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ABSTRACT 

This paper presents a semantic model for parallel systems with a 
scheduI ing mechanism that is useful for expressing and proving a wider 
range of properties than semantic models which do not consider 
scheduIing. 

We formally describe a number of properties related'to scheduling and 
deadlock, including "Fairness" and "Fullness", and show that schedulers 
with these properties behave in desireable ways. 

Lastly, we prove and conjecture some proof rules for scheduled systems 
and outline briefly the relation of this work to model Iing protect ion in 
parallei systems. 
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Semantic Models for Parallel Systems 

INTRODUCTION 

Based on Scott's Mathematical Theory of Computation [Scott 723, Cadiou 
& Levy [Cadiou & Levy 73] and Milner [Milner 73] have introduced a model 
of parallel processes based on processes that communicate by sharing 
memory, and have shown how to state and prove properties such as mutual 
exclusion formally within the mechanizable LCF system. 

They treat nondeterminism by introducing an oracle from the domain TTv* 
(sequence of truth values, see [Kahn 73]). The determination of which 
process to execute next depends on an initial sequence of the oracle, 
with the new oracle becoming the remainder. 

In spite of the elegance of their system, they are unable to prove 
certain properties of parallel systems that one would expect to be true. 
Primarily this trouble stems from the difficulty of characterizing the 
we I I-behavedness of their oracle. By using a model derived from 
Lipton's work [Lipton 73], we replace the oracle with a scheduler and 
state a property of schedulers, fairness, which is shown to be adequate 
to prove a property of a particular parallel system that is difficult to 
express in Cadiou & Levy's system. 

Ue first present a variation of Cadiou & Levy's model and note some of 
its problems. Ue then introduce a model with a scheduling formalism 
that solves, these difficulties. The remainder of the paper contains 
properties and proofs using the scheduling model, as well as additional 
comments. 

MODELS FOR PARALLEL PROCESSES 

The models for parallel processes we will invetigate in this paper 
have 3 important features. 

1) Processes - Ue will always consider a variable number of processes, 
each of which may be in one of three states, runnable, blocked or 
stopped. 

2) Indivisibility - Processes are divided into indivisible actions 
(instructions) called elementary processes or EP's. Uhen a process is 
selected to run, it executes exactly one EP, after which a new decision 
is made about which process should be scheduled. Concurrent execution 
of parallel processes is modelled by sequential interleaving of actions 
from the various processes. 

3) Abstract Machine - Two main approaches have emerged for proving 
general properties about programs (i.e. - Termination and Equivalence as 
well as Correctness), the Functional approach [Scott & Strachey 733 
(related is the Relational approach, see tdeBakker 74]%) and the Abstract 
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Machine approach [Uegner 72]. 

The Functional approach maps a program directly into a mathematical 
function; the meaning of a program is then just the value of the 
corresponding function. Not only is the technique elegant, but a formal 
system, LCF (Logic for Computable Functions) [Milner 72] has been 
developed and mechanized in which one can prove properties about 
computable functions. Cadiou & Levy and Milner use such an approach in 
their respective papers on semantics of parallel programs. 

The Abstract Machine app^ach defines a programming system via a 
formal definition of an abstract machine. The meaning of a program is 
then the result of its execution on their abstract machine. Much of 
what might be considered inelegant about this technique is due to its 
awkwardness in modelling the execution of statements with complex 
controI structures. 

However, in the parallel systems we will be describing, there is only 
one language construct, the EP. Ue are thus in the unusual position of 
being able to produce an abstract machine definition that is as simple 
and. somewhat less opaque than the corresponding functional semantics. 

Of course, one question remains - how to define the Abstract Machine. 
Ue choose to define the machine interpreter as a computable function, 
thus making the tools of LCF available for our proofs. 

(As we note in the conclusion, we expect work on semantics for 
parallel systems to come full circle, that is, back to languages that 
have the appropriate structures for parallel control. It is likely that 
an Abstract Machine approach would then be unsuitable.) 

A VARIANT OF CADIOU & LEVY'S MODEL 

In producing an Abstract Machine version of Cadiou & Levy's model, we 
divide the state of the model into 2 parts, S, the Data state and K, the 
Control state. 

The Control state, K, can be viewed as a binary process tree whose 
leaf nodes represent processes. The interior nodes of the tree contain 
either "//" which indicates parallel execution of its two subtrees or 
' V which indicates sequential execution, that is, no process in the 
right subtree can run until all processes in the left subtree have 
stopped. For example: 
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// 
I 
// 

I 
C # — 

B 
I 
F 

A,,B, D and E are runnable. C is blocked until both A & B stop. F is 
blocked until E stops. 

The Abstract Machine selects a leaf node representing a runnable 
process. It executes a single EP which first modifies the state S, and 
then produces a process tree which replaces the node selected, thus 
becoming a subtree of K. The subtree may be simply a single node, which 
can be used to represent the continuation of the same process, a "ft" 
construct, which can be used to represent the call of a subroutine, or a 
"//" construct, which can be used to represent the spawning of a 
subprocess. In addition, a node can be the eJement (STOP) which 
indicates the process has stopped. 

All processes execute the same program. Ue can view programs as 
labelled flowcharts, where it is the EPs that are labelled. For 
example, the flowchart 

> P(sein) > V(sem) 
I I 
I I 

can be represented by the following program with labels P & V. 

P: sem > B — > ( sem *> sem - 1 ==> V ) , ==> P 
V: sem <- sem + 1 ==> P 

(Note: Read " « > " as "goto" and "a — > b, c" as "if-a then b else c") 

The leaf nodes of K either contain STOP or the label of the EP the 
process wad executing. So, the process tree for a system in which two 
processes are executing the P/V loop program above might be 

// 
I I 
P P 

The data state S contains an element sem. 

In the formal model, the abstract machine, given S and K determines 
the "Next 1 1 state of S and K by selecting a runnable node from K and 
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executing the EP it represents thus changing both S and K. 

To select the runnable EP. we use an oracle, an infinite sequence of 
truth values. Ue start at the root of K and work our way towards a leaf 
node. Each time we encounter a "//" with runnable nodes (not (STOP)) in 
each subtree, we pick off the first element of the oracle and use it to 
decide which subtree to continue down. In the formal model, the "Next" 
function implements the abstract machine as as recursive tree-walk. 

FORMAL MODEL - Cadiou & Levy Adaptation 

Primi tive Domains 

S - memory state 
TT - truth value ( elements tt, ff and uu -

• we also use "uu" to represent the least defined element of 
any domain and let the user rely on context to determine the 
appropriate domain ) 

LABEL - label 

Constructed Domains 

ORACLE = TT* (sequence of truth values) 
EP = S — > K x S 
K = (STOP) + LABEL + K x {*,//) x K 

' PROG = LABEL --> EP 

The "Next" function uses the oracle to pick a runnable EP from K, 
returning the resulting process tree as well as the updated state and 
the remainder of the oracle. 

