
Refinement Types as Proof Irrelevance

William Lovas and Frank Pfenning

Carnegie Mellon University
Pittsburgh, PA 15213, USA

wlovas@cs.cmu.edu, fp@cs.cmu.edu

Abstract. Refinement types sharpen systems of simple and dependent
types by offering expressive means to more precisely classify well-typed
terms. Proof irrelevance provides a mechanism for selectively hiding the
identities of terms in type theories. In this paper, we show that refine-
ment types can be interpreted as predicates using proof irrelevance in the
context of the logical framework LF, establishing a uniform relationship
between two previously studied concepts in type theory. The interpreta-
tion and its correctness proof are surprisingly complex, lending credence
to the idea that refinement types are a fundamental construct rather than
just a convenient surface syntax for certain uses of proof irrelevance.

1 Introduction

Refinement type systems seek to extend type theories with more expressive
means of classifying terms. Refinements typically take the form of an added layer
of sorts above the usual layer of types: types express very basic well-formedness
criteria while sorts specify precise properties of terms using technology like sub-
sorting and intersection sorts. Refinement types have been profitably employed
in functional languages like ML [7, 4], and they are a topic of much recent and
ongoing research [6, 5, 17].

In recent work [10], we developed a system of refinement types for the log-
ical framework LF [8]. An essential guiding principle was to restrict attention
to canonical forms using bidirectional typing [16]. Under the canonical forms
methodology, features which typically complicate a type system’s metatheory
could be expressed cleanly and simply. For example, treating intersection in-
troduction as a checking rule and intersection elimination as a synthesis rule
avoided any issues relating to intersection type inference, and restricting typing
to canonical forms led to subtyping needing to be defined only at base type.

A simple example of refinement types in LF is the natural numbers with
refinements standing for even and odd numbers:

nat : type.
z : nat.
s : nat → nat.

even < nat. odd < nat.
z :: even.
s :: even → odd ∧ odd → even.

In the above, even < nat declares even as a refinement of the type nat, and the
declarations using “::” give more precise sorts for the constructors z and s. Note
that since the successor function satisfies two unrelated properties, we give two
refinements for it using an intersection sort.

In this paper, we exhibit an interpretation of LF refinement types which we
refer to as the “subset interpretation”, since a sort refining a type is interpreted
as a predicate embodying the refinement, and the set of terms having that sort
is simply the subset of terms of the refined type that also satisfy the predicate.
For example, under the subset interpretation, we translate the refinements even
and odd to predicates on natural numbers, or one-place judgments following the
LF judgments-as-types principle [8]. The refinement declarations for z and s turn
into constructors for proofs of these predicates.

even : nat → type. odd : nat → type.
ẑ : even z.
ŝ1 : Πx:nat. even x → odd (s x).
ŝ2 : Πx:nat. odd x → even (s x).

The successor function’s two unrelated sorts translate to proof constructors for
two different predicates.

We show that our interpretation is correct by proving, for instance, that a
term N has sort S if and only if its translation N̂ has type Ŝ(N), where Ŝ(−) is
the translation of the sort S into a type family representing a predicate; thus, an
adequate encoding using refinement types remains adequate after translation.
The chief complication in proving correctness is the dependency of types on
terms, which forces us to deal with a coherence problem [2, 13].

Normally, subset interpretations are not subject to the issue of coherence—
that is, of ensuring that the interpretation of a judgment is independent of its
derivation—since the terms in the target of the translation are the same as the
terms in the source, just with the stipulation that a certain property hold of
them. The proofs of these properties are computationally immaterial, so they
may simply be ignored at runtime. But the presence of full dependent types in
LF means that the interpretation of a sort might depend on these proofs, and
in turn the derivability of certain typing judgments in the target might depend
on the identities of these proofs. Enter proof irrelevance: our primary tool for
coping with coherence.

Proof irrelevance is a technique used in type theories to selectively hide the
identities of certain terms representing proofs of propositions [11, 1]. One typical
use of proof irrelevance is to render the typechecking of subset types [3, 14]
decidable. A subset type {x:A | B(x)} represents the set of terms of type A
which also satisfy B; typechecking is undecidable because to determine if a term
M has this type, you must search for a proof of B(M). One might attempt to
recover decidability by using a dependent sum Σx:A. B(x), representing the set
of terms M of type A paired with proofs of B(M); typechecking is decidable,
since a proof of B(M) is provided, but equality of terms is overly fine-grained:
if there are two proofs of B(M), the two pairs will be considered unequal. Using
proof irrelevance, one can find a middle ground with the type Σx:A. [B(x)],

2

where [−] represents the proof irrelevance modality. Type checking is decidable
for such terms, since a proof of the property B is always given, but the identity
of that proof is ignored, so all pairs with the same first component will be
considered equal.

