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ABSTRACT 

Traditionally computer descriptive languages have been designed primarily for 
human communication and/or simulation. Due to this narrow range of applications the 
existing languages have taken on a strong degree of similarity. In this paper we 
present some applications in the realm of automatic design of both hardware and 
software where a computer description language could serve as the information 
exchange media between the user and the design automation system. The paper 
discusses an environment for research on the applications of computer descriptive 
languages, emphasizing the multiplicity of of users and tasks that may coexist an any 
point in time. Some properties needed in a computer descriptive language are 
presented. A structured programming approach to hardware design is presented by 
example. 
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INTRODUCTION 

Traditionally computer descriptive languages have been designed primarily for 

human communication and/or simulation [Chu, 1965; Bell, 1971]. Due to this narrow 

range of applications the existing languages have taken on a strong degree of similarity 

[Barbacci, 1973a]. There are other applications in the realm of automatic design of 

both hardware and software where a computer description language could serve as the 

information exchange media between the user and the design automation system. By 

examining these applications the information requirements can be determined and from 

these a language that serves for several (but still not necessarily for all) applications 

can be designed. 

This paper describes some preliminary results of a research group at 

Carnegie-Mellon University. We present a case for machine-relative software and 

other related areas of research. A brief discussion of the domain of tasks we are 

considering is followed by a more detailed description of the requirements for two of 

them, namely the design of machine relative compiler-compilers and the design of 

modular hardware systems. We present an overview of an environment for research in 

these multiple applications. The key word here is "multiple". We visualize a system 

that will support multiple, concurrent users, investigating different aspects of the 

problem domain, implementing subsystems in different programming languages which 

manipulate machine descriptions given in different computer description languages. One 

of the key issues is the specification of adequate computer description languages. We 
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discuss some properties desired in such notations and, finally an example in a 

structured programming approach to top-down computer design is used to, present 

some of our ideas in just one of the several areas of our research interests, albeit a 

crutial one. 

MACHINE RELATIVE SOFTWARE 

There is a continual stream of new machines spurred by the advent of 

minicomputers and microprocessors. Each machine has a different Instruction Set 

Processor (ISP) [Bell, 1971]. The emergence of microcoded systems with the option 

of user defined instructions has increased this flow of ISPs. Each new system requires 

supporting software and the amount of software grows for any individual system as 

user requirements grow. 

There are a number of directions in which to seek a solution to ease the burden 

of software development. Standardization of software packages written in high level 

languages such as Algol, FORTRAN, and COBOL is one approach. It reduces the amount 

of software needed for each new machine. A second direction is in terms of better 

software production systems. This may be sought either in terms of implementation 

systems (high level languages specifically designed to aid implementation) or in terms 

of better software methodologies (e.g., structured programming). Another direction, 

which we will consider in detail, is to relativize the production of software to the 

description of the machine. 
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APPLICATIONS OF COMPUTER DESCRIPTIONS 

To be clear about the multipurpose character of a computer description, let us 

list several kinds of problems that one might want to solve, each of which requires an 

abstract description of a computer. 

1) Compiler-Compiler.- A system that takes as input a description of a 
language and a description of a machine and outputs a compiler for that 
computer. Given the state of the art, the language would probably be 
restricted to be Algol-like. [Miller, 1971] is an early attempt at a solution to 
this problem. 

2) Verification of I/O programs.- Given an I/O program, such as a device 
handler, and a description of both the computer and the hardware device 
controller, verify that the program works. This problem has some special 
features that set it apart from the general program verification problem, 
besides its importance as an applied task: (a) its strong dependence on the 
description of computer systems in classic form (i.e., at the Register Transfer 
level) rather than in some abstract semantics, (b) the programs themselves 
may not be very complex in terms of their algorithms; rather the complexity of 
the task arises from the openness of the environmental states that have to cope 
with (timing, concurrency, etc.) 

3) Programming of Micro coded Special Computers.- The ability to create 
specialized computers to perform particular narrow classes of algorithms 
economically opens a world of device dependent, one-time programming tasks 

The central ingredient of this latter approach is the description of computer 

systems in a symbolic form, such that a range of problems can be solved by 

manipulation of these descriptions. We stress the need for diversity in the problem 

domain if we are really to understand how to operate relative to computer descriptions. 