4 



Semantic Models for Parallel Systems 

Next: K x S x ORACLE — > K x S x ORACLE 

Next (k.s,ora) <== 

Case k of 

STOP — > <k,s,ora> f 

<q,//,r> — > ( 
Stop(q) — > Next (r,s,ora), 
Stop(r) — > Next(q,s,ora), 
Hd(ora) — > Mk ( M . <t,//,r>, Next (q, s, Tl (ora)) ) , 

M M Xt.<q,//,r>, Next(r, s, TI (ora)) ) ) , 

<q ,Vr fr> — > ( 
Stop(q) — > Next (r,s,ora), 

Mk( M.<t,>v,r>, Next (q,s fora) ) ) , 

Ibl — > <Exec(lbl)(s).K, Exec(lbl)(s).S, ora>. 

(note that if AB = A x B, and ab: AB (ab is of type AB), then 
we use ab.A and ab.B to indicate the projections of ab onto it's 
A and B components respectively) 

The "Exec" function for a particular program Prog gets the EP labelled 
by Ibl and executes it in state s to produce a new k and s. 

Exec: LABEL — > [ S — > K x S 1 

Exec(lbl) (s) < « Prog(lbl) (s). 

Mk: [ K — > K 1 x [ K x S x ORACLE ] > [ K x S x ORACLE ] 

Mk(fk, <k,s,ora>) < « <fk(k) f s,ora>. 

Hd: TT>v — > ' T T and returns the first element of a sequence 
Tl: TT* — > TTft and returns the remainder of a sequence 

Stop,: K — > TT and is defined so that 
Stop(uu) s uu, Stop(STOP) s tt, and for all other k, 
Stop(k) s ff. 

The result (final state) of running kB with an initial 
state s0 and oracle ora0 is Mem(k0, s8, ora0), where Mem is 

5 



Semantic Hode l9 for Parallel Systems 

Mem(k,s,ora) <*= 
Stop(k) — > s, 
Mem (Next(k,s,ora)). 

(An alternate model perhaps closer to current languages and systems 
might use* "&" instead of "//", where "&" spawns a totally independent 
process. Thus in <<p,//,q>,w,r>, r can only execute after b o t h p and q 
STOP. In «p,&,q>,*v,r> r can execute after p STOPs, regardless of what 
happens to q. And. «ST0P,&,q>,vt,r> would act like <r,&,q> if a 
semantic description were to be given. However, we will not pursue it 
further in this paper.) 

The key departure from Cadiou & Levy is that K is represented by a 
"syntactic" data structure rather than by being embedded in a purely 
functional structure and "//" and "*" are used here as purely syntactic 
entities rather than as instances of more general process combinators. 
A number of other changes have been made to produce an Abstract Machine 
model from their functional model, but none significantly affect the 
problems of the model. 

The main advantage of the adaptation has been that we have separated 
the selection of a process to be executed from its execution. This 
suggests the substitution of a scheduler for the oracle. 

FACTORS IN'CHOOSING A MODEL 

There are three major concerns that have prompted the development of 
the scheduling model that will be the focus of the rest of the paper. 

1) It is difficult -(at best) to characterize anomalous oracles, Since 
anomaly depends so heavily on the changing nature of the state and 
control. For example, in the 2 process P/V loop example, Cadiou & Levy 
are only able to prove that one or the other will run forever, while 
under a reasonably "fair" scheduler, we would expect both to run 
forever. By providing a model with a scheduler, we can characterize the 
scheduler in such a way that anomalous schedules can be avoided. Thus, 
we will replace the Oracle by a Scheduler which has access to the state 
of the system and specifies a particular process to be run as well as 
producing a new scheduler to schedule the next process (presumably by 
modifying internal variables or queues). 

2) We wish to model situations where one process may arbitrarily 
start, stop or otherwise control another process. Thus, instead of K, 
the model contains a multiplexor M, which may viewed as a vector of 
processes. The Scheduler specifies a process to be run by supplying an 
integer index into M. M is also more general than K in that for each 
process we associate not only a label indicating the current control 
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point, but a separate program as well. 

3) Ue wish to characterize processes which are blocked, so that the 
scheduler can choose not to attempt to run such a process. Thus, 
following Li.pton [Lipton 73], we provide each EP with a synchronization 
part which can be used to determine which processes are blocked. 

An EP consists of 3 parts, all executed indivisibly of course. The 
first part, (SYNCHFORM), represents a synchronization condition. If 
the Scheduler schedules a process, and the synchronization condition of 
its current EP is not met, no action is taken, and the Scheduler is 
simply invoked to schedule again. If the synchronization condition is 
met, the other 2 parts of the EP are executed. One part (STATEFORM) 
changes the data state (S) of the system, and one part (CONTROLFORM) 
changes the control state (M) of the system (specifying the label of the 
next EP of the current process or starting, stopping or otherwise 
controlling another process. There is one special label, STOP, which 
denotes the completion of a process). 

Evaluation of "Next" proceeds in the following way: First the 
Scheduler produces an index into the Multiplexor (as well as a new 
Scheduler to schedule the next iteration). If the label indexed is 
"STOP", then no further action is taken this iteration. Otherwise, the 
labelled EP is executed. First its synchronization condition is tested. 
If false, no further action takes place with the EP. If true though, the 
rest of the EP is evaluated to update both the data state (S) and the 
multiplexor (M). 

THE FORMAL MODEL 

Primi tive Domains 

TT - truth values 
N - natural numbers 
LABEL - labels, including the element STOP 
ARG - function argument 
NAME - names of functions 
S - states 
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Constructed Domains 

SYNCHFORM = NAME x ARGS 
STATEFORM = NAME x ARGS 
CONTROLFORM = NAME x ARGS 
EP = SYNCHFORM x STATEFORM x CONTROLFORM 
M = N — > PROG x LABEL 
PROG = LABEL — > EP 
ARGS = {<>} + ARG x ARGS (Ue will use standard tuple notation 

and thus represent <a,<b,<c,<»» as <a,b,c>) 
SM = S x M 

The Scheduler 

SCHED = S x M — > N x SCHED 

Primitive Functions 

Synchfn: NAME — > [ ARGS — > [ S — > TT ] ] 
Statefn: NAME — > [ ARGS — > [ S --> S x ARGS 3 3 
Control fn: NAME — > [ ARGS — > [ ARGS — > t M — > M i l l 

For reasons discussed in the section on Scheduler Notes, we model the 
various FORMs as a function name and an argument list. To evaluate the 
function, we must provide a way of mapping the name of the function to 
the function itself. That is what the three primitive functions do. 
They are also guaranteed to be total. It is left to the reader to 
imagine how they can be extended reasonably to total functions in the 
cases where the name is undefined or the arguments are inappropriate. It 
is important to note that arguments to Synchfn* s and Statefn's will not 
necessarily be values but will more likely represent variable names used 
to select a value from s. Thus we are not providing an abstract model 
of storage, but rather modelling at a higher level of abstraction. 

