
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SOME OBSERVATIONS ON MODULAR DESIGN TECHNOLOGY
AND THE USE OF MICROPROGRAMMING

D.P. Siewiorek
M.R. Barbacci

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213

July 1974

ABSTRACT

As modules become more complex the advantages and disadvantages of

modularity have become more pronounced. The cost of modularity is measured not only

in added hardware but also in a loss of flexibility. Functions that are easy to implement

at a submodule level may be very difficult, or even impossible, to duplicate at the

modular level. We term this a loss of transparency. The added hardware and

transparency costs are given for existing module sets and projections made for the next

generation of modules. Finally, a microprogrammed implementation of the control

portion of existing and projected module sets is shown to be a way to decrease

hardware costs and increase transparency.

This paper will be published in the Infotech State of the Art Report on
Microprogramming and Systems Architecture.
This work was supported in part by the Advanced Research Projects Agency (ARPA) of
the Department of Defense, under contract F44620-73-C-0074, monitored by the Air
Force Office of Scientific Research and in part by the National Science Foundation under
grant GJ 32758X.

2

1 - INTRODUCTION

Increased attention has been focused on the understanding of the design process

as systems, whether physical or social, become more complex. The sheer complexity of

many systems demands an orderly design approach. Freeman and Newell [Freeman,

1971] use the term "functional design" to describe the tendency of humans to design in

terms of functions. A paraphrase of their basic model <5f a design task environment

consists of a set of modules and a set of functions such that:

1) Each module provides a set of functions

2) For each function it provides, a module requires a set of functions

3) A functional connection can occur between two modules if one provides a
function required by the other

4) A super-module consists of a set of modules (its parts) and a set of
functional connections between them such that: (a) The functions provided are
those provided by the modules that are not consumed in functional connections,
and (b) The functions required are those required by the modules that are not
provided by a functional connection.

In other words, "functional design" is a hierarchical process. Modules at one

level are used to construct super-modules at a higher level, which may in turn be used

to construct super-super-modules, and so on. To take an example from current

computer technology: chips are interconnected to make boards, boards are plugged into

back panels to make system units, and system units are plugged into cabinets to form a

system.

The advantages of having a standard set of modules at any given level are well

3

documented [Bell, 1973; Davidow, 1972; Parnas 1971] and a partial list might include:

1) Reduced development time by allowing the design task to be partitioned,
making better use of the resources (time and manpower)

2) Increased flexibility by allowing the alteration of specifications and the
redesign of components

3) Comprehensibility by allowing the students of the system to concentrate in
well defined pieces of the final object

4) Maintainability by allowing the identification of faulty components which can
then be replaced or repaired

5) Economy of scale by mass producing a small number of standard modules
rather than supporting custom design of modules

6) Significantly decrease system construction or modification time by
conducting all design with high level modules as primitives. This is different
from (1) and (2). Here we are talking about building systems with predefined
modules, while (1) and (2) are concerned with the specification of the original
modules.

On the other hand modularity also has disadvantages, not often stated:

1) Rigid intramodule connections may result in both suboptimal use of resources
and suboptimal performance

2) There is an overhead incurred by simply making a collection of functions
part of a module set

3) Functions that are easy to derive given some basic modules may be
extremely difficult or impossible to achieve at the supermodule level. We term
this a lot* of transparency.

This paper will survey the evolution of technology and its impact on modular

design. Existing module sets will be reviewed and some quantitative result will be given

on the advantages and disadvantages of modular design outlined above.

Microprogramming in modular systems will be shown to be a cost effective substitute

for random control logic and a means to minimize the loss of transparency. Finally

some predictions will be given on the future shape of modules and the cost of modular

design.

2 - DIGITAL FUNCTIONS AND THE DIGITAL DESIGN HIERARCHY

In this section the "functional design" process described by Freeman and Newell

[Freeman, 1971] is given in terms of digital systems design. First the functions are

described and subsequently the hierarchy of design levels.