The next section will illustrate some points in the problem domain. 
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that poses an immense problem. These systems attempt to optimize 
performance; their organization cannot be dictated by considerations of 
programming ease. Their programming will become difficult in the extreme, 
especially when no opportunity will exists for the growth of programming 
know-how. This suggests that what the human will do is to program relative 
to a machine description that he has barely assimilated. Hence it is reasonable 
to construct programming systems that operate relative to machine descriptions 
of a class of machines. 

4) Design of Modular Systems.- Given a desired machine described in terms 
of some specification language, and given a space of machines defined by a 
class of Register Transfer [Bell, 1971] level modules, design a machine 
according to various constraints and criterion functions. This is a classic design 
situation which is worth studying, both in terms of understanding the nature of 
design and in terms of automating computer design. The feasibility of this 
approach has been demonstrated by the EXPL system [Barbacci, 1973b]. 

5) Design to specification.- Given a functional specification for a computer 
and a space of computer systems defined by a computer description language, 
design a computer that performs to the specification. This is another form of 
the classical design task. It differs from (4) above. A typical task here is: 
given some general functions, create an ISP for a computer. A typical task in 
(4) is: given an ISP, design it in terms of Register Transfer level modules. 
Formally they may seem identical, but the design spaces look quite different. 

6) Design Verification.- Given a specification for a computer and a description 
of that computer in the language, verify that the computer satisfies the 
specification. We can also include here the automatic generation of testing and 
diagnostic programs. 

7) Manual generation.- Given a computer defined in the language, create the 
documentation for the computer. This task is quite different from the ones 
above, but also involves understanding and manipulating a computer description. 

The applications listed above place a variety of demands on the computer 

descriptive language and it is hardly clear whether a single language can cover the 

entire spectrum. The next sub-sections give some examples of the requirements for 

two rather different tasks and an outline of a possible system to meet the variety of 

requirements. 
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Machine Relative Compiler-Compilers.- By "machine relative" we imply an extension to 

the traditional definition of a compiler-compiler, in which a specific target machine is 

assumed. Due to this limitation, compiler-compilers have solved only part of the 

automatic programming problem and as a result they have not been very succesful. A 

better approach has been to produce a compiler that generates pseudo-machine code. 

For each new ISP the programmer simply provides the equivalent of the 

pseudo-machine instructions in terms of macros written in the target machine language 

[Feldman, 1966]. While runnable programs are produced by this technique they are 

poor in terms of size and run time efficiency. There are several reasons for this lack 

of efficiency: built- in preconceptions about existing instructions, the introduction of an 

extra level of abstraction that must be hand translated, the lack of consideration for 

specific machine features that can do certain things more efficiently that others, etc. 

Hence we are primarily interested in generating an optimizing compiler. In order 

to generate machine code that will rival that of a good programmer, a 

compiler-compiler must extract the idiosyncrasies of the machine. For example, one 

way to add four to a register in the PDP-11 [DEC, 1973] is to use the instruction 

"ADD tt4,Rr\ This requires two 16-bit words, one for the instruction and one for the 

immediate operand 4. However, the autoincrement addressing mode adds two to a 

designated register after using its contents as the address of an operand. Thus an 

instruction that effectively is a No-Operation code and uses the autoincrement mode on 

the register for both source and destination operands can achieve the effect of adding 

4 to the register. Thus "CMP (R1) + , (R1)+ M will add 4 to Rl and requires only one 

16-b i t word. Note that the compare instruction is not a true NOOP since it will set the 
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condition code registers according to the result of the comparison. The compiler has to 

insure that this side effect is not critical. One such critical case would be if the 

contents of Rl is used as a loop index and a loop exiting branch was to follow the 

addition* Note further that Knowledge of the relative speed of instructions and 

addressing modes may be necessary to make a choice on the basis of speed* 

Some of the information that needs to be extracted from the machine description 

is: the data types (address, integers, floating point, etc), operations on the data types 

(add, subtract, multiply, etc), location of data types (memory, register, etc), and 

instruction side effects (condition codes, use of hidden operands, etc). Instruction side 

effects are particularly important. The following PDP-11 code sequence is a good 

example: 

SUB A,B 
TST B 
BLE LABEL 

where the TST instruction serves only to clear the overflow condition code. If the 

Branch on Less or Equal instruction (which is conditioned by the overflow condition 

code) is replaced by a Branch on Equal instruction (not dependant on the overflow 

condition) then the test instruction is superfluous and can be deleted. 