The Interpreter 

Next: S x M x SCHED — > S x M x SCHED 

Next(s,m,sched) <== 
Let <n,sched'> be sched(s,m) in 

m(n).LABEL = STOP --> <s,m,sched'>, 
Let <s',m'> be Exec(n)(s,m) in <s',m',sched'>. 

(note that if AB = A x B, and ab: AB (ab is of type AB), then 
we use ab.A and ab.B to indicate the projections of ab onto it's 
A and B components respectively) 
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Given an index into the multiplexor and a multiplexor. Action produces 
the designated EP. 

Action: N x M — > . E P 

Action(nHm) <== (m(n) .PROG) (m(n) .LABEL). 

Given an index into 11, ab well as S & M, Exec executes the designated 
EP to produce a new S & M. 

Exec: N — > [ S x M — > S x M ] 

Exec(n)(s,m) <== 
Let <syfrm, stfrm,cfrm> be Action(nHm) in 

Synchfn(syfrm.NAME) (syfrm.ARGS) (s) — > ( 
Let <s\result> be Statefn(stfrm.NAME) (stfrm.ARGS) (s) in 

<s*,Controlfn(cfrm.NAME)(cfrm.ARGS)(result)(m)> ) , 
<s,m>. 

The reader is encouraged to look ahead to the Applications section for 
an example of how a particular system would be modelled. 

In this model (as in actual systems), it is not so clear when 
computation stops (for example, an idle process may run in an Operating 
system when nothing can otherwise be scheduled). However, for 
simplicity, we will assume a continuous predicate, Mstop. 

Mstop: S x M x SCHED — > TT 

For example, if the scheduler returns a zero index when there is 
nothing to schedule, then we could define Mstop as: 

Mstop(s,m, sched) < — ( sched(s,m).N - 0 ). 

In any case, we can define the result (final state) of running m0 with 
state s0 and scheduler sched0 as Mmem(s0,m0,sched0) where Mmem is 
defined as 

Mmem(s,m,sched) <== 
Mstop(s,m,sched) — > s, 
Mmem(Next(s,m,sched)). 

9 



Semantic f1odel9 for Parallel Systems 

PROPERTIES OF SCHEDULERS 

Treatment of schedulers in this paper will be independent of any 
particular synchronization primitives (e.g. P/V, P/Vchunk, ufr/down) and 
any particular implementation or internal structure of the scheduler 
(e.g. FIFO queues, priority order), rather ue simply express a number of 
scheduler properties using the model. The properties described are 
either ones that will be used later in the paper, or ones that have 
appeared already in the literature. A comparison of these properties by 
example can be found in the Applications section of this paper. 

The properties as described are dependent heavily on S & M as well as 
the scheduler, wheras commonly, we are simply interested in a property 
of a scheduler independent of what it schedules. The section of this 
paper on Scheduler Notes indicates how this problem may be solved. 

Notes: Ue will be using "process j" to indicate the continuing 
behavior of the contents of M(j). 

Ue use the notation C to mean less defined than - also 
, s - Strong equivalence ( a • b iff 

a C b A b E a ) 
E - Strictly less defined than ( a E b iff 

a C b A -> ( a • b ) ) 

Note that sequence domains (e.g. TT>v) are ordered by 
uu E a Q (a # b) and a • a U uu 

where is the concatenation operator. 

1) Defined(sched)(s,m) 

tt* <== tt it tt*. (The symbol "tt*" is to be the least fixed 
point of this equation - which can be seen to be the 
infinite string of "tt"s.) 

Def (s,m, sched) <== tt U Def (Next (s,m, sched)). 

Defined(sched) (s,m) iff Def (s, m, sched) • tt* 

2) FuI I(sched) (s,m) - A scheduler is full if it does not schedule an 
unrunnable process when a runnable process can be run. 

Canrun(k)(s,m) <== 
m(k).LABEL = STOP -> ff, 
( Let syn be Act ion (k)tm).SYNCHFORM in 

Synchfn (syn.NAME)(syn.ARGS)(s) ). 
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RunnabIe(j,k) (s,m,sched) <== 
( j -•- sched(s,m),N v Canrun(j)(s,m) v -Canrun(k)(s,m) ) 
tt Runnable(j,k)(Next(s,m,sched)). 

Ful I (sched) (s,m) iff (Vj,k)( Runnabletj,k) (s,m,sched) Q tt* ) 

3) Re I ease(sched) (s,m) - A scheduler is a release scheduler [Lipton 
731 if, when some action unblocks a set of processes, then some process 
from that set will be the next to run. 

UnbIock(k)(s, m,sched) <== 
Let <s*,m*,sched'> be Next(s,m,sched) in 

( Canruh(k) (s,m) — > tt, 
Canrun(k) (s*,m*) — > ( 

Let n* be sched* (S*,nT ) .N in 
iV - k — > tt, 
-^Canrun (n') (s,m) A Canrun (n*) (s* ,mM ) , 

tt ) 

tt UnbIock(k)(s f,m',sched'). 

Re I ease (sched) (s,m) iff (Vk) ( Unb I ock (k) (s,m, sched) £ tt>v ) 

4) ReadyXRun(sched) (s,m) - A scheduler has the Ready Run property when 
no process has to wait forever to run from the time it becomes 
continuously capable of running, Ue actually state this in the logic as 
- any process which is unable to run at most a finite number of times 
must run infinitely often. Some thought should convince the freader that 
these are the same. 

Run(j) (s,m,sched) <== 
t( j • sched(s,m).N A Canruntj) (s,m) ) 
tt Runtj)(Next(s,m,sched)). 

t(p) <== p — > tt, uu. 

Cantrun(j)(s,m,sched) <== 
t(-Canrun(j) (s,m)) tt Cantrun(j)(Next(s,m,sched)). 

