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Abstract

The authors aim at deriving a family of series representations for �(2n+ 1)(n 2 N)
by evaluating certain trigonometric integrals in several di�erent ways. They also
show how the results presented in this paper relate to those that were obtained in
other works. Finally, some illustrative computational examples, usingMathematica

(Version 4.0) for Linux, are considered.

1. Introduction

The Riemann Zeta function �(s) and the Hurwitz (generalized) Zeta function �(s; a), which are
de�ned usually by

�(s) :=

8>>>><
>>>>:

1P
n=1

1

ns
=

1

1� 2�s

1P
n=1

1

(2n� 1)s
(R(s) > 1)

1

1� 21�s

1P
n=1

(�1)n�1
ns

(R(s) > 0; s 6= 1)

(1.1)
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2 THE RIEMANN ZETA FUNCTION

and

�(s; a) :=
1X
n=0

1

(n+ a)s
(R(s) > 1; a 6= 0;�1;�2; :::) ; (1.2)

can indeed be extended meromorphically to the whole complex s-plane except for a simple pole at
s = 1 with residue 1 (see, for details, Titchmarsh [23]). It is easily seen from (1.1) and (1.2) that

�(s; 1) = �(s) = (2s � 1)�1 �
�
s; 1

2

�
and �(s; 2) = �(s)� 1: (1.3)

In recent years there has been a renewed interest in representing �(2n+ 1) (n 2 N), N being the
set of positive integers, by menas of series which converge more rapidly than the de�ning series in
(1.1). These developments seem to have stemmed from the use of the familiar series representation
(see, e.g., Hjortnaes [14] and Gosper [11]):

�(3) =
5

2

1X
k=1

(�1)k�1

k3
�
2k

k

� (1.4)

in Ap�ery's proof [2] of the irrationality of �(3), as well as from Ewell's yet another rediscovery [8]
of Euler's formula (see, e.g., Ayoub [3, pp. 1084-1085]; see also Ramaswami [19] and Srivastava [20,
p. 7, Equation (2.23)]):

�(3) = �4�2

7

1X
k=0

�(2k)

(2k + 1)(2k + 2)22k
: (1.5)

The works of (among others) Ewell [9], D�abrowski [7], Zhang and Williams [24], Cvijovi�c and
Klinowski [6], and Srivastava ([21] and [22]) may be cited in connection with the aforementioned
developments.

The main object of this paper is to derive a family of series representations for �(2n+1) (n 2 N)
by evaluating certain trigonometric integrals in several di�erent ways and to show how the results
presented here relate to those that were obtained in other works. We also consider some illustrative
computational examples by using Mathematica (Version 4.0) for Linux.

2. A Cosecant Integral and Its Consequences

We begin by considering the cosecant integral:

Is(!) :=
Z �=!

0

ts csc2 t dt (R(s) > 1; ! > 1) ; (2.1)

which, upon integration by parts, readily yields

Is(!) = �
��
!

�s
cot
��
!

�
+ s

Z �=!

0

ts�1 cot t dt (2.2)

(R(s) > 1; ! > 1) :
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The cotangent integral in (2.2) can, in fact, be evaluated in several di�erent ways. First of all,
since (cf., e.g., Magnus et al. [17, p. 36])

z cot z = �2
1X
k=0

�(2k)
� z
�

�2k
(jzj < �) ; (2.3)

we �nd from (2.2) that

Is(!) = �
��
!

�s
cot
��
!

�
� 2s

��
!

�s�1 1X
k=0

�(2k)

(s+ 2k � 1)!2k
(2.4)

(R(s) > 1; ! > 1) :

In its special case when ! = 2, the integral formula (2.4) reduces immediately to the form:Z �=2

0

ts csc2 t dt = �2s
��
2

�s�1 1X
k=0

�(2k)

(s+ 2k � 1)22k
(2.5)

(R(s) > 1) ;

which, for s 2 N n f1g, appears in the works of (for example) Glasser [10, p. 446, Equation (11)]
and Prudnikov et al. [18, p. 388, Entry (2.5.4.6)] (see also Gradshteyn and Ryzhik [12, p. 418,
Entry 3.748(2)]). Furthermore, if we set ! = 4 in (2.4), we shall readily obtain the special case:Z �=4

0

ts csc2 t dt = �
��
4

�s
� 2s

��
4

�s�1 1X
k=0

�(2k)

(s+ 2k � 1)42k
(2.6)

(R(s) > 1) ;

which, for s 2 N n f1g, is recorded (among other places) in Prudnikov et al. [18, p. 388, Entry
(2.5.4.1)] (see also Gradshteyn and Ryzhik [12, p. 418, Entry 3.748(3)]).

