
Safe Intersections: At the Crossing of Hybrid Systems and Verification

Sarah M. Loos and André Platzer

Abstract— Intelligent vehicle systems have interesting
prospects for solving ine�ciencies and risks in ground trans-
portation, e.g., by making cars aware of their environment
and regulating speed intelligently. If the computer control
technology reacts fast enough, intelligent control can be used
to increase the density of cars on the streets. The technology
may also help prevent crashes at intersections, which cost
the US $97 Billion in the year 2000. The crucial prerequisite
for intelligent vehicle control, however, is that it must be
correct, for it may otherwise do more harm than good. Formal
verification techniques provide the best reliability guarantees
but have had di�culties in the past with scaling to such complex
systems. We report our successes with a logical approach to
hybrid systems verification, which can capture discrete control
decisions and continuous driving dynamics. We present a model
for the interaction of two cars and a tra�c light at a two lane
intersection and verify with a formal proof that our system
always ensures collision freedom and that our controller always
prevents cars from running red lights.

I. INTRODUCTION
The status quo in individual ground transportation is nei-

ther e�cient nor particularly safe. In various places, crowded
roads can hardly meet the demand, which causes long delays.
Even more troublesome than delayed tra�c are automobile
accidents. Per year, $500 Billion total cost result from car
crashes in the world, a large part of which is caused by
crashes at intersections, e.g., $97 Billion in the year 2000
just in the US [1]. To fight both accidents and ine�ciencies,
intelligent vehicle systems have been studied for a while
now [1–18]. Major initiatives include the California PATH
project, SAFESPOT, PReVENT, the CICAS-V system, and
many others. Chang et al. [1], for instance, propose CICAS-
V specifically to prevent violations at intersections.

One big concern for all systems where computers with
physical capabilities (like vehicle control) interface with
humans is how their reliability can be ensured. Even if the
designer plans the system with the best and most careful
intentions, an intelligent transportation system could still
cause a lot of damage if it has subtle safety bugs.

Testing is invaluable as a sanity check for system designs.
But even exhaustive testing still will not find more subtle
bugs, a problem that is confounded by the increasingly tricky
interaction of multiple features in system designs.

Formal verification techniques have been very successful
in many other domains and have found subtle bugs and
verified the correctness of di�cult systems, e.g., computer

This material is based upon work supported by the National Science
Foundation under NSF CAREER Award CNS-1054246 and NSF Grant No.
CNS-0926181, CNS-0931985, CNS-1035800, and CNS-1035813. The first
author was also supported by an NSF Graduate Research Fellowship.

Computer Science Department, Carnegie Mellon University, Pittsburgh,
PA 15213, USA {sloos|aplatzer}@cs.cmu.edu

chips and software. Formal system modeling and verification
has also been used for some aspects of ground transportation
[2, 12, 17, 19, 20]. What makes the verification of ground
transportation systems more challenging, though, is the fact
that the software running on the computers cannot be consid-
ered in isolation. Instead, their e↵ect on the physical behavior
of the cars they are controlling has to be taken into account.

We model intelligent ground vehicles as hybrid systems,
i.e., systems with interacting discrete dynamics (for con-
trol decisions) and continuous dynamics (for movement).
Intelligent transportation scenarios may be distributed hybrid
systems [21] when there is a multi-agent situation with mul-
tiple cars driving according to their hybrid system dynamics.
We have developed logical verification techniques for these
hybrid systems [22–24] and distributed hybrid systems [21]
and have successfully used them to verify collision freedom
of multi-agent highway control [19].

In this paper, we consider the problem of controlling cars
and tra�c lights to ensure collision freedom at intersections.
Naı̈vely, this may appear to be a simple problem where all
we have to do is to ensure that at most one of the tra�c lights
at an intersection is red. But this does not work, because the
overall system would still be unsafe if the car controllers
disobey the red lights or if the tra�c lights switch in a way
that the car controllers have no way of complying with. We
develop a controller for a stoplight intersection, identify the
crucial safety constraints, and formally verify that collision
freedom is guaranteed.