ReadyXRun (sched)(s,m) iff 
(Vj)( Cantrun(j) (s,m,sched) E tt* D Run(j) (s,m,sched) a tt* ) 

5) PointerXBounded(sched) (s,m) - A scheduler is pointer bounded 
[Lipton 73] when a process able to run infinitely often is scheduled 
infinitely often. (Ue will see in the Application section that both 
ReadyXRun and Poi nterXBounded are too weak and that Fairness is a more 
appropriate property) 
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Tried(k)(s,m,sched) <== 
t( k = SGhed(s,m).N ) U Tr ied(k) (Next (s,m, sched)) • 

Infcan(k) (s,m,sched) <== 
t(Canrun(k)(s,m)) # Infcan(k)(Next(s,m,sched)) • 

Pointer\Bounded(sched)(s.m) i ff 
(Vk) ( Infcan(k) (s.m, sched) s tt* o Tried(k) (s,m, sched) s tt* ) 

G) Fair (sched) (s,m) - A scheduler is fair if any process able to run 
infinitely often, runs infinitely often at times that it canrun (is not 
blocked or stop) 

Fa i r (sched)(s,m) iff 
(Vk) ( Infcan(k) (s,m, sched) s tt* D Run(k) (s,m, sched) s tt* ) 

7) Ue say a scheduler sched' is an idling extension of sched if 

a) ( sched(s,m) 5 uu A (Vk) (-'Canrun(k) (s,m)) ) — > 
sched'(s,m).N = 0, 
sched'(s,m).N s sched(s,m).N 

b) sched'(s,m).SCHED is an idling extension of sched(s,m).SCHED 

This corresponds nicely with the example definition of Mstop in the 
previous section. It is easily provable that every scheduler has an 
idling extension, that Run(j)(s,m,sched) 5 Run(j)(s,m,sched') and 
Def ined (sched') (s,m). AI so Fu I I (sched) (s,m) h Ful I (sched') (s,m) and 
si milarly for Fair. 

Fairness is in general the weakest property (along with definedness) 
that we would ever demand of a legitimate actual scheduler. Luckily, 
fairness (with definedness) will be adequate for proving properties that 
we are interested in. However, proving certain properties (in 
particular, the example proven in the next section) given fairness alone 
turns out to be somewhat difficult. The key problem is knowing exactly 
when a particular action will occur, even when it is known that it must 
occur eventually. This problem often disappears if the scheduler is 
full as well. So we will show that to prove: 

A] Def ined(sched) (s,m), Fair (sched) (s,m), Q(j,s,m) h 
Run(j)(s,m,sched) a tt* 

it is sufficient to show that 

Bl Defined(sched)(s,m), Fair(sched)(5,m), FulI(sched)(s,m), Q(j,s,m) h 
Infcan(j)(s,m,sched) a tt* 
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Proof: 

Suppose there were a function Full.sched: SCHED — > SCHED s.t. 
for any scheduler sched, 

1) Full(FulIsched(sched))(s fm) 
2) Run(j) (s,m,FulIsched (sched)) s Run(j)(s,m,sched) 
3) Infcan(j) (s,m,FulIsched(sched)) E Infcan(j)(s,m,sched) 

Wow, suppose Defined(sched) (s,m) f Fair(sched)(s,m), Q(j,s,m) f 

but Runtj>(s,m,sched) E tt* 

Since Fair (sched) (s,m), Infcant j) (s,m,sched) E tt* 

Thus by (1), (2) and (3), 
FulI(FulIsched (sched))(s,m), 
Run( j) (s,m,FulIsched(sched)) E tt* and 
Infcan( j) (s,m,Ful I sched (sched)) E tt* 

Then trivially, Fair (Ful I sched (sched)) (s, m ) , by defn of Fair 

Now, let fsched be an idling extension of FulIsched(sched). Then 
Def ined(fsched)(s,m), Fair/fsched)(s,m), FulI(fsched)(s,m) and 
Run(j) (s,m,fsched) E tt* 

If we can prove CB], then Infcan( j) (s,m, fsched) • tt*, and 
by defn of,Fair, Run(j) (s,m, fsched) • tt*. 

Thus, we have a contradiction to 
Run(j) (s,m, fsched) E tt*, and therefore the original 
hypothesis that Run(j) (s,m,sched) E tt* must be false. Since 
it is easily shown that Runt j) (s,m, sched) E tt*, 
it must be the case that Run(j) (s,m,sched) a tt* and 
[A3 follows. 

Definition of Ful I sched and proofs of 1 ) , 2) and 3) can be 
found in the Appendix. 

APPLICATIONS 

Some notion of the properties in the section above can be gained by 
consideration of the example (adapted from [Lipton 721) of 3 processes, 
each executing the loop: 

-> > P(sem) > V(sem) 
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where the initial value of sem is 1. 

(Ue will describe execution sequence as a sequence of pi and vi, 
i-1,2,3 to denote the execute of a P or V by the i' th process) 

Under a scheduler that is merely defined and full, the execution could 
simply be 

pi vl pi vl pi vl pi vl ... 

that is, processes 2 and 3 might never execute. 

If the scheduler is additionally a Release scheduler, the 
execution could be 

pi vl p2 v2 pi vl p2 v2 pi vl p2 v2 ... 

that is, vl releases P of processs 2 and v2 releases pi, but again 
process 3 might never be executed. 

If the scheduler additionally has the ReadyNRun property, it helps 
matters not at all, since process 3 is never continuously capable of 
running. It is blocked each time process 1 or 2 executes a P. Likewise 
the PointerXBounded property does not help, since process 3 might only 
be tried when it is blocked. 

If the scheduler though is merely defined and fair, each of pi, p2, 
p3, vl, v2 and v3 must execute infinitely often. 

Ue'I I prove that last statement for the more general case where there 
are n processes. As already noted, this is a problem that Cadiou & Levy 
would have difficulty proving. 

To simplify, we'll assume that the state s is identically sem, and 
we'll define the following functions: 

trueO (s) <== tt. 
tst() (s) <== ( s > 0 ). 
inc()(s) <== <s+l,uu>. 
dec()(s) <== <s-l,uu>. 

go(<n, lbl>) (res) (m) <== Ak. ( k = n --> <m(n) .PROG, Ibl>, m(k) ) . 

Introducing some notation, we use 

Ibl: Uhen syf(sya) do stf(sta) « > cf(ca) 

to represent the EP 

<<syf,sya>,<stf,sta>,<cf ,ca» 

14 
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LEMMA 1 
Def ined(sched) (s,m) A Ful I (sched) (s,m) D 

(Vk) ( Let <s\m\sched'> be Desc(s,m,sched) (k) in 
Def inedtschedM ( s \ m f ) A Ful I (sched*) (s* ,m*) ) 

Proof: Math Ind on k 

15 

where the EP is labelled by "Ibl". Where sya, sta or ca are <> (no 
arguments), we eliminate parentheses as well. Ue further use the 
notation 

:n=> Ibl(args) for « > G0(n, Ibl ,args) 

(notes Function definitions, like "go", have their names in lower 
case. The formal name, like "GO" (from the domain NAME) is the 
same name written in upper case.) 

* So, we name the program described pictorially above, pvlooptj], wher 
j is the process number (index into M ) . It has two labels, P & V, and 
its formal description using the shorthand notation developed above is 

P: Uhen TST do DEC :j-> V 
V: Uhen TRUE do INC sj-> P 

Now, the problem can be stated in the logic as, Prove: 

Defined(sched0)(s0,m0), Fair (schedO) (s8,mB), Range(j) h 
Run(j)(s8,m0,scbed8) s tt* 

where 

m0 ( Range(j) — > <pvloop t j] ,P>, <uu,ST0P> ) . 
s0 <== 1. 
Range(j) <=« j > 1 A j < n. 

