
Under consideration for publication in J. Functional Programming 1

Staged Computation with Names and Necessity

ALEKSANDAR NANEVSKI and FRANK PFENNING
Carnegie Mellon University, Pittsburgh, PA 15213, USA

(e-mail: {aleks,fp}@cs.cmu.edu)

Abstract

Staging is a programming technique for dividing the computation in order to exploit the
early availability of some arguments. In the early stages the program uses the available
arguments to generate, at run time, the code for the late stages. The late stages may then
be explicitly evaluated when appropriate. A type system for staging should ensure that
only well-typed expressions are generated, and that only expressions with no free variables
are permitted for evaluation.

In this paper, we present a novel calculus for staged computation with the notion of
type safety as outlined above. The type system is based on the necessity operator � from
constructive modal logic. We index the modal operator with a set C of names, so that the
type �CA classifies expressions of type A that belong to the late stage, and whose free
names are in the set C.

1 Introduction

Staging is a programming technique for explicitly dividing a computation in order
to exploit the early availability of some arguments (Ershov, 1977; Jones et al., 1985;
Nielson & Nielson, 1988; Glück & Jørgensen, 1995; Davies & Pfenning, 2001). For
example, a typical test used in many convex hull algorithms filters a set of points
to see on which side of a line given by two points they lie. This test can be staged
by first forming the line and its normal, and then checking the position of each
point from the set. This way, a staged test obviates the need to repeat the part of
the computation pertinent to the normal whenever a new point is tested, and can
potentially save a lot of work.

Because it is often quite cumbersome to design programs that fully exploit the
natural stage separation of their arguments, it is very desirable for a programming
language to provide support for early detection and reporting of staging errors. Two
calculi, λ� and λ©, based on different modal logics, have emerged in the literature
as alternatives suitable for capturing different invariants of staged computations.

The λ�-calculus is the proof term calculus for a constructive version of modal
logic S4, whose necessity constructor � annotates valid propositions (Davies &
Pfenning, 2001; Pfenning & Davies, 2001). The λ©-calculus is the proof term cal-
culus for discrete linear-time temporal logic, and the type constructor © annotates
propositions that are true at the subsequent time moment (Davies, 1996).

From the computational perspective, values of the modal type �A are closed ex-
pressions of type A (Davies & Pfenning, 2001). Closed expressions are independent

2 A. Nanevski, F. Pfenning

of the context in which they are built, and can be used in any other context. In
our example, the expression for computing the normal of the line could be assigned
a modal type, as it is independent of the points that it will be testing. The com-
putational meaning of ©A is a little bit more subtle. Values of type ©A are also
expressions of type A to be evaluated at the next stage, but they may refer to the
variables from their environment; they classify expressions that may be open, that
is, contain free variables subject to some further requirements (Davies, 1996).

Each of the calculi has its advantages and drawbacks. Because values of type �A

are closed expressions, they can safely be evaluated to obtain a value of type A.
But the ability to evaluate comes with a price: composing closed expressions into
larger ones, while maintaining the closeness invariant, is cumbersome and produces
unnecessarily complex results. On the other hand, a value of type ©A is an open
expression. It behaves nicely under composition, but the type system of λ© does
not provide guarantees for its safe evaluation. The reason is exactly in the openness:
it is not sound to evaluate an open expression before all of its free variables are
bound.

The desire to combine the advantages of λ� and λ© has inspired most of the
recent work on type systems for staged computation, most notable being MetaML
(Taha & Sheard, 1997; Moggi et al., 1999; Taha, 1999; Benaissa et al., 1999;
Calcagno et al., 2003a; Sheard, 2001), and its recent variant MetaOCaml (Calcagno
et al., 2003b; Taha & Nielsen, 2003). The modal type of MetaML and MetaOCaml
is that of open expressions from λ©. In addition, various versions of MetaML con-
tain some additional type constructor to classify as closed those expressions that
could be proved to contain no free variables. Also, both MetaML and MetaOCaml
feature a term constructor for explicit evaluation of closed expressions.

The approach of our calculus (which we call ν�) is opposite. Rather than refining
the notion of open expressions of λ©, we relax the notion of closed expressions of λ�.
We start with the system of λ�, but allow generated code to contain free variables,
as long as this is recorded in the types. The free variables of modal expressions are
represented by a separate semantic category of names, the treatment of which is
inspired by the work on Nominal Logic and FreshML (Gabbay & Pitts, 2002; Pitts
& Gabbay, 2000; Pitts, 2001; Gabbay, 2000).

This approach leads to a logically motivated type system, in which one can encode
open expressions and evaluate closed ones. The approach is conceptually simpler
than that of MetaML, in the sense that only one type constructor for expressions
suffices. In this respect, our system is closer to MetaOCaml, which also features only
one type constructor for expressions. However, unlike both MetaML and MetaO-
Caml, we do not require any additional constructs for explicit evaluation of closed
code; this operation can be expressed using the already present constructors which
are justified by logical considerations.

The rest of the paper is organized as follows: Section 2 is a brief summary of the
previous work on λ�. The type system of ν� and its properties are described in
Section 3, while Section 4 describes parametric polymorphism in sets of names. The
equational properties of ν�, both with intensional and extensional interpretation

Names and Necessity 3

of the � type, are explored in Section 5, before we discuss the related work in
Section 6.

2 Modal λ�-calculus

This section reviews the previous work on the modal λ�-calculus, and the way
λ� can be used to divide the computation into stages that specify the relative
evaluation order of subcomputations.

The λ�-calculus is the proof-term calculus for the necessitation fragment of the
modal logic S4 (Pfenning & Davies, 2001; Davies & Pfenning, 2001). Chronologi-
cally, it came to be considered in functional programming in the context of special-
ization for purposes of run-time code generation (Wickline et al., 1998b; Wickline
et al., 1998a). For example, consider the exponentiation function, presented below
in ML-like notation.

fun exp1 (n : int) (x : int) : int =

if n = 0 then 1 else x * exp1 (n-1) x

The function exp1 : int -> int -> int is written in a curried form so that it
can be applied when only a part of its input is known. For example, if an actual
parameter for n is available, exp1(n) returns a function for computing the n-th
power of its argument. From the operational standpoint, however, no actual work is
done, as the parameter x must be supplied in order to proceed with the evaluation.
Thus, one can argue that the following reformulation of exp1 is preferable.

fun exp2 (n : int) : int -> int =

if n = 0 then λx:int.1

else

let val u = exp2 (n - 1)

in

λx:int. x * u(x)

end

Indeed, when only n is provided, but not x, the expression exp2(n) performs com-
putation steps based on the value of n to produce a residual function specialized
for computing the n-th power of its argument. In particular, the obtained residual
function will not perform any operations or take decisions at run time based on
the value of n; in fact, it does not even depend on n – all the computation steps
dependent on n have been taken during the specialization.

A useful intuition for understanding the programming idiom of the above exam-
ple, is to view exp2 as a program generator; once supplied with n, it generates a
specialized function for computing n-th powers. This suggests a stage distinction
between the terms of the calculus. The terms at the late stage are to be viewed as
data – as results of a process of code generation. Because the terms at this stage
are treated as data, i.e., as objects, we refer to this stage as object stage. In the
exp2 function, such terms are (λx:int.1) and (λx:int. x * u(x)). The early
stage (also called the run-time, or meta stage) describes the specific operations to

4 A. Nanevski, F. Pfenning

be performed over the data from the object stage. The stages are kept separate;
variables from the meta stage (n in the above example) are not allowed to appear
in the object stage. This is why the above-illustrated programming style is referred
to as staged computation.

The idea behind the type system of λ� is to make explicit the distinction between
meta and object stages. It allows the programmer to specify the intended staging
of a term by annotating the object-level subterms. Then the type system can check
whether the written code conforms to the staging specifications, turning staging
errors into type errors. The syntax of λ� is presented below; we use b to stand for
a predetermined set of base types, and c for constants of those types.

Types A ::= b | A1 → A2 | �A

Terms e ::= c | x | u | λx:A. e | e1 e2 |
box e | let box u = e1 in e2

V alue variable contexts Γ ::= · | Γ, x:A
Expression variable contexts ∆ ::= · | ∆, u:A
V alues v ::= c | λx:A. e | box e

There are several distinctive features of the calculus, arising from the desire to dif-
ferentiate between the stages. The most important is the new type constructor “�”.
It is usually referred to as modal necessity, as on the logic side it is the necessitation
modifier on propositions (Pfenning & Davies, 2001). In our metaprogramming ap-
plication, it is used to classify object-level terms. Its introduction and elimination
forms are the term constructors box and let box, respectively. As Figure 1 shows, if
e is an object term of type A, then box e is a meta term of type �A. The box term
constructor wraps the object term e so that it can be accessed and manipulated by
the meta part of the program. The elimination form let box u = e1 in e2 does the
opposite; it takes the object term enclosed in e1 and binds it to the variable u to
be used in e2.

The type system of λ� distinguishes between two kinds of variables, and con-
sequently has two variable contexts: Γ for variables bound to meta terms, and ∆
for variables bound to object terms. We implicitly assume that exchange holds for
both; that is, the order of variables in the contexts is immaterial. Observe that the
typing rule for box removes the variable context Γ. This implements a characteristic
restriction of type systems for staged languages that variables from the early stage
are not allowed to appear in the later stage.

Figure 2 presents the small-step operational semantics of λ�. We have decided
on a call-by-value strategy which, in addition, prohibits reductions in the generated
code until it is run. In the expression box e, the evaluation of the object expression
e is suspended, but we may still substitute for the object variables of e. In a value
of modal type, all the object variables are substituted away; such values consist of
boxed object expressions that are closed, i.e., they do not contain any free variables.

We can now use the type system of λ� to make explicit the staging of exp2.

Names and Necessity 5

fun exp3 (n : int) : �(int->int) =

if n = 0 then box (λx:int. 1)

else

let box u = exp3 (n - 1)

in

box (λx:int. x * u(x))

end

Application of exp3 at argument 2 produces an object-level function for squaring.

- sqbox = exp3 2;

val sqbox = box (λx:int. x *

(λy:int. y *

(λz:int. 1) y) x) : �(int -> int)

In the elimination form let box u = e1 in e2, the bound variable u belongs to the
context ∆ of modal variables, but it can be used in e2 in both object positions
(i.e., under a box) and meta positions. This way, the calculus is not only capable
of composing object programs, but can also explicitly force their evaluation. For
example we can use the generated function sqbox in the following way.