Our situation with the subset interpretation is similar: we would like to rep-
resent proofs of sort-checking judgments without depending on the identities
of those proofs. By carefully using proof irrelevance to hide the identities of
sort-checking proofs, we are able to show our translation sound and complete,
preserving the adequacy of representations.

We begin the remainder of the paper by extending our example above to
demonstrate the coherence issues that arise in the subset interpretation (Sec-
tion 2). After that, we review the formal treatment of refinement types (Sec-
tion 3) and proof irrelevance (Section 4) in the context of the logical framework
LF, and then we discuss our translation and its correctness criteria in detail
(Section 5). We conclude by highlighting some broader implications (Section 6).

2 Extended (Counter-)Example

Coherence arises in the subset interpretation due to the presence of dependent
types. To show what can go wrong, we extend our example from the introduction
to make use of dependency. Our uniform translation in Section 5 will be different
in some details, but the essential ideas are unchanged.

Consider a judgment double which relates any natural number to its doubling.

double : nat → nat → type.
dbl/z : double z z.
dbl/s : ΠN:nat. ΠN2:nat. double N N2 → double (s N) (s (s N2)).

Using refinement kinds, or classes, we can express the property that the second
subject of any doubling relation is always even, no matter what properties hold
of the first subject. We do so by defining a sort double* which is isomorphic to
double, but has a more precise class.

double* < double :: ⊤ → even → sort.
dbl/z :: double* z z.
dbl/s :: ΠN::⊤. ΠN2::even. double* N N2 → double* (s N) (s (s N2)).

The sort ⊤ represents a natural number with no special properties. Successfully
sort-checking the declarations for dbl/z and dbl/s demonstrates that whenever
double* M N is inhabited, the second argument, N, is even.

There is a crucial difference between refinements like even or odd and refine-
ments like double*: while even and odd denote particular subsets of the natural
numbers, the inhabitants of the refinement double* x y are identical to those
of the ordinary type double x y. What is important is not whether a particular
instance double* x y is inhabited, but rather whether it is well-formed at all.

For this reason, we separate the formation of a dependent refinement type
family from its inhabitation. Following this idea, the refinement double* trans-
lates as follows:

3

̂double* : nat → nat → type.

̂double*/i : Πx:nat. Πy:nat. even y → ̂double* x y.

double* : Πx:nat. Πy:nat. ̂double* x y →÷ double x y → type.

There are three declarations after translation:

– a formation family, ̂double*, which is inhabited exactly when a particular

instance of double* is well-formed (e.g. ̂double* z z will be inhabited, since
double* z z is well-formed),

– a constructor for the formation family, ̂double*/i, which builds such proofs

of well-formedness (e.g. ̂double*/i z z ẑ will be a proof that double* z z is
well-formed), and

– a predicate family, double*, which for any x and y, will be inhabited by proofs
that a given derivation of double x y has refinement double* x y, provided
that double* x y is well-formed.

In the predicate family double*, the proof of well-formedness is made irrelevant
using a proof-irrelevant function space A →÷ B, representing functions from A to
B that are insensitive to the identity of their argument. Using irrelevance ensures
that a given sort has a unique translation, up to equivalence. We elaborate on
this below.

The final component, the predicate family double*, is populated by constants
generated from the refinement declarations. We write arguments in irrelevant
position in [square brackets].

d̂bl/z : double* z z

[̂double*/i z z ẑ]
dbl/z.

d̂bl/s : ΠN:nat. ΠN2:nat. ΠN̂2:even N2. ΠD:double N N2.

double* N N2 [̂double*/i N N2 N̂2] D
→ double* (s N) (s (s N2))

[̂double*/i (s N) (s (s N2)) (̂s2 (s N2) (̂s1 N2 N̂2))]
(dbl/s N N2 D).

As is evident even from this short and abbreviated example, the interpretation
leads to a significant blowup in the size and complexity of a signature, under-
scoring the importance of a primitive understanding of refinement types.

Note that the formation argument of double* above is always made irrele-
vant as stipulated by its type. What if we hadn’t made the proofs of formation
irrelevant? Then if there were more than one proof that double* x y were well-
formed for a given x and y, a soundness problem could arise. To see how, imagine
extending the above example with a sort distinguishing zero as a refinement.

zero < nat.
z :: even ∧ zero.

4

As with even and odd, the sort zero turns into a predicate. Now that z has two
sorts, it translates to two proof constructors.

zero : nat → type.
ẑ1 : even z.
ẑ2 : zero z.

Next, we can observe that zero always doubles to itself and augment the
declaration of double* using an intersection class:

double* < double :: ⊤ → even → sort

∧ zero → zero → sort.

After translation, since there are potentially two ways for double* x y to be well-
formed, there are two introduction constants for the formation family.

̂double*/i1 : Πx:nat. Πy:nat. even y → ̂double* x y.

̂double*/i2 : Πx:nat. zero x → Πy:nat. zero y → ̂double* x y.

