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Abstract

We introduce the simultaneous model for cake cutting (the
fair allocation of a divisible good), in which agents simul-
taneously send messages containing a sketch of their pref-
erences over the cake. We show that this model enables the
computation of divisions that satisfy proportionality — a
popular fairness notion — using a protocol that circumvents
a standard lower bound via parallel information elicitation.
Cake divisions satisfying another prominent fairness notion,
envy-freeness, are impossible to compute in the simultaneous
model, but such allocations admit arbitrarily good approxi-
mations.

Introduction
The theory of fair division provides formal notions of fair-
ness, and mechanisms for computing outcomes that achieve
these notions. When the good to be shared is divisible and
heterogeneous, the problem of fairly dividing it is widely
referred to as cake cutting. But the childish name is mislead-
ing, as this is a problem of great mathematical depth and
serious potential applications, which, for many decades, has
attracted thinkers from mathematics, economics, and politi-
cal science; see, e.g., the books by Brams and Taylor (1996)
and Robertson and Webb (1998), and the survey by Procac-
cia (2013).

Cake cutting is largely an algorithmic endeavor, but only
recently have computer scientists started to weigh in. One
of the exciting developments is the emergence of a compu-
tational model (formally, a concrete complexity model) of
cake cutting that is attributed to Robertson and Webb (1998).
This model views the cake cutting process as an interaction
between the protocol and the agents, where the protocol elic-
its information about the agents’ valuations by iteratively
asking two types of queries: either cutting a piece of cer-
tain value, or evaluating a given piece. The Robertson-Webb
model allows computer scientists to formally reason about
the complexity of achieving fair cake divisions (Edmonds
and Pruhs 2006b; 2006a; Woeginger and Sgall 2007; Pro-
caccia 2009; Deng, Qi, and Saberi 2012; Aumann, Dombb,
and Hassidim 2013; Kurokawa, Lai, and Procaccia 2013;
Brânzei, Procaccia, and Zhang 2013).

In this paper, we introduce a novel computational model
that, we believe, provides a fundamentally new perspective
on cake cutting; we call it the simultaneous model. In our

model, the agents simultaneously report compact versions of
their preferences, specifically, their values for specific pieces
of cake; this information is used to compute a fair allocation,
without further communication between the agents. We de-
fine the complexity of a simultaneous protocol as the maxi-
mum number of pieces whose values an agent may need to
report.1

Cake cutting protocols in the simultaneous model have
two advantages compared to their counterparts in the
Robertson-Webb model:

1. Elicitation of preferences can be done in parallel.

2. The existence of computationally efficient simultaneous
protocols would imply that agents’ valuation functions
can be sketched in a way that preserves sufficient informa-
tion for recovering a fair cake division (via the protocol).

On the other hand, the simultaneous model severely restricts
the power of protocols. Is the restriction so severe that fair
divisions, according to standard fairness properties, cannot
be computed? Our research question is

... which fairness properties are computationally feasi-
ble in the simultaneous model, and what is the complex-
ity of computing cake divisions satisfying those proper-
ties?

Our Results
Our results focus on the two most widely-studied fairness
properties, proportionality and envy-freeness.

Proportionality requires that each agent receives a piece of
value at least 1/n of the entire cake (according to that agent’s
preferences), where n is the number of agents. We show that
the complexity of proportionality in the simultaneous model
is exactly n, i.e., there exists a proportional simultaneous
protocol with complexity n (each agent reports its value for
at most n pieces of cake), and no proportional simultane-
ous protocol can do better. In contrast, it is known that the
complexity of proportional cake cutting in the Robertson-
Webb model is Θ(n log n) (Edmonds and Pruhs 2006b). The

1This definition is better, formally and intuitively, than taking
the overall amount of communication (summed over all agents); it
is also consistent with related work on communication complex-
ity (Kremer, Nisan, and Ron 1999).
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reduction in complexity below the formal Robertson-Webb
lower bound is driven by parallel information elicitation.

Envy-freeness stipulates that each agent (weakly) prefers
his allocation to the allocation of any other agent. While
envy-free allocations can always be computed in the
Robertson-Webb model (Brams and Taylor 1995), we show
there exists no simultaneous protocol that can guarantee ex-
act envy-free allocations for every instance of the valuations.
However, we devise a simultaneous protocol that guarantees
allocations arbitrarily close to envy-freeness.

Related Work
In recent years, cake cutting has emerged as a major research
topic in artificial intelligence (Procaccia 2009; Caragiannis,
Lai, and Procaccia 2011; Cohler et al. 2011; Brams et al.
2012; Bei et al. 2012; Aumann, Dombb, and Hassidim 2013;
Kurokawa, Lai, and Procaccia 2013; Brânzei, Procaccia, and
Zhang 2013; Chen et al. 2013). The growing interest is partly
motivated by potential applications in AI (Chevaleyre et al.
2006) that are becoming more concrete (Gutman and Nisan
2012; Kash, Procaccia, and Shah 2013). But it is also driven
by a newfound understanding that computational thinking
can provide a completely new perspective on this classical
research topic.