II. RELATED WORK

Major initiatives have been devoted to developing safe
next-generation automated car control systems, including the
California PATH project, the SAFESPOT and PReVENT
initiatives, the CICAS-V system, and many others. With the
exception of [19], safety verification for car control systems
has been for specific maneuvers or systems with a small
number of cars.

Stursberg et al. [12] applied counterexample-guided verifi-
cation to a cruise control system with two cars on one lane,
and Altho↵ et al. [17] used reachability analysis to prove
the safety of evasive maneuvers of autonomous vehicles.
Damm et al. [2] give a verification rule that is specialized to
collision freedom of tra�c agents. To show that two cars do
not collide, they must manually prove eighteen verification
conditions. Lygeros and Lynch [20] prove safety only for
one deceleration strategy for a string of vehicles: the leading
vehicle applies maximum deceleration until it stops, while
simultaneously all cars following it in the string decelerate
to a stop. The previously mentioned projects verify safety

for specific maneuvers on the lane which do not scale up to
a global model. Our work in car control on lanes scales to an
arbitrarily large number of cars in the system. Additionally,
our work on intersections is created with the primary goal
of being combined with other verification results to be
applied to larger and more complex systems. Our logic-based
approach supports such combinations.

Research has also been done on the best action a car can
take at a yellow light [25]. While this research does not pro-
vide a formal proof of safety, it does suggest a more e�cient
vehicle controller for non-sensing stoplights. Other projects
have considered more general systems using simulation and
other non-formal methods [4, 6, 9, 15]. Our techniques follow
a formal, mechanized proof calculus, which verifies safety
completely, rather than partially via a finite number of
simulations. Our use of di↵erential equations to represent the
continuous dynamics of the vehicles enables a more realistic
model than finite state models which cover only discrete
dynamics.

III. THE INTERSECTION PROBLEM

In [19], we verified safety for a model of a multi-lane
highway, with an arbitrary number of cars, each of which
can change lanes, exit and enter the system. The research
presented in this paper is the first step toward verifying urban
roadways with large and complex intersections.

In order to verify a large, urban, roadway system, we
first must tackle intersections. Di�cult intersections would
be nearly impossible to verify without breaking them down
into smaller pieces. Even if you did manage to verify the
safety of an automated control or emergency braking system
for one complex intersection without decomposing it into
smaller pieces, it would be di�cult to generalize the method,
so another intersection will require the same amount of work.
In this paper, we prove safety for the basic principles, which
is a major milestone in making the verification of complex
intersections feasible. Our first insight into these di�cult
systems is that most intersections, including many that are
large and complex, are just a compilation of two basic lane
layouts: merges and crosses, shown in Fig. 1.

(a) T-intersection/merge. (b) Two lane intersection.

Fig. 1: Basic components of most intersections (Note: The
angle of intersection is irrelevant)

In [19], we verified that merging from one lane into
another is safe. The T-intersection shown in Fig. 1a is a
special case of this merging scenario. We begin with two
lanes, and have one of the lanes end at the intersection, so
that all cars on that lane must switch into the other lane. This
means that one lane is identified as the primary lane, and all
cars merging from the secondary lane may only do so when

the primary lane is clear. Thus, for a proof of safety, a tra�c
signal is not required, but may still be used.

While we ultimately want to verify a generic model for
distributed, automated car control in a large urban environ-
ment with complex tra�c patterns, the scope of this paper
is smaller. In this paper, we present the complexities and
challenges of modeling and verifying an intersection of two
lanes, with one car driving on each lane. In future work,
we intend to combine the results in this paper with the
results in [19] to verify an intersection of two lanes with
an arbitrary number of cars on each lane, each of which
makes distributed control decisions based on local Vehicle
to Vehicle (V2V) and Vehicle to Infrastructure (V2I) data.
Combining this result with the safe merge maneuver will
then allow us to verify large and complex intersections.