The declarations for ̂double* and double* remain the same.
Now recall the refinement declaration for doubling zero,

dbl/z :: double* z z ,

and observe that it is valid for two reasons, since double* z z is well-formed for
two reasons. Consequently, after translation, there will be two proofs inhabit-

ing the formation family ̂double* z z, but only one of them will be used in the
translation of the dbl/z declaration. Supposing it is the first one, we’ll have

d̂bl/z : double* z z [̂double*/i1 z z ẑ1] dbl/z ,

but our soundness criterion will still require that the constant d̂bl/z check at the

type double* z z [̂double*/i2 z ẑ2 z ẑ2] dbl/z, the other possibility. The apparent
mismatch is resolved by the fact that the formation proofs are irrelevant, and so
the two types are considered equal.

Following the intuition given above, we may formally describe our translation
and prove it correct. But first, we take a brief detour to review prior work on
refinement types and proof irrelevance in LF.

3 Refinement Types

Refinement types give means of more precisely characterizing well-typed terms.
Systems of refinement types usually sit on top of ordinary type systems, allowing
the programmer to specify precise properties of programs already known to be
well-typed. This refinement restriction is what allows refinement type systems
to employ powerful features like subtyping and intersection and union types
without overly complicating the system’s metatheory.

Although traditionally treated in the context of functional programming [7,
6, 4, 5], recent work has shown how refinement types can be added to the logical

5

K ::= type | Πx:A. K (kinds) L ::= sort | Πx::S. L | ⊤ | L1 ∧ L2 (classes)

A ::= P | Πx:A1. A2 (types) S ::= Q | Πx::S1. S2 | ⊤ | S1 ∧ S2 (sorts)

P ::= a | P N (base types) Q ::= s | Q N (base sorts)

Fig. 1. Syntax of LF types and kinds and LFR sorts and classes.

framework LF [10], making it easier to adequately represent languages and logics
with certain forms of judgmental inclusion and to declare and check precise
properties about relations over such languages. Above, in Sections 1 and 2, we
saw a simple example involving even and odd natural numbers and properties
of the doubling relation. Here, we briefly recapitulate some of the details of the
formal development to set the stage for what is to come.

LF with refinement types, or LFR, is specified using the methodology of
canonical forms, pioneered by Watkins, et al. [16] in the definition of the Con-
current Logical Framework, CLF. Following this methodology, we consider only
canonical forms, or terms that are β-normal and η-long. Terms are syntactically
restricted to the β-normal ones via a separation into atomic and normal terms:

R ::= x | c | R N (atomic terms)

M, N ::= R | λx. N (normal terms)

These terms are typed bidirectionally with a synthesis judgment Γ ⊢ R ⇒ A
and a checking judgment Γ ⊢ N ⇐ A. All judgments are relative to an implicit
signature Σ, which declares types and kinds for term and type constants.1

Σ ::= · | Σ, a:K | Σ, c:A (LF declarations)

In extending to LFR, we add three new forms of declaration: refinement decla-
rations, constant sorting declarations, and subsorting declarations.

· · · | Σ, s<a::L | Σ, c::S | Σ, s1≤s2 (LFR declarations)

Sorts S refine types A, written Γ ⊢ S < A; this judgment is defined composi-
tionally, with the base case fulfilled by refinement declarations s<a::L. Similarly,
classes L refine kinds K, written Γ ⊢ L < K and also defined compositionally,
with the base class “sort” refining the base kind “type”. See Fig. 1 for the syntax.

Sorting, like typing, proceeds bidirectionally with Γ ⊢ R ⇒ S and Γ ⊢ N ⇐
S. The refinement restriction is embodied by the idea that we only sort check a
term N at sort S provided that N already checks at type A, where S refines A.

The key rule to ensuring that normal terms are maximally η-expanded is the
switch rule for checking an atomic term, so named because it is the rule where
we switch modes from checking to synthesis:

Γ ⊢ R ⇒ P ′ P ′ = P

Γ ⊢ R ⇐ P
(switch) .

1 As usual, we write the signature explicitly on the turnstile only when necessary.

6

The rule is restricted to base types, P , forcing all variables and constants to be
fully applied. Note that although switch is the analogue of the usual “conversion
rule”, since terms are canonical (β-normal, η-long), the equality P ′ = P is just
α-equivalence—we need not worry about β- or η-conversions.

This key rule is changed only slightly for sort-checking: equality of base types
P ′ and P becomes subsorting between base sorts Q′ and Q.

Γ ⊢ R ⇒ Q′ Q′ ≤ Q

Γ ⊢ R ⇐ Q
(switch-sub) .

The switch-sub rule is in fact the only rule that appeals to subsorting: under
the canonical forms methodology, subsorting need only be defined on base sorts,
where it is simply the reflexive, transitive closure of the relation declared in the
signature, extended through applications to identical arguments.