Our simultaneous model of cake cutting is related to,
and conceptually draws on, work on communication com-
plexity (Kushilevitz and Nisan 1996) and streaming al-
gorithms (Muthukrishnan 2005). In particular, Kremer et
al. (1999) studied the relation between one-round commu-
nication complexity and simultaneous communication com-
plexity. Similarly to our model, streaming algorithms deal
with compact representations — called sketches — of data.
Some papers focus specifically on sketching valuation func-
tions or preferences in various contexts (Bachrach, Porat,
and Rosenschein 2009; Caragiannis and Procaccia 2011;
Badanidiyuru et al. 2012).

Cake Cutting Background
The cake is modeled as the interval [0, 1]; there is also a set
N = {1, . . . , n} of agents. A piece of cake X is a finite set
of disjoint intervals of [0, 1].

Each agent is endowed with an integrable, non-negative
value density function vi(x) that induces a value for each
possible piece of cake. Formally, the value of agent i for a
piece X is given by

Vi(X) =
∑
I∈X

∫
I

vi(x)dx.

By definition, the valuations of the agents are additive, i.e.
Vi(X ∪ Y ) = Vi(X) + Vi(Y ) if X and Y are disjoint; and
non-atomic, i.e. Vi([x, x]) = 0. We assume that each agent
has a value of one for the entire cake: Vi([0, 1]) = 1 for all
i ∈ N . This assumption is without loss of generality for the
purposes of this paper.

An allocationA = (A1, . . . , An) is a partition of the cake
among the agents, that is, each agent i receives the piece Ai,
the pieces are disjoint, and

⋃
i∈N Ai = [0, 1].

An allocation A is Pareto optimal if there does not exist
another allocation A′ such that Vi(A′i) ≥ Vi(Ai) for all i ∈
N , and the inequality is strict for at least one agent. Pareto
optimality is a notion of economic efficiency.

Two other important properties concern fairness. An allo-
cation A is proportional if for all i ∈ N , Vi(Ai) ≥ 1/n,
and envy-free if for all i, j ∈ N , Vi(Ai) ≥ Vi(Aj). Envy-
freeness implies proportionality when the entire cake is al-
located, but the converse is not always true.

The standard model of communication between the cen-
ter and agents in cake cutting was proposed by Robertson
and Webb (1998), and employed in a body of work study-
ing the complexity of cake cutting (Edmonds and Pruhs
2006b; 2006a; Woeginger and Sgall 2007; Procaccia 2009;
Kurokawa, Lai, and Procaccia 2013). The model restricts the
interaction between the protocol and the agents to two types
of queries:

• Cut query: Cuti(x, α) asks agent i to return a point y such
that Vi([x, y]) = α.

• Evaluate query: Evali(x, y) asks agent i to return a value
α such that Vi([x, y]) = α.

We illustrate the Robertson-Webb model using the most
basic cake cutting protocol, Cut and Choose, which com-
putes an envy-free allocation for two agents. Under this pro-
tocol, agent 1 cuts the cake into two pieces that it values
equally, and agent 2 selects its preferred piece, leaving the
remaining piece for agent 1. The Cut and Choose protocol
can be simulated in the Robertson-Webb model using two
queries: y = cut1(0, 12 ), and eval2(0, y). The first query
creates two pieces X = [0, y] and Y = [y, 1] such that
V1(X) = V1(Y ) = 1/2. The second query gives V2(X). At
this point, there is enough information to pinpoint an envy-
free allocation: If the answer to the second query is at least
1/2, we can allocate X to agent 2 and Y to agent 1, other-
wise we swap the pieces. We emphasize that a protocol in
the Robertson-Webb model does not actually return an al-
location; the goal is to elicit enough information such that
there exists an allocation that is guaranteed to satisfy a given
property (such as envy-freeness).

The Simultaneous Model
We define a discretization of the cake as a tuple (x̄, w̄), for
which there exists m ∈ N such that:

• x̄ = (x0, x1, . . . , xm−1, xm) is a sequence of cut points
with 0 = x0 < x1 < · · · < xm−1 < xm = 1.

• w̄ = (w1, . . . , wm) is a sequence of values, such that wi
represents the value of the piece [xi−1, xi] and w1 + . . .+
wm = 1.

Let D denote the space of all discretizations. Then a one-
round protocol can be defined as follows:

Definition 1 (Simultaneous protocol). A simultaneous pro-
tocol is a function F : V → D, where V is the space of
valuations, D is the space of discretizations of the cake, and
F(V ) is the discretization that an agent is instructed to re-
port when his valuation function is V .
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One could alternatively define a simultaneous protocol as
reporting a set of (possibly overlapping) subintervals and
their values. However, the two definitions are essentially
equivalent for our purposes.

