
Software Development Assignments

for a Software Architecture Course�

David Garlan and Mary Shaw

Department of Computer Science

5000 Forbes Avenue

Carnegie Mellon University

Pittsburgh, PA 15213

Draft of September 1, 1995

Submitted for Publication

Abstract

As software systems grow in size and complexity their design problem extends beyond algo-
rithms and data structures to issues of system design. These issues|the software architecture

level of software design|are becoming increasingly important to the practicing software en-
gineer. Consequently, it is important to �nd e�ective ways to teach this material. To meet
this need we developed a course, \Architectures for Software Systems," and have taught it four
times. In this paper we describe the principal software development assignments that this course
uses to develop skill at applying architectural principles to the design and implementation of
software systems.

The major challenges in designing such assignments are (1) making sure that students spend
their time on architectural issues rather than coding, and (2) helping students establish and
maintain a desired architectural style. We address these issues by providing working examples
as starting points. These examples are usable in other courses.

Keywords: software engineering education, software architecture, programming assignments,

software development exercises, software design

�Development of this course and its content was funded in part by the Wright Laboratory, Aeronautical Systems
Center, Air Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grants
MDA972-92-J-1002 and F33615-93-1-1330; by National Science Foundation Grant CCR-9357792; and by a grant from
Siemens Corporate Research. Views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the o�cial policies, either expressed or implied, of Wright Laboratory, the US
Department of Defense, the United States Government, the National Science Foundation, or Siemens Corporation.
The US Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding
any copyright notation thereon.

1



1 Introduction

The software component of the typical undergraduate curriculum emphasizes algorithms and data
structures. These curricula include courses on particular system organizations such as those used
for compilers, operating systems, or databases are usually o�ered. However, there is no system-
atic treatment of the organization of modules into systems or of concepts and techniques at an
architectural level of software design. At this level of design the important considerations are the
high-level structure of a system, the use of common patterns for system organization, the assign-
ment of responsibility to design elements, and reasoning about the overall conceptual integrity of
a system [GS93].

As a result, students now face a large gap between lower-level courses, in which they learn
programming techniques, and upper-level project courses, in which they are expected to design
more signi�cant systems. Without knowing the alternatives and criteria that distinguish good
architectural choices, the already-challenging task of de�ning an appropriate architecture becomes
formidable.

Students with only the conventional background are at a disadvantage when theymust design
and develop large, practical software systems. Not only will they lack techniques for making good
design decisions, they may even be unaware that critical decisions are being made by default.

2 The Software Architecture Course

We have developed a course that helps to bridge this gap: Architectures for Software Systems [GSO+92].
Speci�cally, the course:

� teaches how to understand and evaluate designs of existing software systems from an archi-
tectural perspective,

� provides the intellectual building blocks for designing new systems in principled ways using
well-understood architectural paradigms,

� shows how formal notations and models can be used to characterize and reason about a system
design, and

� presents concrete examples of actual system architectures that can serve as models for new
designs.

This course was developed for senior undergraduates and students in a professional master's pro-
gram for software engineering. We have now taught it four times.

Our experience has been that certain principles and techniques of good architectural design for
software can be taught e�ectively. However, a critical component of this education is the use of
hands-on development projects in which students directly engage architectural design issues.

3 Software Development Assignments

In order to give students practical experience with developing systems from an architectural point
of view, ideally we would like to �nd assignments that

� are concerned with real systems,

2



� can be completed in a couple of weeks,

� are rich enough to admit variety of solutions, and

� allow students to make meaningful comparisons between di�erent architectural styles.

To meet these goals we designed three two-week assignments. All three assingments are based on
the same core design problem. Eachassignment requires the students to explore issue of implement-
ing that problem in a speci�c style. For the initial course o�erings, we assigned an object-oriented,
a pipe-and-�lter, and an event-driven design.

The major issues we faced in designing these assignments were (1) making sure that students
spend their time on architectural issues rather than coding and (2) helping students establish and
maintain the desired architectural style. We addressed both concerns by organizing each assignment
as an extension of an initial implementation that we provided.