We begin in Sect. IV with a comprehensive review of
the multi-lane highway problem for distributed car control.
Then, in Sect. V, we simplify the two lane intersection into
a single lane with just one car and one light. From the
initial conditions and invariants used to verify this model,
we discover a method for proving the more complex model
presented in Sect. VI. We present in Sect. VI the safety of a
two lane intersection, with one car driving on each lane and
a stoplight operating at the crossing.

IV. HIGHWAY CONTROL

In [19] we present a formal verification for a system with
an arbitrary number of cars driving on an arbitrary number
of lanes, where cars can enter the highway, change lanes,
and exit. In this section, we will summarize this work to
give a solid background for research on intersection control.
We will also discuss how this result can be used to verify
T-intersections as shown in Fig. 1a.

A. Modeling

In our model of a highway system, the control for the cars
is very intuitive. Cars may brake at any time, but they can
only accelerate if the next car is a safe distance ahead. For
lane change maneuvers, cars may only change into a lane if
they leave enough space in front and behind.

The discrete control is simple enough to explain, but the
di�culty comes in the verification, which relies on identify-
ing strong enough invariants to prove safety properties which
hold under all physical movements of the car.

It is the physical driving of the car down the lane that
produces the continuous components in this hybrid system.
We use state variables to represent the car’s position, velocity,
and acceleration. The continuous dynamics for the kinematic
motion of the car are described by the following di↵erential
equation system: x0 = v, v0 = a. These are ideal-world
dynamics and they are adequate for longitudinal lane maneu-
vers. Because sensor readings are not available continuously,
we assume that the controller also does not have continuous
control over acceleration. For simplicity, we still assume that,
once set, the acceleration a takes instant e↵ect. We assume
a limit for the maximum acceleration and we denote it by
A � 0. We assume that the car has an emergency brake

with braking power �B, where B > 0. If B were not strictly
positive, the car would not be able to brake. The car is also
limited in its velocity: we assume a maximum speed limit,
denoted by V , where V > 0.

We model a T-intersection as a specific case of this
system: two lanes, where one lane ends immediately after
the intersection, forcing all cars from that lane to merge
into the continuing, primary lane. This T-intersection model
inherits the safety verification from the highway model. It
also requires that a primary lane be identified, since one
lane will have tra�c moving freely, and the other will end
and require cars to merge into tra�c on the main lane. This
is similar to a T-intersection when taken as a component
to a more complex intersection, since in most cases, cars
from one lane will be turning into tra�c on the other lane;
however, it does not rely on a light control to mediate the
tra�c flow, but instead uses local sensors on individual cars.

B. Verification

In order to show that a system of cars driving on the
highway is safe, we must prove that, under any circum-
stances, no car collides with another car. The verification
of this safety requirement is separated into four, hierarchical
pieces, starting with a proof of safety for two cars on a lane
and working up to the full model. For a complete discussion
of the highway model and its formal verification, see [19].

V. SINGLE LANE STOPLIGHT CONTROL

In this section, we study a model of a single car on a lane
with a stoplight. In actuality, there would be a crossing lane at
the light, with cars moving along it, but initially we will look
at a single lane, and later examine the intersection in Sect. VI.
The continuous dynamics of the physical movement of the
car will be the same as for cars driving on a highway, as
in Sect. IV; however, our safety requirements have changed.
Instead of proving that the car will not hit another car in its
lane, we prove that the car will not, under any circumstances,
occupy an intersection while the light is red. This is an
important building block for subsequent systems.

A. Modeling

In this model, we represent the lanes as lines, where cars
and intersections appear as points on those lines. Alterna-
tively, we could modify the equations to include a constant
bu↵er to account for the size of the car, or the width of a
lane. This is interesting future work, and will be necessary
for verifying large-scale urban systems, but is beyond the
scope of this paper. By ignoring the size of cars, we reduce
the number of parameters in the system while retaining the
essential characteristics of intersections: mutual exclusion in
the spatial region of tra�c lights.