- sq = (let box u = sqbox in u);

val sq = [fn] : int -> int

- sq 3;

val it = 9 : int

This example demonstrates how closed object expressions can be reflected, i.e.,
coerced from the object level into the meta level. The opposite coercion, referred
to as reification, is achieved by the box operator for closed expressions, but cannot
be written as a function. This suggests that λ� could be given even a more spe-
cific model in which reflection naturally exists, but reification does not. A possible
interpretation exhibiting this behavior considers object-level expressions as gener-
ated source code, i.e., actual closed syntactic expressions, or abstract syntax trees of
closed λ�-terms. In contrast, the meta-level expressions are compiled executables.
The operation of reflection corresponds to the natural process of compiling a source
program into an executable. The opposite operation of reconstructing source code
out of its compiled equivalent is not usually feasible, so this interpretation does not
support reification, just as required. Furthermore, the typing of λ� ensures that
only well-typed syntactic expressions can be represented in the calculus.

The above intuitive “syntactic” model makes the λ�-calculus very appropriate
not only for staged computation, but also for metaprogramming. In metaprogram-
ming, expressions are again stratified into stages, but this time the syntactic struc-
ture of object expressions may be inspected and analyzed. In metaprogramming, ob-
ject expressions represent source code which can be compared for syntactic equality
and even pattern-matched against (Nanevski, 2002).

In the remainder of this paper, we will frequently rely on the described syntactic
nature of object expressions in order to supply the intuition behind formal devel-
opments. However, whether a practical implementation actually needs to represent

6 A. Nanevski, F. Pfenning

∆; (Γ, x:A) ` x : A (∆, u:A); Γ ` u : A

∆; (Γ, x:A) ` e : B

∆;Γ ` λx:A. e : A → B

∆; Γ ` e1 : A → B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u:A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

Fig. 1. Typing rules for λ�.

e1 7−→ e′
1

e1 e2 7−→ e′
1 e2

e2 7−→ e′
2

v1 e2 7−→ v1 e′
2

(λx:A. e) v 7−→ [v/x]e

e1 7−→ e′
1

let box u = e1 in e2 7−→ let box u = e′
1 in e2

let box u = box e1 in e2 7−→ [e1/u]e2

Fig. 2. Operational semantics of λ�.

object expression as syntax will depend on the application. In staged computation,
for example, we are usually not interested in inspecting the structure of generated
programs, so the generated programs may be represented in some intermediate, or
even fully compiled form. At this point, we do not commit to any particular im-
plementation strategy, but instead focus on the theoretical properties of the type
system.

3 Modal calculus of names

3.1 Motivation, syntax and overview

If we adhere to the interpretation of object expressions as generated source code,
then the λ� staging of exp3 is rather unsatisfactory. The problem is that the ob-
ject expressions generated by exp3 (e.g., sqbox), contain unnecessary variable-for-
variable redexes.

From the standpoint of syntax manipulation, λ� is too restrictive. It cannot
express this rather simple way in which well-typed syntactic expressions can be put
together to form a more complex syntactic expression. The reason for the deficiency
lies in the requirement that the syntactic object expressions that λ� can represent
and manipulate must always be closed. Furthermore, if we only have a type of closed
syntactic expressions at our disposal, we can never type the body of an object-level
λ-abstraction in isolation from the λ-binder itself – subterms of a closed term are

Names and Necessity 7

not necessarily closed themselves. Thus, it would be impossible to ever inspect,
destruct or recurse over object-level expressions with binding structure.

What we need in order to avoid the problem of superfluous redexes, but also in
order to support code inspection, is the ability to represent open expressions and
specify substitution with capture. This need has long been recognized in the staged
computation and metaprogramming community, and Section 6 discusses several dif-
ferent type systems and their solution of the problem. The basic idea of these type
systems is most concisely captured by Davies’ λ©-calculus (Davies, 1996). The type
constructor © of this calculus corresponds to the discrete temporal logic modality
for propositions true at the subsequent time moment. In a metaprogramming inter-
pretation, the modal type ©A stands for open object expression of type A, where
the free variables of the object expression are modeled by λ-bound variables from
the subsequent time moment.

Our ν�-calculus adopts a different approach to the problem of spurious redexes.
We start with the λ�-calculus, and introduce a separate semantic category of names,
motivated by (Pitts & Gabbay, 2000; Gabbay & Pitts, 2002), and also (Odersky,
1994). The idea is to employ names to stand for the free variables of object ex-
pressions, and correspondingly, to employ explicit name substitutions to facilitate
capture of free variables. Intuitively, the expressions of the ν�-calculus are obtained
by freely adjoining names to the expressions of the λ�-calculus. The situation is
somewhat analogous to that in polynomial algebra, where one is given a base alge-
braic structure A and a set of indeterminates (or generators) {X1, . . . , Xn}, which
are then freely adjoined to A into a structure of polynomials A[X1, . . . , Xn]. In our
setup, the indeterminates are the names, and we build “polynomials” over the base
structure of λ� expressions.

When an object expression e contains a name X, we will say that e depends on
X, or that X is in the support of e. For example, assuming for a moment that X and
Y are names of type int, and that the usual operations of addition, multiplication
and exponentiation of integers are primitive in ν�, the term

e1 = X3 + 3X2Y + 3XY 2 + Y 3

would have type int and support set {X, Y }. The names X and Y appear in e1 at
the meta level, and indeed, notice that in order to evaluate e1 to an integer, we first
need to provide definitions for X and Y . On the other hand, if we box the term e1,
we obtain

e2 = box (X3 + 3X2Y + 3XY 2 + Y 3)

which has the type �X,Y int, but its support is the empty set, as the names X and
Y only appear at the object level (i.e., under a box). Thus, the support of a term
(in this case e1) becomes part of the type once the term itself is boxed. This way,
the types maintain the information about the support of subterms at all stages. For
example, assuming that our language has pairs, the term

e3 = 〈X2, box Y 2〉

would have the type int×�Y int with support {X}.

8 A. Nanevski, F. Pfenning

As illustrated by the above examples, if an object expression depends on some
names, then it is only partially specified. Such partially specified expressions cannot
be evaluated before every name in the expression’s support is provided a definition.
We use explicit substitutions for this purpose. Explicit substitutions remove substi-
tuted names from the support, eventually turning non-executable expressions into
executable ones.

Example 1 Assuming that X and Y are names of type int, the ν� segment below
creates a “polynomial” expression over X and Y and then evaluates it at the point
(X = 1, Y = 2).

- let box u = box (X3 + 3X2Y + 3XY2 + Y3)

in

〈X -> 1, Y -> 2〉 u

end

val it = 27 : int

Notice how the explicit substitution 〈X → 1, Y → 2〉 captures the names X and Y

in the expression X3 +3X2Y +3XY 2 +Y 3, when this expression is substituted for
u.

We next present the syntax of the ν�-calculus and discuss each of the construc-
tors. We use capital letters like X, Y and variants to denote names (of which there
should be infinitely many) and C and D for finite sets of names.

Types A ::= b | A1 → A2 | A1 9 A2 | �CA

Explicit substitutions Θ ::= · | X → e,Θ
Terms e ::= c | X | x | 〈Θ〉u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2 |
νX:A. e | choose e

V alue variable contexts Γ ::= · | Γ, x:A
Expression variable contexts ∆ ::= · | ∆, u:A[C]
Name contexts Σ ::= · | Σ, X:A

Just as λ�, our calculus makes a distinction between meta and object levels, which
here too may be interpreted as the level of executable code and the level of source
code, respectively. The two levels are separated by a modal type constructor �,
except that now we have a whole family of modal type constructors – one for each
finite set of names C. In that sense, the values of the type �CA are the closed
syntactic expressions containing the names from the set C. We refer to the finite
set C as a support of such expressions. All the names are drawn from a countably
infinite universe of names N . In addition to modal and functional types, ν� features
a new type A 9 B whose meaning we explain below.

As before, the distinction in levels motivates a split in the variable contexts. We
have a context Γ for ordinary variables (we will also call them value variables),

Names and Necessity 9

and a context ∆ for modal variables (which we also call expression variables). The
context ∆ must keep track not only of the typing of a given variable, but also of its
support. In ν� we also introduce the context Σ which associates types to names.

The types of ν�-calculus are dependent on names, so we impose on our contexts
the usual well-formedness conditions from dependently typed calculi. Henceforth,
variable contexts ∆ and Γ will be well-formed relative to Σ if Σ declares all the
names that appear in the types of ∆ and Γ. A name context Σ is well-formed if every
type in Σ uses only names declared to the left of it. Two contexts are considered
equal if they only differ up to a dependency-preserving reordering of their variables
or names.

Further, we will often abuse the notation and write Σ = Σ′, X:A to define the
set Σ′ obtained after removing the name X from the context Σ. Obviously, Σ′ does
not have to be a well-formed context, as types in it may depend on X, but we will
always transform Σ′ into a well-formed context before using it again. Thus, we will
always take care, and also implicitly assume, that all the contexts we use in the
following sections are well-formed. The same holds for all the types and supports.

The set of terms includes the syntax of the λ�-calculus from Section 2. However,
there are two important distinctions in ν�. First, we can now explicitly refer to
names at the level of terms. Second, it is required that all the references to modal
variables that a certain term makes are always prefixed by some explicit substi-
tution. For example, if u is a modal variable bound by some let box u = e1 in e2

term, then u can only appear in e2 prefixed by an explicit substitution Θ, written
as 〈Θ〉u, where different occurrences of u can have different substitutions associated
with them. The explicit substitution provides definitions for names in the expres-
sion bound to u. When the reference to the variable u is prefixed by an empty
substitution, instead of 〈·〉u we will simply write u. The explicit substitutions used
in ν�-calculus are simultaneous substitutions. We assume that the syntactic repre-
sentation of a substitution never defines the same name twice.