Bell and Newell [Bell, 1971] have identified seven basic component types in

terms of functions:

Memory (M) components hold or store information over periods of time

Links (L) components transfer information between components in a system

Control (K) components evoke the operation of other components in a system

Switch (S) components construct links between other components

Transducer (T) components change the encoding of information

Data-operation (D) components produce information with new meanings

Processor (P) components are capable of interpreting a program to execute a

sequence of operations.

Modules with functions of these types can be interconnected into super-modules

that provide one or more of these functions. This hierarchy of digital design levels is

given by Bell and Newell [Bell, 1971] as:

Circuit level: Circuits are build by interconnections of the basic components
(diodes, transistors, resistors, etc.) according to electrical circuit laws. The
behavior of the components is described in terms of voltages and currents,
continuously varying through time.

Switching circuit level (Sequential and Combinational sublevels): This level is

unique to digital systems design (the circuit level is shared with the rest of
electrical engineering). The system structure is given by a collection of gates
and flip-flops, and the behavior by a set of Boolean equations. This has been
the traditional level of digital design.

Register Transfer (RT) level: A combination of switching circuits is used to form
registers, functional units, and data paths, to perform register transfers and
other operations.

Programming level: Although not part of the traditional domain of hardware
design, it is included in the hierachy because of its unique association with
digital computers. The basic components are the interpretation cycle, the
machine instructions, and the data operations (which are defined at the RT
level).

PMS level: This level owes its name to the main components, Processors,
Memories, and Switches. This level depicts a digital system as a continuously
operating network of components, sharing this view with the switching circuit
level.

7

3 - THE EVOLUTION OF TECHNOLOGY AND MODULE SETS

As technology has evolved the fundamental modules have become more and more

complex. Standardized module sets have evolved from circuit elements, to gates and

flip-flops (Small Scale Integration) to register transfer level modules sets (Medium Scale

Integration). At each stage in the evolution, technology has dictated what components

are sufficiently cheap to fabricate that they (i.e., their functions) can be considered

expendable. For example, in the late 1950's considerable attention was devoted to

minimizing the number of gate inputs to save the cost of diodes (gates were built out of

circuit elements). With the advent of Small Scale Integration (SSI), gates are available

only with a specified number of inputs. If a three input gate is desired it is often

acceptable to use a four input gate. New constraints such as chip types (package),

unused portions of a chip, or chip position on a board were more important than

minimizing gate inputs. Table 1 gives examples of expendable components at different

levels. Justification of the expendable components for the RT level and above will be

given in subsequent sections.

level of example of
primitive module expendable component

Switching Circuit gate input

Register Transfer ALU function

PMS Sequences of register transfer operations,
Processors

Table 1. The expendable components

8

Through SSI technology, modularity had many advantages and few disadvantages

since SSI modules provided essentially the most primitive functions required in digital

systems design. Digital signals were the norm and there was little need to go below

the gate level to circuit components and their analog signals. Some inflexibility was

introduced by SSI level modules. For instance, the AND function of 14 variables would

be implemented as a tree-like network of smaller AND gates. These inefficiencies were,

in general, tolerable.

With Medium and Large Scale Integration module complexity has increased

dramatically and the advantages and disavantages of modularity have become more

pronounced. The next section surveys existing module sets at the register transfer

level.

9

4 - EXISTING REGISTER TRANSFER LEVEL MODULE SETS

RT level components are structures of logic level components and the operations

tend to be more general than at the logic level. These operations range from simple

transfers, to logical expressions, to arithmetic expressions. Typically RT level module

sets are divided into a control part and a data part. The appearance of control

introduces a discreteness in space by allowing the specification of selected components

that are performing the register transfer operations of interest at any point in time.

This is clearly an abstraction since the modules that are used to build the RT

components are active all the time. This abstraction allows us to concentrate on those

components that are changing values.

The first such module set was the macromodules developed by Washington

University in 1967 [Clark, 1967]. Macromodules consist of a set of data and control

modules that are stacked together and interconnected via bus cables. Due to the

existence of several buses (or data paths) in a macromodule system a high degree of

concurrency is available. The major goal of the macromodule project was to provide a

set of easily used modules that could handle indefinite expandability (as typified by

variable word length).