What does it mean for a simultaneous protocol to satisfy
a property, such as envy-freeness, proportionality, or Pareto
optimality? This question involves surprising subtleties even
in the Robertson-Webb model, and so the definition must be
carefully chosen. Very roughly speaking, the main difficulty
(in both models) is that agents could potentially use an injec-
tion from the space of valuation functions to [0, 1] to encode
their entire valuation function as a single number (e.g., the
first cut point they make). For any given property, that would
give enough information to compute an allocation satisfying
the property (if one exists). The definition below circum-
vents this problem, by capturing the idea that reporting a
value for an interval commits the agent to a valuation func-
tion that actually assigns the reported value to that interval,
and nothing else.

Definition 2 (Property of a simultaneous protocol). Let P
be a property of cake allocations. A protocol F satisfies
property P if the following holds for any tuple of valuation
functions V̄ = (V1, . . . , Vn):

• Whenever each agent i follows the protocol by report-
ing its recommended discretization, (x̄i, w̄i) := F(Vi),
there exists an allocationA that satisfies P with respect to
any other valuations V̄ ′ = (V ′1 , . . . , V

′
n) consistent with

the discretizations reported at V̄ (i.e., V ′i ([xj−1i , xji ]) =

wji ,∀i, j).
For example, let us describe an envy-free simultane-

ous protocol F for two agents. F(Vi) is the discretization
(x̄i, w̄i) where x̄i = (x0i = 0, x1i , x

2
i = 1) and w̄i = ( 1

2 ,
1
2 ),

that is, each agent essentially cuts the cake into two pieces
worth 1/2 using the cut point x1i . Now assume without loss
of generality that x11 ≤ x12, and consider the allocation
A1 = [0, x11], A2 = [x11, 1]. This allocation is clearly envy-
free for the reported valuation functions, and, moreover, it
is envy free for any valuation functions where V ′i ([0, x1i ]) =
V ′i ([x1i , 1]) = 1/2 for i = 1, 2.

In the Robertson-Webb model, the complexity of a proto-
col is the maximum number of cut and evaluation queries.
We use an equivalent definition in the simultaneous model.

Definition 3 (Complexity of a simultaneous protocol). The
complexity of a simultaneous protocol is the maximum num-
ber of intervals in the discretization F(V ) taken over all
V ∈ V (that is, the maximum number of cut points minus
one). If the maximum does not exist, we say that the protocol
is unbounded.

For example, the complexity of the envy-free simultane-
ous protocol for two agents is 2.

Proportionality
We start by examining proportionality in the simultaneous
model. In the Robertson-Webb query model, the complex-
ity of computing proportional allocations is Θ(n log n): an
O(n log n) upper bound is given by the Even-Paz (1984)

protocol, and a matching lower bound was established by
Edmonds and Pruhs (2006b).

Similarly, the simultaneous model turns out to admit the
computation of proportional allocations, but the complexity
of proportionality in this model is only Θ(n). For the up-
per bound, we describe a protocol that is a simultaneous in-
terpretation of a protocol designed in a different context by
Manabe and Okamoto (2012). Importantly, this protocol re-
quires Θ(n2) cut queries in the Robertson-Webb model; but
the simultaneous model allows us to implicitly parallelize
the queries to the agents, leading to a reduction in complex-
ity. The simultaneous model captures the insight that the in-
formation elicited from one agent does not need to rely on
the information elicited from another.
Theorem 1. There exists a proportional simultaneous pro-
tocol with complexity n.

Proof. Consider the following simultaneous protocol:

• Map the valuation function of each agent to n disjoint
contiguous intervals of value exactly 1/n each.

Formally, the discretization is defined by x̄i = (x0i , . . . , x
n
i )

and wji = 1/n, for all j = 1, . . . , n.
Given the intervals submitted by the agents, we produce

an allocation by scanning the cake from left to right until
the first mark, x1i1 , of some agent i1 ∈ N is encountered.
Allocate the piece [0, x1i1 ] to agent i1. Then, scan to the right
starting with the point x1i1 while looking for the second mark
x2i2 of some agent i2 ∈ N \ {i}. Allocate the piece [x1i1 , x

2
i2

]
to agent i2 and continue in this fashion until the entire cake
is allocated.

To see why the protocol is proportional, note that
for agent it that was allocated in round t, xt−1it

≥
xt−1it−1

, because it was not selected in round t − 1. Thus,
[xt−1it

, xtit ] ⊆ [xt−1it−1
, xtit ]. Moreover, Ait = [xt−1it−1

, xtit ] and
Vit([x

t−1
it

, xtit ]) = 1/n, thus Vit(Ait) ≥ 1/n.

Next, we show the bound given in Theorem 1 is tight.
Theorem 2. Every proportional simultaneous protocol has
complexity at least n.