The terms νX:A. e and choose e are the introduction and elimination form for
the type constructor A 9 B. The term νX:A. e binds a name X of type A that
can subsequently be used in e. The term choose picks a fresh name of type A,
substitutes it for the name bound in the argument ν-abstraction of type A 9 B,
and proceeds to evaluate the body of the abstraction. In order to ensure the progress
and preservation properties of ν� (Theorems 12 and 11), we must prevent the
bound name in νX:A. e from escaping the scope of its definition. Indeed, if during
evaluation, X is encountered outside its defining ν, the evaluation will get stuck.
Thus, the type system must enforce a discipline on the use of X in e. An occurrence
of X at a certain position in e will be allowed only if the type system can establish
that such an occurrence will not disable the evaluation of e. Allowed positions for X

are characterized in one of the following two ways: either X is eventually substituted
away by an explicit substitution, or X appears in a part of the term that is not
encountered during evaluation. Technically, this discipline is enforced by requiring
that X does not appear in the type or the support of e.

Finally, enlarging an appropriate context by a new variable or a name is subject to
the usual variable conventions: the new variables and names are assumed distinct,

10 A. Nanevski, F. Pfenning

or are renamed in order not to clash with the already existing ones. Terms are
considered equal if they differ only in the syntactic representation of their bound
variables and names, or in the ordering of names in the explicit substitutions. The
binding forms in the language are λx:A. e, let box u = e1 in e2 and νX:A. e. As
usual, capture-avoiding substitution [e1/x]e2 of expression e1 for the variable x in
the expression e2 is defined to rename bound variables and names when descending
into their scope. Given a term e, we denote by fv(e) and fn(e) the set of free variables
of e and the set of names appearing in e at the meta level. In addition, we overload
the function fn so that given a type A and a support set C, fn(A[C]) is the set of
names appearing in A or C.

Example 2 To illustrate our new constructors, we present a version of the staged
exponentiation function that we can write in ν�-calculus. In this and in other
examples we resort to concrete syntax in ML fashion, and assume the presence of
the base type of integers, recursive functions and let-definitions.

fun exp (n : int) : �(int -> int) =

choose (νX : int.

let fun exp’ (m : int) : �Xint =

if m = 0 then box 1

else

let box u = exp’ (m - 1)

in

box (X * u)

end

in

let box v = exp’ (n)

in

box (λx:int. 〈X -> x〉 v)

end

end)

- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

The function exp takes an integer n and generates a fresh name X of integer type.
Then it calls the helper function exp’ to build the expression v = X ∗ · · · ∗X︸ ︷︷ ︸

n

∗1

of type int and support {X}. Finally, it turns the expression v into a function by
explicitly substituting the name X in v with a newly introduced bound variable
x, incurring capture. Notice that the generated residual code for sq does not con-
tain any unnecessary redexes, in contrast to the λ� version of the program from
Section 2.

Names and Necessity 11

3.2 Explicit substitutions

In this section we formally introduce the concept of explicit substitution over names,
and define related operations. As already outlined before, substitutions serve to
provide definitions for names, thus effectively removing the substituting names from
the support of the term in which they appear. Once the term has empty support,
it can be evaluated.

Definition 1 (Explicit substitution, its domain and range)
An explicit substitution is a finite set of pairs X → e, where X is a name and e

is a term, so that a name X appears paired up with at most one term. Given a
substitution Θ, its domain and range are the following sets.

dom(Θ) = {X | X → e ∈ Θ}

and

range(Θ) = {e | X → e ∈ Θ}
The set fv(Θ) of free variables of Θ is defined to be the set of free variables of
expressions in range(Θ). The set fn(Θ) of free names of Θ includes the names from
names dom(Θ) and the names appearing freely in the terms from range(Θ).

Each substitution Θ defines a unique function [[Θ]] : Names → Terms, defined as
follows.

[[Θ]](X) =
{

e if X → e ∈ Θ
X otherwise

Each substitution can be uniquely extended to a function over arbitrary terms
in the following way.

Definition 2 (Substitution application)
Given a substitution Θ with a finite domain, and a term e, the operation {Θ}e
of applying Θ to e is defined recursively on the structure of e as given below.
Substitution application is capture-avoiding.

{Θ} X = [[Θ]](X)
{Θ} x = x

{Θ} (〈Θ′〉u) = 〈Θ ◦Θ′〉u
{Θ} (λx:A. e) = λx:A. {Θ}e x 6∈ fv(Θ)
{Θ} (e1 e2) = {Θ}e1 {Θ}e2

{Θ} (box e) = box e

{Θ} (let box u = e1 in e2) = let box u = {Θ}e1 in {Θ}e2 u 6∈ fv(Θ)
{Θ} (νX:A. e) = νX:A. {Θ}e X 6∈ fn(Θ)
{Θ} (choose e) = choose {Θ}e

An important aspect of the above definition is that substitution application does not
recursively descend under box. This property preserves the distinction between the
meta and the object levels. It is also justified, as explicit substitutions are intended
to only remove names which are in the support of a term, and names appearing
under box do not contribute to the support.

12 A. Nanevski, F. Pfenning

The operation of substitution application depends upon the operation of substi-
tution composition Θ1 ◦Θ2, which we define next.

Definition 3 (Composition of substitutions)
Given two substitutions Θ1 and Θ2, their composition Θ1 ◦Θ2 is the set

Θ1 ◦Θ2 = {X → {Θ1}([[Θ2]](X)) | X ∈ dom(Θ1) ∪ dom(Θ2)}

It will occasionally be beneficial to represent this set as a disjoint union of two
smaller sets Ψ1 and Ψ2 defined as:

Ψ1 = {X → [[Θ1]] (X) | X ∈ dom(Θ1) \ dom(Θ2)}
Ψ2 = {X → {Θ1}([[Θ2]] (X)) | X ∈ dom(Θ2)}

It is important to notice that, though the definitions of substitution applica-
tion and substitution composition are mutually recursive, both operations are well
founded. Substitution application is defined inductively over the structure of its ar-
gument, so the size of terms on which it operates is always decreasing. Computing
Θ1 ◦Θ2 only requires applying Θ1 to subterms in Θ2.

Lemma 4
Let Θ1,Θ2,Θ3 be explicit substitutions. If e is a ν�-term, then:

1. {Θ1}({Θ2}e) = {Θ1 ◦Θ2}e
2. Θ1 ◦ (Θ2 ◦Θ3) = (Θ1 ◦Θ2) ◦Θ3

Proof
By simultaneous induction on the structure of e and Θ3. We present the character-
istic cases.

case e = 〈Θ〉u. By definition, {Θ1}({Θ2}e) = 〈Θ1◦(Θ2◦Θ)〉u. By second induction
hypothesis, this is equal to 〈(Θ1 ◦Θ2) ◦Θ〉u = {Θ1 ◦Θ2}e.

case Θ3 = (X 7→ e,Θ′). Let Z be an arbitrary name.
If Z = X, then {Θ1}([[Θ2 ◦Θ3]](Z)) = {Θ1}({Θ2}e). By first induction hy-
pothesis, this is equal to {Θ1 ◦Θ2}e = {Θ1 ◦Θ2}([[Θ3]](Z)).
If Z 6= X, then {Θ1} [[Θ2 ◦Θ3]](Z) = {Θ1} [[Θ2 ◦Θ′]](Z), and also {Θ1 ◦
Θ2} [[Θ3]](Z) = {Θ1 ◦Θ2} [[Θ′]](Z). By second induction hypothesis, Θ1 ◦ (Θ2 ◦
Θ′) = (Θ1 ◦ Θ2) ◦ Θ′, and therefore {Θ1} [[Θ2 ◦Θ′]](Z) = {Θ1 ◦ Θ2} [[Θ′]](Z).
Therefore, {Θ1} [[Θ2 ◦Θ3]](Z) = {Θ1◦Θ2} [[Θ3]](Z), thus concluding the proof.

We will frequently blur the distinction between a substitution Θ, and its corre-
sponding function [[Θ]], and write Θ(X) instead of [[Θ]](X), or {Θ}(X). Represen-
tations of substitutions that differ only in the ordering of the assignment pairs are
considered to define equal substitutions.

3.3 Type system

The type system of the ν�-calculus consists of two mutually recursive judgments:

Σ; ∆; Γ ` e : A [C]

Names and Necessity 13

Explicit substitutions
C ⊆ D

Σ; ∆; Γ ` 〈 〉 : [C] ⇒ [D]

Σ; ∆; Γ ` e : A [D] Σ;∆; Γ ` 〈Θ〉 : [C \ {X}] ⇒ [D] X:A ∈ Σ

Σ; ∆; Γ ` 〈X → e, Θ〉 : [C] ⇒ [D]

Hypothesis
X:A ∈ Σ

Σ; ∆; Γ ` X : A [X, C] Σ; ∆; (Γ, x:A) ` x : A [C]

Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [C] ⇒ [D]

Σ; (∆, u:A[C]); Γ ` 〈Θ〉u : A [D]

λ-calculus

Σ; ∆; (Γ, x:A) ` e : B [C]

Σ; ∆; Γ ` λx:A. e : A → B [C]

Σ; ∆; Γ ` e1 : A → B [C] Σ;∆; Γ ` e2 : A [C]

Σ; ∆; Γ ` e1 e2 : B [C]

Modality

Σ; ∆; · ` e : A [D]

Σ; ∆; Γ ` box e : �DA [C]

Σ; ∆; Γ ` e1 : �DA [C] Σ; (∆, u:A[D]); Γ ` e2 : B [C]

Σ; ∆; Γ ` let box u = e1 in e2 : B [C]

Names

(Σ, X:A); ∆; Γ ` e : B [C] X 6∈ fn(B[C])

Σ; ∆; Γ ` νX:A. e : A 9 B [C]

Σ; ∆; Γ ` e : A 9 B [C]

Σ; ∆; Γ ` choose e : B [C]

Fig. 3. Typing rules of the ν�-calculus.

and

Σ; ∆; Γ ` 〈Θ〉 : [C] ⇒ [D]

Both of them work with three contexts: context of names Σ, context of modal
variables ∆, and a context of value variables Γ (the syntactic structure of all three
contexts is given in Section 3.1). The first judgment is the typing judgment for
expressions. Given an expression e, it checks whether e has type A and support
C. The second judgment types the explicit substitutions. Given a substitution Θ
and two support sets C and D, the substitution has type [C] ⇒ [D] if it maps
expressions of support C to expressions of support D.

