analysis of performance. By "at tend" w e 
mean "attend scientifically", which implies taking each aspect as a research concern , and 
p roduc ing f i rst rate computer science by studying it. We can do no better than to assert 
C.rmnp as our model of what such total attention amounts to. It implies, we assert, the sor t of 
f e d e r a t e d research effort seen there. 

(5) T o be worthwhi le , each proposed computer system must be the focus of an attempt 
to do at least one substantial task — one that represents independent accomplishment, e i ther 
scient i f ic or appiied. This provides the guarantee of relevance. With Cmmp the SUS 
appl icat ion plays this role. And in general at CMU other significant computer science tasks are 
be ing formulated and solved within the same environment in which the new machines are 
being being conceived. Cur rent ly an image understanding system (IUS) is being cons idered as 
a potent ial dr iv ing application. 

(6) T h e r e cannot be simply one multiple computer system built. C.mmp tells us 
something about the classic multiprocessing structure; it is only one point in a design space. 
As success ive variations and improvements of technology and architecture show up, they pose 
qui te d i f ferent limiting aspects and offer quite different possbilities for solution. A s ingle 
r e s e a r c h organizat ion, such as CMU, must move deliberately in advancing from system to 
s y s t e m , so as to use each system as an occasion for scientific progress, and so as to ana lyze 
the e n d - p r o d u c t use of each machine. Withal, there must still be a cycle time for permitt ing 
the next system structure to take shape. This period is determined in part b y the rate at 
w h i c h aspects of the technology change. 

(7) The cur rent technology implies that substantial experimental systems can be 
d e v e l o p e d for modest costs in an environment which has the facilities and expert ise . This is a 
radical change over even a few years ago. A reasonable way to estimate this is p r o b a b l y b y 
d i rec t ha rdware costs, from which other costs can be reasonably guessed. We expect the C M 
s y s t e m now being designed to have a total hardware cost (for the 100 processor system) of 
about $360K. If funded appropriately it might have a total cost (hardware, sof tware , s u p p o r t , 
and c o r e research) over its development lifetime of 8900K. (These cost estimates are r o u g h , 
t h o u g h more accurate ones could be developed.) 
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(7.1) If experimental systems prove to be interesting and cost e f fect ive 
then it might be appropriate to initiate an effort to build much larger 
systems (e.g. a 1000 processor multiple computer). Such an e f fo r t , 
natural ly , would cost substantially more than indicated here. 

(8) We are not fully supported for the investigation of the C M machine. Indeed, g i v e n 
o u r goals for the breadth at which such research should be done, we are not e v e n adequate ly 
s u p p o r t e d . For instance, we have no resources of our own to purchase the hardware ; thus w e 
cannot make appropr iate choices at times of component selection. There are no full time 
p e r s o n n e l associated with the project (such as Research Associates, programmers, eng ineers ) . 

(9 ) Thus , w e propose that we be provided funds sufficient to c a r r y out the p r e s e n t 
exper imenta l system at an appropriate level and to prepare for the next investigation. T h e 
essent ia l ingredients seem to us to be: 

(9.1) For each system that \Ve wish to attempt, we will develop a detailed 
technical proposal that deals with all of the aspects of the problem: 
architecture, operating systems, software facilities, task decomposit ion, 
rel iabi l i ty and performance measurement and analysis. 

(9.2) The presumption is that a suitable proposal can be developed for each 
system. Thus, we can proceed with the timing of the design and 
development without taking the long lead times that are required for the 
approval of a design effort when approaching a funding agency as an initial 
contract or grant. However, it will be possible to deflect a part icular 
pro ject if the proposal is unsuitable. 

(9.3) There will be driving tasks associated with each system, to be part of 
the proposal , as described above. The tasks for such designs can be 
selected and negotiated to meet a set of mutual goals. (We are cu r ren t l y 
beginning a year study for the Defense Communication Agency to exp lo re 
the application of multiple processor systems to digital Communication 
networks. ) 

(9.4) We plan to actively work on the Computer Module system for at least 
three years . Subsequent multiple computer studies may well take us 
b e y o n d three years , but a minimum duration of three years is needed in 
o rde r to assure we can push the C M machine well beyond the hardware 
development stage and into a phase where we can address the problems 
and opportunites associated with the end use of the multiple computer 
system. 