Each task is designed to allow students to become familiar with a particular architectural style.
For each task, we supplied an implementation in the required style that used several components
from an available collection. The assignment required students to understand the implementatin
of a simple version of the problem in that style, then extend the implementation in the same style

by reconnecting parts, using other components, or minimally changing components.
The choice of this assignment format was driven by two guiding principles: First, the attention

of the students should be focused at the architectural level rather than at the algorithms-and-data-
structures level. (Students should already know how to do the latter.) Second, it is unreasonable
to expect the accurate use of an unfamiliar style without providing illustrative code employing that
style. A pleasant side-e�ect of this choice of format was that problems more closely resembled
software maintenance/reuse than building a system from scratch. In addition, our students enter
the course with a considerable diversity of programming language background. It's easier for them
to work in an unfamiliar language if they have a working starting point.

A major objective of this course is for students to leave with an understanding of how certain
properties of a given problem can make a particular architectural choice appropriate or inappropri-
ate. To do this, chose variations of the single core problem that illustrated the relative advantages
of the three styles. By assigning the same basic problem for each architectural style, we avoided
the risk of students associating problem class X with architectural style Y|instead promoting
understanding of the features of each problem that should lead the designer to choose that style.
By varying the features related to the architectural choice, we also discouraged students from leav-
ing each solution in the same basic architectural style, adding only the super�cial trappings of
the second style. For example, by changing the requirements on the system, we ensured that an
object-oriented solution would not merely be a pipes-and-�lters solution \dressed up" to look like
an event-driven system.

To encourage cooperation and to balance unfamiliarity with particular programming languages
and systems, students worked in small groups over a period of about two weeks. However, each
student was required to independently answer a set of questions on the design issues in the task.

The assignments involved not only the production of a working system but also the analysis
of the architectural style in which it was constructed. To help students do their analysis we held
design reviews halfway through each assignment. These reviews were presented by the students
in the class, with each team making one presentation sometime during the semester. The reviews
were not graded; they thereby provided a means for the class to engage in discussions about the
architectural style and for the instructors to guide the student solutions (both those being presented
and those of the students watching the presentation) by asking pointed questions.

3



The remainder of this paper gives the three assignments that we used when we taught the course
in Spring 1994.

References

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In V. Ambriola
and G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering,
pages 1{39, Singapore, 1993. World Scienti�c Publishing Company. Also appears as SCS
and SEI technical reports: CMU-CS-94-166, CMU/SEI-94-TR-21, ESC-TR-94-021.

[GSO+92] David Garlan, Mary Shaw, Chris Okasaki, Curtis Scott, and Roy Swonger. Experience
with a course on architectures for software systems. In Proceedings of the Sixth SEI

Conference on Software Engineering Education. Springer Verlag, LNCS 376, October
1992. Also available as CMU/SEI technical report, CMU/SEI-92-TR-17, under the
title \Experience With a Course on Architectures for Software Systems|Part I: Course
Description".

4



A Assignment 1: KWIC Using an Object-Oriented Architecture

A.1 Description of the problem

This assignment is to implement an interactive version of the KWIC index system (described in
Parnas's On the Criteria To Be Used in Decomposing Systems into Modules) in the object-oriented
paradigm. You will be provided with a partial Ada implementation of the system and asked to
identify and make the necessary modi�cations.

The provided system is simply a line alphabetizer. It interactively inputs a line at a time and
upon demand outputs an alphabetized list of the current collection of lines. Here is a transcript of
a sample session:

Add, Print, Quit: a Add, Print, Quit: a

> O my son Absalom > O Absalom

Add, Print, Quit: a Add, Print, Quit: p

> my son my son O Absalom

Add, Print, Quit: a O my son Absalom

> and the king cried and the king cried

Add, Print, Quit: a in a loud voice

> in a loud voice my son my son

Add, Print, Quit: p Add, Print, Quit: q

O my son Absalom

and the king cried

in a loud voice

my son my son

Your assignment is to modify the existing code to support the following changes:

� Rather than simply outputting an alphabetic list of all the lines, the Print command should
output an alphabetic list of the circular shifts of all the lines. However, shifts (including the
nullary shift) which result in a line beginning with a trivial word|a, an, and, the, or the
capitalized versions of these words|should be omitted.