The typing rules of ν� are presented in Figure 3. A pervasive characteristic of the
type system is support weakening. If an expression has support C, then the names
the expression contains are elements of C. If C ⊆ D, these names are elements of D

as well, and the expression may also be ascribed the support D. Support weakening
is admissible in both judgments of the type system, which we prove in Section 3.4.

Explicit substitutions. The empty substitution gives rise to the identity function
on terms, as applying the empty substitution over a given term does not change

14 A. Nanevski, F. Pfenning

the term itself. Thus, when an empty substitution is applied to a term containing
names from C, the resulting term obviously contains the same names, all of which
are elements of D as well. The typing rule for empty substitutions formalizes this
property. The set D ⊇ C is introduced in order to ensure that the support weakening
principle holds for this judgment. We implicitly require that both C and D are well-
formed; that is, they both contain only names already declared in the name context
Σ. The rule for non-empty substitutions recursively checks if each of component
expressions is well-typed.

When an explicit substitution Θ : [C] ⇒ [D] is applied to an expression e : A [C],
the result {Θ}e will have support D. Consider for example the explicit substitution
Θ = (X → 10, Y → 20), with the domain dom(Θ) = {X, Y }. This substitution
can be given (among others) the typings: [X, Y] ⇒ [], but also [] ⇒ [], or
[X, Y, Z] ⇒ [Z]. And indeed, if Θ is applied to an expression with support {X, Y },
the result will be an expression with empty support. Similarly, Θ maps an expression
of support [] into another expression with support [], and an expression with
support [X, Y, Z] into one with support [Z].

Hypothesis rules. Because there are three kinds of variable contexts, we have three
hypothesis rules. First is the rule for names. A name X can be used provided it has
been declared in Σ and is accounted for in the supplied support set. The implicit
assumption is that the support set C is well-formed; that is, C ⊆ dom (Σ). The
rule for value variables is straightforward; it postulates that the typing x:A can be
inferred, if x:A is declared in Γ. The support of such a term can be any well-formed
support set C. The rule for modal variables prescribes that modal variables are
always prefixed by an explicit substitution of matching support.

λ-calculus fragment. The rule for λ-abstraction is standard. It implicitly assumes
that the argument type A is well-formed in the name context Σ before the argument
type is introduced into the variable context Γ. The application rule checks both the
function and the application argument against the same support set.

Modal fragment. Just as in λ�-calculus, the rule for box checks the boxed expression
e against an empty context of value variables. This way, it insures that stages of the
language are kept separate, as variables from the early stage cannot be referenced
in the late stage.

The support that e has to match is supplied as an index to the 2 constructor. On
the other hand, the support for the whole expression box e is empty, as the expres-
sion obviously does not contain any names at the meta level. Thus, the support can
be arbitrarily weakened to any well-formed support set D. The rule for let box is
also a straightforward extension of the corresponding λ� rule. The only difference
is that the bound modal variable u from the context ∆ now has to be stored with
its support annotation.

Names fragment. The introduction form for names is νX:A. e with its correspond-
ing type A 9 B. It introduces the name X:A to be used in the expression e. It
is assumed that the type A is well-formed relative to the context Σ. The term
constructor choose is the elimination form for A 9 B. It picks a fresh name and

Names and Necessity 15

substitutes it for the bound name in the ν-abstraction. In other words, the opera-
tional semantics of the redex choose (νX:A. e) (formalized in Section 3.5) proceeds
with the evaluation of e in a run-time context in which a fresh name has been
picked for X. It is justified to do so because X is bound by ν and, by convention,
can be renamed with a fresh name. The side-condition X 6∈ fn(B[C]) of the rule for
ν-abstraction serves to enforce the typing discipline on the appearances of X in e. It
effectively limits X to appear only in subterms of e that can never be evaluated or
in subterms from which it will eventually be removed by some explicit substitution.
For example, consider the term

νX:int. νY:int.

box (let box u = box X

box v = box Y

in

〈X -> 1〉 u

end)

This term contains a substituted occurrence of X and an unused occurrence of Y ,
and is therefore well-typed (of type int 9 int 9 �int). Another way to paraphrase
this typing discipline is the following: when leaving the scope of a name X, we have
to turn the “polynomials” depending on X into functions. An illustration of this
technique is the program already presented in Example 2.

In the remainder of this section, we compare the name discipline of ν� to some
previous work on name calculi. The main motivation for the ν� treatment of names
comes from the work on FreshML (Pitts & Gabbay, 2000). In FreshML, names are
introduced into the computation by the construct new X in e which is roughly
equivalent to our choose (νX. e). We have decided on this decomposition in order
to make the types of the language follow more closely the intended meaning of the
terms, as it is the case in the simply-typed λ-calculus. In simply-typed λ-calculus,
the computational content of programs is defined by β-reduction. Generating new
names obviously has computational interpretation in ν�, and our decomposition
gives us an appropriate β-reduction to which we can ascribe this computational
content:

Σ, choose (νX:A. e) 7−→β (Σ, X:A), e

Given e : A 9 B, we also have the η-expansion:

Σ, e 7−→η Σ, νX:A. choose e

In FreshML, if X is a name appearing in the term e, then the support of e will
contain X, unless X occurs in dead code, or is otherwise abstracted using a specific
term constructor for name abstraction. The type system of FreshML insists on a
side condition similar to our rule for ν, in order to prevent unabstracted names
from escaping the scope of their introducing new.

This side condition provides significant simplifications when compared to some
previous work on names. For example, the ν-calculus of (Pitts & Stark, 1993) is
similar to FreshML, but it does not track the appearance of names in the terms.

16 A. Nanevski, F. Pfenning

This gives rise to a very powerful language, but also a very complex one. The ν-
calculus has a rather involved equational theory; in particular, it does not equate
a term with its β-reduct.

The λν-calculus (Odersky, 1994) introduces a somewhat different idea for treating
names, characterized by reductions that push the name declaration inside other
term constructors. A typical reduction rule in λν would be paraphrased in the
notation of ν� as

choose (νX. (λx. e)) 7−→ λx. (choose (νX. e)) (*)

Just like the ν-calculus, λν does not keep track of names either. As a consequence,
it does not possess the usual progress and preservation properties, because the
evaluation of well-typed expressions in λν may get stuck. The typical example is
the expression νX. X, which is well typed, but does not denote any value.

All the cited name calculi are designed around the single goal: that of providing
the operation of equality on names. In contrast to this goal, the ν�-calculus uses
names primarily as a way of describing supports, i.e., as a way of specifying the
dependency of an expression on names. In fact, names in the ν�-calculus are second-
class objects – they cannot be passed as arguments to other functions, and may not
be tested for equality.

Insisting on second-class names is somewhat restrictive when compared to the ν-
calculus of (Pitts & Stark, 1993), and λν of (Odersky, 1994). However, it allows that
names be tracked by the type system (in this respect the ν�-calculus is similar to
FreshML), which is exactly the functionality required by our application to staged
computation. Furthermore, it results in a language with rather simple and pleasing
properties. For example, in Section 5 we explore the equational theory of ν�, and
establish that the notion of logical equivalence that we define validates all the β-
reductions and η-expansions of ν�, as well as the equivalence (*) of the λν-calculus.

At this point, it may be interesting to observe that, while names in the ν�-
calculus may not be directly tested for equality, it is possible to test them for
equality indirectly. Indeed, as mentioned before, ν� may be extended with pattern-
matching against boxed syntactic expressions (Nanevski, 2002). Since the syntactic
expressions may contain names, this will provide an indirect way to test for name
equality. This extension, however, is beyond the scope of the current paper.

Example 3 This example presents the function conv for computing the convolution
of two integer lists. Convolution of lists x = [x1, . . . , xn] and y = [y1, . . . , yn], is the
list [xny1, . . . , x1yn]. We ignore the possibility that the two lists can be of different
sizes.

The function conv, which we present in Figure 4, is staged in the first argument,
so that given the list x, conv outputs a source code specialized for computing
the convolution with x. In this example, we assume the existence of a function
lift : int → �int, mapping each integer n into box n. This is a reasonable
assumption, as the base type of integers is always considered observable; in any
realistic situation, it would be possible to coerce an integer value into its own
syntactic representation. The helper function conv’ recurses over the list x to build

Names and Necessity 17

(*
* val conv : intlist ->
* �(intlist -> intlist)
*)

fun conv (xs : intlist) =
choose νTL:intlist.
(*
* conv’ : intlist -> �TLintlist
* -> �(intlist -> intlist)
*)

let fun conv’ (nil) =
λz:�TLintlist.

let box u = z
in

box (λy:intlist.
<TL -> y>u)

end

| conv’ (x::xs’) =
let val f = conv’ (xs’)

box x’ = lift x
in

λz:�TLintlist.
let box u = z
in

f (box (
let val (hd::tl) = TL
in

x’*hd :: <TL -> tl>u
end))

end
end

in
conv’ xs (box nil)

end

Fig. 4. Staged convolution.

the output code; it keeps the unfinished part of the output abstracted using the
variable z:�TLintlist.

Specializing conv to the list [3,2] results with the following program.

- conv [3,2];

val it = box (λy:intlist.

let val (hd::tl) = y

in

2*hd :: let val (hd::tl) = tl

in

3*hd :: nil

end

end) : �(intlist -> intlist)

It remains a challenge to write a program that could generate a yet more concise
specialized code – like for example the following fragment for convolution with
[3,2]:

box (λy:intlist. let val (y1::y2::tl) = y in [2*y1, 3*y2])

3.4 Structural properties

This section explores the basic theoretical properties of the ν� type system. The
lemmas developed here will be used to justify the operational semantics that we
ascribe to the ν�-calculus in Section 3.5, and will ultimately lead to the proof of
type preservation (Theorem 11) and progress (Theorem 12).