Proof. Assume by contradiction that there exists a propor-
tional simultaneous protocol F with complexity less than
n. Without loss of generality, let Vn be a valuation func-
tion such that F(Vn) reports the values of n − 1 inter-
vals with cut points (x0n, . . . , x

n−1
n ). (The case where the

agent reports fewer intervals is similar.) Then the valua-
tions of the other agents can be set such that for every agent
i ∈ N \ {n}, the entire value of the cake from the point of
view of agent i is concentrated in the interval [xi−1n , xin], that
is, Vi([xi−1n , xin]) = 1.

Let us now consider two (exhaustive) types of alloca-
tions. First, let A be an allocation such that for all i ∈
{1, . . . , n − 1}, agent i gets a nonempty interval Ii ⊆
[xi−1n , xin]. We can define the valuation function V ′n where
V ′n(Ii) = Vn([xi−1n , xin]) for all i ∈ {1, . . . , n−1}. Then V ′n
is consistent with agent n’s reported intervals, but V ′n(An) =
0, so the allocation is not proportional with respect to V ′n.
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Second, let A be an allocation such that there exists an
agent i ∈ {1, . . . , n− 1} that does not get a nonempty inter-
val Ii ⊆ [xi−1n , xin]. Then clearly Vi(Ai) = 0, and again the
allocation is not proportional.

(Approximate) Envy-Freeness, and Beyond
We have seen that simultaneous protocols can compute pro-
portional allocations. For two agents, proportionality and
envy-freeness coincide, but for more agents, envy-freeness
is strictly stronger. It has long been known that envy-free
allocations are guaranteed to exist, but it wasn’t until the
nineties that an envy-free protocol that can be simulated in
the Robertson-Webb model was discovered (Brams and Tay-
lor 1995).

The Brams-Taylor protocol is finite (i.e. terminates on ev-
ery instance), but unbounded: its running time cannot be
bounded by a function of the number of agents, and so the
execution can take arbitrarily long depending on the valu-
ation functions themselves. It is an open problem whether
a bounded envy-free protocol exists in the Robertson-Webb
model for any number of agents.

Our next result shows that no simultaneous protocol can
be envy free. Interestingly, this impossibility result does not
assume that the protocol is bounded: it says that there are
valuation functions for which there is no discretization that
is fine enough to guarantee envy-freeness in the simultane-
ous model.

Theorem 3. For n ≥ 3 there does not exist an envy-free
simultaneous protocol.

Proof. Let V1 be the uniform valuation function (i.e., its
value density function is v(x) ≡ 1), which yields a dis-
cretization F(V1) = (x̄1, w̄1) under protocol F . Let there
be m reported intervals, and denote Xi = [xi−11 , xi1] for
i = 1, . . . ,m; then wi1 = |Xi| = xi1 − xi−11 . We will show
that there exist valuation functions for the other agents such
that no envy-free allocation can be computed from these re-
ported intervals.

Define a constant c ∈
(

1
w1

1+1
, 1
)

such that for all i ∈
N \ {1}, the value density function vi of agent i satisfies the
following conditions:

(a) For all j ∈ {1, . . . ,m}, vi is constant on Xj .
(b) Vi(X1) = c · w1

1 + 1− c
(c) Vi(Xj) = c · wj1, for all j ∈ {2, . . . ,m}
(d) There do not exist distinct indices a1, . . . , ax ∈
{1, . . . ,m} such that the following identity holds:

wa11 + · · ·+ wax1 =
1

c · n
.

Note that any c ∈
(

1
w1

1+1
, 1
)

induces valid valuation func-
tions that satisfy (b) and (c), because

Vi([0, 1]) =

m∑
j=1

Vi(X
j) = c

 m∑
j=1

wj1

+ (1− c) = 1.

Moreover, constraint (d) can be satisfied because there is an
(uncountably) infinite number of possible values of c, and
the constraint only rules out a finite number of them.

Let A = (A1, . . . , An) be an allocation computed by the
protocol. We consider two cases, depending on whether the
interval X1 is split or not among the agents.

Case I: Interval X1 is not split. We have several subcases:

(i) |A1| < 1
n : Then there exists another agent i that re-

ceives a piece of length at least 1
n and agent 1 envies

i.
(ii) |A1| ≥ 1

n and agent 1 receives X1. Then the value of
the other agents for the piece received by 1 is:

c · w1
1 + 1− c+ c(|A1| − w1

1) = c · |A1|+ 1− c

≥ c

n
+ 1− c.

The length of the piece for all the other agents is at
most n−1

n . Since the remainder of the cake does not
contain X1, the minimum value Vi(Ai) — taken over
all i ∈ {2, . . . , n}— is at most c

(
n−1
n

) (
1

n−1

)
= c

n .
It follows that there exists an agent i that envies 1.

(iii) |A1| ≥ 1
n and an agent i ∈ N \ {1} receives X1.