3 di�erent ways of displaying should be supplied. Upon entery of a p at the command line,
the system should print another "menu line":

Add, Print, Quit: p

Simple, Aligned, Concordance:

1. Simple Display: Upon entery of a s at the command line the system should print the
alphabetic list of all line shifts, as described above.

2. Aligned Display: Instead of printing the shifted line, the original sentence is printed,
but the word that is at the begining of the shifted sentence is aligned, and capitalized.
For example, the line "and the king cried" is printed as follows:

and the king CRIED

and the KING cried

3. Concordance Style Display: For each shifted variant of the sentence the original sentence
is printed, but the word at the beginning of the shifted variant is abbreviated. The line
"and the king cried" is printed as follows:

5



and the king c.

and the k. cried

� three commands, Original, Delete and Count , should be added.

1. Original: Upon entry of an o at the command line, the system should output a list of all
lines entered by the user (including lines beginning with trivial words, but not including
the circular shifts of lines) in their original order.

2. Delete: Upon entery of a d at the command line, the system should prompt for a line
(much like the Add command). This line should then be deleted from the system.

3. Count: on entery of a c at the command line, the system should display the number of
original lines currently in the system.

Here is a sample session of the new system:

Add, Print, Original, Delete, Count, Quit: a

> and the king cried

Add, Print, Original, Delete, Count, Quit: a

> in a loud voice

Add, Print, Original, Delete, Count, Quit: p

Simple, Aligned, Concordance: s

cried and the king

in a loud voice

king cried and the

loud voice in a

voice in a loud

Add, Print, Original, Delete, Count, Quit: c

2 lines

Add, Print, Original, Delete, Count, Quit: d

> and the king cried

Add, Print, Original, Delete, Count, Quit: c

1 lines

Add, Print, Original, Delete, Count, Quit: p

Simple, Aligned, Concordance: c

i. a loud voice

in a l. voice

in a loud v.

Add, Print, Original, Delete, Count, Quit: o

in a loud voice

Add, Print, Original, Delete, Count, Quit:q

A.2 The current system

The current system is decomposed into the following modules:

� words,

� lines,

� line collections, and

6



� tree binary unbounded managed.

In addition there is a top-level module (session) which provides the command-line interface.
The source code for the current system will be made available to you by next class period.

Watch the class bulletin board for instructions on how and where to obtain the code, along with
instructions on accessing an Ada compiler.

A.3 Discussion

On Wednesday, February 2, two or three teams will brie
y present their initial designs for class
critique and discussion. Volunteers for this presentation will be solicited during the previous class
period. Note that each team will be responsible for one such presentation over the course of the
three assignments.

This presentation/discussion will not be graded. It is solely for the bene�t of you and your

classmates.

A.4 Due date and electronic hand-in

The assignment is due by 10:30 am on Wednesday, February 9. You should create a directory called
"sa" in one of the team members home directory, and a subdirectory called "hw1". In "sa/hw1"
prepare a �le called "kwic.doc". This �le should contain:

� the names of both team members,

� a list of the modules added/modi�ed and for each such module a list of the resources
added/modi�ed.

The directory should also contain the system (source �les, especially of all modules modi-
�es/added, and an executable �le, named "session").

You should email a pointer to that directory (machine name, user name) to the Teaching
Assistant by the due date. After that, none of the �les in the directory should be touched. In
addition there will be a written commentary (due at the beginning of class on Wednesday, February
9) answering the following questions:

1. Describe the architecture of your system (both the provided part and the parts you added),
explaining how it is an example of an object-oriented architecture, and in what ways (if any)
it deviates from the basic object-oriented style. For each of the new functionalities required,
descibe how your system implements it. Justify your design.

2. For each of the changes you made, explain if the change was of the internals of one of the
system components (data structures or algorithms) or of the system architecure.

3. What changes would you have to make to your system to change the representation of line
storage? What other components would be a�ected?

4. What changes would you have to make to your system to add the functionality of only showing
lines that start with a particular word?

5. Does the system lend itself to a distributed implementation? If so what changes would have
to be made to make it function this way?

The commentary should be your own work: i.e., individuals, not teams for commentary.

7



A.5 Grading criteria

Your solutions and commentary will be graded by the following criteria:

� Whether or not the resulting system performs as required.

� Use of architectural style in the assignment.