Aside from the change to the switch rule, the only other change from typing
to sorting is the addition of rules for introducing and eliminating intersections.
Following the usual pattern in bidirectional typing, the introduction rules are
checking rules and the elimination rules are synthesis rules.

Γ ⊢ N ⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2

(∧-I)
Γ ⊢ N ⇐ ⊤

(⊤-I)

Γ ⊢ R ⇒ S1 ∧ S2

Γ ⊢ R ⇒ S1

(∧-E1)
Γ ⊢ R ⇒ S1 ∧ S2

Γ ⊢ R ⇒ S2

(∧-E2) (no ⊤-E)

To maintain terms in canonical form, we must also replace the usual syn-
tactic substitution [M/x] N with the hereditary substitution [M/x]

A
N which

hereditarily contracts any β-redexes substitution might have created. Heredi-
tary substitution is indexed by the putative type A of the variable x in order to
facilitate an early proof of decidability. For the purposes of this paper, though,
we will simply write [M/x] N for hereditary substitution, since we have no need
for ordinary substitution.

In addition to sort-checking being decidable, LFR enjoys the usual Substitu-
tion and Expansion Principles: canonical terms may be substituted for variables,
and every atomic term can be η-expanded to a canonical one.

ηP (R) = R ηΠx:A. B(R) = λx. ηB(R ηA(x))

Principle (Substitution). If ΓL, x::S, ΓR ⊢ N ⇐ T and ΓL ⊢ M ⇐ S, then
ΓL, [M/x] ΓR ⊢ [M/x] N ⇐ [M/x] T .

Principle (Expansion). If Γ ⊢ S < A and Γ ⊢ R ⇒ S, then Γ ⊢ ηA(R) ⇐ S.

4 Proof Irrelevance

When constructive type theory is used as a foundation for verified functional
programming, we notice that many parts of proofs are computationally irrelevant,

7

that is, their structure does not affect the returned value we are interested in.
The role of these proofs is only to guarantee that the returned value satisfies the
desired specification. For example, from a proof of ∀x:A. ∃y:B. C(x, y) we may
choose to extract a function f : A → B such that C(x, f(x)) holds for every x:A,
but ignore the proof that this is the case. The proof must be present, but its
identity is irrelevant. Proof-checking in this scenario has to ascertain that such
a proof is indeed not needed to compute the relevant result.

A similar issue arises when a type theory such as λΠ is used as a logical
framework. For example, assume we would like to have an adequate represen-
tation of prime numbers, that is, to have a bijection between prime numbers p
and closed terms M : primenum. It is relatively easy to define a type family
prime : nat → type such that there exists a closed M : prime N if and only if
N is prime. Then primenum = Σn:nat. prime n is a candidate (with members
〈N, M〉), but it is not actually in bijective correspondence with prime numbers
unless the proof M that a number is prime is always unique. Again, we need the
existence of M , but would like to ignore its identity. This can be achieved with
subset types [3, 14] {x:nat | prime(x)} whose members are just the prime num-
bers p, but if the restricting predicate is undecidable then type-checking would
be undecidable, which is not acceptable for a logical framework.

For LF, we further note that Σ is not available as a type constructor, so we in-
stead introduce a new type primenum with exactly one constructor, primenum/i:

primenum : type.
primenum/i : ΠN:nat. prime N →÷ primenum.

Here the second arrow →÷ represents a function that ignores the identity of its
argument. The inhabitants of primenum, all of the form primenum/i N [M], are
now in bijective correspondence with prime numbers since primenum/i N [M]
= primenum/i N [M ′] for all M and M ′.

In the extension of LF with proof irrelevance [11, 12], or LFI, we have a
new form of hypothesis x÷A (x has type A, but the identity of x should be
irrelevant). In the non-dependent case (the only one important for the purposes
of this paper), such an assumption is introduced by a λ-abstraction:

Γ, x÷A ⊢ M ⇐ B

Γ ⊢ λx. M ⇐ A →÷ B
.

We can use such variables only in places where their identity doesn’t matter,
e.g., in the second argument to the constructor primenum/i in the prime number
example. More generally, we can only use it in arguments to constructor functions
that do not care about the identity of their argument:

Γ ⊢ R ⇒ A →÷ B Γ⊕ ⊢ N ⇐ A

Γ ⊢ R [N] ⇒ B
.

Here, Γ⊕ is the promotion operator which converts any assumption x÷A to
x:A, thereby making x usable in N . Note that there is no direct way to use an
assumption x÷A.