One of the desired goals of a compiler is to produce the minimum cost code 

sequence which evaluates a given program. It is therefore necessary to explore all 

possible sequences that represent the evaluation and are semantically equivalent and 

eliminate those that exceed the least-cost criteria. This semantic equivalence is 
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related to the effect on the global program state in the context in which the sequence is 

to be executed. It is therefore necessary to express the global program state 

conditions under which a code sequence can be applied, as well as the resulting 

transformations on the state. This synergistic effect of machine language instructions 

has not been considered part of the realm of traditional computer description languages. 

The cost of compile time generation of cases must be weighted against the 

advantages of finding the best code sequences. An intermediate solution is the 

exhaustive generation of templates to guide the code generation, as in traditional 

compilers. This once-only exhaustive generation process is more likely to find all the 

obscure cases and discover unspected semantic equivalences than hand-designed 

templates [Newcomer, 1974]. 

Modular Designs Now consider a modular design program that produces a finished 

machine design in terms of a predescribed module set. A modular implementation of a 

system can usually be divided into a data part and a control part that directs the actions 

of the data part [Bell, 1972]. The data types and their operations can be implemented 

via templates of modules. Again, as in the case of the compiler-compiler, synergistic 

effects must be discovered in order to produce the most efficient network of modules 

for a given machine description. This implies certain commonality of information 

required by this two applications. However, there are many details of a module set 

that the compiler-compiler does not need to know. Assume that the modules are 

commercially available semiconductor chips and that the output from the design program 

is a printed circuit board layout. Knowledge of chip orientation, power requirements, 
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Figure 1. The environment 

The user inputs information into the data base via one or more computer 

description languages. The application programs manipulate the global data base to 

extract information in the format desired by the application. 

The data base and its manipulation programs must be able to support many 

and chip spacing is needed by the design automation system to produce a wiring list. 

Hence there is information contained in the computer description that is required 

by two or more applications while some other information is particular to a single 

application. 

A research environment for the symbolic manipulation of machine descriptions.- The 

similar requirements among the several applications of computer description languages 

suggest a research environment centered around a data base in which machine 

descriptions and manipulation programs are maintained, as depicted in Figure 1. 

simulation compiler-compiler design-automation . . . 
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different notations and areas of application. This can be expressed by the following 

set of required features: 

1) Must hold all computer descriptions for the different applications. 

2) Must be reasonably independent of any particular programming language. 
This is necessary to allow researchers the flexibility to implement application 
programs (i.e. computer description manipulators) in a programming language 
of their choice (e.g., FORTRAN, Algol, APL, LISP, BLISS, etc.) 

3) Must be independent of any particular computer description language. The 
reason is that the computer descriptive language used to create elements of the 
date base is a moving target. It is also the case that some notations may be 
more suitable than others for specific parts of a machine description. This 
implies an evolutionary process, during which many different notations can be in 
use simultaneously. 

4) Must be interactive to allow casual and non-casual use. This requires a 
set of facilities for interaction in at least one language. 

5) Must allow incremental use by many simultaneous users. By incremental 
use we mean the ability to carry a design through stages of completeness 
during which different users add application dependant details to a computer 
description. This is needed for experimentation. 

The features outlined above present a set of requirements that may be 

conflicting. One of the reasons for this generality, not addressed in previous 

applications, is that the objects we want to manipulate, namely computer descriptions 

represent a tremendously large domain. We are talking not only about hardware 

(Logic, Register Transfer, and PMS levels [Bell, 1971]) but also about algorithms 

(Instruction Set Processors and programs). It is also the case that we are trying to 

apply a coherent methodology to hardware design, a domain characterized by rather 

abrupt transitions between its descriptive levels (more so than among software levels). 

Ideally we would like to converge on a single computer descriptive language so 
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that people in the environment can interact more easily among themselves. On the 

other hand, we recognize the fact that notations go through evolutions and the research 

environment must be open along this dimension. Any kind of tight association between 

a computer description language and the data base will reduce the latter's usefulness. 