The integral formula (2.4) also simpli�es when ! = 3 and ! = 6, giving us the following special
cases: Z �=3

0

ts csc2 t dt = � 1p
3

��
3

�s
� 2s

��
3

�s�1 1X
k=0

�(2k)

(s+ 2k � 1)32k
(2.7)

(R(s) > 1)

and Z �=6

0

ts csc2 t dt = �
p
3
��
6

�s�1
� 2s

��
6

�s�1 1X
k=0

�(2k)

(s+ 2k � 1)62k
(2.8)

(R(s) > 1) ;

which do not seem to have been recorded earlier.
Next, in terms of the incomplete Gamma function (z; �) de�ned by

(z; �) :=

Z �

0

tz�1e�t dt (2.9)
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(R(z) > 0; jarg(�)j 5 � � "; 0 < " < �) ;

it is easily seen that Z �

0

t��1e��t dt = ��� (�; ��) (R(�) > 0) : (2.10)

Thus, by writing

cot t = i

�
1 +

2

e2it � 1

� �
i :=

p�1� (2.11)

and making use of (2.10), it is not diÆcult to deduce from (2.2) that

Is(!) = �
��
!

�s h
cot
��
!

�
+ i
i
� 2is

1X
k=1

(s;�2k�i=!)
(�2ki)s (2.12)

(R(s) > 1; ! > 1) :

Setting s = 2n (n 2 N) and noting that (cf., e.g., [12, p. 940, Entry 8.532(1)]

(m+ 1; �) = m!

0
@1� e��

mX
j=0

�j

j!

1
A (m 2 N0 := N [ f0g) ; (2.13)

(2.12) yields the integral formula:

I2n(!) =�
��
!

�2n
cot
��
!

�
� (2n)!

��
!

�2n�1 " 1

(2n� 1)!

1X
k=1

cos(2k�=!)

k

+
n�1X
j=1

(�1)j
(2n� 2j � 1)!

� !

2�

�2j 1X
k=1

cos(2k�=!)

k2j+1

+

nX
j=1

(�1)j
(2n� 2j)!

� !

2�

�2j�1 1X
k=1

sin(2k�=!)

k2j

3
5 (2.14)

(n 2 N; ! > 1) ;

it being assumed here, and throughout this paper, that an empty sum is (as usual) nil. On the
other hand, if we set s = 2n+ 1 (n 2 N) in (2.12) and apply the reduction formula (2.13), we shall
obtain

I2n+1(!) =�
��
!

�2n+1
cot
��
!

�
+ (�1)n (2n+ 1)!

22n
�(2n+ 1)

� (2n+ 1)!
��
!

�2n 24 1

(2n)!

1X
k=1

cos (2k�=!))

k
+

nX
j=1

(�1)j
(2n� 2j)!

� !

2�

�2j

�
1X
k=1

cos(2k�=!)

k2j+1
+

nX
j=1

(�1)j
(2n� 2j + 1)!

� !

2�

�2j�1 1X
k=1

sin(2k�=!)

k2j

3
5 (2.15)

(n 2 N; ! > 1):
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Since (cf., e.g., [13, p. 239, Entry 17.2.5)] with y = 0)

1X
k=1

cos(kx)

k
= � log

�
2 sin

�
1

2
x

��
(0 < x < 2�); (2.16)

in terms of the generalized Clausen functions C`2n and C`2n+1 de�ned by (cf. Lewin [16, p. 191,
Equations (7.9) and (7.10)])

C`2n(x) :=

1X
k=1

sin(kx)

k2n
and C`2n+1(x) :=

1X
k=1

cos(kx)

k2n+1
(n 2 N); (2.17)

it is easily seen from our evaluations (2.4), (2.14), and (2.15) that

1X
k=0

�(2k)

(2k + 2n� 1)!2k
= �1

2
log
h
2 sin

��
!