By the results of the previous section, we can 51 so assume that 
FulI(schedB) (s0,m0) and simply prove 
Infcan(j)(s0,m0,sched0) 5 tt*. , • 

PROOF: 

Def ined(sched0) (s0,m0), Fair (sched0) (s0,m0), 
FulI(sched0)(s0,m0), Range(j) > 

Infcan(j)(s0,m0,sched0) • tt* 

Infcan2k (j) (s,m, sched) (k) < « 
t (Canrun (j) (Desc(s,m, sched) (2*k).SM)) c 

tt t (Canrun (j) (Desc(s,m, sched) (2*k+l).SM)) 
tt Infcan2k(j) (s,m,sched)(k+1). 
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LEMMA 2 
Infcan2k(j) (s,m,sched) (k) s Infcan(j)(Desc(s.m,sched)(2*k)) 

Proof: Parallel Comp Ind on Infcan2k & Infcan 

LEMMA 3 
Def ined(schedB) (s0,m0), Ful I (schedB) (sB,m0) h 

Let <s'. m' . sched' > be Desc (s0, m0, sched0) (2>vk), 
<s",m",sched"> be Desc<s0,m0,sched0)(2ftk+l), 
j be sched' (s',m') in 
Range (i) o Canrund ) (s', m') A 
Canrun(j)(s".m") A 
i * j o -Canrun(i) (s".mlf) 

Proof: Math Ind on k using Lemma 1 

LEMMA 3a 
Defined (sched0)(s0,m0), FulI (sched0)(s0.m0). Range (j) h 

Canrun(j) (Desc (s0.m0, sched0) (2>vk).SM) 5 tt 

The proof of the theorem follows directly from Lemmas 2 & 3a 

Ue can also state (though we will not prove) the mutual 
exclusion,problem as 

Range(j). Range(k). j*k h Mutex(s0,m0. sched0) s uu 

Mutex(j,k)(s.m.sched) <== 
t( m(j). LABEL = m(k). LABEL = V ) U Mutex (j.k) (Next (s fm, sched)). 

DEADLOCK 

Briefly, we can state some deadlock properties in the logic 
based on the model. 

1) Starved(k)(sched)(s.m) - A process is starved [Dijkstra 721 
if it is not "STOP" and is continuously incapable of running. 

Infsafe(k)(s.m,sched) <== 
t( m(k).LABEL = STOP or Canrun(k)(s,m) ) 
tt Infsafe(k)(Next(s.m.sched)). 

Starved(k) (sched) (s.m) iff Infsafe(k) (s,m. sched) E tt>v 

2) Dead lock (sched)(s.m) - The system is deadlocked if some 
process becomes starved. 

IB 
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Dead lock (sched) (s.m) iff (3k) (Blocked(k) (sched) (s.m)) 

3) Safe(s.m) - Ue are often interested, regardless of the fecheduler 
whether or not a particular set of processes can ever lead to deadlock. 
If not, the system is safe. Yet, we cannot ignore the scheduler 
completely, as degenerate schedulers can lead to anomalous behavior as 
we noted in an earlier section. Ue take as a minimal requirement that 
the scheduler be fair and defined. 

Safe(s,m) iff 
(Vsched) ( Defined(sched)(s,m) A Fair (sched)(s,m) D 

(Vk)( Infsafe(k)(sched)(s,m) s tt* ) ) 

Clearly, the P/V system of the previous section is safe. . 

Of course, it is in general undecideable whether or not <s,m> is safe 
even in simple systems such as P/V (with conditionals), and even knowing 
that under a particular fair, full, defined scheduler, deadlock cannot 
occur. 

Consider s composed of a semaphore, sem, initially 0, integers 
k and n, initially 0, and f, a description of a total function of 
type N — > TT. And let m be running the two processes informally 
described by: 

Process 1 

k := 0; 
n := 0; 
V(sem); 
loop 

if Eval (f) (n) then V(sem); 
n : = n + 1; 
end Ioop 

Process 2 

k := 1? 
loop 

if k = 0 then V(sem); 
P(sem); 
end Ioop 

Now, under a scheduler that runs process 2 first, the eventual value 
of k will be 0 and there will never be deadlock, but if process 1 runs 
first, k will be 1, and determining Safe(s,m) becomes equivalent to 
deciding whether f is true infinitely often, which is reducible to the 
ha11 ing problem. 

MODELLING PROTECTION SYSTEMS 

In the model presented, each process operates on a common memory stati 
S. Yet in programming systems, different processes do have different 
accessing rules for accessing the memory (e.g. Frames, Contours, Virtua 
or Local Name Spaces and Execution Domains). By passing the EP its 
multiplexor slot as an argument, differential accessing of S can easily 
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be achieved. For example, if S - N — > DOMAIN, then if p is executing in 
Multiplexor slot k, s(k) could represent its execution domain. 

Now, consider the modeling of a segmented operating system. Process 
j's data segments would be part of S, whereas its code segment would be 
modeled directly by the PROG component of M(j). Ue could then model the 
starting of process n by the EP: 

Start: Uhen TRUE do CONTENTS(<seg>) «=> L0ADG0(<n>) 

where contents(<seg>)(s) returns as its result the contents of segment 
seg (in state s ) , and loadgo(<n>) loads up those contents in M(n) and 
begins executing the process. 

loadgo(<n>) (segcontents)(m) <== 
Ak. ( k=n — > <link(segcontents,n),BEGIN>, m(k) ) 

where Mnk(x.n) assembles x into PROG form with start address, BEGIN 
in process n. 

An interesting byproduct is that one can model a process changing a 
data segment of another process (possible in systems with shared data) 
by using a STATEFORM, whereas a change in an executing process's code-
segment (most likely a bug) can only be modeled by using a CONTROLFORM 
(like LOADGO). In fact, in pursuing this modified model, just such a 
bug was discovered în CMU's HYDRA system. 

( The bug in HYDRA can be circumvented by the use of "frozen" pages 
(see [Rotenberg 74]). A frozen code page is permanently protected 
against modification. ) 

Other small changes in the model make it more useful for describing 
and proving properties about protection systems. (Cohen 75] will report 
further results. 

A CONJECTURED INDUCTION RULE 

Ue will often want to prove (for some predicate Q) 

A] Def ined(schedO) (s0,m0), Fair (sched0) (s0,m0), Q(j,s0,m0) h 
Run(j) (s0,m0,sched0) s tt>v 

under more difficult conditions than in the simple example of the 
applications section. Ue note that in the P/V example, process j 
becomes blocked when some other process, say k, has successfully 
executed a "P". Process k's subsequent execution of a 1 1V" will 
then make process j runnable once more. 