The next section describes some thoughts about the requirements of a computer 

descriptive language. At this point in time, however, we hold no commitments to any 

particular existing language or combination of languages. This allows us the freedom to 

speculate and experiment with several, perhaps conflicting ideas. Therefore, our use 

of a particular syntax in the example given as a structured programming approach 

should not be construed as a language definition. 

REQUIREMENTS OF A COMPUTER DESCRIPTIVE LANGUAGE 

One of the problems with existing hardware descriptive languages is that they 

tend to bind the user to a view of the world that is rigid and difficult to modify. We 

feel that the semantics of the language should be under control of the designer. The 

following are a desireable, but by no means exhaustive, set of properties for the 

language: 

1) Neutrality.- The language should not make any assumptions about the 
physical implementation. The control primitives available in the language 
determine the control structures that are easy to describe. If the language 
control primitives are too rigid they will limit the implementation alternatives. 
For instance, CASSANDRE [Anceau, 1969] uses state registers as primitives. 
Systems which do not decode values from centralized state registers are 
therefore difficult to describe. 
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2) Fidelity.- The description should make the intentions of the designers 
transparent to the users. This is somewhat in conflict with the neutrality 
property. 

2.1) Timing Fidelity.- Existing languages such as ISP [Bell. 1971] 
describe algorithms with no reference to timing. Thus it becomes difficult 
to express the behavior of low level components. Another example is the 
description of cooperating parallel processes, such as interrupt systems, 
where timing is critical. 

2.2) Structural Fidelity.- Data paths can be inferred from the description 
but these may be a maximal set and may not reflect the actual structure of 
the machine. At some level of description the transfer operation, usually 
denoted by " « - " , means "by whatever path available". For a more detailed 
description the " < - " correspond one-to-one with physical data paths. 
The same remarks can be applied to the specification of the functional units 
in the system. The presence of a " + " operator in a register transfer 
expression does not indicate which of possibly many functional units is to 
carry out the operation. 

3) Hierarchy." Frequently systems design is conducted in a top down manner. 
The various portions of the system are first described at a high level. Then the 
designer specifies one subsystem in more detail, then another, and so forth. 
At any given time a systems design might consist of some subsystems designed 
down to the gate level, some less detailed designed at the register transfer 
level, and some merely described as algorithms. The coexistance of multiple 
levels of description is difficult to attain in existing design languages where top 
down refinements, if possible at all, are performed on a global basis by ad-hoc 
manual procedures. The addition of a clock at some level of detail, for 
instance, requires the rewriting of the entire description. Any validation that 
has been performed on part of the description would have to be redone. 

The final section introduces, via examples, some thoughts on new mechanisms 

for a computer descriptive language that attempt to satisfy some of the above 

requirements. 
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A STRUCTURED PROGRAMMING APPROACH TO A 

COMPUTER DESCRIPTION PROBLEM 

This section presents, via examples, some aspects of the use of new computer 

description concepts. We will present our ideas as an exercise in top down design. 

The objective is to design a PDP-8 like minicomputer, starting from a high level 

description and carrying the design down to a level in which the specific implementation 

of the machine is described. We will make use of some structured programming 

concepts that allow us to define entities of the machine (e.g., memories, registers, 

functional units) independently from the use of the entities in the description. These 

concepts will be added to the descriptive language ISP [Bell, 1971]. The choice of ISP 

as a framework is based on the authors familiarity with the notation and not, on a 

commitment to addopt an ISP derived notation as the only vehicle for our research. Our 

concern for allowing evolutionary notations is also reflected in certain liberties we have 

taken with respect to the syntax of the language as published in [Bell, 1971]. 

The concept of form [Wulf, 1974] allows us to define the data types available in 

the language by specifying not only the representation of the typed objects but also 

the operations that can be performed on these objects. A typical form declaration 

consists of a header and a body. The form header specifies the form name and the 

formal parameters used inside the form body. The form body consists of a declaration 

part, in which variables to be used in the form functions can be defined, and a set of 

functions and operations describing the operations that can be performed on variables 

declared as instances of the form. 
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* In order to keep the examples within a reasonable size, we are appealing to the 
intuition of the readers to supply some of the missing details concerning the semantics 
of the fauns* In order to make the process easier, we have taken some liberties with 
the syntax of ALPHARD and its farm* [Wulf, 1974]. 

