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ABSTRACT 

As modules become more complex the advantages and disadvantages of 

modularity have become more pronounced. The cost of modularity is measured not only 

in added hardware but also in a loss of flexibility. Functions that are easy to implement 

at a submodule level may be very difficult, or even impossible, to duplicate at the 

modular level. We term this a loss of transparency. The added hardware and 

transparency costs are given for existing module sets and projections made for the next 

generation of modules. Finally, a microprogrammed implementation of the control 

portion of existing and projected module sets is shown to be a way to decrease 

hardware costs and increase transparency. 

This paper will be published in the Infotech State of the Art Report on 
Microprogramming and Systems Architecture. 
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1 - INTRODUCTION 

Increased attention has been focused on the understanding of the design process 

as systems, whether physical or social, become more complex. The sheer complexity of 

many systems demands an orderly design approach. Freeman and Newell [Freeman, 

1971 ] use the term "functional design" to describe the tendency of humans to design in 

terms of functions. A paraphrase of their basic model <5f a design task environment 

consists of a set of modules and a set of functions such that: 

1) Each module provides a set of functions 

2) For each function it provides, a module requires a set of functions 

3) A functional connection can occur between two modules if one provides a 
function required by the other 

4) A super-module consists of a set of modules (its parts) and a set of 
functional connections between them such that: (a) The functions provided are 
those provided by the modules that are not consumed in functional connections, 
and (b) The functions required are those required by the modules that are not 
provided by a functional connection. 

In other words, "functional design" is a hierarchical process. Modules at one 

level are used to construct super-modules at a higher level, which may in turn be used 

to construct super-super-modules, and so on. To take an example from current 

computer technology: chips are interconnected to make boards, boards are plugged into 

back panels to make system units, and system units are plugged into cabinets to form a 

system. 

The advantages of having a standard set of modules at any given level are well 
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documented [Bell, 1973; Davidow, 1972; Parnas 1971] and a partial list might include: 

1) Reduced development time by allowing the design task to be partitioned, 
making better use of the resources (time and manpower) 

2) Increased flexibility by allowing the alteration of specifications and the 
redesign of components 

3 ) Comprehensibility by allowing the students of the system to concentrate in 
well defined pieces of the final object 

4) Maintainability by allowing the identification of faulty components which can 
then be replaced or repaired 

5 ) Economy of scale by mass producing a small number of standard modules 
rather than supporting custom design of modules 

6) Significantly decrease system construction or modification time by 
conducting all design with high level modules as primitives. This is different 
from (1) and (2). Here we are talking about building systems with predefined 
modules, while (1) and (2) are concerned with the specification of the original 
modules. 

On the other hand modularity also has disadvantages, not often stated: 

1) Rigid intramodule connections may result in both suboptimal use of resources 
and suboptimal performance 

2) There is an overhead incurred by simply making a collection of functions 
part of a module set 

3 ) Functions that are easy to derive given some basic modules may be 
extremely difficult or impossible to achieve at the supermodule level. We term 
this a lot* of transparency. 

This paper will survey the evolution of technology and its impact on modular 

design. Existing module sets will be reviewed and some quantitative result will be given 

on the advantages and disadvantages of modular design outlined above. 



Microprogramming in modular systems will be shown to be a cost effective substitute 

for random control logic and a means to minimize the loss of transparency. Finally 

some predictions will be given on the future shape of modules and the cost of modular 

design. 



2 - DIGITAL FUNCTIONS AND THE DIGITAL DESIGN HIERARCHY 

In this section the "functional design" process described by Freeman and Newell 

[Freeman, 1971] is given in terms of digital systems design. First the functions are 

described and subsequently the hierarchy of design levels. 

Bell and Newell [Bell, 1971] have identified seven basic component types in 

terms of functions: 

Memory (M) components hold or store information over periods of time 

Links (L) components transfer information between components in a system 

Control (K) components evoke the operation of other components in a system 

Switch (S) components construct links between other components 

Transducer (T) components change the encoding of information 

Data-operation (D) components produce information with new meanings 

Processor (P) components are capable of interpreting a program to execute a 

sequence of operations. 