8

Judgment: Result:

Γ ⊢ L < K
form
; bLf(−) Type of proofs of the formation family

K
pred
; bKp(− , −) Kind of the predicate family

K
≤
; bKs(−, −, −, −, −) Type of coercions between families of kind K

Γ ⊢ S < A ; bS(−) Metafunction representing predicate

Γ ⊢ Q < P ⇒ L ; bQ Proof that Q is well-formed

Γ ⊢ N ⇐ S ; bN Proof that N has sort S

Γ ⊢ R ⇒ S ; bR Proof that R has sort S

Γ ⊢ Q1 ≤ Q2 ; F (− , −) Metacoercion from proofs of Q1 to proofs of Q2

Q1 ≤ Q2 ; Q̂1−Q2 Coercion from proofs of Q1 to proofs of Q2

⊢ Γ ctx ; bΓ Translated context

⊢ Σ sig ; bΣ Translated signature

Table 1. Judgments of the translation.

The underlying definitional equality “=” (usually just α-conversion on canon-
ical forms) is extended so that R [N] = R′ [N ′] if R = R′, no matter what N
and N ′ are.

The substitution principle (shown here only in its simplest, non-dependent
form) captures the proper typing as well as the irrelevance of assumptions x÷A:

Principle (Irrelevant Substitution). If Γ, x÷A ⊢ N ⇐ B and Γ⊕ ⊢ M ⇐ A
then Γ ⊢ [M/x] N ⇐ B and [M/x] N = N (under definitional equality).

5 Interpretation

5.1 Overview

We interpret LFR into LFI by representing sorts as predicates and derivations
of sorting as proofs of those predicates. The translation is derivation-directed
and compositional: for each judgment Γ ⊢ J , there is a corresponding judgment
Γ ⊢ J ; X whose rules mimic the rules of Γ ⊢ J . The syntactic class of X
and its precise interpretation vary from judgment to judgment (for reference,
the various forms are listed in Table 1), but a great deal of insight can be had
by examining the specific cases of sort formation and sort checking.

Sort formation is embodied by the refinement judgment Γ ⊢ S < A. The
corresponding translation judgment has the form Γ ⊢ S < A ; Ŝ, in which
Ŝ is a meta-level function representing the sort S as a predicate. Sort checking
Γ ⊢ N ⇐ S becomes term translation Γ ⊢ N ⇐ S ; N̂ . Since N̂ represents a
proof that N has sort S, we should expect that N̂ ⇐ Ŝ(N).2

2 Under an appropriate context, briefly discussed below.

9

For example, take the rule ∧-I of intersection introduction. The correspond-
ing translation rule represents the two independent derivations as a pair of proofs.
Accordingly, the intersection sort formation rule yields a product of predicates.3

Γ ⊢ N ⇐ S1 ; N̂1

Γ ⊢ N ⇐ S2 ; N̂2

Γ ⊢ N ⇐ S1 ∧ S2 ; 〈N̂1, N̂2〉

Γ ⊢ S1 < A ; Ŝ1

Γ ⊢ S2 < A ; Ŝ2

Γ ⊢ S1 ∧ S2 < A ; λN . Ŝ1(N)× Ŝ2(N)

We use a bold λ for meta-level abstraction and bold (parens) for meta-level
application. Our translation is similar in spirit to Liquori and Ronchi Della
Rocca’s Λt

∧ [9], a Church-style type system for intersections in which derivations
are explicitly represented as proofs and intersections as products.

At the top-level, we are interested in checking entire signatures, so it is also
instructive to examine the rules for translating the LFR declarations. As we saw
with even and odd in Section 1, sorting declarations for constants turn into proof
constructor declarations.

⊢ Σ sig ; Σ̂ c:A ∈ Σ · ⊢Σ S < A ; Ŝ

⊢ Σ, c::S sig ; Σ̂, ĉ:Ŝ(ηA(c))

This matches our intuitions: the proof constructor ĉ witnesses the fact that the
constant c satisfies property S. Since our predicates expect terms in canonical
form, we η-expand the constant. The translation on contexts is similar.

As we saw with double* in Section 2, a refinement declaration turns into three
declarations: one for the formation family, one for the proof constructor for the
formation family, and one for the predicate family.

⊢ Σ sig ; Σ̂ a:K ∈ Σ · ⊢Σ L < K
form
; L̂f K

pred
; K̂p

⊢ Σ, s<a::L sig ; Σ̂, ŝ:K, ŝ/i:L̂f(ŝ), s:K̂p(ŝ, a)

The class formation judgment Γ ⊢ L < K
form
; L̂f yields a metafunction describ-

ing the type of proofs of formation family, while an auxiliary kind translation

judgment K
pred
; K̂p yields a metafunction describing the kind of the predicate

family. Recall from our earlier example that the kind of the formation family is
the same as the kind of the refined type, in this case K.

The metafunction L̂f takes as input the formation family so far (initially just
ŝ) and the translation derivation adds arguments on the way up. At the base
case it returns the formation family itself.