It must be the case that |Aj | = |Ak| for all j, k ∈
N \ {i} to prevent envy. For the same reason, we
have Vj(Ai) = Vj(Aj) for all j ∈ {2, . . . , n}. There-
fore, all the agents, except agent 1, value A1, . . . , An
equally. It follows that Vj(A1) = 1

n for all j ∈
{2, . . . , n}. This implies that |A1| = 1

c·n , so by prop-
erty (d), there exists a reported interval that is split be-
tween agent 1 and at least one other agent. Now we can
define V ′1 that is consistent with F(V1), where agent
1’s value for its part(s) of the split interval(s) is zero;
then agent 1 would be envious.

Case II: Interval X1 is split among at least two agents. For
each i ∈ N , let A′i = Ai \X1. We have two subcases:

(i) There exists exactly one agent i ∈ N \ {1}, such that
Ai ∩ X1 6= ∅. Then A1 ∩ X1 6= ∅. Consider another
agent j ∈ N \ {1, i}.
• If |Aj | > |A′1|, let V ′1 be a valuation function consis-

tent with F(V ) such that agent 1 has a value of zero
for his portion of X1. Then V ′1(A1) = V ′1(A′1) <
V ′1(Aj), violating envy-freeness.
• If |Aj | ≤ |A′1|, then Vj(A′1) ≥ Vj(Aj). Moreover,
Vj(A1 \A′1) > 0. It follows that Vj(A1) > Vj(Aj),
violating envy-freeness.

(ii) There exist distinct agents i, j ∈ N \ {1} such that
Ai ∩ X1 6= ∅, Aj ∩ X1 6= ∅. Assume without loss
of generality that agent i’s piece satisfies |Ai ∩X1| ≤
|X1|
2 . Then

Vi(Ai ∩X1) ≤ 1

2
(c · w1

1 + 1− c)

and Vi(A1) ≥ c|A′1|. It must also be the case that

|A′i| ≥ |A′1| −
1

2

(
w1

1 +
1

c
− 1

)
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since otherwise

Vi(Ai) ≤ c|A′
i|+

1

2

(
c · w1

1 + 1− c
)

< c

(
|A′

1| −
1

2

(
w1

1 +
1

c
− 1

))
+

1

2
(c · w1

1 + 1− c)

= c|A′
1|,

which would imply that Vi(A1) > Vi(Ai).
Consider V ′1 consistent with F(V1) such that V ′1(A1 ∩
X1) = 0, and V ′1(Ai ∩ X1) = w1

1 . Then agent 1’s
value for i’s piece is:

V ′
1 (Ai) = w1

1 + |A′
i| ≥ w1

1 + |A′
1| −

1

2

(
w1

1 +
1

c
− 1

)
> w1

1 + |A′
1| −

1

2
(w1

1 + w1
1)

= |A′
1| = V ′

1 (A1),

where the third transition holds by the choice of c ∈(
1

w1
1+1

, 1
)

. Thus agent 1 envies agent i.

Theorem 3 tells us that we cannot hope to obtain envy-
free allocations in the simultaneous model. However, it
turns out that we can reach envy-free allocations arbitrar-
ily close. Indeed, we say that an allocation is ε-envy free
if for all i, j ∈ N , Vi(Ai) ≥ Vi(Aj) − ε. This notion
of approximate envy-freeness has been studied in several
previous papers (Lipton et al. 2004; Cohler et al. 2011;
Deng, Qi, and Saberi 2012). We will show that there exists
an ε-envy-free protocol of polynomial complexity in n and
ε.

The main idea is to sketch the agents’ valuations using
a very fine discretization, but then use a coarser discretiza-
tion to partition the cake into indivisible goods. Then, each
agent’s value for each indivisible good can be accurately es-
timated using the fine discretization. An allocation of the in-
divisible goods that is approximately envy-free with respect
to the estimated values is therefore also approximately envy-
free with respect to the real values (with a slightly worse
additive approximation term).

Theorem 4. For every ε > 0 there exists an ε-envy-free
simultaneous protocol with complexity O(n/ε2).

The proof uses the following lemma, which is a special
case of a result by Lipton et al. (2004), and deals with the
allocation of indivisible goods. In this context, the valuation
functions are said to be additive if the value of a bundle of
goods is the sum of values of goods in the bundle.

Lemma 1 (Lipton et al. 2004). Let V ′1 , . . . , V
′
n be additive

valuation functions over a set G of indivisible goods. As-
sume that for all i ∈ N and g ∈ G, Vi(g) ≤ ε. Then there
exists an ε-envy-free allocation.

Proof of Theorem 4. For every n and ε > 0 we design a
simultaneous protocol Fn,ε. Given a valuation V , Fn,ε dis-
cretizes the cake as follows. First, the coarse discretization

has 1/δ subintervals of value δ each, for 1/δ = d2/εe; note
that δ ≤ ε/2. Second, the fine discretization includes 1/δ′

intervals of value δ′ each, for 1/δ′ = d16n/ε2e; note that
δ′ ≤ ε2/16n. Formally speaking, Fn,ε(V ) contains the cut
points of both discretizations, but we prefer to think of these
two different discretizations for ease of exposition.