18 A. Nanevski, F. Pfenning

Lemma 5 (Structural properties of contexts)
1. Weakening Let Σ ⊆ Σ′, ∆ ⊆ ∆′ and Γ ⊆ Γ′. Then

(a) if Σ;∆; Γ ` e : A [C], then Σ′;∆′; Γ′ ` e : A [C]
(b) if Σ;∆; Γ ` 〈Θ〉 : [C] ⇒ [D], then Σ′;∆′; Γ′ ` 〈Θ〉 : [C] ⇒ [D]

2. Contraction on variables

(a) if Σ;∆; (Γ, x:A, y:A) ` e : B [C], then Σ;∆; (Γ, w:A) ` [w/x, w/y]e : B [C]
(b) if Σ;∆; (Γ, x:A, y:A) ` 〈Θ〉 : [C] ⇒ [D], then

Σ; ∆; (Γ, w:A) ` 〈[w/x, w/y]Θ〉 : [C] ⇒ [D]
(c) if Σ; (∆, u:A[D], v:A[D]); Γ ` e : B [C], then

Σ; (∆, w:A[D]); Γ ` [w/u, w/v]e : B [C].
(d) if Σ; (∆, u:A[D], v:A[D]); Γ ` 〈Θ〉 : [C1] ⇒ [C2], then

Σ; (∆, w:A[D]); Γ ` 〈[w/u, w/v]Θ〉 : [C1] ⇒ [C2].

Proof
By straightforward induction on the structure of the typing derivations.

Contraction on names does not hold in ν�. Indeed, identifying two different
names in a term may make the term syntactically ill-formed. Typical examples are
explicit substitutions. Identifying two names may make an otherwise well-formed
substitution assign two different images to the same name.

The next series of lemmas establishes the admissibility of support weakening, as
discussed in Section 3.3.

Lemma 6 (Support weakening)
Support weakening is covariant on the right-hand side and contravariant on the
left-hand side of the judgments. More formally, let C ⊆ C ′ ⊆ dom(Σ) and D′ ⊆
D ⊆ dom(Σ) be well-formed support sets. Then the following holds:

1. if Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e : A [C ′].
2. if Σ;∆; Γ ` 〈Θ〉 : [D] ⇒ [C], then Σ;∆; Γ ` 〈Θ〉 : [D] ⇒ [C ′].
3. if Σ;∆; Γ ` 〈Θ〉 : [D] ⇒ [C], then Σ;∆; Γ ` 〈Θ〉 : [D′] ⇒ [C].

Proof
The first two statements are proved by straightforward simultaneous induction on
the given derivations. The third part is proved by induction on the structure the
derivation.

The following lemma shows that the intuition behind the typing judgment for
explicit substitutions explained in Section 3.3 is indeed valid; if Θ : [C] ⇒ [D] is
applied to an expression of support C, then the result is an expression of support
D.

Lemma 7 (Explicit substitution principle)
Let Σ;∆; Γ ` 〈Θ〉 : [C] ⇒ [D]. Then the following holds:

1. if Σ;∆; Γ ` e : A [C] then Σ;∆; Γ ` {Θ}e : A [D]
2. if Σ;∆; Γ ` 〈Θ′〉 : [C1] ⇒ [C], then Σ;∆; Γ ` 〈Θ ◦Θ′〉 : [C1] ⇒ [D]

Names and Necessity 19

Proof
By simultaneous induction on the structure of the derivations. We just present the
proof of the second statement.

Given the substitutions Θ and Θ′, we split the representation of Ψ = Θ ◦Θ′ into
two disjoint sets:

Ψ′
1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}

Ψ′
2 = {X → {Θ}(Θ′(X)) | X ∈ dom(Θ′)}

Let X:A. It suffices to show that

(a) if X 6∈ dom(Ψ) and X ∈ C1, then X ∈ D

(b) if X → e ∈ Ψ, then Σ;∆; Γ ` e : A [D]

To establish (a), observe that X 6∈ dom(Ψ) implies X 6∈ dom(Θ) and X 6∈
dom(Θ′), by definition. If X 6∈ dom(Θ′) and X ∈ C1, then X ∈ C by the typing of
Θ′. If X 6∈ dom(Θ) and X ∈ C, then X ∈ D, by the typing of Θ.

To establish (b), we need to consider two cases: (1) X → e ∈ Ψ′
1 and (2) X →

e ∈ Ψ′
2. In case (1), by the typing of Θ, we immediately have Σ;∆; Γ ` e : A [D]. In

case (2), there exists a term e′ such that X → e′ ∈ Θ′ and e = {Θ}e′. By the typing
of Θ′, we have Σ;∆; Γ ` e′ : A [C], and by then by the first induction hypothesis,
Σ; ∆; Γ ` {Θ}e′ : A [D]. This concludes the proof, since e = {Θ}e′.

The following lemma establishes the hypothetical nature of the two typing judg-
ment with respect to the ordinary value variables.

Lemma 8 (Value substitution principle)
Let Σ;∆; Γ ` e1 : A [C]. The following holds:

1. if Σ;∆; (Γ, x:A) ` e2 : B [C], then Σ;∆; Γ ` [e1/x]e2 : B [C]
2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C ′] ⇒ [C], then Σ;∆; Γ ` 〈[e1/x]Θ〉 : [C ′] ⇒ [C]

Proof
Simultaneous induction on the two derivations.

The situation is not that simple with modal variables. A simple substitution of
an expression for some modal variable will not result in a syntactically well-formed
term. The reason is, as discussed before, that occurrences of modal variables are al-
ways prefixed by an explicit substitution. But, explicit substitutions in ν�-calculus
can occur only immediately before modal variables, and cannot be freely applied to
arbitrary terms1. Hence, if a substitution of the expression e for a modal variable u

is to produce a syntactically valid term, we need to follow it up with applications of
explicit name substitutions that were paired up with each occurrence of u. The def-
inition below generalizes capture-avoiding substitution of modal variables in order
to handle this problem.

1 Albeit this extension does not seem particularly hard, we omit it for simplicity.

20 A. Nanevski, F. Pfenning

Definition 9 (Modal substitution)
The capture-avoiding substitution of e for an expression variable u is defined recur-
sively as follows

[[e/u]] 〈Θ〉u = {[[e/u]]Θ}e
[[e/u]] 〈Θ〉v = 〈[[e/u]]Θ〉v u 6= v

[[e/u]] x = x

[[e/u]] X = X

[[e/u]] λx:A. e′ = λx:A. [[e/u]]e′ x 6∈ fv(e)
[[e/u]] e1 e2 = [[e/u]]e1 [[e/u]]e2

[[e/u]] box e′ = box [[e/u]]e′

[[e/u]] let box v = e1 in e2 = let box v = [[e/u]]e1 in [[e/u]]e2 v 6∈ fv(e)
[[e/u]] νX:A. e′ = νX:A. [[e/u]]e′ X 6∈ fn(e)
[[e/u]] choose e′ = choose ([[e/u]]e′)

[[e/u]] (·) = (·)
[[e/u]] (X → e′,Θ) = (X → [[e/u]]e′, [[e/u]]Θ)

Note that in the first clause 〈Θ〉u of the above definition the resulting expression is
obtained by carrying out the explicit substitution.

Lemma 10 (Modal substitution principle)
Let e1 be an expression such that Σ; ∆; · ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]); Γ ` e2 : B [D], then Σ;∆; Γ ` [[e1/u]]e2 : B [D]
2. if Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [D′] ⇒ [D], then Σ;∆; Γ ` 〈[[e1/u]]Θ〉 : [D′] ⇒ [D]

Proof
By simultaneous induction on the two derivations. We just present one case from
the proof of the first statement.

case e2 = 〈Θ〉u.

1. by derivation, A = B and Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [C] ⇒ [D]
2. by the second induction hypothesis, Σ; ∆; Γ ` 〈[[e1/u]]Θ〉 : [C] ⇒ [D]
3. by explicit substitution (Lemma 7.1), Σ;∆; Γ ` {[[e1/u]]Θ}e1 : B [D]
4. but this is exactly equal to [[e1/u]]e2

3.5 Operational semantics

We define the small-step call-by-value operational semantics of the ν�-calculus
through the judgment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The expressions e and e′

do not contain any free variables, but they may contain free names. However, we
require that e and e′ must have empty support. In other words, we only consider for
evaluation those terms whose names appear exclusively in boxed subterms, or are

Names and Necessity 21

Σ, e1 7−→ Σ′, e′
1

Σ, (e1 e2) 7−→ Σ′, (e′
1 e2)

Σ, e2 7−→ Σ′, e′
2

Σ, (v1 e2) 7−→ Σ′, (v1 e′
2)

Σ, (λx:A. e) v 7−→ Σ, [v/x]e

Σ, e1 7−→ Σ′, e′
1

Σ, (let box u = e1 in e2) 7−→ Σ′, (let box u = e′
1 in e2)

Σ, (let box u = box e1 in e2) 7−→ Σ, [[e1/u]]e2

Σ, e 7−→ Σ′, e′

Σ, choose e 7−→ Σ′, choose e′

X 6∈ dom(Σ)

Σ, choose (νX:A. e) 7−→ (Σ, X:A), e

Fig. 5. Structured operational semantics of ν�-calculus.

otherwise captured by some explicit substitution. Because free names are allowed
under these conditions, the operational semantics has to keep track of them in the
run-time name contexts Σ and Σ′. The rules of the judgment are given in Figure 5,
and the values of the language are generated by the grammar below.

V alues v ::= c | λx:A. e | box e | νX:A. e

The rules agree with the β-reductions of the calculus, and are standard except for
two important observations. First of all, the β-redex for the type constructor 9
extends the run-time context with a fresh name before proceeding. This way, we
keep track of names that have been generated in the course of evaluation, so that
we can select a fresh name when it is needed.

Even more important is to observe that names in ν� are not values. This is a
direct consequence of the fact that names in ν� can be ascribed an arbitrary type.
If a name X : A were a value, then introducing X into the computation extends
the type A with a new value. Such a dynamic type extension effectively renders the
already defined functions of domain A incomplete. Suddenly, if a function f has
domain A, then it is forced to check at run time if its argument is a name-free value
(in which case f can be applied), or if its argument is an expression containing
a name X. This is where the modal constructor � comes in — it classifies object
expressions with names, so that the above checks can be done statically during type
checking. Thus, while X:A is not a value in ν�, the expression (box X) : �XA is.

The evaluation relation is sound with respect to typing, and it never gets stuck,
as the following theorems establish.

Theorem 11 (Type preservation)
If Σ; ·; · ` e : A [] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; ·; · ` e′ : A [].

Proof
By a straightforward induction on the reduction relation, using inversion on the
typing derivation and the substitution principles.