This is an instance of a more general observation. Suppose that 
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whenever process j is blocked, we are able to find a runnable process 
whose execution brings process j "closer" to becoming runnable and 
furthermore execution of any other process does not take process j 
farther away from becoming able to run. If we can show that after doing 
this a finite (though not necessarily bounded) number of times, process 
j actually becomes runnable, then under a fair scheduler we should be 
able to show that process j runs forever. Formally, we have the 
following induction principle: 

Suppose that ( U, < ) is a we I I-founded set with a set of least 
elements U0 in which all intervals are of finite length. Ue 
write Iwl for the maximum distance from w to an element of U0. 
Furthermore, let Assoc: U — > [ S x M — > TT ] and 
Closer: U — > N be total functions. Then to prove [A], it is 
sufficient to prove: 

a) Q(j,s,m) f- (3w) ( Assoc(w) (s,m) ) 

b) w0 c U0, Assoc(w0)(s,m) h Canrun(j)(s,m) 

c) w0 c U0, Assoc(w0)(s,m) h (Vk)(3M)( Assoc(w)(Exec(k)(s,m)) ) 

d) w -*c U0, Assoc (w) (s,m) h 
(3w')( Iw'l < Iwl A Assoc(w')(Exec(Closer(w))(s,m)) ) 

e) w U0, Assoc(w) (s,m) h (Vk)(3w')( 
Assoc (w')(s,m) A 

( Iw'l < Iwl v ( Iw'l = Iwl ACIoser(w') »Closer(w) ) ) ) 

Intuitively, we use an abstraction of a token machine to determine 
whether or not process j can run forever. A token is always associated 
with some element w of U depending on s 8 m. As EP's are executed, s & 
m change, thus the token becomes associated with different elements of 
U. By proving properties about the movement of the token in U, we can 
prove that process j runs forever. 

The basic idea is to associate the bottom elements of U, that is U0, 
with the states in which process j canrun. Then when the token is not 
associated with an element of U0, we must show that the token is 
eventually forced down towards an element of U0. Ue do this by 
demanding that when w U0, there is some process Closer(w), such that 
the execution of that process will force the token to an element w' such 
that Iw'l < Iwl. Furthermore executing any other process must have the 
effect that either the token is forced to a w' lower than w anyway or 
the token moves to a w' at the same distance from the bottom ( lw'I « 
Iwl ) but such that Closer(w') • Closer(w). Thus in the case that we 
have a fair scheduler, process k wi I I eventually run and the token wi.l I 
eventually be pushed down closer toward U0. Since all intervals are of 
finite length, the token will eventually end up in U0. This will go on 
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forever, thus, process j will be runnable forever, and again, given a 
fair scheduler, process j will actually run forever. 

Using this conjectured induction principle, we can easily prove the 
PVIoop example. Define 
U - (>v) +• {wl,...,wn} and U0 - {*}, under the ordering, 
* < w i, i = 1,..., n. 

Let Assoc(>v) (s,m) 5 s = 1 A 
m(k).LABEL = ( Range(k) --> P, STOP ) 

and Assoc(wi)(s,m) s s - 0 A 
m(k).LABEL = ( k=i --> V, Range(k) — > P, STOP ) 

and Closer(wi) « i. 

Then, it is relatively trivial to prove that: 

a) Assoc (>v) (s0,m0) 

b) Assoc(*)(s,m) h Canrun( j) (s,m) 

c) Assoc(>v) (s,m) h 
(Vk) ( Range(k) — > Assoc(wk) (Exec(k) (s,m)), 

Assoc (>v) (Exec (k) (s, m)) ) 

d) Assoctwi)(s,m) h 
(Vk) ( k=i — > Assoc(*) (Exec(k) (s,m)), 

Assoc(wi)(Exec(k)(s,m)) ) 

which is easily seen to satisfy the induction predicates. 

To simplify proofs, it maybe useful to partition the system. We 
would have to define the notion of an "independent partition", and then 
prove that if <ml,...,mj> was an independent partition of m under s, 
then 

Safe(s,ml), Safe(s,mj) h Safe(s,m) 

SCHEDULER NOTES 

1) As noted in an earlier section, scheduler properties depend 
heavily on S and (1 as well as SCHED. Since future behavior of the 
system is completely determined by the initial system, all we need 
do is allow the scheduler to be tailor made to the initial 
configuration. Suppose that we demand that in the initial state of 
the system, n < j D m0(j).LABEL » STOP, and call this property 
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Init(m0,n).« The use of n, fixing an upper bound to the initial 
number of runnable processes allows us to define a recursive 
scheduler prototype: 

PROTOSCHED N x S x M --> SCHED 

and a scheduler maker 

Makesched: PROTOSCHED — > [ N x S x M — > SCHED ] 

Ue say that PROTOSCHED is fair if 

I n i t(m0,n) D Fai r(Makesched (protosched)(n,s0f m0))(s0,m0) 

and similarly for other properties. 

2) Because the scheduler gets its information by looking at EP's, EP 
must be a domain over which a continuous "=" predicate is defined so 
that the scheduler can actually look at the components of the EP. Hence, 
the various FORM's of the EP are specified as NAMEs and list of 
ARGuments, rather than directly as functions. 

CONCLUSION 

Ue have introduced a semantic model for parallel systems and have 
presented a number of properties of parallel systems based on the model 
as well as some proofs and proof rules. 

The development with the most potential appears to be the conjectured 
induction rule based on well founded sets As Cadiou & Levy note. LCF 
proofs force the program prover to (sometimes tediously) explicate all 
the possible states of the system. To make proofs of complex parallel 
programs more tractable, and especially to make the proofs more amenable 
to automatic verification, it seems clear that some (elegant) embedded 
or externally imposed (see [Milner & Ueyrauch 723) structure is 
critical. Uell founded sets may be a useful structure for proofs of 
deadlock; for other properties of parallel programs, further exploration 
is necessary. 

There is a different kind of structuring choice more directly related 
to this paper - what can be an indivisible operation embodied by an EP? 
If we assume an implementation on a sequential machine, the safest 
choice is the smallest action that cannot be interrupted. The obvious 
difficulty is that sequential machines are rare; even conventional 
machines often have an I/O processor and both may simultaneously be 
accessing memory. At best machines that use cycle-stealing force us to 
safely choose as indivisibje actions those which take place in a single 
cycle. 
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Ue have assumed in this paper that actions as complex as 
synchronization operators may be viewed indivisibly and thus our proofs 
must therefore be viewed as correct only for models in which that is the 
case, thus we separate the model of indivisibility from its 
implementation. In the case of a multiprocessor, the code implementing 
synchronization may be running in parallel with other processes, perhaps 
even executing the same code. Uhat must be shown in such a case is that 
the model of indivisibility is nonetheless valid regardless of such 
concurrency as may be introduced by the implementation. Such proofs are 
beyond the scope of this paper. 