The stoplight will need to coordinate with the car driving
on the lane. For instance, if the car was driving at high
speed, and the light quickly switched from green, through
a short yellow, to red, it is possible that the car would be
unable to avoid running the red light. We cannot assume
continuous sensing and communication of the car’s position

to the tra�c light, because that would be impossible to
implement. Pseudo-periodic information about positions and
velocities is more realistic. In this model, we, thus, assume
that the stoplight is receiving updates about the car’s position
and velocity at least every " time units (possibly more often
but never less often). Similarly, the car receives updates about
the color of the light at least every " time units.

In our model, we allow the light to change from green to
yellow under any circumstances. The light may also change
from red to green at any time (although when we have cars
traveling on an intersecting lane, this will only be allowed
if the stoplight controlling the intersecting lane is also red).
However, the light may only change from yellow to red under
certain properties, since we must ensure that the car is always
physically capable of adhering to red stoplight signals. It
must always hold that when the light turns yellow, it stays
yellow long enough for the car to detect the yellow light
and then either come to a stop before the intersection, or
pass through the intersection. This requirement is equivalent
to the formula:

xI < x _ xI > x +
v2

2B
+

✓A
B
+ 1

◆ ✓A
2
"2 + v"

◆
.

We denote the position of the stoplight by xI, time delay as
", and remaining variables are as described in Sect. IV. This
formula characterizes that the light may only turn red if either
the car has passed the light (xI < x), or the car would be
able to stop before the intersection. This should hold even in
the worst case, where the car does not recognize the yellow
light for a maximum of " time, and is applying maximum
acceleration A for that duration.

Just as the stoplight receives communication updates on
the position and velocity of the car, similarly the car receives
updates on the color of the light. These updates may not
come regularly, but we assume all data is accurate upon
delivery. Uncertainty in the sensor data could be handled by
assuming upper and lower bounds on accuracy, or by using
Stochastic Di↵erential Dynamic Logic [26].

Since the maximum velocity of the car is V , we could
replace the use of state variables with maximum values and
require only that the stoplight activate a constant-length timer
for a yellow light. However, while this would make the
system easier to implement, it would reduce the e�ciency
of the system, since all yellow lights would necessarily stay
yellow for their maximum length. By allowing the stoplight
to receive updates from surrounding cars, it can make more
informed decisions. For example, if there are no nearby cars
on a lane with a green light, the light could change almost
immediately through yellow to red, making a faster transition
to a green light for intersecting tra�c. As well as being a
less e�cient system, the proof complexity for this model is
greater, since the antecedent would contain only parameters
and we would be unable to use state variables directly. It
would be interesting future work to use models proved in
this paper as lemmas to aid verification of a system in which
stoplights do not receive any data about the cars on their lane.

In addition to giving a non-deterministic model which

encompasses all possible control decisions for the stoplight,
the model also defines the control choices of the vehicle.
The physical movement of the car follows the kinematic
equations described in Sect. IV.

The discrete control choices of the car’s acceleration,
however, must now depend on information received from
the stoplight. If the light is green, or if the car has already
passed the light, then the car is free to accelerate. If the
car is stopped, it may remain stopped as long as it is not
in the intersection. We allow the car to brake at any time,
so if there is an emergency, a human may always override
the system by engaging the brakes. For the full model, see
Model 1 in Appendix B. In this model, any time the light is
ahead and either red or yellow, the car must be stopped or
applying the brakes. Of course, this is not an e�cient model
when we look at systems with very long lanes or multiple
intersections, since it will require a car to start braking for a
red light when it is still miles away. Cars which will make it
through the yellow also slow down before passing the light.
It is an interesting extension of our model to add another
choice of accelerating when the light is red, but the car is
still a safe distance away. The controller described in this
section is presented formally as “lane” in Appendix B.

B. Verification
Now that we have a suitable model for a single lane with

one car and a stoplight, we identify a suitable set of safety
requirements and prove that our model never violates them.
For this model, we are not yet concerned with how this lane
interacts with other lanes in the system. We only want to
know that the local behavior on this lane is safe. Therefore,
in order to prove safety, we show that the car never violates
the stoplight control by running a red light.