Given Fn,ε(V1), . . . ,Fn,ε(Vn), we wish to show that
there is an allocationA that is ε-envy free with respect to any
valuation functions that are consistent with these reported
discretizations. Consider the partition of the cake obtained
by ordering the cut points of all agents’ coarse discretiza-
tions, and treating the subinterval between two adjacent cut
points as an indivisible good. Denote the set of indivisible
goods by G.

This partition into indivisible goods has two properties:

1. For each indivisible good g ∈ G, Vi(g) ≤ ε/2 for all
i ∈ N , because for each i ∈ N there is a subinterval of
the coarse discretization of Vi that contains g.

2. The number of indivisible goods is given by the number
of “internal” (not 0 or 1) cut points plus one, i.e.,

|G| ≤ n
(⌈

1

δ

⌉
− 1

)
+ 1 ≤ 4n

ε
.

Let us create additive valuation functions V ′1 , . . . , V
′
n over

the indivisible goods inG. For g ∈ G, letHi(g) be the set of
intervals in the fine partition of Vi that are contained inside
g. We define V ′i (g) = δ′ · |Hi(g)|.

We claim that

V ′i (g) ≤ Vi(g) ≤ V ′i (g) + 2δ′. (1)

Indeed, the left inequality is trivial. For the right inequality,
let I be the interval obtained by taking Hi(g) and adding
one subinterval to the left and one to the right. It holds that
g ⊆ I , hence

Vi(g) ≤ Vi(Hi(g)) = δ′ · (|Hi(g)|+ 2) = V ′i (g) + 2δ′.

Note that for all i ∈ N and g ∈ G, V ′i (g) ≤ Vi(g) ≤
ε/2. We can therefore use Lemma 1 to create an allocation
A of the goods G such that for all i, j ∈ N , V ′i (Ai) ≥
V ′i (Aj) − ε/2. We claim that A is ε-envy free with respect
to the original valuation functions (and any other valuations
that are consistent with the reported discretizations). Indeed,

Vi(Ai) ≥ V ′
i (Ai) ≥ V ′

i (Aj)−
ε

2

=

∑
g∈Aj

V ′
i (g)

− ε

2
≥

∑
g∈Aj

(Vi(g)− 2δ′)

− ε

2

= Vi(Aj)− 2δ′|Aj | −
ε

2
≥ Vi(Aj)− 2δ′|G| − ε

2

≥ Vi(Aj)− 2 · ε
2

16n
· 4n
ε
− ε

2
= Vi(Aj)− ε.

where the first and fourth transitions follow from Equa-
tion (1).

Envy-freeness and proportionality are examples of what
we call linear properties, in the sense that they are speci-
fied by linear constraints involving the agents’ valuations for
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pieces. Another example of a linear property is equitability,
which requires that Vi(Ai) = Vj(Aj) for all i, j ∈ N , that
is, agents must have identical values for their own pieces.
We formally define linear properties using the matrix form,
as is common in linear programs.
Definition 4 (Linear property). A property of allocations is
linear if there exist m ∈ N, matrix B ∈ Rm×n2

such that∑n2

j=1 |Bij | ≤ 1 for i = 1, . . . ,m, and vector c ∈ Rm, such
that an allocation A satisfies the property if it satisfies the
constraints: B · α ≥ c, where αk = Vi(Aj), with i = d kne,
and j = k mod n if n - k and j = n otherwise.

To illustrate the definition of αk, note that α1 = V1(A1),
αn = V1(An), and αn+1 = V2(A1). Importantly, this repre-
sentation captures equality constraints, as they can be repre-
sented using two inequalities. Furthermore, the assumption
that

∑n2

j=1 |Bi,j | ≤ 1 is without loss of generality: we just
divide each entry in the matrix B and vector c by the max-
imum sum of absolute values of any row of B, which is a
constant in the context of the properties we are interested in.

As an example, we explicitly represent envy-freeness as a
linear property for the case of three agents. Let m := n(n−
1) = 6 and define:

B =
1

2
·


1 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 −1 1


and

c = (0, 0, 0, 0, 0, 0) .

Then the constraint B · α ≥ c is equivalent to requiring that
Vi(Ai)− Vi(Aj) ≥ 0, for each i 6= j.

Every linear property P (defined by a matrixB and a vec-
tor c) naturally admits an approximate version Pε, which re-
quires each linear constraint of P to hold up to an error of ε;
formally, B · α ≥ c − ε · ~1. Using this new notion, we can
establish a more general version of Theorem 4.
Theorem 5. For every ε > 0 and every bounded proto-
col in the Robertson-Webb model that allocates the entire
cake and guarantees some linear property P with complex-
ity f(n), there exists a simultaneous protocol that guaran-
tees the property Pε with complexity O(f(n)/ε).