For instance, we can define a form "memory" that describes a particular 

hardware component. At some early point in the design process a memory can be 

considered as a vector of integers, thus avoiding the specification of things like word 

length, number representation, addressing, etc. The following example is an instance 

of such high level memory definition*. Two functions (operations), "read" and "write" 

are defined as accesses to a vector of integers: 

ffiLHL memory (integer size) = 
{declare m = integer vector (size); 
function read (integer addr) = ceJtuin m[addr]; 
function write (integer addr fval) s m[addr] *-val; 
export read, write } 

The export statement is used to indicate the form entities (variables and 

operations) that are accessible to the rest of the program. Thus we can restrict the 

access to certain elements of the form by not exporting them. The read and write 

functions are evoked automatically, depending on the context in wich the memories 

appear, i.e., as a source (read) or a destination (write) in a statement. 

Similarly, we can define a form "register" that behaves like an integer: 
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form register = 
{dfì£ia££ r = integer; 
infix + (register a fb) = return a+bj 
infix - (register a,b) = return a - b ; 
infix * (register a,b) = i^iuia a*b; 
infix 7 (register a.b) = return a4b« 
function read = return r; 
tundlaa write (integer vai) = r « -val ; 
export + i - i * t * f read, write} 

14 

The infix declaration is used to define binary infix operations on instances of the 

form. Notice that there is nothing in this definition that reveals the nature of the 

register and its structure. A more realistic definition would be the following: 

form register (integer size) = 
{declare r = bit vector (size); 
function value = 

begin declare integer sum; 
sum*- - r [ l ] ; 
incr i from 2 ta r.size da sum«-sum#2 + r [ i ] ; 
Lelmn sum; 

end; 
infix + (register a fb) = naluoi a.value+b.value; 
infix - (register a,b) = Lsiuin a.value-b.value; 
Loik * (register a,b) = ceiuoi a.value*b.value; 
infix 7 (register a fb) = L£luin a.valuerb.value; 
function read = return r .value* 
fUDLtifln write (integer val) = 

deer i from r.size t& 1 d& begin r[ i ] <-val mod 2; val <-val * 2; end* 
export + . - , * , * . read, write } ; 

In the example above, the register is defined as a vector of bits and the value of 

the register is encoded using the two's complement representation. The function 

"value" is not exported, thus the real nature of the register as a bit vector is hidden. 

The read and write functions are redefined to allow the transfer of values in and out of 
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the register. The "dot" notation is used here to indicate the access to an attribute of a 

register. Thus r.size is the register size, as specified in the declaration. 

Top Level Description.- The following description of the PDP-8 assumes the register 

and memory forms defined previously. For the sake of brevity we are not defining the 

IO_EXECUTE and OPR_EXECUTE processes evoked by the EXECUTE process. 

declare memory M[0:4096]j 
declare register AC<0:11>, 

IR<0:11>, 
PC<0:11>, 
L O , 
LAC<0:12>:=LDAC, 
DATA_SWITCHES<Osll>, 
STOP_SWITCH<>, 
CMPA<0:11>, 
OP_CODE:=1R<0:2>, 
PAGE_BIT:=IR<4>, 
INDIRECT_BIT:=IR<3>; 

INTERPRETER:* (FETCH;next DFETCH ;next EXECUTE;next INTERPRETER); 

IFETCH := (IR <-M[PC] ;PC <-PC + 1 ) ; 

DFETCH := (COMPUTE^DDRESS ;next DEFER_j^DDRESS); 

EXECUTE := ( 
(OP_CODE = 'AND* AC «-AC AM[CPMA]); 
<OP_CODE = 'TAD' =» LAC «- LAC+M[CPMA]); 
(0P_C0DE='1SZ*=»M[CPMA] <-M[CPMA]+ 1 ;next 