�i

+
(2n� 1)!

2

2
4n�1X
j=1

(�1)j
(2n� 2j � 1)!

� !

2�

�2j
C`2j+1

�
2�

!

�

+

nX
j=1

(�1)j
(2n� 2j)!

� !

2�

�2j�1
C`2j

�
2�

!

�35 (2.18)

(n 2 N; ! > 1)

and

1X
k=0

�(2k)

(2k + 2n)!2k
= (�1)n�1 (2n)!

22n+1

�!
�

�2n
�(2n+ 1)� 1

2
log
h
2 sin

��
!

�i

+
(2n)!

2

nX
j=1

(�1)j
(2n� 2j + 1)!

� !

2�

�2j �
(2n� 2j + 1)C`2j+1

�
2�

!

�
+

2�

!
C`2j

�
2�

!

��
(2.19)

(n 2 N; ! > 1):

In its special case when n = 1, (2.18) would readily yield a known result [13, p. 356, Entry
(54.5.4)] in the form:

1X
k=0

� (2k))

(2k + 1)!2k
= �1

2
log
h
2 sin

��
!

�i
� !

4�
C`2

�
2�

!

�
(! > 1): (2.20)

Moreover, since [16, pp. 103-104, Equations (4.14) and (4.15)]

C`2

�
1

2
�

�
= G = �C`2

�
3

2
�

�
; (2.21)
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where G denotes Catalan's constant de�ned by

G :=

1X
k=0

(�1)k
(2k + 1)2

= �
Z �=2

0

log

�
2 sin

�
1

2
t

��
dt

�= 0:915965594177219015:::; (2.22)

by setting ! = 4 and ! =
4

3
in (2.20), we obtain its further special cases:

1X
k=0

�(2k)

(2k + 1)42k
= �G

�
� 1

4
log 2 (2.23)

and
1X
k=0

�(2k)

2k + 1

�
3

4

�2k
=

G

3�
� 1

4
log 2 (2.24)

in terms of the Catalan constant G de�ned by (2.22).

3. Series Representations for �(2n+ 1)

In every situation in which the Clausen functions C`2n(x) and C`2n+1(x) can be expressed in
closed forms, each of our formulas (2.18) and (2.19) will readily yield a series representation for
�(2n+ 1) (n 2 N): We begin by considering the following rather simple special case.

Case 1. Let ! = 2. It immediately follows from the de�nitions (1.1) and (2.17) that

C`2n(�) = 0 and C`2n+1(�) =
�
2�2n � 1

�
�(2n+ 1) (n 2 N): (3.1)

Thus the formulas (2.18) and (2.19) yield the series representations:

�(2n+ 1) = (�1)n�1 (2�)2n

(2n+ 1)! (22n � 1)

"
log 2 + 2

1X
k=0

�(2k)

(2k + 2n+ 1)22k

+(2n+ 1)!
n�1X
j=1

(�1)j
(2n� 2j + 1)!

�
22j � 1

(2�)2j

�
�(2j + 1)

3
5 (n 2 N) (3.2)

and

�(2n+ 1) = (�1)n�1 (2�)2n

(2n)! (22n+1 � 1)

"
log 2 +

1X
k=0

�2k)

(k + n)22k

+(2n)!
n�1X
j=1

(�1)j
(2n� 2j)!