� Your understanding of the kinds of changes easily supported by the architecture.

In particular, the grade will be broken down as follows (100 points maximum):

� the program: 40 points,

� question 1: 20 points,

� questions 2-5: 10 points each.

A.6 Further questions

If you have any further questions, feel free to contact any of us via e-mail or during our o�ce hours.
Clari�cations (if any) will be posted to the class bulletin board.

8



B Assignment 2: KWIC Using a Pipe-Filter Architecture

B.1 Description of the problem

This assignment is to implement an interactive version of the KWIC index system (described in
Parnas's On the Criteria To Be Used in Decomposing Systems into Modules) in the Pipe-Filter
paradigm. You will be provided with two implementations of the KWIC system - one in Unix shell
commands and one in C. You will be asked to extend these implementations with new functionality.

Both versions of the current system accept input at the command line and produce output to
the terminal screen. Both versions implement a pipe and �lter system that shifts and sorts the
input, and then transforms to upper case letters the �rst word in each line (look at the �rst example
below).

You will be provided with the source code for these systems, as well as source code for two
utility programs, diverge and converge - one to split an input stream and one to join two input
streams.

The source code for the current system will be made available to you by next class period.
Watch the class bulletin board for instructions on how and where to obtain the code.

Your assignment is to modify the existing code to support the following changes:

1. Extend the shell script version of the system to produce a KWIC index of the login and user
names of all users currently logged on a system. Hint: look at �nger and cut and tail.

2. Do the same with the C language implementation.

3. Modify the shell script version of the system to produce a KWIC listing that contains no
duplicate entries. Hint: look at uniq.

4. Modify the C language version of the system to produce a KWIC index in which the login
names of users appear as separate entries from the users' real names. De�ne a set of "trivial"
login names to contain "john","smith", "david" and your own login name. In the �nal output,
only nontrivial login names should appear, and only the �rst and last name of each real user
name should appear. (i.e remove middle initials or middle names). Hint: Use the diverge and
converge programs provided. You might �nd the C function "nxtarg" usefull for some of the
C functions you will have to write, or look into diverge.c to see how parsing words is easily
done.

Here are sample outputs for the solution to each part of the problem:

(The finger part is a real snapshot of some machine, therefore the choice

of names has no deep meaning)

% solution1.csh and solution2

BENNETT jcrb John C R

C R Bennett jcrb John

CERIA santi Santiago

DAFNA Talmor tdafna

DAFNA Talmor tdafna

EHT Eric Thayer

9



ERIC Thayer eht

GALMES pepe Jose M

JCRB John C R Bennett

JOHN C R Bennett jcrb

JOSE M Galmes pepe

M Galmes pepe Jose

PEPE Jose M Galmes

R Bennett jcrb John C

SANTI Santiago Ceria

SANTIAGO Ceria santi

TALMOR tdafna Dafna

TALMOR tdafna Dafna

TDAFNA Dafna Talmor

TDAFNA Dafna Talmor

THAYER eht Eric

% solution3.csh

BENNETT jcrb John C R

C R Bennett jcrb John

CERIA santi Santiago

DAFNA Talmor tdafna

EHT Eric Thayer

ERIC Thayer eht

GALMES pepe Jose M

JCRB John C R Bennett

JOHN C R Bennett jcrb

JOSE M Galmes pepe

M Galmes pepe Jose

PEPE Jose M Galmes

R Bennett jcrb John C

SANTI Santiago Ceria

SANTIAGO Ceria santi

TALMOR tdafna Dafna

TDAFNA Dafna Talmor

THAYER eht Eric

Remark: TRIVIAL_NAMES = {'tdafna','john','smith','david'}

% solution4

Bennett John

Ceria Santiago

Dafna Talmor

Dafna Talmor

eht

Eric Thayer

Galmes Jose

jcrb

John Bennett

10



Jose Galmes

pepe

santi

Santiago Ceria

Talmor Dafna

Talmor Dafna

Thayer Eric

B.2 Discussion

On Wednesday, February 16, one teams will brie
y present their initial designs for class critique
and discussion. Volunteers for this presentation will be solicited during the previous class period.
Volunteers will be drawn from those groups that did not present designs for assignment 1.

This presentation/discussion will not be graded. It is solely for the bene�t of you and your
classmates.