The theorem’s proof appears in the appendix, which was
submitted as supplementary material (it also contains a for-
mal definition of properties in the Robertson-Webb model).
Theorem 5 implies Theorem 4 because ε-envy free alloca-
tions can be computed in the Robertson-Webb model using
O(n/ε) queries. And while exact equitability is impossi-
ble to achieve in the Robertson-Webb model (Chechlárová
and Pillárová 2012), ε-equitability can also be achieved with
with O(n/ε) queries, leading to an ε-equitable simultaneous
protocol with complexity O(n/ε2).

We note that a technique for approximating general
density functions with piecewise constant density func-
tions (Cohler et al. 2011, Lemma 8) can be leveraged to

obtain a strictly weaker version of Theorems 4 and 5, re-
quiring the assumption that the value density functions are
piecewise K-Lipschitz continuous, and giving a bound that
also depends on K.

Discussion
In some ways, simultaneous protocols are weaker than their
counterparts in the Robertson-Webb model: agents cannot
interact, but rather are allowed to send one message only.
However, in other ways simultaneous protocols are stronger.
Indeed, under the Robertson-Webb model, information is
elicited via cut and evaluation queries, without ever see-
ing the full valuations. This means that properties such as
Pareto optimality are impossible to achieve in this model,
even when the value density functions are restricted to be
piecewise constant and the protocol is allowed to have un-
bounded complexity (Kurokawa, Lai, and Procaccia 2013).
Intuitively, the reason is that a Pareto optimal allocation can-
not allocate to agent i a subinterval I such that Vi(I) = 0
and Vj(I) > 0. But in the Robertson-Webb model, it is im-
possible to exactly identify the boundaries of subintervals
that are worthless to an agent.

In contrast, in the simultaneous model agents can observe
their full valuation functions before deciding which subin-
tervals to report, which allows them to exactly mark worth-
less intervals. Now, suppose for simplicity that the agents’
value density functions are piecewise constant, so each has
a finite number of intervals on which its density is zero. Each
agent reports a discretization that pinpoints the zero-density
intervals. Then we can allocate the intervals using serial dic-
tatorship: in stage i, allocate to agent i all unclaimed inter-
vals on which its density is positive. This allocation is clearly
Pareto-optimal.

Unfortunately, the protocol just described is not formally
Pareto optimal according to Definition 2, because the allo-
cation is not guaranteed to be Pareto optimal with respect to
all valuation functions consistent with the reports (some may
have additional worthless subintervals). In fact, Pareto opti-
mality cannot be guaranteed in the simultaneous model — as
can be shown using an argument that is similar to the proof
of the equivalent result in Robertson-Webb (Kurokawa, Lai,
and Procaccia 2013, Theorem 5). However, this negative re-
sult can be circumvented via a slight augmentation of the
simultaneous model, which allows agents to mark intervals
on which their density is strictly positive.

It is therefore natural to consider a relaxed model that
allows protocols to enjoy the best of both worlds: multi-
round interaction à la Robertson-Webb, and allowing agents
to report discretizations by observing their own valuation
function (and information previously communicated by oth-
ers) à la the simultaneous model. This hybrid model gives
rise to intriguing questions. Most importantly: does it ad-
mit bounded envy-free protocols? We view this question as
a natural, compelling relaxation of what is perhaps the most
enigmatic open problem in computational fair division (Pro-
caccia 2013): settling the existence of bounded envy-free
protocols in the Robertson-Webb model.
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Appendix
In this section we prove Theorem 5. But we first need to for-
mally introduce the notion of property for cake cutting pro-
tocols in the Robertson-Webb model. For ease of exposition,
we restrict attention to protocols that allocate the entire cake
and only use cut points discovered through queries. How-
ever, the proof carries over to the case where the protocol
can use arbitrary cuts and discard portions of the cake.
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Definition 5 (Property of a Robertson-Webb protocol). Let
P be a property of cake allocations. A protocol F in the
Robertson-Webb model satisfies property P if the following
holds for any tuple of valuation functions V̄ = (V1, . . . , Vn):

• Whenever each agent i answers the cut and evaluate
queries addressed by F correctly (i.e. according to Vi),
the protocol outputs an allocation A that satisfies P with
respect to any valuations V̄ ′ = (V ′1 , . . . , V

′
n) consistent

with the answers given by the agents during the execution
of F on V̄ .

We are now ready to restate and prove Theorem 5.

Theorem 5. For every ε > 0 and every bounded proto-
col in the Robertson-Webb model that allocates the entire
cake and guarantees some linear property P with complex-
ity f(n), there exists a simultaneous protocol that guaran-
tees the property Pε with complexity O(f(n)/ε).

Proof. Let M be a bounded protocol in the Robertson-
Webb model that guarantees a linear property P , where P
is given by B · α ≥ c, for some m ∈ N, B ∈ Rm·n2

, and
c ∈ Rm. Moreover, let f(n) be the maximum number of
steps thatM takes on an instance with n agents. Each query
makes two “marks”: Evali(x, y) makes marks at x and y,
and Cuti(x, α) = y makes marks at x and the point y such
that Vi([x, y]) = α. Overall,Mmakes at most 2f(n) marks.