�
22j � 1

(2�)2j

�
�(2j + 1)

3
5 (n 2 N); (3.3)

respectively.
For n = 1, (3.2) immediately reduces to the following series representation for �(3):

�(3) =
2�2

9

 
log 2 + 2

1X
k=0

�(2k)

(2k + 3)22k

!
; (3.4)
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which was proven independently by (among others) Glasser [10, p. 446, Equation (12)], Zhang and
Williams [24, p. 1585, Equation (2.13)], and D�abrowski [7, p. 206] (see also Chen and Srivastava
[5, p. 183, Equation (2.15)]). And a special case of (3.3) when n = 1 yields (cf. D�abrowski [7, p.
202]; see also Chen and Srivastava [5, p. 191, Equation (3.19)])

�(3) =
2�2

7

 
log 2 +

1X
k=0

�(2k)

(k + 1)22k

!
: (3.5)

In view of the known sum:
1X
k=0

�(2k)

(2k + 1)22k
= �1

2
log 2; (3.6)

which incidentally results also from (2.18) in the special case when ! = 2 and n = 1, Euler's
formula (1.5) is indeed a simple consequence of (3.5).

We remark in passing that an integral representation for �(2n + 1); which is easily seen to be
equivalent to the series representation (3.3), was given by D�abrowski [7, p. 203, Equation (16)],
who [7, p. 206] mentioned the existence of (but did not fully state) the series representation (3.2)
as well. The series representation (3.3) is derived also in a forthcoming paper by Borwein et al.
(cf. [4, Equation (57)]).

The generalized Clausen function C`2n+1(x) de�ned in (2.17) is known to be expressible in a
closed form in at least three other cases, and we have (cf. Lewin [16, p. 198])

C`2n+1

�
1

2
�

�
= �2�2n�1 �1� 2�2n

�
�(2n+ 1) (n 2 N); (3.7)

C`2n+1

�
1

3
�

�
=

1

2

�
1� 2�2n

� �
1� 3�2n

�
�(2n+ 1) (n 2 N); (3.8)

and

C`2n+1

�
2

3
�

�
= �1

2

�
1� 3�2n

�
�(2n+ 1) (n 2 N): (3.9)

With a view to evaluating the generalized Clausen function C`2n(x), also de�ned in (2.17), when

x =
1

2
�;

1

3
�; and

2

3
�;

we recall the following result recorded (for example) by Hansen [13, p. 223, Entry (14.4.3)]:

1X
k=1

sin(kx+ y)

ks
=

(2�)s

2�(s)
csc(�s)

�
cos

�
y � 1

2
�s

�
�
�
1� s;

x

2�

�

� cos

�
y +

1

2
�s

�
�
�
1� s; 1� x

2�

��
(3.10)

(R(s) > 1; 0 < x < 2�) ;

which, for

x =
2�

!
(! > 1) and y = 0;
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reduces at once to the form:
1X
k=1

sin(2k�=!)

ks
=

(2�)s

4�(s)
csc

�
1

2
�s

� �
�

�
1� s;

1

!

�
� �

�
1� s; 1� 1

!

��
(3.11)

(R(s) > 1; ! > 1) :

Now, making use of the identity:

�(s) =
1

qs � 1

q�1X
j=1

�

�
s;

j

q

�
(q 2 N n f1g) ; (3.12)

which follows readily from the de�nitions (1.1) and (1.2), the Rademacher formula (cf., e.g., Magnus
et al. [17, p. 23]):

�

�
s;
p

q

�
= 2�(1 � s)(2q�)s�1

2
4sin�1

2
�s

� qX
j=1

cos

�
2pj�

q

�
�

�
1� s;

j

q

�

+cos

�
1

2
�s

� qX
j=1

sin

�
2pj�

q

�
�

�
1� s;

j

q

�35 (p; q 2 N); (3.13)

as well as the familiar special case of (3.13) when p = q = 1:

�(s) = 2(2�)s�1 sin

�
1

2
�s

�
�(1� s)�(1� s) (3.14)

or, equivalently,

�(1� s) = 2(2�)�s cos

�
1

2
�s

�
�(s)�(s); (3.15)

we �nd from (3.11) and the relevant de�nition in (2.17) that

C`2n

�
1

2
�

�
= 21�4n�

�
2n;

1

4

�
� �1� 2�2n

�
�(2n) (n 2 N); (3.16)

C`2n

�
1

3
�

�
=
p
3

�
6�2n

�
�

�
2n;

1

3

�
+ �

�
2n;

1

6

��
� 1� 3�2n

2
�(2n)