B.3 Due date and electronic hand-in

The assignment is due by 10:30am on Wednesday, February 23. You should e-mail your solution
to the Teaching Assistant by that time. Your solution should consist of

� the names of team members,

� the directory holding the solution.

Your directory should contain 4 text �les (besides the c or csh �les): "solution1","solution2",
"solution3" and "solution4". Each one should a list of the �les you use for the solution, with an
indication which �le is changed or new. All your changes should be well documented within the
�les.

In addition, there will be a written commentary (due at the beginning of class on Wednesday,
February 23) answering the following question:

1. How can the e�ciency of the "no duplicates" implementation be changed by using the sort

and uniq �lters at di�erent points in the system? (The sorting algorithm has O(n log n)
complexity).

The commentary should be your own work: i.e., individuals, not teams for commentary.

B.4 Grading criteria

Your solutions and commentary will be graded by the following criteria:

� Whether or not the resulting system performs as required.

� Use of architectural style in the assignment.

� Your understanding of the implications of changes made to the system architecture.

In particular, the grade will be broken down as follows (100 points maximum):

� the program: 80 points, and

� question 1: 20 points.

11



B.5 Further questions

If you have any further questions, feel free to contact any of us via e-mail or during our o�ce hours.
Clari�cations (if any) will be posted to the class bulletin board.

12



C Assignment 3: KWIC Using an Implicit Invocation Architec-

ture

C.1 Description of the Problem

This assignment, once again, is to implement an interactive version of the KWIC index system
(described in Parnas's On the Criteria To Be Used in Decomposing Systems into Modules) in the
implicit invocation paradigm. You will be provided with a partial Ada implementation of the
system and asked to identify and make the necessary modi�cations.

The provided system, as in Assignment 1, is simply a line alphabetizer. It interactively inputs
a line at a time and upon demand outputs an alphabetized list of the current collection of lines.
Unlike the �rst assignment this version also allows a delete command. Here is a transcript of a
sample session:

Add, Delete, Print, Quit:

a

> Star Wars

Add, Delete, Print, Quit:

a

> The Empire Strikes Back

Add, Delete, Print, Quit:

a

> Return of the Jedi

Add, Delete, Print, Quit:

p

Return of the Jedi

Star Wars

The Empire Strikes Back

Add, Delete, Print, Quit:

d

> Star Wars

Add, Delete, Print, Quit:

p

Return of the Jedi

The Empire Strikes Back

Your assignment is to modify the existing code to support the following changes:

1. Rather than simply outputting an alphabetic list of all the lines, the Print command should
output an alphabetic list of the circular shifts of all the lines. However, shifts (including the
nullary shift) which result in a line beginning with a trivial word|a, an, and, the and the
capitalized versions of these words|should be omitted.

2. On a Print command the system should also print a counter of the number of original lines
added by the system.

Here is a sample session of the new system:

13



Add, Delete, Print, Quit:

a

> Star Wars

Add, Delete, Print, Quit:

a

> The Empire Strikes Back

Add, Delete, Print, Quit:

a

> Return Of The Jedi

Add, Delete, Print, Quit:

p

-- Number of Original Lines: 3--

Back The Empire Strikes

Empire Strikes Back The

Jedi Return Of The

Of The Jedi Return

Return Of The Jedi

Star Wars

Strikes Back The Empire

Wars Star

Add, Delete, Print, Quit:

d

> Star Wars

Add, Delete, Print, Quit:

p

-- Number of Original Lines: 2--

Back The Empire Strikes

Empire Strikes Back The

Jedi Return Of The

Of The Jedi Return

Return Of The Jedi

Strikes Back The Empire

C.2 The Current System

The current system is decomposed into the following modules:

� Words

� Lines

� Line Collections

� Alphabetized List

� KWIC Session

14



In addition, the following additional modules will be used in the �nal system (they have already
been written for you):

� Shifter 1

� Shifter 2

� Trivial Eater

There is also a �le, called event bindings.ada which contains the bindings from events to
methods. To complete your solution, you should modify this �le only, and add one new

module.

You will also need to generate the event manager itself. This is automatically generated from
the event description language embedded in the Ada code and in event bindings.ada. To generate
the event manager, type:

make_events *.ada

This will create two �les: event manager.ada and event manager.adb. They should be com-
piled into your system as well.