The metafunction K̂p takes two arguments: one for the formation family so
far (initially ŝ) and one for the refined type so far (initially a). This translation
is characterized by its behavior on the base kind, type:

type
pred
; λ(Qf , P). Qf →÷ P → type

3 For compositionality’s sake, we target an extension of LFI with product and unit
types. Such an extension is orthogonal to the addition of proof irrelevance, and has
been studied by many people over the years, including Schürmann [15].

10

The kind of the predicate family for a base sort Q refining P is essentially a one-
place judgment on terms of type P , along with an irrelevant argument belonging
to the formation family of Q. In light of this, we can make sense of the rule for
translating base sorts:

Γ ⊢ Q < P ′ ⇒ L ; Q̂ P ′ = P L = sort

Γ ⊢ Q < P ; λN . Q [Q̂] N

The class synthesis translation judgment Γ ⊢ Q < P ⇒ L ; Q̂ yields a proof of
Q’s formation family; thus the predicate for a base sort Q, given an argument
N , is simply the predicate family Q applied to an irrelevant proof Q̂ that Q is
well-formed and the argument itself, N .

We postpone a discussion of subsorting declarations s1≤s2 until after a brief
review of some metatheoretic results.

5.2 Correctness

Soundness theorems tell us that the result of a translation is well-formed. Even
more importantly than telling us that our translation is on some level correct,
they serve as an independent means of understanding the translation. In a sense,
a soundness theorem can be read as the meta-level type of a translation judg-
ment, and just as types serve as an organizing principle for the practicing pro-
grammer, so too do soundness theorems serve the thoughtful theoretician. We
mention a few such theorems, then, not only to demonstrate the sensibility of
our translation, but also to aid the reader in understanding its purpose.

In what follows, form(Q) represents the formation family for a base sort Q.

form(s) = ŝ form(Q N) = form(Q) N

Theorem 1 (Soundness). Suppose ⊢ Γ ctx ; Γ̂ and ⊢ Σ sig ; Σ̂. Then:

1. If Γ ⊢ S < A ; Ŝ and Γ ⊢ N ⇐ S ; N̂ , then Γ̂ ⊢ bΣ
N̂ ⇐ Ŝ(N).

2. If Γ ⊢ R ⇒ S ; R̂, then Γ ⊢ S < A ; Ŝ and Γ̂ ⊢ bΣ
R̂ ⇒ Ŝ(ηA(R))

(for some A and Ŝ).

3. If Γ ⊢ S < A ; Ŝ and Γ ⊢ N ⇐ A, then Γ̂ ⊢ bΣ
Ŝ(N) ⇐ type.

4. If Γ ⊢ Q < P ⇒ L ; Q̂, then for some K, L̂f , and K̂p,

– Γ ⊢ L < K
form
; L̂f and Γ̂ ⊢ bΣ

Q̂ ⇒ L̂f(form(Q)), and

– K
pred
; K̂p and Γ̂ ⊢ bΣ

Q ⇒ K̂p(form(Q), P).

5. If Γ ⊢ L < K
form
; L̂f and Γ ⊢ P ⇒ K, then Γ̂ ⊢ bΣ

L̂f(P) ⇐ type.

6. If K
pred
; K̂p, Γ ⊢ Qf ⇒ K, and Γ ⊢ P ⇒ K, then Γ̂ ⊢ bΣ

K̂p(Qf , P) ⇐ kind.

The soundness theorems are each proven by induction on the theorem’s main
input derivation. Several clauses must be proved mutually, and not all theorems
are shown here. The proofs appeal to several key lemmas.

11

Lemma 1 (Erasure). If Γ ⊢ J ; X, then Γ ⊢ J .

Lemma 2 (Reconstruction). If Γ ⊢ J , then for some X, Γ ⊢ J ; X.

Erasure and Reconstruction substantiate the claim that our translation is der-
ivation-directed by allowing us to move freely between translation judgments
and ordinary ones. Using Erasure and Reconstruction, we can leverage all of the
LFR metatheory without reproving it for translation judgments. For example,
several cases require us to substitute into a translation derivation: we can apply
Erasure, appeal to LFR’s Substitution Theorem, and invoke Reconstruction to
get the output we require.

But since Reconstruction only gives us some output X , we may not know that
it is the one that suits our needs. Therefore, we usually require another lemma,
Compositionality, to tell us that the translation commutes with substitution.
There are several such lemmas; we show here the one for sort translation.

Lemma 3 (Compositionality). Let σ denote [M/x]. If Γ, x:: ⊢ S < A ; Ŝ

and Γ ⊢ σS < σA ; Ŝ′, then σŜ(N) = Ŝ′(σN).

Completeness theorems tell us that our target is not too rich: that everything
we find evidence of in the codomain of the translation actually holds true in
its domain. While important for establishing general correctness, completeness
theorems are not quite so nice to look at as soundness theorems, so we give here
only the cases for terms.