(M[CPMA]<0=»PC«-PC + 1) ) ; 
(OP_CODE='DCA'=»M[CPMA] « -AC;AC«-0); 
<OP_CODE='JMS' M[CPMA J <-PC;PC «-CPMA +1) ; 
(OP_CODE = \JMP' PC <-CPMA); 
(OP__CODE = '10' =»IO_EXECUTE); 
(0P_C0DE='0PR' =»OPR_EXECUTE) 
) ; 

COMPUTE^ADDRESS:=( 
(PAGE_BIT = 1 =»CPMA «• PAGE_JMUMBER • PAGE_ADDRESS); 
<PAGE_BiT=0 =>CPMA *-0 DPAGE^ADDRESS) 
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) ; 

DEFER^ADDRESS := ( 
INDIRECT_BIT = 1=> 

( 1018 <CPMA < 1718 M[CPMA] <-M[CPMA] +1 ) ; 
next CPMA«-M[CPMA] 

Redefinition of the memory form.- After the above definition, the design can proceed 

in several directions, for instance, we can define the register operations in terms of 

bits, we can define the interpretation of the instruction register, or we can define the 

memory operations in more detail. We choose the latter, at least because it will 

produce a more homogeneous description (i.e., the operations will be in terms of 

registers). 

Defining the memory as a vector of registers requires two parameters, the 

number of registers (words) and the length of each register. The memory in the 

following definition requires two auxiliary registers to perform the read and write 

operations. These registers are not exported out of the formr i,e., they are local to 

the memory module. 

form memory (integer size.wlength) = 
{declare m = register (wlength) vector (size); 

mar = register(log2(size)); 
mbr = register (wlength); 

a££ÊSi m [register x ] = m[x.value]; 
function read (register addr) = 

begin mar«-addr; mbr«-m[mar]; return mbr; and; 
function write (register addr, val) = 

begin mar<raddr$ mbr«-val; m[mar]«-mbr; end; 
export read, write } 
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The access declaration indicates that the value of the register is used as the 

index in the memory vector. The effect of the redefinition of the memory is illustrated 

in the following description, in which the read and write operations on the memory have 

been replaced by the corresponding sequences given in the form. The description of 

the machine itself has not changed, only the definition of one of its components. This 

allows us to redefine the memory at any point in time without having to change the 

description. 

dexter^, memory M[0:4095]<0:11>; 
dficiaxe. register AC<0:11 >, 

IR<0:11>, 
PC<0:11>, 
L<>, 
LAC<0:12>:=LDAC, 
DATA_SWITCHES<0:11>, 
STOP_SWITCH<>, 
CMPA<0:11>, 
OP_CODE:=IR<0:2>, 
PAGE_BIT:s|R<4>, 

INDIRECT_BIT:slR<3>; 

INTERPRETER:*(FETCH;next DFETCH;next EXECUTE ;next INTERPRETER); 

FETCH:= (mar «-PC;next mbr<-M[mar];next IR«-mbr;PC«-PC + l ) ; 

DFETCH := (COMPUTE^ADDRESS ;next DEFER_ADDRESS); 
EXECUTE :=( 

(OP.CODEs'AND's^mar^CPMA^ext mbr«-M[mar];next AC«-ACAmbr); 
(OP_CODE=TAD'=»mar<-CPMA;next mbr <-M[mar];next LAC«-LAC+mbr); 
(OP_CODE='ISZ*s»mar«-CPMA;next mbr*-M[mar];next mbr «-mbr + l;next 

M[mar]«-mbr;next (mbr<0=»PC«-PC + l ) ) ; 
(OP_CODEs='DCA'=»mar«-CPMA;next mbr«-PC;next M[mar]«-mbr; A C « - 0 ) ; 
(OP_CODE='JMS ,=»mar <-CPMA;next mbr «-PC;next 

M[mar]«-mbr; PC<-CPMA + 1); 
(OP_CODE = 'JMP* =5> PC «-CPMA); 
(OP_CODE = '10' =*IO_EXECUTE); 
(OP_CODE = 'OPR' OPR_EXECUTE) 
) ; 
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COMPUTE_ADDRESS s= ( 
(PAGE_BIT=1 CPMA «* PAGE_NUMBER • PAGE_ADDRESS); 
(PAGE_B1T=0 =»CPMA *-0 • PAGE_ADDRESS) 
) ; 