Modules with functions of these types can be interconnected into super-modules 

that provide one or more of these functions. This hierarchy of digital design levels is 

given by Bell and Newell [Bell, 1971] as: 

Circuit level: Circuits are build by interconnections of the basic components 
(diodes, transistors, resistors, etc.) according to electrical circuit laws. The 
behavior of the components is described in terms of voltages and currents, 
continuously varying through time. 

Switching circuit level (Sequential and Combinational sublevels): This level is 



unique to digital systems design (the circuit level is shared with the rest of 
electrical engineering). The system structure is given by a collection of gates 
and flip-flops, and the behavior by a set of Boolean equations. This has been 
the traditional level of digital design. 

Register Transfer (RT) level: A combination of switching circuits is used to form 
registers, functional units, and data paths, to perform register transfers and 
other operations. 

Programming level: Although not part of the traditional domain of hardware 
design, it is included in the hierachy because of its unique association with 
digital computers. The basic components are the interpretation cycle, the 
machine instructions, and the data operations (which are defined at the RT 
level). 

PMS level: This level owes its name to the main components, Processors, 
Memories, and Switches. This level depicts a digital system as a continuously 
operating network of components, sharing this view with the switching circuit 
level. 
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3 - THE EVOLUTION OF TECHNOLOGY AND MODULE SETS 

As technology has evolved the fundamental modules have become more and more 

complex. Standardized module sets have evolved from circuit elements, to gates and 

flip-flops (Small Scale Integration) to register transfer level modules sets (Medium Scale 

Integration). At each stage in the evolution, technology has dictated what components 

are sufficiently cheap to fabricate that they (i.e., their functions) can be considered 

expendable. For example, in the late 1950's considerable attention was devoted to 

minimizing the number of gate inputs to save the cost of diodes (gates were built out of 

circuit elements). With the advent of Small Scale Integration (SSI), gates are available 

only with a specified number of inputs. If a three input gate is desired it is often 

acceptable to use a four input gate. New constraints such as chip types (package), 

unused portions of a chip, or chip position on a board were more important than 

minimizing gate inputs. Table 1 gives examples of expendable components at different 

levels. Justification of the expendable components for the RT level and above will be 

given in subsequent sections. 

level of example of 
primitive module expendable component 

Switching Circuit gate input 

Register Transfer ALU function 

PMS Sequences of register transfer operations, 
Processors 

Table 1. The expendable components 
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Through SSI technology, modularity had many advantages and few disadvantages 

since SSI modules provided essentially the most primitive functions required in digital 

systems design. Digital signals were the norm and there was little need to go below 

the gate level to circuit components and their analog signals. Some inflexibility was 

introduced by SSI level modules. For instance, the AND function of 14 variables would 

be implemented as a tree-like network of smaller AND gates. These inefficiencies were, 

in general, tolerable. 

With Medium and Large Scale Integration module complexity has increased 

dramatically and the advantages and disavantages of modularity have become more 

pronounced. The next section surveys existing module sets at the register transfer 

level. 
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4 - EXISTING REGISTER TRANSFER LEVEL MODULE SETS 

RT level components are structures of logic level components and the operations 

tend to be more general than at the logic level. These operations range from simple 

transfers, to logical expressions, to arithmetic expressions. Typically RT level module 

sets are divided into a control part and a data part. The appearance of control 

introduces a discreteness in space by allowing the specification of selected components 

that are performing the register transfer operations of interest at any point in time. 

This is clearly an abstraction since the modules that are used to build the RT 

components are active all the time. This abstraction allows us to concentrate on those 

components that are changing values. 

The first such module set was the macromodules developed by Washington 

University in 1967 [Clark, 1967]. Macromodules consist of a set of data and control 

modules that are stacked together and interconnected via bus cables. Due to the 

existence of several buses (or data paths) in a macromodule system a high degree of 

concurrency is available. The major goal of the macromodule project was to provide a 

set of easily used modules that could handle indefinite expandability (as typified by 

variable word length). 