�
(n 2 N); (3.17)

and

C`2n

�
2

3
�

�
=
p
3

�
3�2n�

�
2n;

1

3

�
� 1� 3�2n

2
�(2n)

�
(n 2 N); (3.18)

in which each �(2n) can be replaced by its value in terms of the Bernoulli numbers B2n by appealing
to the well-known relationship (cf., e.g., [17, p. 19]):

�(2n) = (�1)n+1 (2�)
2n

2(2n)!
B2n (n 2 N0 ) : (3.19)
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Much more general trigonometric sums than the ones involved in (3.7) to (3.9) and (3.16) to (3.18)
can also be evaluated by applying the aforementioned technique or (alternatively) by appealing
appropriately to the elementary series identity:

1X
k=1

f(k) =

qX
j=1

1X
k=0

f(qk + j) (q 2 N) (3.20)

and its straightforward consequence (3.12). Thus, for example, we can derive a generalization of
(3.7) in the form:

1X
k=1

cos(1
2
k�)

ks
= �2�s �1� 21�s

�
�(s) (R(s) > 1) ; (3.21)

which immediately yields (3.7) in the special case when s = 2n+1 (n 2 N). Analogous generaliza-
tions of the remaining evaluations of the Clausen functions C`2n+1(x) and C`2n(x) can be derived
similarly; we choose to skip the details involved.

In view of the evaluations (3.7) to (3.9) and (3.16) to (3.18), we are led easily to the following
additional special cases of our general results (2.18) and (2.19).

Case 2. Let ! = 3. Then, making use of (3.9) and (3.18) in each of our formulas (2.18) and
(2.19), we obtain the series representations:

�(2n+ 1) = (�1)n�1 (2�)2n

(2n+ 1)! (32n � 1)

"
log 3 + 4

1X
k=0

�(2k)

(2k + 2n+ 1)32k

+ (2n+ 1)!
n�1X
j=1

(�1)j
(2n� 2j + 1)!

�
32j � 1

(2�)2j

�
�(2j + 1)

�(2n+ 1)!p
3

n+1X
j=1

(�1)j
(2n� 2j + 2)!

2�
�
2j; 1

3

�� �32j � 1
�
�(2j)

(2�)2j�1

3
5 (n 2 N) (3.22)

and

�(2n+ 1) = (�1)n�1 (2�)2n

(2n)! (32n+1 � 1)

"
log 3 + 2

1X
k=0

� (2k)

(k + n)32k

+ (2n)!

n�1X
j=1

(�1)j
(2n� 2j)!

�
32j � 1

(2�)2j

�
�(2j + 1)

�(2n)!p
3

nX
j=1

(�1)j
(2n� 2j + 1)!

2�
�
2j; 1

3

�� �32j � 1
�
�(2j)

(2�)2j�1

3
5 (n 2 N) : (3.23)



10 THE RIEMANN ZETA FUNCTION

In particular, when n = 1, (3.22) and (3.23) yield the following (presumably new) series represen-
tations for �(3) :

�(3) =
�2

12

"
log 3 + 4

1X
k=0

�(2k)

(2k + 3)32k

+ 2
p
3

2X
j=1

(�1)j�1
(4� 2j)!

2�
�
2j; 1

3

�� �32j � 1
�
�(2j)

(2�)2j�1
(3.24)

and

�(3) =
�2

13

"
log 3 + 2

1X
k=0

�(2k)

(k + 1)32k
+

2

�
p
3

�
�

�
2;
1

3

�
� 4�(2)

�#
: (3.25)

Case 3. Let ! = 4. Then, by applying the evaluations (3.7) and (3.16) in each of our formulas
(2.18) and (2.19), we obtain the series representations:

�(2n+ 1) = (�1)n�1 (2�)2n

(2n+ 1)! (22n � 1)

"
log 2 + 4

1X
k=0

�(2k)

(2k + 2n+ 1)42k

+ (2n+ 1)!

n�1X
j=1

(�1)j
(2n� 2j + 1)!

�
22j � 1

(2�)2j

�
�(2j + 1)

�(2n+ 1)!
n+1X
j=1

(�1)j
(2n� 2j + 2)!