22 A. Nanevski, F. Pfenning

Theorem 12 (Progress)
If Σ; ·; · ` e : A [], then either

1. e is a value, or
2. there exist a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof
By a straightforward case analysis of e, employing inversion on the typing deriva-
tion.

The progress theorem does not indicate that the reduct e′ and the context Σ′

are unique for each given e and Σ. In fact, they are not, as fresh names may be
introduced during the course of the computation, and two different evaluations of
one and the same term may choose the fresh names differently. The determinacy
theorem below shows, in fact, that the choice of fresh names accounts for all the
differences between two reductions of the same term. As customary, we denote by
7−→n the n-step reduction relation.

Theorem 13 (Determinacy)
If Σ, e 7−→n Σ1, e1, and Σ, e 7−→n Σ2, e2, then there exists a permutation of names
π : N → N , fixing dom(Σ), such that Σ2 = π(Σ1) and e2 = π(e1).

Proof
By induction on the length of the reductions, using the property that if Σ, e 7−→n

Σ′, e′ and π is a permutation on names, then π(Σ), π(e) 7−→n π(Σ′), π(e′). The only
interesting case is when n = 1 and e = choose (νX:A. e′). In that case, it must
be e1 = [X1/X]e′, e2 = [X2/X]e′, and Σ1 = (Σ, X1:A), Σ2 = (Σ, X2:A), where
X1, X2 ∈ N are fresh. Obviously, the involution π = (X1 X2) which swaps these
two names has the required properties.

4 Support polymorphism

It is frequently necessary to write programs that are polymorphic in the support of
their arguments, because they manipulate syntactic expressions of unknown sup-
port. A typical example is a function that recurses over an expression with binding
structure. When this function encounters a λ-abstraction, it has to place a fresh
name instead of the bound variable, and recursively continue scanning the body
of the λ-abstraction, which is itself a syntactic expression but depending on this
newly introduced name2. For such uses, we extend the ν�-calculus with a notion of
explicit support polymorphism in the style of Girard and Reynolds (Girard, 1986;
Reynolds, 1983).

To add support polymorphism to the simple ν�-calculus, we create a new syn-
tactic category of support variables, which stand for unknown support sets. Then

2 The calculus described in this document cannot support this scenario in full generality yet
because it lacks type polymorphism and type-polymorphic recursion, but support polymorphism
is a necessary step in that direction.

Names and Necessity 23

the rest of the syntax of ν� is extended to take support variables into account. We
summarize the changes in the following table.

Support variables p, q ∈ S
Supports C,D ::= . . . | C, p

Types A ::= . . . | ∀p. A

Expressions e ::= . . . | Λp. e | e [C]
Name contexts Σ ::= . . . | Σ, p

Values v ::= . . . | Λp. e

Before a support variable can be used, it has to be declared in the name context
Σ. For the new definition of Σ, we retain the same well-formedness conditions as
before. In particular, a support variable p ∈ Σ may only be used to the right of its
declaration. It is important that supports themselves are allowed to contain support
variables, to express the situation in which only a portion of a support set is known.
Consequently, the function fn(−) is updated to return the set of names and support
variables appearing in its argument. The family of types is extended with the type
∀p. A expressing universal support quantification. Its introduction form is Λp. e,
which binds a support variable p in the expression e. This Λ-abstraction will also
be a value in the extended operational semantics. The corresponding elimination
form is the application e [C] whose meaning is to instantiate the unknown support
set abstracted in e with the provided support set C.

The typing judgment has to be instrumented with new rules for typing support-
polymorphic abstraction and application.

(Σ, p);∆; Γ ` e : A [C] p 6∈ C

Σ; ∆; Γ ` Λp. e : ∀p. A [C]

Σ; ∆; Γ ` e : ∀p. A [C]

Σ; ∆; Γ ` e [D] : ([D/p]A) [C]

The ∀-introduction rule requires that the bound variable p does not escape the
scope of the constructors ∀ and Λ which bind it. In particular it must be p 6∈ C.
The convention also assumes implicitly that p 6∈ Σ, before it can be added. The
rule for ∀-elimination substitutes the argument support set D into the type A. It
assumes that D is well-formed relative to the context Σ; that is, D ⊆ dom(Σ). The
operational semantics for the new constructs is also not surprising.

Σ, e 7−→ Σ′, e′

Σ, (e [C]) 7−→ Σ′, (e′ [C]) Σ, (Λp. e) [C] 7−→ Σ, [C/p]e

The extended language satisfies the following substitution principle.

Lemma 14 (Support substitution principle)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substi-
tuting D for p.

Then the following holds.

1. if Σ;∆; Γ ` e : A [C], then (Σ1,Σ′
2);∆

′; Γ′ ` e′ : A′ [C ′]
2. if Σ;∆; Γ ` 〈Θ〉 : [C1] ⇒ [C2], then (Σ1,Σ′

2);∆
′; Γ′ ` 〈Θ′〉 : [C ′

1] ⇒ [C ′
2]

24 A. Nanevski, F. Pfenning

Proof
By simultaneous induction on the two derivations. We present one case from the
proof of the second statement.

case Θ = (X → e,Θ1), where X:A ∈ Σ.
1. by derivation, Σ;∆; Γ ` e : A [C2] and Σ;∆; Γ ` Θ1 : [C1 \ {X}] ⇒ [C2]
2. by first induction hypothesis, (Σ1,Σ′

2);∆
′; Γ′ ` e′ : A′ [C ′

2]
3. by second induction hypothesis, (Σ1,Σ′

2);∆
′; Γ′ ` Θ′

1 : [(C1\{X})′] ⇒ [C ′
2]

4. because (C ′
1 \ {X}) ⊆ (C1 \ {X})′, by support weakening (Lemma 6.3),

(Σ1,Σ′
2);∆

′; Γ′ ` Θ′
1 : [C ′

1 \ {X}] ⇒ [C ′
2]

5. result follows from (2) and (4) by the typing rule for non-empty substitu-
tions

The structural properties presented in Section 3.4 readily extend to the new
language with support polymorphism. The same is true of type preservation (The-
orem 11) and progress (Theorem 12) whose additional cases involving support ab-
straction and application are handled using the above Lemma 14.

Example 4 In a support-polymorphic ν�-calculus we can slightly generalize the
program from Example 2 by pulling out the helper function exp’ and parametrizing
it over the exponentiating expression. In the following program, we use [p] in the
function definition as a concrete syntax for Λ-abstraction of a support variable p.

fun exp’ [p] (e : �pint) (n : int) : �pint =

if n = 0 then box 1

else

let box u = exp’ [p] e (n - 1)

box w = e

in

box (u * w)

end

fun exp (n : int) : �(int -> int) =

choose (νX : int.

let box w = exp’ [X] (box X) n

in

box (λx:int. 〈X -> x〉 w)

end)

- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

Example 5 As an example of a more realistic program we present the regular ex-
pression matcher from (Davies & Pfenning, 2001) and (Davies, 1996). The example
assumes the declaration of the datatype of regular expressions:

Names and Necessity 25

(*
* val acc1 : regexp -> (char list -> bool) ->
* char list -> bool
*)

fun acc1 (Empty) k s = k s

| acc1 (Plus (e1, e2)) k s =
(acc1 e1 k s) orelse (acc1 e2 k s)

| acc1 (Times (e1, e2)) k s =
(acc1 e1 (acc1 e2 k)) s

| acc1 (Star e) k s =
(k s) orelse

acc1 e (λs’ =>
if s = s’ then false
else acc1 (Star e) k s’)

| acc1 (Const c) k s =
case s
of nil => false
| (x::l) =>

((x = c) andalso (k s))

(*
* val accept1 : regexp -> char list -> bool
*)

fun accept1 e s = acc1 e null s

Fig. 6. Unstaged regular expression matcher.

datatype regexp =

Empty

| Plus of regexp * regexp

| Times of regexp * regexp

| Star of regexp

| Const of char

We also assume a primitive predicate null : char list -> bool for testing if the
input list of characters is empty. Figure 6 presents an ordinary ML implementation
of the matcher, and λ� and λ© versions can be found in (Davies & Pfenning, 2001;
Davies, 1996). The helper function acc1 in Figure 6 takes a regular expression e, a
continuation function k, and an input string s (represented as a list of characters).
The function attempts to match a prefix of s to the regular expression e. If the
matching succeeds, then the remainder of s is passed to the continuation k to
determine if s is accepted or not.

We now want to use the ν�-calculus to stage the program from Figure 6 so
that it can be specialized with respect to a given regular expression. For that pur-
pose, it is useful to view the helper function acc1 from Figure 6 as a code gen-
erator. Indeed, acc1 may be seen as follows: it first generates code for matching
a string against a regular expression e, and then appends k to that code. This is
the main idea behind the function acc, and the ν� program in Figure 7. In this
program, we use the name S for the input string to be matched by the code that

26 A. Nanevski, F. Pfenning

(*
* val accept : regexp ->
* �(char list -> bool)
*)

fun accept (e : regexp) =
choose νS : char list.

(*
* acc : regexp -> ∀p.(�S,pbool
* -> �S,pbool)
*)

let fun acc (Empty) [p] k = k

| acc (Plus (e1, e2)) [p] k =
choose νJOIN : char list

-> bool.
let box u1 =

acc e1 [JOIN] box(JOIN S)
box u2 =
acc e2 [JOIN] box(JOIN S)

box kk = k
in

box(let fun join t =
<S->t>kk

in
<JOIN->join>u1

orelse
<JOIN->join>u2

end)
end

| acc (Times (e1, e2)) [p] k =
acc e1 (acc e2 k)

| acc (Star e) [p] k =
choose νT : char list
choose νLOOP : char list

-> bool.
let box u =

acc e [T, LOOP]
box(if T = S then false

else LOOP S)
box kk = k

in
box(let fun loop t =

<S->t>kk
orelse

<LOOP->loop,
T->t,S->t>u

in
loop S

end)
end

| acc (Const c) [p] k =
let box cc = lift c

box kk = k
in

box(case S
of (x::xs) =>

(x = cc) andalso
<S->xs>kk

| nil => false)
end

box code = acc e [] box (null S)
in

box (λs:char list. <S->s>code)
end

Fig. 7. Regular expression matcher staged in the ν�-calculus.

acc generates. The continuation k is not a function anymore, but code to be at-
tached at the end of the generated result. We want code k to contain further names
standing for the yet unbound variables, and hence the support-polymorphic typing
acc : regexp -> ∀p.(�S,pbool -> �S,pbool). The support polymorphism pays
off when generating code for alternation Plus(e1, e2) and iteration Star(e). For
example, observe in the alternation case that the generated code does not duplicate
the “continuation” code of k. Rather, k is emitted as a separate function which is
a joining point for the computation branches corresponding to e1 and e2. Similarly,
in the case of iteration, we set up a loop in the output code that would attempt
zero or more matchings against e. The support polymorphism of acc enables us to
produce code in chunks without knowing the exact identity of the above-mentioned
joining or looping points. Once all the parts of the output code are generated, we
just stitch them together by means of explicit substitutions.