In 1971 a set of Register Transfer Modules (RTM's) became available from Digital

Equipment Corporation (DEC) [Bell, 1972a, 1972b]. RTM's were designed by DEC,

whose primary goal was to look for a means of incorporating Medium Scale Integration

(MSI) in their line of module boards, and Carnegie-Mellon University, whose primary

10

interest was the teaching of systematic logic design. Like macromodules, RTM's use a

distributed control scheme (currently there are approximately half a dozen control

module types). As an economic decision, all the data modules (approximately a dozen

data module types) were interconnected via a single bus. However, provision exists for

RTM systems to have more than one data bus when increased performance is required.

Figure 1 depicts the RTM implementation of a system to sum the integers from 1 to N.

C o n t r o l p a r t

a c t i v a t e In t rv

a c t i v a t e
n e x t

K(evoke)

e v o k e o p e r a t i o n s

f
manua l i

Data-Memory p a r t

K(evoke)

KCserinl merge

K(evoke)
S «- S + I

K(evoka)
I *- T - 1

no

c o n t r o l
f l o w
l i n k s

K(branch 2-way)
(I = 0) ? I

manua l j n

p o s i t i o n * «- N "

1
T (s w l t c h c s ;

N<15:0>)

L

s -
«- s + I

- i - I

DM(genera l purpose
a r i t h m e t i c u n i t ;

I<15:0>,
S<15:0>)

0

^ y e s
E x i t

j f B S R = _ 0)

K (b u s s e n s e
and t e r m i n a t i o n ; |=J
B S R < 1 5 : 0 >)

1=1
S - £ I f o r N 2 1

I=N

O p e r a t i o n c o m p l e t e =

Bus Done\D0NE (p a r t o f RTM b u s ,
and p r e - w i r e d to
a l l Kmodules)

F i g . 1 . RTM d i a g r a m f o r sum o f i n t e g e r s f rom 1 t o N.

RTM
Bus
(p r e

w i r e d)

The connections shown in the figure are all that are required to construct the system.

Note that the primitive functions are very similar to those available at the assembly

11

language level of programming. Other RT level module sets are being developed at MIT

[Patil, 1972] , the University of Washington, and the University of Delaware [Robinson,

1973] . An interesting feature of the latter module set is that the data part is composed

solely of commercially available MSI chips.

The advantages of design with these module sets are dramatic. A PDP-8 like

minicomputer could be designed and built in 6-7 man-months using discrete components.

A similar processor built from SSI components might take 2-3 man-months and from

MSI /LSI components about one man-month to design and construct [Bell, 1974] . A

PDP-8 like minicomputer has been designed, constructed, and debugged with RTMs in

8 - 1 0 man-hours. As in the case with all the RT module sets, the translation from paper

design to hardware implementation is a one-for-one process. A large majority of the

systems work the first time power is applied. The module sets provide a very clean

intermodule communications protocol which eliminates any timing problems. At least

one company (DEC) has used a RT level module set as a breadboarding technique to

debug new products as well as for production of low volume, custom design items where

engineering design time is a major portion of the product cost. Presently, DEC has

marketed over 300 custom systems that have been designed and build with RTM's.

When employing more complex modules as primitives it becomes feasible to

explore many alternative design for a given specification. Historically design automation

programs have primarily served in a bookkeepping capacity in the implementation of a

design. The PDP-8 built from RTM's required about 55 control modules and 10 data

modules as contrasted with several hundred chips and an ad hoc controller for a real

12

PDP-8. The smaller number of components plus the regularity of the design process

with RTM's has enabled the construction of a program called EXPL [Barbacci, 1973]

which takes the description of an algorithm in a RT level language, ISP [Bell, 1971], and

some cost-time constraint as inputs. EXPL produces a near optimal RTM solution as

output by use of graph tranformations and heuristic search techniques. Another effort

[Rege, 1974] explores the space of data part designs, producing optimal allocations of

operators (physical components) to the data operations of a sequential flowchart.