Proposition 1 (Safety of single lane control): For a car
driving on a lane with a single stoplight on the lane, where
both the car and the light began in a controllable state and
follow the control described in this Appendix B, the car will
never be in the intersection while the light is red. In other
words, if the light starts out red, and the car is in a position
to stop for it (or has already passed it), then at no point in
the future will the car be in the intersection while the light is
red. This is expressed in quantified di↵erential dynamic logic
QdL (see Appendix A for details) by the following provable
formula:

I = red ^
⇣
xI < x _ xI > x + v2

2B

⌘

! [lane](I = red ! xI , x)
Proposition 1 is easy to prove semi-automatically in our

verification tool KeYmaera [27] after we identify a property
which is stronger than the safety requirement, and always
holds between sensor updates. We use this property formally
as a loop invariant [22, 24]. Since the car may get updates
at any time less than ", the loop invariant must hold at all
times less than ". For Proposition 1, we use the invariant:

v � 0 ^ v V ^

I = red !

xI < x _ xI > x +

v2

2B

!!

This formula means that, at all times, if the light is red,
then either the car has passed the light, or it has position

Fig. 2: Intersection

and velocity such that if it applies braking force �B, it will
stop before it reaches the intersection. In addition, we are
guaranteed that the velocity is always between 0 and V .

With this loop invariant, the proof required 9 human
interactive steps out of a total of 4,142 nodes.

VI. INTERSECTION CONTROL

In Sect. V, we verified an automated control system for
a single lane with one car and one light. Now, we create a
comprehensive model of a two-lane intersection, where there
is one car on each lane and a stoplight at their intersection,
as illustrated in Fig. 2. It is important to notice that it is not
necessary to model a situation where a car turns into the
other lane at the intersection. Such instances correspond to
a merge rather than an intersection (see Fig. 1a).

A. Modeling

Most of the modeling challenges have already been ad-
dressed in Sect. V. Increasing from a one lane view to
verifying a two-lane intersection is very intuitive. Unfortu-
nately, the introduction of additional lights and cars, each
of which necessarily have multiple states, greatly increases
the computational di�culty of the problem. The discrete and
continuous control for the cars on each lane, for instance, is
identical to the control presented in Sect. V, except for the
change from primitive variables like x and v to first-order
variables x(1), x(2), v(i), etc. Additionally, the stoplights, on
which the cars depend, will now depend on one another. So,
in order for a light to turn green, the light must check that
the other face of the stoplight is red. The primary di↵erence
is that we now have control choices for two cars and two
stoplights instead of just one of each, as well as continuous
dynamics for both cars. The controller described in this
section is presented formally as “ic” in Appendix C.

B. Verification

Now that we have a model for a two lane intersection, we
have to describe a set of requirements that we want the model
to satisfy in order to ensure safety. These requirements will
build upon the safety requirements proved in Sect. V. We
want to show both that the cars do not enter the intersection
when the light is red and that the light will always be red
for at least one of the two lanes. By guaranteeing both of
these requirements simultaneously, we have assured that the
two cars will not collide with each other.

Proposition 2 (Safety of intersection control): If the
stoplight and two cars start in a controllable state (i.e.
each car is a safe distance from a red light), and the
light and cars behave according to our model, then no
car will ever enter the intersection when its light is red,
and the stoplight will always have a red light in at least
one of the two lanes. In other words, the two cars will
not collide under the intersection protocol, ic. This is
expressed in QdL by the following provable formula:⇣

I(1) = red ^
⇣
xI(1) < x(1) _ xI(1) > x(1) + v(1)2

2B

⌘

^ I(2) = red ^
⇣
xI(2) < x(2) _ xI(2) > x(2) + v(2)2

2B

⌘⌘

! [ic]
⇣
(I(1) = red ! xI(1) , x(1))
^(I(2) = red ! xI(2) , x(2))
^(I(1) = red _ I(2) = red)

⌘

The proof of Proposition 2 is completed in KeYmaera. To
simplify the computational complexity of the proof, we break
the original requirement into the three simpler requirements,

(I(1) = red ! xI(1) , x(1)), (1)
(I(2) = red ! xI(2) , x(2)), and (2)
(I(1) = red _ I(2) = red), (3)

and verify them separately. This is necessary because each
of these requirements needs a di↵erent loop invariant.