DEFER^ADDRESS:=( 
INDIRECT_3iT=l=» 

(l<U8*CPMA<17i8=>mar«-CPMA;next mbr«-M[ mar]; next 
mbr*-mar + l;next M[mar]«-mbr);next 

mar«•CPMA;next mbr«-M[mar];next CPMA«-mbr 

Redefinition of the register form. - So far we have been dealing with registers as if 

they were integers. This is simply an abstraction. Hardware registers are built as 

array of bits and therefore the operations must be ultimately defined in terms of logic 

networks operating on individual bits. The form network is not defined. Informally, it 

represents a set of wires (memoryless components) used to carry information back and 

forth between other components. The following definition of a register indicates how 

the operations could be performed: 

iorm register (integer size) = 
(declare r = bit vector (size); 
a£££5£ rOnteger x> = 

begin declare n = network(l); n [ l ] « - r [ x ] ; n; end; 
as&fiSS. Kintegerpair x> = 

begin declare n = network(x.ub.value -x.lb.value +1) ; 
forall i i n n d a n { i ] « - r [ i + x . l b ] ; n 

end; 
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infiy + (register a,b) = 
begin declare x = network(a.size +1) ; carry = network(a.size + l ) ; 

carry[carry.size] <-0; 
deer i from a.size to 1 do 

begin 
x[i + l ] « -a[ i ]©b[ i ]©carry[ i + l ] ; 
carry [i] <-a[i] Ab[i] va[i] Acarry[i + 1 ] vb [ i ] Acarry[i +1 ] ; 

end; 
x [ l ] <-carry[ l ] ; 
return x; 

end; 
infix - (register a fb) = . . • . 
infix + (register a; network b) = 

begin declare x = register(b.size); x « - b ; return a+x« end; 
infix + (network a; register b) = . . . . 
infix + (register a; integer b) = 

begin declare x = register (a.size); x*>b; return a+x; end? 
function read = return r; 
function write (integer val) « 

deer i from r.size l& 1 da begin r[i] <-val mod 2; val «-val * 2; end* 
infix write (register b) = forall i in b da r [ i ] « -b [ i ] j 
infix write(network b) = forall i in b da r [ i ] « - b [ i ] ; 
export + f - , * f T rread,write } 

With the last example the power of the form mechanism is more apparent. We 

can define and redefine data types and operations without disturbing the rest of the 

description. The example also shows a possible way of implementing the adder. If the 

description is taking literally, it implies that every register is in fact a functional unit, 

capable of performing any arithmetic operation. For a first approximation this may be 

an acceptable definition. A better definition would declare a single functional unit and 

all register operations could then be defined using this unit. It is clear also that we can 

declare other types of registers, for instance, counters that would look like any other 

register but with the property that some simple operations (e.g., add 1, subtract 1, set 

to 0, etc) would be performed directly in the register. 
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Signals and Control Expressions.- Let us assume that we are satisfied with our 

previous description (it is by no means complete, but for the sake of brevity let us 

accept it) . The sequencing of operations as expressed in the description does not 

indicate how the control passes through the machine description, i.e., the semantics of 

"next" and " ; " is specified only to the point of knowing that certain actions are 

performed concurrently or that some actions must be completed before others can 

start. 

We can formalize the sequencing of the operation by using control expressions, 

based on an underlying finite state machine, of the following type: 

pre-condition : action | post-condition 

The pre-condition represents the condition that must be met before the action 

can be executed. The action is initiated as soon as the pre-condition is satisfied. The 

post-condition indicates the conditions that exist upon completion of the action. The 

pre-condition is expressed as a conjunction of signals and boolean expressions. The 

evaluation of the pre-condition must be an indivisible, timeless action. The 

post-condition is expressed in terms of the signal operator, />• The & operator 

generates a signal that can be used by the pre-conditions. The signals are assumed to 

be unit pulses, therefore they exist only for a brief time, enough to evaluate the 

pre-conditions. The latching operator ¿2 can be used to store a signal for later use in 

a pre-condition. Latched signals will obviously exist for longer periods of time but 

they will dissapear as soon as they are used i.e., as soon as the pre-condition that 

contains the latched signal is met. There is a memory device associated with each 
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Examples: 

s i : . . . . I >6(s2) 

s i Aa = l : . . . I >6(s2,s3) 

s i A s 2 : . . . . 