To obtain these advantages a price is paid. A design using module sets tends to

be slower and costlier in terms of hardware than a comparable system designed with

SSI and MSI components. The RTM PDP-8 cost twice as much and ran at 40% of the

speed of the real PDP-8. A system designed with macromodules might cost between

two and ten times more than a comparable MSI/SSI system. The extra cost is due to

the overhead of making a module part of a module set (e.g., to establish control

protocols, to allow word extensibility, to permit physical connections, etc.) This overhead

is approximately 30% for RTM's and 70% for macromodules [Fuller, 1973a].

Although module sets may be slower than comparable systems built from lower

level primitives, they are extremely competitive with general purpose computers. An

algorithm can be hardwired with modular components and not incur the overhead of

fetching and decoding instructions. Also, the modular implementation can take

advantage of any parallelism in the algorithm. For example the macromodule

implementation of certain algorithms were ten times faster than programs on a PDP-9

and between 1 and 2 times faster than a CDC 6600 [Fuller, 1973a].

13

The component interconnection rules that define a RT level module set can also

contribute to the increased cost of a modular implementation. These rules can

potentially lead to gross inefficiencies, inefficiencies that should be carefully weighted in

future module sets. To formalize this notion we will introduce the concept of

transparency. A module suppresses some of the detail of its constituent components

and their interconnections while providing a set of functions to the user. This

suppression of detail is both the strenght and the weakness of a modular approach. It

is a strenght in that a designer can conceptualize and construct at a higher level.

Advantages stem from having a smaller set of components and facts to keep in mind. A

weakness arises if some required function, which the constituent modules can perform,

is not available to the user. This we term as a loss of transparency [Parnas, 1972] .

The missing function may be very difficult or even impossible to reproduce at the

module level. For example, RTMs use four four-bit ALU (Signetics SN74181) in their

arithmetic element (DMgpa). The ALU is capable of performing 16 arithmetic and 16

Boolean functions of two parameters yet only 12 of these are usable at the module

level. As another example, consider BCD arithmetic where the carry from each BCD

digit is required. Only the carry from the most significant four-bit ALU is available to

the user in RTMs. Thus to perform arithmetic on four digit, packed BCD numbers in

RTMs a penalty of a factor of 4 -5 in speed is paid over a module set in which the carry

bits from each four-bit ALU is available.

As noted before, a primary advantage of RT level module sets is systematic

design. Semiconductor manufacturers currently offer a comprehensive set of data part

modules (e.g., Texas Instruments catalog, Signetics. catalog) and these even form the data

14

part of one RT level module set [Robinson, 1973]. However, there is only a bewildering

array of SSI components to perform control functions. The systematic control elements

of the RT module sets are one solution to systematic design although the distributed,

unary encoding of control states can be quite costly in terms of hardware for large

systems. Accordingly, the RTM module set has a programmed control sequencer (Kpcs)

module to evoke the various register transfer operations [Bell, 1972b]. The Kpcs is

depicted in Figure 2. The control memory contains an encoded version of the control

part of a RTM system. Figure 3 shows the microinstruction format. The Kevoke

microinstruction selects one of six decoders and one of 32 outputs from the decoder

subsequently initiating the corresponding operation. The branch microinstruction

selects one of 30 input conditions for determining whether a branch should be taken.

The subroutine call pushes the current value of the program counter onto the

subroutine stack and jumps to the specified address. The subroutine return pops the

stack into the program counter. The interpreter is very similar to a conventional

processor. It fetches, decodes, and executes the microinstructions sequentially.

Figure 4 shows the relative cost of the distributed control systems and the Kpcs

as a function of the number of steps. The discrete steps in the cost function of the

Kpcs are caused by having to add control memory in discrete blocks (256 words).

Another interesting comparison is the number of control memory bits needed to replace

a gate in the distributed system. Assuming that out of every 20 control steps there is

one subroutine call/return, five branches/merges, and 14 evoke operations we need 27

control memory words or 216 bits.