�
�
2j; 1

4

�� 22j�1
�
22j � 1

�
�(2j)

(2�)2j�1

3
5 (n 2 N) (3.26)

and

�(2n+ 1) = (�1)n�1 (2�)2n

(2n)! (24n+1 + 22n � 1)

"
log 2 + 2

1X
k=0

�(2k)

(k + n)42k

+ (2n)!
n�1X
j=1

(�1)j
(2n� 2j)!

�
22j � 1

(2�)2j

�
�(2j + 1)

�(2n)!
nX

j=1

(�1)j
(2n� 2j + 1)!

�
�
2j; 1

4

�� 22j�1
�
22j � 1

�
�(2j)

(2�)2j�1

3
5 (n 2 N): (3.27)

In their special cases when n = 1, (3.26) and (3.27) yield the following (presumably new) series
representations for �(3):

�(3) =
2�2

9

"
log 2 + 4

1X
k=0

�2k)

(2k + 3)42k

+6

2X
j=1

(�1)j�1
(4� 2j)!

�
�
2j; 1

4

�� 22j�1
�
22j � 1

�
�(2j)

(2�)2j�1

3
5 (3.28)
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and

�(3) =
2�2

35

"
log 2 + 2

1X
k=0

�(2k)

(k + 1)42k
+

1

�

�
�

�
2;
1

4

�
� 6�(2)

�#
: (3.29)

Case 4. Let ! = 6. Then, in view of the evaluations (3.8) and (3.17), our formulas (2.18) and
(2.19) give us the series representations:

�(2n+ 1) = (�1)n�1 (2�)2n

(22n � 1) (32n � 1)

"
� 4

(2n+ 1)!

1X
k=0

�(2k)

(2k + 2n+ 1)62k

+

n�1X
j=1

(�1)j
(2n� 2j + 1)!

 �
22j � 1

� �
32j � 1

�
(2�)2j

!
�(2j + 1)

+
1p
3

n+1X
j=1

(�1)j
(2n� 2j + 2)!

�
�
2j; 1

3

�
+ �

�
2j; 1

6

�� 22j�1
�
32j � 1

�
�(2j)

(2�)2j�1

3
5 (3.30)

(n 2 N)

and

�(2n+ 1) = (�1)n�1 (2�)2n

22n + 32n + 62n � 1

"
2

(2n)!

1X
k=0

�(2k)

(k + n)62k

�
n�1X
j=1

(�1)j
(2n� 2j)!

 �
22j � 1

� �
32j � 1

�
(2�)2j

!
�(2j + 1)

� 1p
3

nX
j=1

(�1)j
(2n� 2j + 1)!

�
�
2j; 1

3

�
+ �

�
2j; 1

6

�� 22j�1
�
32j � 1

�
�(2j)

(2�)2j�1

3
5 (3.31)

(n 2 N)

For n = 1, these last results (3.30) and (3.31) yield the following (presumably new) series
representations for �(3):

�(3) = ��2

18

"
2

1X
k=0

�(2k)

(2k + 3)62k

+
p
3

2X
j=1

(�1)j�1
(4� 2j)!

�
�
2j; 1

3

�
+
�
2j; 1

6

�� 22j�1
�
32j � 1

�
�(2j)

(2�)2j�1

3
5 (3.32)

and

�(3) =
�2

12

"
1X
k=0

�(2k)

(k + 1)62k
+

1

2�
p
3

�
�

�
2;
1

3

�
+ �

�
2;
1

6

�
� 16�(2)

�#
: (3.33)
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4. An Alternative Derivation of the Series Representation (3.2)

In view of the following known representation of �(s) as a Mellin transform [17, p. 21]:

�(s) =
2s�1

(1� 21�s) �(s+ 1)

Z
1

0

ts sech2t dt (R(s) > �1; s 6= 1) ; (4.1)

we propose to give here an interesting alternative derivation of the very �rst of the set of eight series
representations for �(2n + 1) (n 2 N), which we have presented in the preceding section. Indeed,
from the work of Glasser [10, p. 445, Equation (4) with � ! 0], it is known also that