# ( s l ) A # ( s 2 ) : . . . . 

Given the following BNF description of ISP, we can algorithmically transform the 

ISP description into a set of control expressions, according to the rules given later on: 

<process> : : = <label> := ( <s-action) ) 
<s -act ion) : : = <p-action) | <p-action) next <s-action) 
<p-act ion) : : = <c-action) ; <p-action) 
<c -act ion) : : = <action> j ( <exp> <s-action) ) | 

(decode <exp> <action-list> ) 
<action-list> : : = <action> | <action-list) ; <action> 
<action> : : = <r-transfer> | <label> | ( <s-action) ) 

ISP to Control Expressions Translation Rules." 

description pre-condition action post-condition 

1 ) label := ( s-action ) label s s-action 1 >ò(labeL_done) 

2) Si : * ; fi 1 4 ( S j ) Si 1 Msn 
Si 1 MSi") 
« (Si') Aie (Si") 1 MSi) 

3 ) Si : u n e x t fi | MS\) Si : oc I Msn 
Si' '>fi 1 MSi) 

4 ) Si : oC=ïfi \ MSi) SiAo£ :fi 1 MS}) 

instance of the # operator. 
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SiA-*<* : J >ô(Sj) 

5) Si : decode u^fiOf .... fin | />(Sj) 
SiAod=0 : fiO I MS\) 
• . . . 

Si A<*=n : fin j >6(Sj) 

6) Si : ( « ) I M$i) Si : * | MSj) 

7) Si : label | ^ ( S j ] Si : I >6(label) 
Si Alabel_done : j >6(Sj) 

As an example, we wil apply the above rules to part of the P0P8 description, 

specifically, the ISZ instruction. 

1 ) Applying rule 0 to the EXECUTE process: 

EXECUTE : . . . . | M EXECUTE J30IME) 

2) Applying rule 5 to separate the individual instructions: 

EXECUTE AOP_CODE='ISZ' : I ^(EXECUTE JDONE) 

3) Applying rule 3 several times to the s-action describing the instruction: 

EXECUTEa0P_C0DE='1SZ' : mar«-CPMA | MSI) 
51 :mbr«-M[mar] \ MS2) 
52 : mbr*-mbr + l | ¿ (S3) 
53 : M[mar]«-mbr | MSA) 
54 : ( mbr<0=*PC«-PC+l ) | ¿(EXECUTE_DONE) 

4) Applying rule 4 to the last component: 

EXECUTE A OP_CODE = 'lSZ' : mar«-CPMA | MSI) 
51 : mbr«-M[mar] j MS2) 
52 :mbr«-mbr + l I ¿ (S3) 
53 : M[mar]«-mbr I MSA) 
S4Ambr<0 :PC<-PC + 1 | ¿(EXECUTE_DONE) 
S 4 a - ( M B R < 0 ) : | ¿(EXECUTE__DONE) 
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The complexity of the actions in the control expressions can be arbitrary. This 

allows us to expand the description in selected parts of the machine. If we want to be 

more precise about the timing of the operations we can add, to the form defining the 

machine component, the information necessary to indicate how the signals are produced. 

For instance, we can add to the write operation in some register form the statement 

"signal after 200" to indicate that the write operation takes 200 nanoseconds. A 

synchronous machine could be specified by the statement "signal on P3" where P3 is 

the name of a clock phase. 

Since we can in fact represent all the operations in terms of register transfers 

with the appropriate delays, we have a convenient mechanism to indicate the timing in a 

machine. All we have to do is provide the appropriate signal QQ, or signal after 

statements in the write function of the forms describing each component. 

At this point a reshuffling of the description may be desired to simplify the 

control logic. It is advantageous to group the primitive operations by the 

pre-conditions under which they are triggered rather than by the position in an 

opcode sequence. This is straightforward and easy to verify the correctness of the 

transformation. A related problem is the reduction of the number of control 

expressions by renaming signals that are produced under similar circumstances and with 

similar effects. The importance of this "optimization" is evident since the number of 

different signals is related to the number of possible states of the machine, part of 

which must be encoded in the instruction code. 
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