Theorem 2 (Completeness). Suppose ⊢ Γ ctx ; Γ̂ and ⊢ Σ sig ; Σ̂. Then:

1. If Γ ⊢ S < A ; Ŝ and Γ̂ ⊢ bΣ
N̂ ⇐ Ŝ(N), then Γ ⊢ N ⇐ S.

2. If Γ̂ ⊢ bΣ
R̂ ⇒ B, then Γ ⊢ S < A ; Ŝ, B = Ŝ(ηA(R)), and Γ ⊢ R ⇒ S

(for some S, A, Ŝ, and R).

In stating Completeness, we syntactically isolate the set of terms that could
represent proofs using, e.g., metavariables R̂ and N̂ . Completeness is proven by
induction over the structure of these terms.

Adequacy of a representation is generally shown by exhibiting a compo-
sitional bijection between informal entities and terms of certain LFR sorts.
Since we have undertaken a subset interpretation, the set of terms of any LFR
sort are unchanged by translation, and so any bijective correspondence between
those terms and informal entities remains after translation. Furthermore, sound-
ness and completeness tell us that our interpretation preserves and reflects the
derivability of any refinement type judgments over those terms. Thus, we have
achieved our main goal: any adequate LFR representation can be translated to
an adequate LFI representation.

5.3 Subsorting

We now return to the question of how the translation handles subsorting. Recall
that an LFR signature can include subsorting declarations between sort family

12

constants, s1≤s2. We require both sort constants to refine the same type constant
a and to have the same class L. The rule for translating such declarations creates
a coercion constant s1-s2.

⊢ Σ sig ; Σ̂ s1<a::L ∈ Σ s2<a::L ∈ Σ a:K ∈ Σ K
≤
; K̂s

⊢ Σ, s1≤s2 sig ; Σ̂, s1-s2:K̂s(a, ŝ1, s1, ŝ2, s2)

The auxiliary judgment K
≤
; K̂s yields a metafunction describing the type of

coercions between sorts that refine a type family of kind K. The metafunction
K̂s takes five arguments: the refined type, the formation family and predicate
family for the domain of the coercion, and the formation family and predicate
family for the codomain of the coercion. As before, the translation derivation
builds up a spine of arguments on the way up towards the leaves. At the base
kind type, it outputs the type of the coercion:

type
≤
; λ(P , Q1f , Q1, Q2f , Q2). Πf1:Q1f . Πf2:Q2f . Πx:P. Q1 [f1] x → Q2 [f2] x

Essentially, this is the type of coercions, given x, from proofs of Q1 x to proofs
of Q2 x, but of course we must pass Q1 and Q2 proof that they are well-formed,
so the coercion requires those proofs as inputs as well.

How do these coercions work? Recall from Section 3 that subsorting need only
be defined at base sorts Q, and there, it is simply the application-compatible,
reflexive, transitive closure of the declared relation. For the purposes of the trans-
lation, we give an equivalent algorithmic formulation of subsorting. Following the
inspiration of bidirectional typing, we give two judgments: a checking judgment
that takes two base sorts as inputs and a synthesis judgment that takes one base
sort as input and outputs another base sort that is one step higher in the subsort
hierarchy.

The synthesis judgment constructs a coercion from the new coercion con-
stants in the signature.

s1≤s2 ∈ Σ

s1 ≤ s2 ; s1-s2

Q1 ≤ Q2 ; Q̂1−Q2

Q1 N ≤ Q2 N ; Q̂1−Q2 N

The checking judgment, on the other hand, constructs a meta-level coercion
between the two sorts. It is defined by two rules: a rule of reflexivity and a rule
to climb the subsort hierarchy.

Q1 = Q2

Γ ⊢ Q1 ≤ Q2 ; λ(R, R1). R1

(refl)

Q1 ≤ Q′
; Q̂1−Q′ Γ ⊢ Q1 < P ⇒ sort ; Q̂1

Γ ⊢ Q′ ≤ Q2 ; F Γ ⊢ Q′
< P ⇒ sort ; Q̂′

Γ ⊢ Q1 ≤ Q2 ; λ(R, R1). F (R, Q̂1−Q′ Q̂1 Q̂′ R R1)
(climb)

13

The reflexivity rule’s metacoercion simply returns the proof it is given, while the

climb rule composes the actual coercion Q̂1−Q′ with the metacoercion F . Two
extra premises generate the necessary formation proofs.

We can now end where we started, with the switch rule. Using the meta-
coercion generated by subsort checking, we can construct the proof we need for
soundness.