A somewhat serious deficiency of the scheduler model (and other models 
as well) is its inability to model time dependent behavior - for example 
timer interrupts in programming systems and timing considerations in 
machine architecture. Uhile the nature of problems to be studied with 
respect to time dependencies would likely call for a different model in 
any case, proving the correctness of something like a 
mul tiplexor/scheduler for a multiprocessor would likely require a 
scheduler model modified in some way to handle time dependencies. 

Perhaps the most serious problem with the model described here is in 
the nature of the assumptions made about how processes interact (or 
should interact). A formal semantics for a sequential programming 
language with structured control provides a better base for various 
proofs than a semantics for a language with GOTO's. Similarly, suitably 
restricted interactions between processes should provide a better 
semantic system than the one described here in which arbitrary-
interactions are allowed. A solution is to provide additional axioms 
which restrict the possible schedules. P/V disciplines are too 
unstructured. Uork along the lines of Path expressions [Campbell & 
Haberman 74] appear to be more promising in providing a semantic basis 
in which proofs will be less tedious. 
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APPENDIX 

The proofs here are presented as a series of Lemmas. Except for some 
difficult cases, an outline of the proof of each Lemma is all that is 
given. Only two inductive proof rules are used here, Computational 
Induction [Milner & Viullemin 72, Manna 72] and Mathematical Induction 
[Manna 72]. 

Ue use the abbreviations introduced by Milner [Milner72J. 
a :: b = c for (a — > b,uu) = (a — > c,uu). 
and 3(x) is the definedness predicate, 
8(uu) s uu, otherwise, 8(x) s tt. Ue also use 
t(a) < " a tt,uu. 

Ue also assume an extended LCF theorem prover with a knowledge 
of arithmetic (see axioms by Newey [Newey 73]) built in 
and 'therefore, when we are clearly dealing with a.natural number, 
we di spense wi th the additional predicate isnat, e.g. 
we write a :: b(n) s c(n) instead of 
a A isnat(n) :: b(n) s c(n). 

Ue have not formally shown that Computational Induction is 
legitimate as we use it over the domains introduced in this 
paper. A proof in the style of Scott [Scott 72] is left to 
the reader. 

Ue use [Kahn 73] as a general concatenation operator, and 
leave proofs about its obvious properties to the reader. 

THEOREM 1 

FulI(FulIsched (sched))(s,m) 

Ful I sched(sched) <-• X(s,m).Kfs(sched,0)(s,m). 

Kfs (sched, n) (s, m) < « 
Let <s* ,m' ,sched'> be Desc(s,m, sched) (Kfn(s,m, sched)'(n)) in 

< sched* (s\m').N, Ful I sched (sched* (sf ,m') .SCHED) > 

Kfn(s,m,sched)(n) <== 
Cr(Desc(s,m,sched)(n)) — > n, 
Kfn(s,m,sched)(n+1). 

Desc(s,m,sched)(n) <== 
n - 0 — > <s,m,sched>, 
Next(Desc(s,m,sched)(n-1)). 

Cr (s.m, sched) <=« Canrun(sched(s,m).N)(s,m). 
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Aex(j,s,m) <== Exec(Action( j)(m))(s,m). 

LEMMA 1 
Next(s,m,sched) s 

-Cr (s, m, sched) — > < s, m, sched(s,m).SCHED >, 
< Aex (sched (s, m) .N, s, m ) , sched (s.m) .SCHED >. 

Proof: by definitions 

LEMMA 2 
-•Cr (Desc(s,m, sched) (n)) :: 

Desc(s,m,sched)(n).SM s Desc (s,m,sched)(n+1).SM 
Proof: Defined of Desc & Lemma 1 

LEMMA 3 
Canrun (Kf s (sched,n) (s.m) .N) (Desc(s.m, sched) (n) .SM) £ tt 

Proof: Substitute Defn of Kfs, then use Computational 
Induction on Kfn, using Lemma 2 & Defn of Cr 

LEMMA 3a 
Canrun(Fu) I sched(sched) (s,m) .N) (s,m) E tt 

LEMMA 3b 
Cr (s,m,FulIsched(sched)) E tt 

LEMMA 4 
Desc (s, m, sched)(Kfn (s,m,sched)(n)).SM Q Desc(s,m,sched)(n).SM 

Proof: Comp Ind on Kfn using Lemma 2 

LEMMA 4a 

Desc (s, m, sched) (Kfn (s, m, sched) (8)) .SM C <s,m> 

LEMMA 5 
Cr (Desc (s, m, sched) (Kf n (s, m, sched) (n))) s 

Canrun (Kfs (sched, n) (s,m).N) (Desc (s, m, sched) (n).SM) 
Proof: Defn of Kfs & Cr and Lemma 4 

LEMMA 5a 
Cr (Desc (s,m', sched) (Kfn (s,m, sched) (n))) E tt 

Proof: Lemmas 3 & 5 

LEMMA 5b 
Cr (Desc (s,m, sched)(Kfn(s,m,sched)(8))) s Cr(FulIsched(sched),s, m) 

LEMMA 6 
Next(s,m,FulIsched(sched)) s 

Let <s* ,m f, sched* > be Desc(s,m,sched) (Kfn(s,m, sched) (B)+l) in 
< s', m*, FulIsched(sched') > 

Proof: 
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Next(s,m,FulIsched(sched)) 

s Cr(s.m.FulIsched(sched)) — > . 
< Aex(FulIsched(sched)(s,m).N.s.m), FulIsched(sched) (s.m).SCHED : 
uu. Lemma 1 & 3b 

s Cr(s,m,FulIsched(sched)) — > 
Let <s, m* f sched' > be Desc(s,m,sched)(Kfn(s,m,sched)(0)) in . 

< Aex(sched* (s',m').N,s,m), FulIsched(sched' (s' ,m*).SCHED) > f 

uu. Defn of Fullsched. Kfs 

a Let <s',m',sched'> be Desc(s,m,sched)(Kfn(s,m, sched)(0)) in 
Cr (s', m',sched') — > < Aex (sched*(s',m').N,s',m'), 

Ful Isched(sched' (s',m').SCHED) >, 
uu. Lemmas 4a & 5b 

s Let <s',m',sched'> be Desc(s fm,sched)(Kfn(s,m,sched)(0)) in 
< Next(s',m',sched').SM, Ful I sched (Next (s\m', sched') .SCHED) >• 

Lemmas 1 & 5a, 

s Let <s',m',sched'> be Desc (s.m,sched)(Kfn(s,m, sched)(0)+l) in 
< s', m', Ful I sched (sched') > Defined of Desc QED . 