(10) We are proposing here to seriously explore the multiple computer design space ; to 
o n l y p r o p o s e to s tudy Computer Module systems (as we now understand them) would limit the 
p r o j e c t too much in scope to be assured we are addressing the major issues and al ternat ives . 
B e l o w w e list severa l topics that need to be explored and may well form the c o r e of 
exper imenta l systems beyond the Computer Module system proposed here. Items wil l 
c e r t a i n l y be added to this list as we gain more experience with C.mmp and Computer Modules. 

(10.1) In both C.mmp and now Computer Modules we have limited the 
architecture of the central processor to the PDP11 instruction set. T h e r e 
have been good reasons for this: primarily, there exists good sof tware 
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development on the P D P l l , However, on a number of counts the 11 
architecture is too constrained. For example, the 11 really needs a much 
larger address space than its current 2 ^ words. Larger integer d a t a 
t y p e s and a coherent set of interprocessor communication instructions are 
needed. One direction of future efforts may be to consider the design of 
the p roper central processor architecture for 10 to 100 processor systems. 

(10*2) In our discussion with a number of other laboratories specifically, the 
Univ. of Hawaii and Intel Corp., the prospect of v e r y high bandwidth buses 
has been discussed. In the current system we are proposing the use of 
conventional technology to achieve 1 to 2 Megawords per second on the 
in te rCM bus. Advances in fiber optics and linear integrated circuits suggest 
it may be economical to consider systems built around one or two global , 
high performance buses. 

(10.3) As w e have mentioned in the main part part of this proposal , the 
cost of pr imary memory can be a dominant factor in the cost of the system. 
A number of interesting technologies are emerging that hold out the 
promise of a cost -effect ive high performance secondary store. CCD's , 
Bubble memories, and electron beam memories are current ly attracting the 
most attention. Only CCD's, however, have been incorporated into a 
commerical product to date (Intel's CCD 'drum' based on their 16K bits/chip 
packages. The potential to exploit CCD's and Bubble memories seems 
part icular ly attractive on a multiple computer system. The many 
processors can be used as I/O processors and hence maintain a v e r y high 
average bandwidth between these solid state secondary stores and pr imary 
memory. 

8.4 Scientific Questions 

We have a strong interest at CMU in exploring the technical problems associated w i th 
multiple p rocessor systems. Our work on the C.mmp and Computer Modules pro jects has 
h e l p e d to c lar i fy some of the major unsolved problems associated with these systems . Severa l 
o p e n problems are listed below; 

(1) Capaci ty of. Inter -Processor links. Links between computers (or p rocessors ) in any 
n e t w o r k can be character ized by three primary performance parameters: bandwidth, i.e., 
b i t s / s e c ; latency, i.e., time to execute the transfer of a file, packet, or interrupt request 
b e t w e e n computers ; and the ratio of information bits to control bits. There is c u r r e n t l y a 
d e a r t h of information on the bandwidth and latency required in multiple processor networks . 
B y benchmarking and measuring several applications on both C.mmp and CMs, in te rp rocessor 
communication levels can be studied. Based on these studies new and improved analytical 
models can be developed. 

(2) Deadlocks. Current multicomputer systems are susceptible to deadlocks. In o ther 
w o r d s , it is possible for two processors to request links or memories in such a sequence that 
t h e y lockup for an indefinite length of time. Measurements of the ARPAnet indicate this in fact 
occurs . Other multiple processor structures such as the BBN Pluribus and DEC PDP11 systems 
usir»s Unibus Windows also acknowledge the possibility of deadlock. As the next generat ion of 
multiple p rocessor systems are used in applications requiring a closer degree of cooperat ion 
among p rocessors , the deadlock problem will become a much more serious issue. During the 
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c o u r s e of C M design several deadlock prevention techniques were examined. With the scheme 
a d o p t e d it should be possible to measure deadlock potentials and actual deadlocks that w e r e 
p r e v e n t e d . 