In the distributed control system a subroutine call/return module requires about

15

3 1

\ M(program
counter)

v M(program
memory)

M(subroutine1

stack)

K(interpreted") '

R

4

S (multiplex)j

4 M(instruction register)
M(temp

£ - 4

^D(decoder)
#0 3

_0 ^,

3 1

Figure 2 . Kpcs diagram

16

K e v o k e
0 0
0 1 e v o k e - f i o l d
1_ lo

7 6 5 ^ 3 2 1 0

Kbranch H 1 branch-code address-fieldi

7 6

first v/ord
1 0 7 0

second word

Ksubroutine
call address-fieldi 1 1 1 1 1 1 0

? 6 1 0 7 0

first word second word

Ksubroutine return T l i i i q
7 6 5 4 3 2 1 0

Figure 3 . Microinstruction formats for Kpc*

17

Control part

;Kpcs price function

\ Kpcs basic price

m
300 1 0 0 200

(approx) number of control steps

Figure k. Cost of control part versus control steps
for hardwired and Kpcs cases

10 gates, a branch/merge nine gates, and an evoKe eight gates for a total of 167 gates.

Thus about 1.3 bits of control memory are needed to replace a gate.

It should be noted, however, that a unary encoded, distributed control does not

18

make efficient use of logic gates (i.e., they can be replaced by control memory bits on

an almost 1-1 ratio). A more realistic guess would be 5 to 12 control bits to replace a

gate [Davidow, 1972]

In summary, microprogramming appears to be a cost effective replacement for

random logic for control of large modular systems. The next section will make a few

projections about the shape of future modules.

19

5 - FUTURE MODULE SETS

The advent of Large Scale Integration (LSI) technology has made the chip a

natural boundary for a module. Currently a 4K bit MOS random access memory (RAM)

or an eight bit MOS microprocessor are available on a single chip. Since 1960 the

optimum chip complexity has doubled every one to two years [Fuller, 1973a]. There is

no indication that this trend should not continue for the next several years. Thus in

4 - 6 years a 16-bit microprocessor with IK words of memory could be available on a

chip. What should a module look like when it is of this complexity?. When placed on a

chip memories, due to their regular patterns, can be four times as dense as random logic

[Fuller, 1973a]. This strongly suggests that a microprogrammable controller be

employed. The ability to alter control sequences (i.e., programming) also implies that

the majority of the functions internal to the module will be available to the user thus

reducing the loss of transparency.

Assuming that the modules of the future are microprogrammable processors with

associated memory some interesting conclusions can be drawn. First, by observing the

Intel MCS-4 and MCS-8 [INTEL, 1972a, 1972b] it appears that a current microprocessor

is equivalent in complexity and cost to ~500 memory words (of the same width as the

processor's data path). Extrapolating this to microprogrammable processors it can be

seen that for modules with even moderately size memories (4-8K) the processor is

expendable since the dominating cost is that of the memories. Further, a single,

versatile module would be more attractive to the semiconductor industry than a module

20

set consisting of 10 or more modules since a successful chip needs a sales volume of ~2

million units/year [Fuller, 1973a]. This is in contrast with the current minicomputer

market of 30,000 units/year.

In order to achieve high computational power with these modules a mechanism

must be provided for efficient communications between modules. The I/O structure of a

conventional processor would be a poor way to conduct intermodule communication

since a response to an interrupt might take tens of microseconds. Intermodule

communication schemes based on shared memory have been studied in connection with

multiprocessors [Wulf, 1972; Heart, 1973] and might be a viable alternative.

One prototype intermodule communication scheme for PMS level modules based

on shared memory is the one employed by Computer Modules [Bell, 1973; Fuller,

1973b] . The structure of a typical CM network is shown in Figure 5. A CM consists of

a small processor as the primary control element, local memory, and several I/O ports

for interconnection to other CMs. An essential feature of CMs is the interconnectability

of CMs into networks via inter-CM buses, each with a unique address space to enable

efficient memory sharing. An address generated by a processor can be mapped onto

its local memory, or mapped onto the address space of one of the inter-CM buses were

it is recognized by the I/O port of another CM and directed to the latters local memory.