Proof of THEOREM 1 

Ful I (Ful I sched (sched)) (s,m) by Defn of Full, we must prove 

Runnable(j,k)(s,m,FulIsched(sched)) E tt* 
Proof: Computational Ind on Runnable 

( j * Ful I sched(sched)(s,m).N or Canrun(j)(s,m) or -Canrun(k)(s,m) ) 
# Runnab I e (j, k) (Next (s, m,Ful I sched (sched))) 

C tt # Runnable(j,k) (Next (s,m,FulIsched(sched))) Lemma 3a 

s tt # Let <s',m',sched'> be Desc(s,m,sched)(Kfn(s,m,sched)(0)+l) 
Runnable(j,k) (s',m*,FulIsched(sched')) Lemma 8 

£ tt tt tt* Induction 

s tt* 

THEOREM 2 

Runt j) (s,m,sched) a Run( j) (s,m,Ful I sched)) 

F\bl (j) (s,m,sched) <== t( (j = sched(s,m) .N) A Canrun( j) (s,m) ) 
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Col(j)(s.m.sched)(n) <== 
n = 0 — > <>, 
Col (j) (s.m. sched) (n-1) # Rbl (j) (Desc (s.m, sched) ( n - D ) . 

Crun(j) (s.m.sched) <== Let n be Kfn(s,m,sched) (0) + 1 in 
Col (j) (s.m.sched) (n) # Crun(j) (Desc(s,m,sched) (n)). 

LEMMA 7 
Desc (Desc (s.m, sched) (a)) (b) a Desc (s,m, sched) (a+b) 

Proof: Math Ind on b 

LEMMA 8 
d(Desc (s, m, sched) (n+k)) C d (Desc(s,m, sched) (n)) 

Proof: Lemma 7 & Axioms for d 

LEMMA 9 
k < n A Cr (Desc (s, m, sched) (n)) D Kfn (s,m, sched) (n-k) < n 

Proof: Math Ind on k using Lemma 8 

LEMMA 9a 

Cr (Desc (s, m, sched) (n)) D Kf n (s, m, sched) (0) £ n 

LEMMA 10 
Rbl (j) (s,m,sched) E t (Cr (s,m,sched)) 

Proof: Defn of Rbl & Cr 
LEMMA 11 

n £ Kfn(s,m,sched) (0) :: Col (j)(s,m,sched)(n) • <> 
Proof: Math Ind on n using Lemma 9a & 10 

LEMMA 11a 
Col (j) (s,m,sched)(Kfn(s,m,sched)(0)) s <> 

LEMMA 12 
Rbl(j)(s,m,FulIsched(sched)) H 

Rbl (j) (Desc(s,m,sched) (Kfn(s,m,sched) (0)) 
Proof: Lemma 5b & Defn of Fullsched 

LEMMA 13 
Rbl(s,m,FulIsched(sched)) 5 

Col (j) (s,m,sched)(Kfn(s,m,sched)(0)+l) 
Proof: Lemmas 11a & 12 by Defn of Col 

THEOREM 2a 
Runtj) (s,m,Ful I sched(sched)) s Crun(j)(s,m,sched) 

Proof: Para I lei Comp Ind on Run & Crun 
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LEMMA 14 
Run(j)(s.m.sched) a 

Col (j) (s.m.sched) (s.m.sched) (n) ft Run(j) (Desc(s.m.sched) (n)) 
Proof: Math Ind on n 

LEMMA 15 
3(Run(j) (Desc(s,m, sched) (n)) E 8(Kfn(s,m.sched) (n)) 

Proof: Parallel Comp Ind on Run & Kfn using Lemmas 7 & 10 

LEMMA IB 
Runt j) (s,m, sched) a Let n be Kf n (s, m. sched) (0) + 1 in 

Col (j) (s.m.sched) (n) # Run(j)(Desc(s.m.sched) (n)) 
Proof: By cases of 3(Kfn(s.m,sched)(0)) using Lemmas 14 & 15 

THEOREM 2b 
Run(j) (s.m.sched) a Crun(j)(s.m,sched) 

Proof: Parallel Comp Ind on Run & Crun using Lemma 1G 

Proof of THEOREM 2 

Run( j) (s,mf sched) -a Run( j) (s.m, Ful I sched (sched)) 
Proof: Theorem 2a & 2b 

THEOREM 3 

Infcan(j) (s.m.Ful I sched (sched)) E Infcan(j) (s.m.sched) 
Proof: Similar to proof of Theorem 2 
without use of Lemmas 11 & 11a and 
weaker versions of Lemma 13 and Theorem 2a 

29 
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Ue use the predicate "Valid" for what Lipton calls "Semi-Act 

Valid(timing)(s,m) i ff 
(3sched,k)( History(s,m, sched) (k) = timing ) 

i v e 

30 

TIMINGS 

The Scheduler formalism used in this paper is related closely to 
the Timings that appear in Upton's work. The following section 
clarifies the relationship. 

SEP = EP + (STOP) 
TIMING = {<>} + ( N x SEP ) x TIMING 

Thus, a Timing is a Mst'of EP's (or (STOP)), with each EP 
associated the index of the process that executed it. 

Since a timing is a list, there are three functions predeclared with 
the usual interpretation: 

Car: TIMING — > N x SEP 
Cdr: TIMING — > TIMING 
Empty: TIMING — > TT 

History: S x M x SCHED — > [ N --> TIMING 1 

History(s,m,sched)(k) <== 
k = 0 — > {<>} , 
Let n be sched(s,m).N in 

Let sep be 
rn (n) .LABEL = STOP ~ > STOP, Act ion(n) (m) 

i n 
< <n,sep>, Hi story (Next(s,m,sched))(k-1) >. 

Apply: SEP > [ S --> S ] 

Apply (sep) (s) < « 
sep = STOP — > s, 

'Let < <syname, syargs>, <stname, stargs>, <cname, cargs> > be sep in 
Synchfn(syname)(syargs) (s) --> Statefn(stname)(stargs)(s).S, s. 

Value: TIMING — > [ S > S ] 

Value(t iming)(s) <== 
Empty(timing) --> s, VaIue (Cdr(timing))(Apply(Car(timing) .SEP)(s)). 
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Active: TIMING — > [ S --> TT ] 

Active(timing)(s) <== 
Empty(timing) — > tt, 
Let < <n,sep>, rtiming > be timing in 

sep = STOP > ff, 
Let <syname,syargs> be sep.SYNCHFORM in 
• --Synchfn(syname) (syargs) — > ff, 

Active(rtiming) (Apply(sep)(s)). 

Timings form a partial order described in the following way: 

<: TIMING x TIMING — > TT 

tl < t2 <== 
Empty(tl) — > tt, 
Empty(t2) « > ff, 
Let < <nl,el>, rtl > be tl and < <n2,e2>, rt2 > be t2 in 

nl — n2 A el = e2 — > rtl < rt2, ff. 

Conjecture: 

Val id(timing) (s,m) 'h Active(timing) (s) iff 
(3k,sched) ( FulI(sched) (s,m) A Hi story(s,m,sched)(k) = timing ) 
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