For every ε > 0, let FεP be the following simultaneous
protocol:

1. Map the valuation of each agent i to a discretization
(x̄i, w̄i) consisting of T =

⌈
4f(n)+2

ε

⌉
cells, each worth

1/T to agent i.

2. X ←
⋃n
i=1

⋃T
j=1{xi,j}

3. For each M = 1 to f(n) + 1:
3.1. For each subset Y ⊆ X , where |Y | = M + 1:

(a) For each allocation A demarcated only by
points in Y :
• For each agent i ∈ N and piece Aj ∈ A:

ni,j ← # intact cells in Aj from x̄i
k ← (i− 1) · n+ j

α̃k ← ni,j ·
(
1
T

)
• If B · α̃ ≥ c− ε ·~1, then:

Return A

Protocol FεP asks each agent i to submit a discretization
of the cake containing very small cells of equal value ac-
cording to i. Then FεP guesses (by trying all possibilities)
the number of contiguous intervals used byM, and then ap-
proximates the pieces discovered byM using the discretiza-
tions provided by the agents. Next we show that one of these
guesses is guaranteed to work.

Given an arbitrary tuple of valuation functions V̄ =
(V1, . . . , Vn), let Y = {y0, y1, . . . , yM−1, yM} be the marks
made during the execution ofM when the valuations of the
agents are V̄ , where y0 = 0, yM = 1, and M ≤ 2f(n) + 1.
Denote by I = (I1, . . . , IM ) the resulting disjoint, con-
secutive contiguous intervals with Ij = (yj−1, yj). Let

A = (A1, . . . , An) be the allocation computed by proto-
colM. We can assume without loss of generality that each
piece Ai is a union of intervals from I (Procaccia 2009),
Ai ∩Aj = ∅, ∀i, j and

⋃n
i=1Ai = [0, 1].

For each mark yj ∈ Y , let zj be the rightmost point
in X with the property that zj ≤ yj (recall that X is the
collection of points submitted by all agents under FεP ) Ob-
serve that for each agent i, we have that Vi(zj , yj) ≤ 1/T .
Then we can construct an approximate version Ĩj , of each
interval Ij such that the endpoints of Ĩj belong to the set
{0, z1, . . . , zM−1, 1}. More formally, we find the intervals
Ĩ = (Ĩ1, . . . , ĨM ) by scanning the cake from left to right as
follows:

1. Let z1 ∈ X be maximum such that z1 ≤ y1.
2. Ĩ1 ← [0, z1].
3. For each j ∈ {2, . . . ,M − 1}:
• Let zj ∈ X be maximum such that zj ≤ yj .
• If (zj = zj−1) then:

Ij ← ∅
• Else:

Ĩj ← [zj−1, zj ]

4. ĨM ← [zM−1, 1].

By construction, for each agent i and interval Ĩj we have
that |Vi(Ĩj) − Vi(Ij)| ≤ 2

T ; intuitively, agent i views Ĩj as
identical to Ij , except possibly for the two endpoints of the
interval, where the agent might have lost or gained a cell of
value 1/T on each side.

Define an allocation Ã = (Ã1, . . . , Ãn), such that Ĩj ∈
Ãi if and only if Ij ∈ Ai, for all i ∈ N and j ∈ [M ]. Then
since each piece Ãk contains at mostM contiguous intervals
from Ĩ , we have that Ãk is an approximation of Ak within
an additive error term of M ·

(
2
T

)
, from the point of view of

each agent. More formally,

|Vi(Ak)− Vi(Ãk)| ≤ 2M

T
≤ 2(2(f(n) + 1)⌈

4f(n)+2
ε

⌉ ≤ ε,

for all i ∈ N .
Next we show that allocation Ã approximately satisfies

property P . Recall that P is defined as B · α ≥ c, where α
is the vector with the values of each agent for every piece in
A.

For each row i ∈ [m], allocationA satisfies the constraint:∑n2

j=1Bi,jαj ≥ ci, where αj = Vk(Al) and

• k = d jne
• l = j mod n if n - j and l = n otherwise.

Let α̃j = Vk(Ãl). We have shown that |α̃j − αj | ≤ ε. By

definition,
∑n2

j=1 |Bi,j | ≤ 1, and therefore we have:

n2∑
j=1

Bi,jα̃j ≥
n2∑
j=1

Bi,jαj − ε
n2∑
j=1

|Bi,j | ≥ ci − ε.
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It follows that B · α̃ ≥ c − ε · ~1, and so the allocation Ã
approximately satisfies property P . The simultaneous proto-
colFεP checks all the possible allocations that can be formed
with the cut points submitted by the agents, and one of these
(i.e. Ã) is guaranteed to work; thus the allocation computed
by FεP ε-satisfies P whenever the valuations of the agents
are consistent with the discretizations (x̄, w̄).
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