A CM can also be used as a switch. An inter-CM bus address recognized by a CM I/O

port can be remapped to another inter-CM bus rather than directed to local memory.

Hence a CM can share memory with any other CM in the network without necessitating

a direct connection.

21

S(intra-CM)
T
Pc

r
Hp

I T D.map D.map D.map

L
S(I«ter-CM>

S(tntra-CM)
1 1
Pc Mp D.map

SCintra-CM)
T 1 — r — n — 1 ~i

Pc Mp JKmap D.map D.iaap

T D.map D.map

${ineer-Ql)

WLgure 5. The General Structure - 0f a Computer Module System

Approximately 3 0 2 of the CM cost can be attributed to the I / O ports. This is

the lower bound found in RT level module sets overhead (3 0 7 o ~ 7 0 7 o) . Thus 3 0 7 o ~ 5 0 7 o

appears to be a good estimate of the hardware price to be paid for the convenience of

having a higher level module set.

A number of interesting research problems arise from the study of PMS level
• £

modules

1) Capacity of intermodule links

2) Deadlocks

22

3) Intermodule control mechanisms

4) Process-to-module binding

5) Problem decomposition

The last point is particularly important. Methods for decomposing a problem so

that it can be executed in parallel on several interconnected, cooperating PMS level

modules must be developed in order to realize the potentiality of the PMS modules.

2 3

6 - CONCLUSIONS

PMS level modules could be available in the next 4 - 6 years. Their existence will

open many significant areas of research. It appears that the overhead for PMS modular

systems will be on the order of 3 0 % ~ 5 0 % but with decreasing hardware costs this will

be tolerable. The expendable components will be processors and there will be no

effort to obtain a high utilization factor for the individual processors in a system. An

8 0 7 o ~ 9 0 7 o idle time may be acceptable. The high sales volume required by the

semiconductor industry suggests that, in the foreseeable future, PMS level components

will be oriented towards mass market applications like personal calculators and

intelligent terminals. It is interesting to note that as the cost per digital function has

decreased the design time and cost per system has remained relatively constant. So

instead of obtaining a cheaper system with the same functions a user gets a more

complex system at the same cost. This is best exemplified by observing the evolution

of minicomputers and noting that the cost per system of a 1 9 6 5 vintage minicomputer

(e.g., P D P - 8) is about as costly as a 1 9 7 4 minicomputer (e.g., the P D P - 1 1) * [Bell, 1 9 7 4] .

Finally, microprogrammed modules are an attractive control element for PMS level

modules from both an economic and a transparency point of view.

* The complexity of a minicomputer can be divided into a constant and a variable
complexity portions. The constant portion of the design have not changed significantly
with the technology, e.g., the memory, bus, and I/O structure. The variable parts of the
design (registers, ALU, functions, etc) are easier to implement with more advanced
technology. Hence more complex functions have appeared for the same cost.

24

7. REFERENCES

[Barbacci, 1973]

[Bell, 1971]

[Bell, 1972a]

[Bell, 1972b]

[Bell, 1973]

Barbacci, M.R. and D.P. Siewiorek: "Automated Exploration of the
Design Space for Register Transfer (RT) Systems". Proceedings of
the First Annual Symposium on Computer Architecture. University
of Florida, Gainesville. ACM SIGARCH, Computer Architecture News,
Vol. 2, No. 4, December 1973, pp. 101-106.

Bell, C.G. and A. Newell: "Computer Structures: Readings and
Examples". McGraw-Hill, New York, N.Y. 1971.

Bell, C.G., J.L. Eggert, J. Grason, and P. Williams: "The Description
and the Use of Register Transfer Modules (RTM's)". IEEE
Transactions on Computers, Vol. C-21, No. 5, May 1972, pp.
495-500.