In 1971 a set of Register Transfer Modules (RTM's) became available from Digital 

Equipment Corporation (DEC) [Bell, 1972a, 1972b]. RTM's were designed by DEC, 

whose primary goal was to look for a means of incorporating Medium Scale Integration 

(MSI) in their line of module boards, and Carnegie-Mellon University, whose primary 
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interest was the teaching of systematic logic design. Like macromodules, RTM's use a 

distributed control scheme (currently there are approximately half a dozen control 

module types). As an economic decision, all the data modules (approximately a dozen 

data module types) were interconnected via a single bus. However, provision exists for 

RTM systems to have more than one data bus when increased performance is required. 

Figure 1 depicts the RTM implementation of a system to sum the integers from 1 to N. 
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The connections shown in the figure are all that are required to construct the system. 

Note that the primitive functions are very similar to those available at the assembly 
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language level of programming. Other RT level module sets are being developed at MIT 

[Patil, 1972] , the University of Washington, and the University of Delaware [Robinson, 

1973] . An interesting feature of the latter module set is that the data part is composed 

solely of commercially available MSI chips. 

The advantages of design with these module sets are dramatic. A PDP-8 like 

minicomputer could be designed and built in 6-7 man-months using discrete components. 

A similar processor built from SSI components might take 2-3 man-months and from 

MSI /LSI components about one man-month to design and construct [Bell, 1974] . A 

PDP-8 like minicomputer has been designed, constructed, and debugged with RTMs in 

8 - 1 0 man-hours. As in the case with all the RT module sets, the translation from paper 

design to hardware implementation is a one-for-one process. A large majority of the 

systems work the first time power is applied. The module sets provide a very clean 

intermodule communications protocol which eliminates any timing problems. At least 

one company (DEC) has used a RT level module set as a breadboarding technique to 

debug new products as well as for production of low volume, custom design items where 

engineering design time is a major portion of the product cost. Presently, DEC has 

marketed over 300 custom systems that have been designed and build with RTM's. 

When employing more complex modules as primitives it becomes feasible to 

explore many alternative design for a given specification. Historically design automation 

programs have primarily served in a bookkeepping capacity in the implementation of a 

design. The PDP-8 built from RTM's required about 55 control modules and 10 data 

modules as contrasted with several hundred chips and an ad hoc controller for a real 
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PDP-8. The smaller number of components plus the regularity of the design process 

with RTM's has enabled the construction of a program called EXPL [Barbacci, 1973] 

which takes the description of an algorithm in a RT level language, ISP [Bell, 1971], and 

some cost-time constraint as inputs. EXPL produces a near optimal RTM solution as 

output by use of graph tranformations and heuristic search techniques. Another effort 

[Rege, 1974] explores the space of data part designs, producing optimal allocations of 

operators (physical components) to the data operations of a sequential flowchart. 

To obtain these advantages a price is paid. A design using module sets tends to 

be slower and costlier in terms of hardware than a comparable system designed with 

SSI and MSI components. The RTM PDP-8 cost twice as much and ran at 40% of the 

speed of the real PDP-8. A system designed with macromodules might cost between 

two and ten times more than a comparable MSI/SSI system. The extra cost is due to 

the overhead of making a module part of a module set (e.g., to establish control 

protocols, to allow word extensibility, to permit physical connections, etc.) This overhead 

is approximately 30% for RTM's and 70% for macromodules [Fuller, 1973a]. 

Although module sets may be slower than comparable systems built from lower 

level primitives, they are extremely competitive with general purpose computers. An 

algorithm can be hardwired with modular components and not incur the overhead of 

fetching and decoding instructions. Also, the modular implementation can take 

advantage of any parallelism in the algorithm. For example the macromodule 

implementation of certain algorithms were ten times faster than programs on a PDP-9 

and between 1 and 2 times faster than a CDC 6600 [Fuller, 1973a]. 
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The component interconnection rules that define a RT level module set can also 

contribute to the increased cost of a modular implementation. These rules can 

potentially lead to gross inefficiencies, inefficiencies that should be carefully weighted in 

future module sets. To formalize this notion we will introduce the concept of 

transparency. A module suppresses some of the detail of its constituent components 

and their interconnections while providing a set of functions to the user. This 

suppression of detail is both the strenght and the weakness of a modular approach. It 

is a strenght in that a designer can conceptualize and construct at a higher level. 