Each of the three requirements has been proved in
KeYmaera. The only di↵erence, besides naming, between
proving the red lights are not violated under this model
and proving safety for the model in Sect. V is an increased
branching factor due to the added choices in discrete and
continuous dynamics for both cars and the stoplight. The
branching factor can be lessened somewhat by manually
eliminating unnecessary assumptions in the proof tree. In
KeYmaera, the proof of the safety requirement in equation
(1) took 443 human interactive steps out of 178,539 nodes,
requirement (2) needed 378 interactive steps out of 170,210
nodes, while requirement (3) needed no human interactive
steps, and was proved fully automatically with 91,112 nodes.

VII. CONCLUSIONS AND FUTURE WORK

Distributed car control has been proposed repeatedly as
a solution to safety and e�ciency problems in ground
transportation. Yet, a move to this next generation tech-
nology, however promising it may be, is only wise when
its reliability has been ensured. We have presented formal
verification results guaranteeing collision freedom in a series
of increasingly complex intersection settings, culminating in
a safety proof for an intersection of two single-lane roads.

Formal verification of intelligent vehicle systems with
intersections as hybrid systems is essentially unstudied. Be-
cause of this, there are many rich topics for future research,
including time synchronization of lights and cars, sensor
inaccuracy, non-zero length cars, liveness properties, and
combinations of merge and cross intersection protocols.

Acknowledgements. The authors would like to thank the
reviewers for their constructive and thorough feedback.

References

[1] J. Chang, D. Cohen, L. Blincoe, R. Subramanian, and L. Lombardo,
“CICAS-V research on comprehensive costs of intersection crashes,”
NHTSA, Tech. Rep. 07-0016, 2007.

[2] W. Damm, H. Hungar, and E.-R. Olderog, “Verification of cooperating
tra�c agents,” International Journal of Control, vol. 79, no. 5, pp.
395–421, May 2006.

[3] T.-S. Dao, C. M. Clark, and J. P. Huissoon, “Distributed platoon
assignment and lane selection for tra�c flow optimization,” in IEEE
IV’08, 2008, pp. 739–744.

[4] ——, “Optimized lane assignment using inter-vehicle communica-
tion,” in IEEE IV’07, 2007, pp. 1217–1222.

[5] R. Hall, C. Chin, and N. Gadgil, “The automated highway system /
street interface: Final report,” Institute of Transportation Studies, UC
Berkeley, PATH Research Report UCB-ITS-PRR-2003-06, 2003.

[6] R. Hall and C. Chin, “Vehicle sorting for platoon formation: Impacts
on highway entry and troughput,” Institute of Transportation Studies,
UC Berkeley, PATH Research Report UCB-ITS-PRR-2002-07, 2002.

[7] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya, “Design of platoon
maneuver protocols for IVHS,” Institute of Transportation Studies,
UC Berkeley, PATH Research Report UCB-ITS-PRR-91-6, 1991.

[8] P. A. Ioannou, Automated Highway Systems. Springer, 1997.
[9] H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou, “Collision avoidance

analysis for lane changing and merging,” Institute of Transportation
Studies, UC Berkeley, PATH Research Report UCB-ITS-PRR-99-13,
1999.

[10] R. Horowitz, C.-W. Tan, and X. Sun, “An e�cient lane change
maneuver for platoons of vehicles in an automated highway system,”
Institute of Transportation Studies, UC Berkeley, PATH Research
Report UCB-ITS-PRR-2004-16, 2004.

[11] S. E. Shladover, “E↵ects of tra�c density on communication re-
quirements for Cooperative Intersection Collision Avoidance Systems
(CICAS),” Institute of Transportation Studies, UC Berkeley, PATH
Working Paper UCB-ITS-PWP-2005-1, 2004.

[12] O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh, “Verification of
a cruise control system using counterexample-guided search,” Control
Engineering Practice, 2004.