Bell, C.G., J. Grason, and A. Newell: "Designing Computers and
Digital Systems". Digital Press, Digital Equipment Corporation, 1972.

Bell, C.G., R.C. Chen, S.H. Fuller, J. Grason, S. Rege, and D.P.
Siewiorek: "The Architecture and applications of Computer Modules:
A set of Components for Digital Design". IEEE Computer Society
International Conference, CompCon73, March 1973, pp. 177-180.

[Bell, 1974]

[Clark, 1967]

Bell, C.G. (Private Communication).

Clark, W.A., S.M. Ornstein, MJ. Stucki, A.S. Blum, T.J. Chaney, R.E.
Olsen, R.A. Dammkoehler, W.E. Ball, C.E. Molnar, and A. Anne:
"Macromodular Computer Systems". AFIPS Conference Proceedings,
Vol. 30, SJCC 1967, pp. 335-402.

Davidow, W.H.: "General Purpose Microcontrollers. Part 1: Economic
Considerations". Computer Design, Vol. 11, No. 7, July 1972, pp.
75-79 .

Freeman, P. and A. Newell: " A Model for Functional Reasoning in
Design". Second International Joint Computer Conference on
Artificial Intelligence, London, September 1971.

Fuller, S.H. and D.P. Siewiorek: "Some Observations on
Semiconductor Technology and the Architecture of Large Digital
Modules". Report of the Workshop on the Architecture and
Applications of Digital Modules held on June 7-8, 1973. IEEE
Computer, Vol. 6, No. 10, October 1973, pp. 14 -21 .

[Fuller, 1973b] Fuller, S.H., D.P. Siewiorek, and R.J. Swan: "Computer Modules: An

[Davidow, 1972]

[Freeman, 1971]

[Fuller, 1973a]

25

[Heart, 1973]

[INTEL, 1972a]

[INTEL, 1972b]

[Parnas, 1971]

[Parnas, 1972]

[Patil, 1972]

[Rege, 1974]

[Robinson, 1973]

[Wulf, 1972]

Architecture for Large Digital Modules". Proceedings of the First
Annual Symposium on Computer Architecture. University of Florida,
Gainesville. ACM SIGARCH, Computer Architecture News, Vol. 2,
No. 4, December 1973, pp. 231-236.

Heart, F.E., S.M. Ornstein, W.R. Crowther, and W.B. Barker: "A New
Minicomputer/Multiprocessor for the ARPA Network". AFIPS
Conference Proceedings, Vol. 42, NCC 1973, pp. 529 -537 .

INTEL Corporation: "MCS-4 Microcomputer Set Users Manual". Santa
Clara, California, July 1972.

INTEL Corporation: "MCS-8 Microcomputer Set Users Manual". Santa
Clara, California, November 1972.

Parnas, D.L.: "On the Criteria to be Used in Decomposing a System
Into Modules". Department of Computer Science, Carnegie-Mellon
University, August 1971.

Parnas, D.L. and D.P. Siewiorek: "Use of the Concept of
Transparency in the Design of Hierarchically Structured Systems".
Department of Computer Science, Carnegie-Mellon University, 1972.

Patil, S.S. and J.B. Dennis: "The Description and Realization of
Digital Systems". IEEE Computer Society International Conference,
CompCon72, September 1972, pp. 223-226.

Rege, S.L.: "Design to Specification of Modular Data Flow Structures".
PhD Thesis, Department of Computer Science, Carnegie-Mellon
University, 1974.

Robinson, D.M.: "Digital Systems Design with Control Modules". IEEE
Computer Society International Conference, CompCon73, February
1973, pp. 207-210.

Wulf, W.A. and C.G. Bell: "C.mmp - A Multi-Mini-Processor". AFIPS
Conference Proceedings, Vol. 4 1 , part I I , FJCC 1972, pp. 7 6 5 - 7 7 7 .