I :=

Z
1

0

�
tan�1 z

�2n
z2

dz =

Z �=2

0

t2n csc2 t dt

= (�1)n 21�2n I
�Z 1

0

(log u� i�)2n

(u+ 1)2
du

�
(n 2 N): (4.2)

Now evaluate the cosecant integral in (4.2) by means of the known result (2.5) with s = 2n
(n 2 N). Thus, setting log u = �2t, we �nd from the last member of (4.2) that

1X
k=0

�(2k)

(2k + 2n� 1)22k
=

(�1)n�1
4n

�
2

�

�2n�1
I

(Z
1

0

�
t+

1

2
i�

�2n
sech2t dt

)
(n 2 N):

By the binomial expansion, we have�
t+

1

2
i�

�2n
=

2nX
k=0

�
2n

k

�
tk
�
1

2
i�

�2n�k

=
nX

j=0

(�1)n�j
�
2n

2j

�
t2j
��
2

�2n�2j
� i

n�1X
j=0

(�1)n�j
�

2n

2j + 1

�
t2j+1

��
2

�2n�2j�1
(4.4)

(n 2 N0) ;

where, as also elsewhere in this work, an empty sum in interpreted to be nil. Upon replacing n in
(4.3) by n+ 1, and making use of (4.4), we obtain

1X
k=0

�(2k)

(2k + 2n+ 1)22k
=

1

2

nX
j=0

(�1)j�1
2j + 1

�
2n+ 1

2j

��
2

�

�2j

�
Z
1

0

t2j+1 sech2t dt (n 2 N0 ) : (4.5)

The in�nite integral in (4.5) can be evaluated by means of the known result (4.1) except when
j = 0, in which case it is easily seen by integrating by parts that (cf. [12, p. 353, Entry 3.527(4)])Z

1

0

t sech2t dt = lim
t!1

(t tanh t� log cosh t) = log 2: (4.6)

We thus �nd from (4.5) that
1X
k=0

�(2k)

(2k + 2n+ 1)22k
=

1

2

nX
j=1

(�1)j�1
�
2n+ 1

2j

�
(2j)!

�
22j � 1

�
(2�)2j

�(2j + 1)� 1

2
log 2 (n 2 N0 ) :

(4.7)
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For n = 0, (4.7) immediately yields the known sum (3.6), which (as we observed in the proceding
section) is derivable also from (2.18) for ! = 2 and n = 1. More interestingly, just as we indicated
in Section 3, since

1

(2k + 1)(2k + 2)
=

1

2k + 1
� 1

2k + 2
; (4.8)

by suitably combining the series representation (3.5) with (3.6), we can easily deduce Euler's formula
(1.5). In the case when n 2 N, by separating the term for j = n in (4.7), we readily obtain the
desired series representation (3.2) in its (obviously equivalent) form:

�(2n+ 1) = (�1)n�1 (2�)2n

(2n+ 1)! (22n � 1)

"
log 2 + 2

1X
k=0

�(2k)

(2k + 2n+ 1)22k

+

n�1X
j=1

(�1)j�1
�
2n+ 1

2j

�
(2j)!

�
22j � 1

�
(2�)2j

� (2j + 1)

3
5 (n 2 N) : (4.9)

5. A Uni�cation of the Series Evaluations (2.18) and (2.19)

With a view to unifying the series evaluations (2.18) and (2.19), we begin by considering the
formulas (2.2) and (2.4), which readily yield the following representation:

Sp :=
1X
k=0

�(2k)

(2k + p)!2k
= � �

2!

Z 1

0

tp cot

�
�t

!

�
dt (5.1)

(p 2 N; j!j > 1) ;

where, for the purpose of this section, we have only considered a special case when s = p+1 (p 2 N).
Now change the variable of integration in (5.1) by letting

t = � i!

2�
log z:

Since Z z

1

(log t)p

t
dt =

zp+1

p+ 1
(p 2 N) ; (5.2)

we thus �nd from (5.1) that

Sp = �i

2(p+ 1)!
+

1

2

�
� i!