Γ ⊢ R ⇒ Q′
; R̂ Γ ⊢ Q′ ≤ Q ; F

Γ ⊢ R ⇐ Q ; F (R, R̂)
(switch-sub)

6 Conclusion

Logical frameworks are metalanguages specifically designed so that common con-
cepts and notations in logic and the theory of programming languages can be
represented elegantly and concisely. LF [8] intrinsically supports α-conversion,
capture-avoiding substitution, and hypothetical and parametric judgments, but
as with any such enterprise, certain patterns fall out of its scope and must be
encoded indirectly. One pattern is the ability to form regular subsets of types al-
ready defined. This is addressed in LF extended with type refinement (LFR) [10].
Another pattern is to ignore the identities of proofs, relying only on their ex-
istence. This is addressed in LF extended with proof irrelevance (LFI) [11, 12].
In this paper we have shown that the former can be mapped to the latter in a
bijective manner, preserving adequacy theorems for LFR representations in LFI.

In the methodology of logical frameworks research, it is important to under-
stand the cost of such a translation: how much more complicated are encodings
in the target framework, and how much more difficult is it to work with them?
We cannot measure this cost precisely, but we hope it is evident from the defi-
nition of the translation and the examples that the price is considerable. Even
if in special cases more direct encodings are possible, we believe our general
translation could not be simplified much, given the explicit goal to preserve the
adequacy of representations. Other translations from programming languages,
such as coercion interpretations where sorts are translated to distinct types and
subsorting to coercions, appear even more complex because adequacy depends
on certain functional equalities between coercions. Our preliminary conclusion
is that refinement types in logical frameworks provide elegant and immediate
representations that are not easy to simulate without them, providing a solid
argument for their inclusion in the next generation of frameworks.

Refinement types have been also been proposed for functional program-
ming [7, 4], most recently in conjunction with a limited form of dependent
types [5]. Proof irrelevance is already integrated in this setting, and also available
in general type theories such as NuPrl or Coq. One can ask the same question
here: Can we simply eliminate refinement types and just work with dependent
types and proof irrelevance? The results in this paper lend support to the conjec-
ture that this can be accomplished by a uniform translation. On the other hand,
just as here, it seems there would likely be a high cost in terms of brevity in order

14

to maintain a bijection between well-sorted data in the source and dependently
well-typed data in the target of the translation.

Acknowledgements. Thanks to Jason Reed for many fruitful discussions on
the topic of proof irrelevance.

References

1. Awodey, S., Bauer, A.: Propositions as [types]. Journal of Logic and Computation
14(4) (2004) 447–471

2. Breazu-Tannen, V., Coquand, T., Gunter, C.A., Scedrov, A.: Inheritance as im-
plicit coercion. Information and Computation 93(1) (July 1991) 172–221

3. Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice-Hall, Englewood Cliffs, New Jersey (1986)

4. Davies, R.: Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon
University (May 2005) Available as Technical Report CMU-CS-05-110.

5. Dunfield, J.: A Unified System of Type Refinements. PhD thesis, Carnegie Mellon
University (August 2007) Available as Technical Report CMU-CS-07-129.

6. Dunfield, J., Pfenning, F.: Tridirectional typechecking. In Leroy, X., ed.: ACM
Symp. Principles of Programming Languages (POPL ’04), Venice, Italy (January
2004) 281–292

7. Freeman, T.: Refinement Types for ML. PhD thesis, Carnegie Mellon University
(March 1994) Available as Technical Report CMU-CS-94-110.

8. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the Association for Computing Machinery 40(1) (January 1993) 143–184

9. Liquori, L., Ronchi Della Rocca, S.: Intersection-types à la Church. Information
and Computation 205(9) (2007) 1371–1386

10. Lovas, W., Pfenning, F.: A bidirectional refinement type system for LF. Electronic
Notes in Theoretical Computer Science 196 (January 2008) 113–128

11. Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type
theory. In Halpern, J., ed.: Proceedings of the 16th Annual Symposium on Logic
in Computer Science (LICS’01), Boston, Massachusetts, IEEE Computer Society
Press (June 2001) 221–230

12. Reed, J., Pfenning, F.: Proof irrelevance in a logical framework. Unpublished draft
(July 2008)

13. Reynolds, J.C.: The coherence of languages with intersection types. In Ito, T.,
Meyer, A.R., eds.: Theoretical Aspects of Computer Software. Volume 526 of Lec-
ture Notes in Computer Science., Berlin, Springer-Verlag (1991) 675–700

14. Salvesen, A., Smith, J.M.: The strength of the subset type in Martin-Löf’s type
theory. In: Proceedings of LICS’88, IEEE Computer Society Press (1988) 384–391

15. Schürmann, C.: Towards practical functional programming with logical frame-
works. Unpublished, available at http://cs-www.cs.yale.edu/homes/carsten/

delphin/ (July 2003)
16. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-

work I: Judgments and properties. Technical Report CMU-CS-02-101, Department
of Computer Science, Carnegie Mellon University (2002) Revised May 2003.

17. Zeilberger, N.: Refinement types and computational duality. In: PLPV ’09: Pro-
ceedings of the 3rd workshop on Programming Languages Meets Program Verifi-
cation, New York, NY, USA, ACM (2009) 15–26

15