B I B L I O G R A P H I C D A T A 1- Report No. 2.
SHEET 1

3. Recipient's Accession No.

4. Title and Subtitle
SOME OBSERVATIONS ON MODULAR DESIGN TECHNOLOGY AND THE USE

OF MICROPROGRAMMING

5. Report Date

Tiily, 1974
6.

7. Author(s)
D. P. Siewiorek and M. R. Barbacci

8. Performing Organization Rept.
No.

9. Performing Organization Name and Address
Carnegie-Melion University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

10. Project/Task/Work Unit No.

11. Contract/Grant No.

GJ32758X

12. Sponsoring Organization Name and Address
John R. Lehman
Program Director
Computer Systems Design
National Science Foundation; Washington, D. C. 20550

13. Type of Report & Period
Covered

14.

15. Supplementary Notes

16. Abstracts As modules become more complex the advantages and disadvantages of modularity^
have become more pronounced. The cost of modularity is measured not only in added
hardware but also in a loss of flexibility. Functions that are easy to implement
at a submodule level may be very difficult, or even impossible, to duplicate at the
modular level. We term this a loss of transparency. The added hardware and
transparency costs are given for existing module sets and projections made for the
next generation of modules. Finally, a microprogrammed implementation of the control
portion of existing and projected module sets is shown to be a way to decrease
hardware costs and increase transparency.

17. Key Words and Document Analysis . 17a. Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement
Approved for public release; distribution unlimited

19. Security C l a s s (This
Report)

UNCLASSIFIED 20. Security C l a s s (This
Page

UNCLASSIFIED

21 . No. of Pages

27
22. Price

F O R M N T I S - 3 5 (R E V . 3 - 7 2) U S C O M M - D C 1 4 9 5 2 - P 7 2

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Deta Entered)

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM
3. R E C I P I E N T ' S C A T A L O G N U M B E R

R E P O R T N U M B E R 12. G O V T A C C E S S I O N NO

T I T L E , (end Subtitle)

"SOME OBSERVATIONS ON MODULAR DESIGN TECHNOLOGY
AND THE USE OF MICROPROGRAMMING1 r

S. T Y P E O F R E P O R T ft P E R I O O C O V E R E D

6 . P E R F O R M I N G O R G . R E P O R T N U M B E R

7. A U T H O R f e)

D. P. Siewiorek
M. R. Barbacci

8 . C O N T R A C T O R G R A N T N U M B E R f o)

F44620-73-C-0074

P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, Pennsylvania 15213

10. P R O G R A M E L E M E N T . P R O J E C T . TASK
A R E A ft WORK U N I T N U M B E R S

11 . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

12. R E P O R T D A T E

July, 1974
13. N U M B E R O F P A G E S

27
U . M O N I T O R I N G A G E N C Y N A M E ft ADDRESS^ / / different from Controlling Office)

Air Force Office of Scientific Research
1400 Wilson Boulevard
Arlington, Virginia 22209

15. S E C U R I T Y C L A S S , (of thle report)

UNCLASSIFIED

15a. D E C L A S S I F I C A T I O N / D O W N G R A D I N G
S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (of thle Report)

Approved for public refease; distribution unlimited.

17. D I S T R I B U T I O N S T A T E M E N T (of the mbatrmet entered In Block 20. It different from Report)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y WORDS (Continue on reveree elde If neceeeety end Identity by block number)

20. A B S T R A C T (Continue on reverse aide If neceeeary end identify by block number)

As modules become more complex the advantages and disadvantages of modularity
lave become more pronounced. The cost of modularity is measured not only in
added hardware but also in a loss of flexibility. Functions that are easy to
implement at a submodule level may be very difficult, or even impossible, to
duplicate at the modular level. We term this a loss of transparency. The added
hardware and transparency costs are given for existing module sets and
projections made for the next generation of modules. Finally, a microprogrammed
(implementation of the control portion of-existing and projected module sets is
IsnowTi to be a way to decrease hardware costs and increase transparency.
DD ^

F O R M
AN 73 1473 E O I T I O N O F 1 N O V 6 5 IS O B S O L E T E

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (Wh»n Dete Entered)