2�

�p Z 


1

(log z)p

1� z
dz (5.3)

(p 2 N; !j > 1) ;

where, for convenience,


 := exp

�
2�i

!

�
(j!j > 1) : (5.4)

Finally, by setting

z = 1� (1� 
)t



14 THE RIEMANN ZETA FUNCTION

in (5.3), we obtain

Sp = �i

2(p+ 1)!
� 1

2

�
� i!

2�

�p Z 1

0

flog (1� (1� 
)t)gp dt
t

(5.5)

or, equivalently,

1X
k=0

�(2k)

(2k + p)!2k
=

�i

2(p+ 1)!
� p!

2

�
i!

2�

�p

S1;p

�
1� e2�i=!

�
(5.6)

in terms of Nielsen's generalized Polylogarithmic function Sn;p(z) de�ned by (cf., e.g., K�olbig [15,
p. 1233, Equation (1.3)])

Sn;p(z) :=
(�1)n+p�1
(n� 1)!p!

Z 1

0

(log t)n�1 flog (1� zt)gp dt
t

(5.7)

(n; p 2 N; z 2 C ) ;

which is known to play a rôle in the computation of higher-order radiative corrections in quantum
electrodynamics. For the ordinary Polylogarithmic function Lin(z) de�ned by

Lin(z) :=
(�1)n�1
(n� 2)!

Z 1

0

(log t)n�1 log(1� zt)
dt

t
= Sn�1;1(z) (5.8)

(n 2 N n f1g; z 2 C )

or, more generally, by

Lis(z) :=
1X
k=1

zk

ks
(5.9)

(s 2 C when jzj < 1; R(s) > 1 when jzj = 1) ;

it is known that (cf. [15, p. 1240, Equation (5.6)])

S1;p(z) = �(p+ 1) +

pX
k=0

(�1)k�1
k!

flog(1� z)gk Lip�k+1(1� z): (5.10)

Thus, in view of (5.10), we have proved the following uni�cation of our series evaluations (2.18)
and (2.19):

1X
k=0

�(2k)

(2k + p)!2k
=

�i

2(p+ 1)!
� 1

2
log
�
1� e2�i=!

�

� p!

2

�
i!

2�

�p

�(p+ 1) +
1

2

pX
k=1

�
p

k

�
k!

�
i!

2�

�k

Lik

�
e2�i=!

�
(5.11)

(p 2 N; j!j > 1) ;
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which, in view of (5.1), immediately yields the integral formula:Z 1

0

tp cot(�t)dt = � i

p+ 1
+

1

�
log
�
1� e2�i

�

+
p!

�

�
i

2�

�p

�(p+ 1)� 1

�

pX
k=1

�
p

k

�
k!

�
i

2�

�k

Lik+1
�
e2�i

�
(5.12)

(p 2 N; � 2 C n f0g) :
There is yet another approach for the derivation of a closed-form expression for the in�nite series

in (5.11). This general (generating-function) approach is based upon a familiar integral represen-
tation for the Zeta function; it was fully described and illustrated by Adamchik and Srivastava [1],
whose technique is also implemented inMathematica (Version 3.0). Here we choose to present three
examples which demonstrate how Mathematica (Version 4.0) for Linux can be used to evaluate the
in�nite series in (5.11) for certain values of the parameters p and !.

In[1] := Sum
h
Zeta[2k]=((2k + 1)2q(2k)); fk; 1; In�nityg

i
Out[1] =

1� Log[2]

2

In[2] := Sum
h
Zeta[2k]=((2k + 2)2q(2k)); fk; 1; In�nityg

i
Out[2] =

Pi2 � 2Pi2Log[2] + 7Zeta[3]

4Pi2

In[3] := Sum
h
Zeta[2k]=((2k + 3)2q(2k)); fk; 1; In�nityg

i
Out[3] =

2Pi2 � 6Pi2Log[2] + 27Zeta[3]

12Pi2

Since �(0) = �1
2
; these examples completely agree with the special cases (3.6), (3.5), and (3.4),

respectively, which have already been shown here to follow from our general series representations
considered in Section 3.
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