[13] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE
Trans. Automat. Control, vol. 38, no. 2, pp. 195–207, 1993.

[14] T. Wongpiromsarn, S. Mitra, R. M. Murray, and A. G. Lamperski,
“Periodically controlled hybrid systems,” in HSCC, ser. LNCS, R. Ma-
jumdar and P. Tabuada, Eds., vol. 5469. Springer, 2009, pp. 396–410.

[15] W. Chee and M. Tomizuka, “Vehicle lane change maneuver in au-
tomated highway systems,” Institute of Transportation Studies, UC
Berkeley, PATH Research Report UCB-ITS-PRR-94-22, 1994.

[16] R. Johansson and A. Rantzer, Eds., Nonlinear and Hybrid Systems in
Automotive Control. Society of Automotive Engineers Inc., 2003.

[17] M. Altho↵, D. Altho↵, D. Wollherr, and M. Buss, “Safety verification
of autonomous vehicles for coordinated evasive maneuvers,” in IEEE
IV’10, 2010, pp. 1078 – 1083.

[18] L. Berardi, E. Santis, M. Benedetto, and G. Pola, “Approximations of
maximal controlled safe sets for hybrid systems,” in Nonlinear and
Hybrid Systems in Automotive Control, 2002.

[19] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid,
distributed, and now formally verified,” in FM, ser. LNCS, M. Butler
and W. Schulte, Eds., vol. 6664. Springer, 2011, pp. 42–56.

[20] J. Lygeros and N. Lynch, “Strings of vehicles: Modeling safety
conditions,” in HSCC, 1998, pp. 273–288.

[21] A. Platzer, “Quantified di↵erential dynamic logic for distributed hybrid
systems,” in CSL, ser. LNCS, A. Dawar and H. Veith, Eds., vol. 6247.
Springer, 2010, pp. 469–483.

[22] ——, “Di↵erential dynamic logic for hybrid systems.” J. Autom. Reas.,
vol. 41, no. 2, pp. 143–189, 2008.

[23] ——, “Di↵erential-algebraic dynamic logic for di↵erential-algebraic
programs,” J. Log. Comput., vol. 20, no. 1, pp. 309–352, 2010.

[24] ——, Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Heidelberg: Springer, 2010.

[25] M. Oishi, I. Mitchell, A. Bayen, and C. Tomlin, “Invariance-preserving
abstractions of hybrid systems: Application to user interface design,”
in IEEE Transactions on Control Systems Technology, vol. 16, 2008,
pp. 229–244.

[26] A. Platzer, “Stochastic di↵erential dynamic logic for stochastic hy-
brid programs,” in CADE, ser. LNCS, N. Bjørner and V. Sofronie-
Stokkermans, Eds., vol. 6803. Springer, 2011, pp. 431–445.

[27] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for
hybrid systems.” in IJCAR, ser. LNCS, A. Armando, P. Baumgartner,
and G. Dowek, Eds., vol. 5195. Springer, 2008, pp. 171–178.

Appendix
A. Quantified Di↵erential Dynamic Logic

Distributed car control systems are distributed hybrid
systems, which we model by quantified hybrid programs
(QHPs) [21]. QHPs are defined by the grammar (↵, � are
QHPs, ✓ a term, i a variable, f a function symbol, and H a
formula of first-order logic):

↵, � ::= 8i : C f (i) := ✓ | 8i : C f (i)0 = ✓& H | f (i) := ⇤
| ?H | ↵ [� | ↵; � | ↵⇤

The e↵ect of quantified assignment 8i : C f (i) := ✓ is an
instantaneous discrete jump assigning ✓ to f (i) simultane-
ously for all objects i of type C. Usually i occurs in ✓. The
e↵ect of quantified di↵erential equation 8i : C f (i)0 = ✓& H
is a continuous evolution where, for all objects i of type C,
all di↵erential equations f (i)0 = ✓ hold and (written & for
clarity) formula H holds throughout the evolution (the state
remains in the region described by H). Usually, i occurs
in ✓. Here f (i)0 is intended to denote the derivative of the
interpretation of the term f (i) over time during continuous
evolution, not the derivative of f (i) by its argument i. For
f (i)0 to be defined, we assume f is an R-valued function
symbol. The e↵ect of the random assignment f (i) := ⇤ is to
non-deterministically pick an arbitrary object (of type the
type of f (i)) as the value of f (i).