(3> In te r -P rocesso r Control Mechanisms. There is presently no concensus on h o w to 
e f f e c t i v e l y pass control among processes in a multiple processor system. C.mmp has a simple 
i n t e r - p r o c e s s o r interrupt unit; the BBN Pluribus has the PID (pseudo- inter rupt dev ice) ; and 
C o m p u t e r Modules general ize the memory mapping mechanism to include control mappings as 
w e l l . Cont ro l mechanisms in uniprocessor systems include subroutines, coroutines, goto*s <or 
ex i t s in go to - less programs), and interrupts. An analogous set of control mechanisms is 
n e e d e d for multiple processor systems. Since the initial ten C M testbed will have read/wr i te 
c o n t r o l s to res , var ious interprocessor control mechanisms can be implemented, measured, and 
eva luated . [S iewiorek 75] 

(4) Process to Processor Binding. As the number of processors in a computing s y s t e m 
increases , ou r cur rent notions and intuition about multiprogramming and processor ut i l izat ion 
must be re -examined . Possibly the concept of multiprogramming should be discarded in some 
multiple p rocessor systems. The simplification in the software could be significant and the 
time s a v e d b y not having to save and switch processor states would result in h igher 
pe r fo rmance in some applications. But what are the guidelines for matching processes to 
p r o c e s s o r s and what degree of multiprogramming is appropriate in a particular instance? 

(5 ) Problem Decomposition. In order to take advantage of the potential high re l iabi l i ty , 
incremental expandabi l i ty , and v e r y high throughput of a multiple processor system, a prob lem 
must be decomposed into parallel, cooperating processes. To date such decomposit ion has 
o n l y been achieved for special purpose tasks by individuals intimately familiar wi th that task. 
A hill climbing exerc ise based on developing many benchmarks should g ive us insight into this 
and the p rev ious problem. 

(6) Address ing Problem. A problem with all multiple processor systems that use 16 -b i t 
mini/microcomputers for their processors is that their immediate name space is limited to 64K. 
O n e important reason for the development of a read/write control store for the PDP11/40 at 
C M U is to al low us to expand the architecture of the PDP11 to get larger address t y p e s , in 
addit ion to the standard 16-bit addresses* or to add instructions to manage eff ic ient ly the 
re locat ion box. In addition, CMs will have 28 bit network addresses external to the 
p r o c e s s o r s . 

T h e problems of reliability, security, and modularity will take an increasing importance 
as o u r w o r k progresses . 

8.5 Budget 

T h e budget for the major equipment is given on the pages immediately fol lowing. Major 
equipment is div ided into a small initial system to test alternative concepts and then the full 
100 p r o c e s s o r system to test our design on an operational many processor system. A lso 
inc luded in the budget is the expected cost of experimental hardware for high speed bus and 
memory s t ruc tu res which would permit exploring alternate architectures. 
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MAJOR EQUIPMENT 

Initial 10 Processor C M System 

10 L S I 11 w i t h 12K words memory 81,500 $15,000 
15 L S I 11 to I n t e r - C M bus interfaces 500 7,500 

3 Intel 3000 I n t e r - C M bus controllers 4,000 12,000 
w i t h wr i teable control stores 

1 PDP11/40 27,000 27,000 
w i th 28k memory, 30 cps terminal, DECtape drive, and 
link to PDP10A 

- P o w e r suppl ies, cabinets, and cables 8,000 8,000 
Tota l 869,500* 

W e are in the final stages of negotiating a joint effort with Digital Equipment Corpora t ion on 
the initial 10 processor system and DEC will provide CMU with the needed h a r d w a r e 
components . The $69,500 for the 10 processor system is not included in the hardware costs 
of this p roposa l ; the 10 processor C M system is listed here primarily to show what w e a l ready 
in tend to build. 

Addi t ional Hardware to Make a 100 Processor CM System 

90 L S I 11 w i th 12K words of memory $1,300 $117,000 
120 L S I 11 to I n t e r - C M bus interfaces 200 24,000 

10 Intel 3000 I n t e r - C M bus controllers 2,000 20,000 
- P o w e r suppl ies , cabinets and cables 40,000 
1 link to PDP10A 5,000 5,000 
1 link to C.mmp 5,000 5,000 
5 High Speed Drums 8,000 40,000 

(mechanical or solid state [e.g. CCD's]) 
1 3330 equivalent disk storage 40,000 40,000 

( 1 0 ^ w o r d capacity) 
- Maintenance and spare parts 18,000 
- T e s t Equipment 6 > 0 0 0 

- Site Preparat ion 2 1000 

$317,000 
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