Advantages stem from having a smaller set of components and facts to keep in mind. A 

weakness arises if some required function, which the constituent modules can perform, 

is not available to the user. This we term as a loss of transparency [Parnas, 1972] . 

The missing function may be very difficult or even impossible to reproduce at the 

module level. For example, RTMs use four four-bit ALU (Signetics SN74181) in their 

arithmetic element (DMgpa). The ALU is capable of performing 16 arithmetic and 16 

Boolean functions of two parameters yet only 12 of these are usable at the module 

level. As another example, consider BCD arithmetic where the carry from each BCD 

digit is required. Only the carry from the most significant four-bit ALU is available to 

the user in RTMs. Thus to perform arithmetic on four digit, packed BCD numbers in 

RTMs a penalty of a factor of 4 -5 in speed is paid over a module set in which the carry 

bits from each four-bit ALU is available. 

As noted before, a primary advantage of RT level module sets is systematic 

design. Semiconductor manufacturers currently offer a comprehensive set of data part 

modules (e.g., Texas Instruments catalog, Signetics. catalog) and these even form the data 
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part of one RT level module set [Robinson, 1973]. However, there is only a bewildering 

array of SSI components to perform control functions. The systematic control elements 

of the RT module sets are one solution to systematic design although the distributed, 

unary encoding of control states can be quite costly in terms of hardware for large 

systems. Accordingly, the RTM module set has a programmed control sequencer (Kpcs) 

module to evoke the various register transfer operations [Bell, 1972b]. The Kpcs is 

depicted in Figure 2. The control memory contains an encoded version of the control 

part of a RTM system. Figure 3 shows the microinstruction format. The Kevoke 

microinstruction selects one of six decoders and one of 32 outputs from the decoder 

subsequently initiating the corresponding operation. The branch microinstruction 

selects one of 30 input conditions for determining whether a branch should be taken. 

The subroutine call pushes the current value of the program counter onto the 

subroutine stack and jumps to the specified address. The subroutine return pops the 

stack into the program counter. The interpreter is very similar to a conventional 

processor. It fetches, decodes, and executes the microinstructions sequentially. 

Figure 4 shows the relative cost of the distributed control systems and the Kpcs 

as a function of the number of steps. The discrete steps in the cost function of the 

Kpcs are caused by having to add control memory in discrete blocks (256 words). 

Another interesting comparison is the number of control memory bits needed to replace 

a gate in the distributed system. Assuming that out of every 20 control steps there is 

one subroutine call/return, five branches/merges, and 14 evoke operations we need 27 

control memory words or 216 bits. 

In the distributed control system a subroutine call/return module requires about 
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10 gates, a branch/merge nine gates, and an evoKe eight gates for a total of 167 gates. 

Thus about 1.3 bits of control memory are needed to replace a gate. 

It should be noted, however, that a unary encoded, distributed control does not 
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make efficient use of logic gates (i.e., they can be replaced by control memory bits on 

an almost 1-1 ratio). A more realistic guess would be 5 to 12 control bits to replace a 

gate [Davidow, 1972] 

In summary, microprogramming appears to be a cost effective replacement for 

random logic for control of large modular systems. The next section will make a few 

projections about the shape of future modules. 
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5 - FUTURE MODULE SETS 

The advent of Large Scale Integration (LSI) technology has made the chip a 

natural boundary for a module. Currently a 4K bit MOS random access memory (RAM) 

or an eight bit MOS microprocessor are available on a single chip. Since 1960 the 

optimum chip complexity has doubled every one to two years [Fuller, 1973a]. There is 

no indication that this trend should not continue for the next several years. Thus in 

4 - 6 years a 16-bit microprocessor with IK words of memory could be available on a 

chip. What should a module look like when it is of this complexity?. When placed on a 

chip memories, due to their regular patterns, can be four times as dense as random logic 

[Fuller, 1973a]. This strongly suggests that a microprogrammable controller be 

employed. The ability to alter control sequences (i.e., programming) also implies that 

the majority of the functions internal to the module will be available to the user thus 

reducing the loss of transparency. 