The e↵ect of test ?H is a skip (i.e., no change) if formula H
is true in the current state and abort (blocking the system run
by a failed assertion), otherwise. Non-deterministic choice
↵ [� is for alternatives in the behavior of the distributed
hybrid system. In the sequential composition ↵; �, QHP �
starts after ↵ finishes (� never starts if ↵ continues indefi-
nitely). Non-deterministic repetition ↵⇤ repeats ↵ an arbitrary
number of times �0.

For stating and proving properties of QHPs, we use quan-
tified di↵erential dynamic logic QdL [21] with the grammar:

�, ::= ✓1 = ✓2 | ✓1 � ✓2 | ¬� | � ^ | � _ | �!

| 8i : C � | 9i : C � | [↵]� | h↵i�
In addition to all formulas of first-order real arithmetic, QdL
allows formulas of the form [↵]� with a QHP ↵ and a
formula �. Formula [↵]� is true in a state ⌫ i↵ � is true in all
states that are reachable from ⌫ by following the transitions
of ↵; see [21] for details.

B. Model of Single Lane Stoplight Control

In Model 1 we present formally in QdL the model
described in Sect. V. We denote the discrete control of the
stoplight as ICtrl and the discrete control of the car as CCtrl.
The continuous dynamics and evolution domain are called
dyn. In the evolution domain, we restrict the car to driving
forward on the lane (v � 0) and within the speed limit
(v V). We also require that the updates to sensor readings
about the color of the light come within time " (t ").

Model 1 Single Lane Control

lane ⌘ (ICtrl; CCtrl; dyn)⇤

ICtrl ⌘ (?(I = green); I B yellow

[?
⇣
I = yellow

^
✓
xI<x_xI>x+ v2

2B+(A
B+1)(A

2 "
2+v")

◆⌘
;

I B red

[?(I = red); I B green

[?true)
CCtrl ⌘ (?(I = green _ xI = x); a B A

[?(v = 0 ^ xI , x); a B 0
[?(v = V ^ (I = green _ xI = x)); a B 0
[a B �B)

dyn ⌘ (t B 0; x0 = v, v0 = a & v � 0 ^ v V ^ t ")

C. Model of Intersection Control

In Model 2 we give a formal model of the intersection
control described in Sect. VI. This time, we denote the
discrete control of intersections and cars relative to the lane
on which they operate: ICtrl(i) and CCtrl(i), respectively
for lane i. In order for a light to change from yellow to red,
one of two properties must hold to ensure safety. The car
must either be past the position of the light, or far enough
away from the light that if it were to apply the brakes after
a delay of at most " time units, it would be able to come to
a complete stop before the light.

Model 2 Intersection Control
ic ⌘ (ICtrl(1); ICtrl(2); CCtrl(1); CCtrl(2); dyn)⇤

ICtrl(i) ⌘ (?(I(i) = green); I(i) B yellow

[?
⇣
I(i) = yellow

^
⇣
xI(i) < x

_ �
xI(i)>x+ v2

2B+(A
B+1)(A

2 "
2+v")

� ⌘
; I(i)Bred

[?

0
BBBBBB@
^

j

I(j) = red

1
CCCCCCA ; I(i) B green

[?true)
CCtrl(i) ⌘ (?(I(i) = green _ xI(i) = x(i)); a(i) B A

[?(v(i) = 0 ^ xI(i) , x(i)); a(i) B 0
[?(v(i) = V^

(I(i) = green _ xI(i) = x(i))); a(i) B 0
[a(i) B �B)

dyn ⌘ (t B 0; x0(1) = v(1), v0(1) = a(1),
x0(2) = v(2), v0(2) = a(2)
& v(1) � 0 ^ v(2) � 0
^ v(1) V ^ v(2) V ^ t ")