At this point, it may be illustrative to trace the execution of the program on a
concrete input. Figure 8 presents the function calls and the intermediate results that
occur when the ν� matcher is applied to the regular expression Star(Empty). The
resulting specialized program is a function accepting only the empty string. This

Names and Necessity 27

� accept (Star (Empty))

� acc (Star(Empty)) [] (box (null S))

� acc Empty [T, LOOP] (box (if T = S then false
else LOOP S))

� box (if T = S then false else LOOP S)

� box (let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop S

end)

� box (λs. let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop s

end)

Fig. 8. Example execution trace for a regular expression matcher in ν�. Function calls
are marked by � and the corresponding return results are marked by an aligned �.

function does not contain variable-for-variable redexes, thanks to the features and
expressiveness of ν�, but it unnecessarily tests if t = t. Removing these extraneous
tests requires some further examination and preprocessing of e, but the thorough
description of such a process is beyond our scope. We refer to (Harper, 1999) for
an insightful analysis.

5 Logical relations for program equivalence

In this section we develop the notion of equivalence between programs in the core
ν�-calculus (without recursion and support polymorphism), with which we estab-
lish the intensional properties of the modal operator, and justify our intuitive view
of �CA as classifying syntactic expressions.

To that end, we consider two notions of equivalence. The first is intensional, or
syntactic, by which two programs are equal if and only if their abstract syntax rep-
resentations are the same; the programs may only differ in the names of their bound
variables, and possibly also in the representation of their explicit substitutions. On
the other hand, two programs are extensionally equivalent if, in some appropriate
sense which we will define shortly, they produce the same results. Of course, if two
expression are intensionally equivalent, they should also be extensionally equivalent.

One of the questions that we explore in this section is an interplay between in-
tensional and extensional equivalences of programs. The ν�-calculus is particularly
appropriate for investigating and combining the two notions, because we can use

28 A. Nanevski, F. Pfenning

the modal constructs as explicit boundaries between the different notions of equiv-
alence. In particular, we can treat values of modal types as being observable, i.e.,
amenable to inspection of their structure. Then two general expressions of modal
type will be extensionally equivalent if and only if their values are intensionally
equivalent. We are also interested in exploring the properties of the calculus when
only extensional equivalence is used, as the present formulation of ν� does not
contain any constructs for inspecting the structure of modal values. In both of
these cases, we will establish that our formulation of ν� is purely functional, in
the sense that it satisfies the logical equivalences arising from the β-reductions
and η-expansions of the language. The development presented here will follow the
methodology of logical relations, as used, for example, in other works concerned
with names in functional programming (Pitts & Stark, 1993). However, the de-
tails of our approach are different because we want to make the identity of locally
declared names irrelevant for the purposes of expression comparison.

To motivate our approach, we first present several examples of intensional and ex-
tensional equivalences that we would like our programs to satisfy. We use the symbol
∼= for extensional equivalence, and = for intensional equivalence. The equivalences
will always be considered at a certain type and support.

Example 6 In the examples below, we assume that X is a name of integer type.

1. (λx:int. x + 1) 2 ∼= (λx:int. x + 2) 1 ∼= 3 : int, because all three terms evaluate
to 3; however, neither of them is intensionally equivalent to any other.

2. (λx:int. x+X) 2 ∼= 2+X ∼= X+2 : int [X], because whenever X is substituted
by e (and x is not free in e), the three terms evaluate to the same value.

3. (λx:�X int. 2) (box X) ∼= (1+1) : int, because both terms evaluate to 2. Notice
that X does not appear in the second term, nor in the type and support of
comparison.

4. box (X+1) ∼= box (X+1) : �X int, because X+1 = X+1 : int [X] intensionally,
as syntactic expressions.

As illustrated by this example, in our equivalence relations we should distinguish
between two different kinds of names: (1) names which may appear in either of
the compared terms, as well as their type and support (Example 6, cases 2 and
4), and (2) names which are local to some of the terms (case 3). The later kind of
names should not influence the equivalence relations – these names could freely be
renamed.

The described requirement leads to the following formulation of our relations.
The judgment for intensional equivalence compares two expressions for syntactic
equality modulo α-equivalence

e1 = e2,

and the judgment for extensional equivalence has the form

Σ; ∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C].

Names and Necessity 29

In this judgment, we assume that Σ is a well-formed name context and that ∆, Γ,
Σ1, Σ2, A and C are all well-formed with respect to Σ. Intuitively, the context Σ
declares the names that matter when comparing two terms; hence the requirement
that ∆, Γ, A and C contain only the names from Σ. On the other hand, the contexts
Σ1 and Σ2 declare the names that may appear in e1 and e2, but these names are,
in some sense, irrelevant. They will be subject to renaming, as they do not appear
in ∆, Γ, A or C.

For the purposes of this section, we further restrict our considerations of inten-
sional equivalence to only modal terms which are themselves part of the simply
typed fragment of ν�. In other words, we introduce new categories of simple types
and simple terms as follows:

1. a type A is simple iff A = b, or A = A1 → A2 or A = A1 9 A2 where A1, A2

are simple types
2. a term e is simple if it does not contain the modal constructs box and let box.

Then we only allow modal types �CA if A is simple, and modal terms box e if e is
simple. We justify this restriction by a desire to avoid impredicativity arising in a
language that can intensionally analyze the whole set of its expressions. In fact, it
seems rather improbable that a language with such strong intensional capabilities
can be designed at all. Indeed, we added names and modal constructs in order
to represent syntax with free variables. But, the modal constructs can also bind
variables, so a new category of names and modalities seems to be required in order
to analyze these new bindings, and then a new category of names and modalities
is required for the bindings by the previous class of modalities, etc. Thus, here
we limit the intensional equivalence to the simply-typed fragment, and leave the
possible extensions to larger fragments for future work.

The next step in the development is to formally define the notion of extensional
equivalence. As already mentioned before, the idea is that two expressions are con-
sidered extensionally equivalent, if and only if they evaluate to the same value. The
values that we will consider for comparison are the values at base type b of natural
numbers, and values at modal types �CA which are closed simple terms of type A

and support C, which we compare for intensional equivalence.
The standard approach in the development of logical relations starts with a bit

different premise. Rather than evaluate two expressions and check if their values
are the same, we need to check if the values are extensionally equivalent. The later
notion is much more permissive, which is particularly important when comparing
values of functional types. Indeed, two functions ought to be equivalent not only if
they are the same, but also if they map related arguments to related results.

Thus, we need to define two mutually recursive judgments: one for the exten-
sional equivalence of (closed) expressions, and another for extensional equivalence
of values. Our judgment for extensional equivalence of expressions has the form

Σ ` Σ1. e1
∼= Σ2. e2 : A [C]

and the judgment for extensional equivalence of values has the form

Σ ` Σ1. v1 ∼ Σ2. v2 : A

30 A. Nanevski, F. Pfenning

The first is defined by induction on the structure of A and C, by appealing to the
second judgment when the support C is empty. The second is defined by induction
on the structure of the type A.

Σ ` Σ1. e1
∼= Σ2. e2 : A [] iff (Σ,Σ1), e1 7−→∗ (Σ,Σ′

1), v1, and
(Σ,Σ2), e2 7−→∗ (Σ,Σ′

2), v2, and Σ `
Σ′

1. v1 ∼ Σ′
2. v2 : A

Σ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ ` Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 : A [] for
any Σ′

i ⊇ Σi, such that Σ ` Σ′
1. σ1

∼=
Σ′

2. σ2 [C]
Σ ` Σ1. v1 ∼ Σ2. v2 : b iff v1 = v2 ∈ N
Σ ` Σ1. v1 ∼ Σ2. v2 : A → B iff vi = λx:A. ei and Σ ` Σ′

1. [v′1/x]e1
∼=

Σ′
2. [v2/x]e2 : B, for any Σ′

i ⊇ Σi, such
that Σ ` Σ′

1. v′1 ∼ Σ′
2. v′2 : A

Σ ` Σ1. v1 ∼ Σ2. v2 : �CA iff vi = box ei and e1 = e2 and Σ `
Σ1. e1

∼= Σ2. e2 : A [C]
Σ ` Σ1. v1 ∼ Σ2. v2 : A 9 B iff vi = νX:A. ei and Σ `

(Σ1, X:A). e1
∼= (Σ2, X:A). e2 : B [],

where X is a fresh name.

Here we abbreviated:

Σ ` Σ1. σ1
∼= Σ2. σ2 [C] iff σ1, σ2 are explicit substitutions for the names

in C, such that Σ ` Σ1. σ1(X) ∼= Σ2. σ2(X) :
B [] for any name X ∈ C such that X:B ∈ Σ.

The most important parts of the above definition are the cases defining the
relation for values at functional, modal types and 9 types. The definition for values
at functional types formalizes the intuition that we outlined before: two functions
are related if they map related arguments to related results. The definition for values
at modal types contrasts the notions of intensional vs. extensional. We consider
two values box e1 and box e2 extensionally related iff the expressions e1 and e2 are
intensionally related. Observe, however, that in the definition we actually insist on
the additional requirement that e1 and e2 be extensionally related as well. This
extra clause is added because, at this stage of development, it is not obvious that
intensional equivalence of expressions implies their extensional equivalence. For that
matter, it is not obvious at this point that that the two new relations are indeed
equivalences at all. We will prove both of these properties in due time, but we need
to start the development with a sufficiently strong definition. The definition for
values νX. e1 and νX. e2 at the A 9 B type generates a fresh name X, and then
tests e1 and e2 for equivalence in the local contexts extended with X.