Assuming that the modules of the future are microprogrammable processors with 

associated memory some interesting conclusions can be drawn. First, by observing the 

Intel MCS-4 and MCS-8 [INTEL, 1972a, 1972b] it appears that a current microprocessor 

is equivalent in complexity and cost to ~500 memory words (of the same width as the 

processor's data path). Extrapolating this to microprogrammable processors it can be 

seen that for modules with even moderately size memories (4-8K) the processor is 

expendable since the dominating cost is that of the memories. Further, a single, 

versatile module would be more attractive to the semiconductor industry than a module 
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set consisting of 10 or more modules since a successful chip needs a sales volume of ~2 

million units/year [Fuller, 1973a]. This is in contrast with the current minicomputer 

market of 30,000 units/year. 

In order to achieve high computational power with these modules a mechanism 

must be provided for efficient communications between modules. The I/O structure of a 

conventional processor would be a poor way to conduct intermodule communication 

since a response to an interrupt might take tens of microseconds. Intermodule 

communication schemes based on shared memory have been studied in connection with 

multiprocessors [Wulf, 1972; Heart, 1973] and might be a viable alternative. 

One prototype intermodule communication scheme for PMS level modules based 

on shared memory is the one employed by Computer Modules [Bell, 1973; Fuller, 

1973b] . The structure of a typical CM network is shown in Figure 5. A CM consists of 

a small processor as the primary control element, local memory, and several I/O ports 

for interconnection to other CMs. An essential feature of CMs is the interconnectability 

of CMs into networks via inter-CM buses, each with a unique address space to enable 

efficient memory sharing. An address generated by a processor can be mapped onto 

its local memory, or mapped onto the address space of one of the inter-CM buses were 

it is recognized by the I/O port of another CM and directed to the latters local memory. 

A CM can also be used as a switch. An inter-CM bus address recognized by a CM I/O 

port can be remapped to another inter-CM bus rather than directed to local memory. 

Hence a CM can share memory with any other CM in the network without necessitating 

a direct connection. 
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Approximately 3 0 2 of the CM cost can be attributed to the I / O ports. This is 

the lower bound found in RT level module sets overhead ( 3 0 7 o ~ 7 0 7 o ) . Thus 3 0 7 o ~ 5 0 7 o 

appears to be a good estimate of the hardware price to be paid for the convenience of 

having a higher level module set. 

A number of interesting research problems arise from the study of PMS level 
• £ 

modules 

1) Capacity of intermodule links 

2) Deadlocks 
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3) Intermodule control mechanisms 

4) Process-to-module binding 

5) Problem decomposition 

The last point is particularly important. Methods for decomposing a problem so 

that it can be executed in parallel on several interconnected, cooperating PMS level 

modules must be developed in order to realize the potentiality of the PMS modules. 
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6 - CONCLUSIONS 

PMS level modules could be available in the next 4 - 6 years. Their existence will 

open many significant areas of research. It appears that the overhead for PMS modular 

systems will be on the order of 3 0 % ~ 5 0 % but with decreasing hardware costs this will 

be tolerable. The expendable components will be processors and there will be no 

effort to obtain a high utilization factor for the individual processors in a system. An 

8 0 7 o ~ 9 0 7 o idle time may be acceptable. The high sales volume required by the 

semiconductor industry suggests that, in the foreseeable future, PMS level components 

will be oriented towards mass market applications like personal calculators and 

intelligent terminals. It is interesting to note that as the cost per digital function has 

decreased the design time and cost per system has remained relatively constant. So 

instead of obtaining a cheaper system with the same functions a user gets a more 

complex system at the same cost. This is best exemplified by observing the evolution 

of minicomputers and noting that the cost per system of a 1 9 6 5 vintage minicomputer 

(e.g., P D P - 8 ) is about as costly as a 1 9 7 4 minicomputer (e.g., the P D P - 1 1 ) * [Bell, 1 9 7 4 ] . 

Finally, microprogrammed modules are an attractive control element for PMS level 

modules from both an economic and a transparency point of view. 

* The complexity of a minicomputer can be divided into a constant and a variable 
complexity portions. The constant portion of the design have not changed significantly 
with the technology, e.g., the memory, bus, and I/O structure. The variable parts of the 
design (registers, ALU, functions, etc) are easier to implement with more advanced 
technology. Hence more complex functions have appeared for the same cost. 
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