The format of the event description language is as follows:

� All lines in the event description language are preceeded by the --! symbol. This symbol
indicates to Ada that these lines are to be ignored, and to the event description language
processor (which is made primarily of awk scripts) that these lines are to be processed. Note
that event bindings.ada contains nothing other than lines in the event description language.

� Each section of the event description language is bracketed by two lines that indicate what
package the enclosed declarations are associated with. These lines are:

--! for <package_name>

--! ...

--! end for <package_name>

where <package name> represents the Ada package name of the associated package. All other
declarations go between these two statements (where the ellipsis is).

� To create a new event in the system, include a declare statement of the form:

--! declare <event_name> <args>

where

{ <event name> represents the name of the event, and

15



{ <args> represents the data associated with that event (if any). Each argument is of the
form:

<identifier> : <type>;

where

� <identifier> is an Ada identi�er for the datum, and

� <type> is the Ada type name of the type of the datum.

All of the event declarations required for this system are included in the speci�cations of the
various packages provided. You should not have to add any on your own.

� Bindings from an event to a method associated with that event can be found in event bindings.ada.
For each binding, the following format is used:

--! when <event_name> => <method_name> <argnames>

where

{ <event name> represents the name of the event upon whose announcement the method
should be called.

{ <method name> represents the name of the procedure (within the package speci�ed by
the for statement) which should be called when the event is announced.

{ <argnames> is a list of the identi�ers of data associated with the event in a declare

statement which are to be passed to the procedures. You do not have to pass every
argument, nor do you need to pass them in the same order they are de�ned. However,
every name which appears in <argnames> must have been part of the event declaration.

When a component wishes to announce an event, it calls Announce Event, signaling the name
of the event and any parameters. (All calls to Announce Event have already been provided in the
code. It will help you in your solution to know that this particular implicit invocation system
guarantees that whatever activity was caused by the event announcement is complete when the
Announce Event procedure returns, so that there are no pending events in the system once the call
returns.

C.3 Discussion

On Monday March 7, a team will brie
y present their initial designs for class critique and discussion.
Volunteers for this presentation will be solicited during the previous class period. Note that each
team will be responsible for one such presentation over the course of the three assignments.

This presentation/discussion will not be graded. It is solely for the bene�t of you and your
classmates.

16



C.4 Due Date and Electronic Hand-In

The assigment is due by 10:30am on Monday March 14. You should e-mail your solution to the
Teaching Assistant. Your solution should include:

� the names of your team members,

� a pointer to a directory containing a modi�ed source of event bindings.ada, the added
module, and a running system.

In addition, there will be a written commentary (due at the beginning of class on March 14)
answering the following questions:

1. Are implicit systems easier or harder to modify than object-oriented architectures? Why?
Describe speci�c modi�cations (other than the one which you performed) which would be
easier in an implicit invocation system, and other modi�cations which would be harder.

2. Could the system speci�ed be implemented using a data
ow architecture? If so, how? If not,
why not?

3. Explain how your implementation di�ers from the one proposed in the paper by Garlan,
Kaiser, and Notkin for handling trivial line removal. Would that have been a better approach?
If so, why? If not, why not?

4. The implicit invocation system provided by make events assures that all events which are
caused by a single Announce Event, whether directly or indirectly, are all complete and all
methods called before the Announce Event call returns. Identify any di�erences in your
solution which would have been caused if the system delivered the events in arbitrary order,
and did not guarantee their delivery prior to returning from an announcement.

5. Does your system handle line deletions properly? Defend.

The commentary should be your own work; i.e., individuals, not teams for commentary.

C.5 Grading Criteria

Your solutions and commentary will be graded by the following criteria:

� Whether or not the resulting system performs as required.

� Use of architectural style in the assignment.

� Your understanding of the kinds of changes easily supported by the architecture.

In particular, the grade will be broken down as follows (100 points maximum):

� the program: 40 points,

� questions 1-5: 12 points each.

C.6 Further Questions

If you have any further questions, feel free to contact any of us via e-mail or during our o�ce hours.
Clari�cations (if any) will be posted to the class mailing list.

17