Notice that the above definitions are well-founded. In order to establish this fact,
let us define ordΣ(X) to be the number of names in Σ on which X depends, and
which thus must appear to the left of X in Σ. This includes the names that appear
in the type of X, the names that appear in the types of these names, etc. The

Names and Necessity 31

definition of ordΣ(X) is then invariant of any dependence preserving reordering of
Σ.

In a similar manner, we define ordΣ(A[C]) to be the number of names in Σ on
which the type A and support C depend. These are the names that themselves
appear in the type A or support C, or in the types of these names, etc. Because
a type of a name cannot depend on that name itself, it is clear that if X:A ∈ Σ,
then ordΣ(A) = ordΣ(X). Also, if the name X appears in the type A or support
C, then ordΣ(X) ≤ ordΣ(A[C])−1. This holds because A[C] depends on X and all
the names on which X itself depends.

We can now order the pairs of type A and support C as follows. The pair A[C]
is smaller than B[D] iff

• ordΣ(A[C]) < ordΣ(B[D]), or
• ordΣ(A[C]) = ordΣ(B[D]), but the number of type constructors of A is smaller

than the number of type constructors of B.

It is now easy to observe that each inductive step in the definitions of the relations
strictly decreases this ordering. Indeed, the relation on values preserves the number
of names in the type and support, but makes inductive references using types of
strictly smaller structure. The relation on expressions with non-empty support C

relies on explicit substitutions over the names in C. But for each name X ∈ C with
X:B ∈ Σ, it is clear that ordΣ(B) = ordΣ(X) ≤ ordΣ(A[C])− 1.

We next extend our relations to handle expressions with free variables. We start
with expressions of empty support.

Σ; ·; Γ ` Σ1. e1
∼= Σ2. e2 : A [] iff Σ ` Σ′

1. [ρ1/Γ]e1
∼= Σ′

2. [ρ2/Γ]e2 :
A [] for any Σ′

i ⊇ Σi, such that Σ `
Σ′

1. ρ1 ∼ Σ′
2. ρ2 : Γ

In this definition, ρ1, ρ2 are arbitrary substitutions of values for variables in Γ, and
we write:

Σ ` Σ1. ρ1 ∼ Σ2. ρ2 : Γ iff Σ ` Σ1. ρ1(x) ∼ Σ2. ρ2(x) : A whenever
x:A ∈ Γ

In the next step, we consider expressions of arbitrary support.

Σ; ·; Γ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ ` Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 :
A [] for any Σ′

i ⊇ Σi, such that Σ; Γ `
Σ′

1. σ1
∼= Σ′

2. σ2 [C]

where σ1, σ2 are explicit substitutions, and

Σ; Γ ` Σ1. σ1
∼= Σ2. σ2 [C] iff Σ; ·; Γ ` Σ1. σ1(X) ∼= Σ2. σ2(X) : B [] for

any name X ∈ C such that X:B ∈ Σ

Finally, the relation is extended with the context ∆ as follows.

32 A. Nanevski, F. Pfenning

Σ; ∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ ` Σ′

1. [[δ1/∆]]e1
∼=

Σ′
2. [[δ2/∆]]e2 : A [C] for any Σ′

i ⊇ Σi,
such that Σ ` Σ′

1. δ1 = Σ′
2. δ2 : ∆

where δ1, δ2 are arbitrary substitutions of expressions for modal variables in ∆, and

Σ ` Σ1. δ1 = Σ2. δ2 : ∆ iff δ1(u) = δ2(u) and Σ ` Σ1. δ1(u) ∼=
Σ2. δ2(u) : A [C] whenever u:A[C] ∈
∆

The above definitions are well-founded, as each one refers only to already intro-
duced definitions. For the sake of completeness, we also parametrize the intensional
relation = with the context ∆, as this will be needed in the statement of Lemma 20.

Σ; ∆ ` Σ1. e1 = Σ2. e2 : A [C] iff [[δ1/∆]]e1 = [[δ2/∆]]e2 for any Σ′
i ⊇ Σi,

such that Σ ` Σ′
1. δ1 = Σ′

2. δ2 : ∆

Example 7 Let Σ = X:int. Then the following are valid instances of intensional
equivalence.

1. Σ; · ` X + 1 = X + 1 : int [X]
2. Σ;u:int[X] ` (Y :int). 〈X → 1, Y → 2〉u = 〈X → 1〉u : int []

Example 8 Consider the simple expression e such that Σ;∆; Γ ` choose (νX:B. box e) :
�int. In such a case, it is easy to see that Σ;∆; Γ ` choose (νX:B. box e) ∼=
choose (νX:B. box e) : �int.

First notice that we can assume Γ to be empty as, by typing, e cannot contain
variables from Γ. We can assume that ∆ is empty as well; this will not result in
any loss of generality because the relation of intensional equivalence is closed with
respect to modal substitutions δ.

The above relation holds if and only if the two instances of the expression
choose (νX:B. box e) evaluate to related values. But, indeed they do, as the partic-
ular choice of X in the evaluation of the expressions does not influence e. In fact,
because e is a simple expression, the only names that may appear in box e are the
ones appearing in its type. In this case, the type in question is �int, and it does
not contain any names.

Because of reflexivity of α-equivalence, e = e. By determinacy of evaluation, it is
also the case that Σ ` e ∼= e : int. Thus, we can conclude that Σ ` box e ∼= box e :
�int.

Lemma 15 (Name permutation)
Let R1 : Σ1 → Σ′

1 and R2 : Σ2 → Σ′
2 be bijections where Σ′

1 and Σ′
2 are well-formed

in Σ. Then:

1. if Σ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ ` Σ′

1. R1 e1
∼= Σ′

2. R2 e2 : A [C]

Names and Necessity 33

2. if Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ ` Σ′
1. R1 v1 ∼ Σ′

2. R2 v2 : A

Proof
By induction on the structure of the definition of the two judgments.

For the first induction hypothesis, we start by considering the base case when
C is empty. In this case, if (Σ,Σi), ei 7−→∗ (Σ,Σi,Ψi), vi, then by parametricity of
the evaluation judgment, we also have (Σ,Σ′

i), ei 7−→∗ (Σ,Σ′
i,Ψi), Ri vi. Then we

appeal to the second induction hypothesis, to derive that Σ ` (Σ′
1,Ψ1). R1 v1 ∼

(Σ′
2,Ψ2). R2 v2 : A. The result is easily extended to the case when C is not empty.
For the second induction hypothesis, the only interesting case is when A = �DB,

which is proved by appealing to the first induction hypothesis, and the fact that
name permutation does not change the = relation on simple terms.

Lemma 16 (Name localization)
If C is a well-formed support in Σ, then the following holds:

1. (Σ,Σ′) ` Σ1. e1
∼= Σ2. e2 : A [C] if and only if Σ ` (Σ′,Σ1). e1

∼= (Σ′,Σ2). e2 :
A [C]

2. (Σ,Σ′) ` Σ1. v1 ∼ Σ2. v2 : A if and only if Σ ` (Σ′,Σ1). v1 ∼ (Σ′,Σ2). v2 : A

Proof
By induction on the structure of the definition of the two judgments.

For the first induction hypothesis, we start by considering the case when C is
empty. Let (Σ,Σ′,Σi), ei 7−→∗ (Σ,Σ′,Ψi), vi, and (Σ,Σ′) ` Ψ1. v1 ∼ Ψ2. v2 : A.
By second induction hypothesis, Σ ` (Σ′,Ψ1). v1 ∼ (Σ′,Ψ2). v2 : A, and thus also
Σ ` (Σ′,Ψ1). e1

∼= (Σ′,Ψ2). e2 : A. The opposite direction is symmetric. The result
is easily extended to the case of non-empty C.

For the second induction hypothesis, we present the case when A = A1 → A2,
and vi = λx:A1. ei. In this case, consider Σ′

i ⊇ Σi, such that Σ ` (Σ′,Σ′
1). v′1 ∼

(Σ′,Σ′
2). v′2 : A1. We need to show Σ ` (Σ′,Σ′

1). [v′1/x]e1
∼= (Σ′,Σ′

2). [v′2/x]e2 : A2.
By induction hypothesis at type A1, we have that (Σ,Σ′) ` Σ′

1. v′1 ∼ Σ′
2. v′2 : A1,

and therefore (Σ,Σ′) ` Σ′
1. [v′1/x]e1

∼= Σ′
2. [v′2/x]e2 : A2. By induction hypoth-

esis at type A2, we can push Σ′ back inside to get Σ ` (Σ′,Σ′
1). [v′1/x]e1

∼=
(Σ′,Σ′

2). [v′2/x]e2 : A2. The opposite direction is symmetric.

Lemma 17 (Weakening)
Let Σ′ ⊇ Σ, Σ′

1 ⊇ Σ1 and Σ′
2 ⊇ Σ2, so that Σ′

1 and Σ′
2 are well-formed with respect

to Σ′. Then the following holds:

1. if Σ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ′ ` Σ′

1. e1
∼= Σ′

2. e2 : A [C]
2. if Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ′ ` Σ′

1. v1 ∼ Σ′
2. v2 : A

Proof
By name localization (Lemma 16), it suffices to consider Σ′ = Σ. The proof is by
simultaneous induction on the definition of the two judgments.

For the first statement, we only consider the case when C is empty, as the result
is easily generalized to non-empty C. In this case, let (Σ,Σi), ei 7−→∗ (Σ,Σi,Ψi), vi,
such that Σ ` (Σ1,Ψ1). v1 ∼ (Σ2,Ψ2). v2 : A. By name permutation, we could as-
sume that Ψ1,Ψ2 are disjoint from Σ′

1,Σ
′
2, so that also (Σ,Σ′

i), ei 7−→∗ (Σ,Σ′
i,Ψi), vi.

34 A. Nanevski, F. Pfenning

Then by second induction hypothesis, Σ ` (Σ′
1,Ψ1). v1 ∼ (Σ′

2,Ψ2). v2 : A, and
therefore Σ ` Σ′

1. e1
∼= Σ′

2. e2 : A.
For the second induction hypothesis, the only interesting case is when A =

A′ → A′′, and vi = λx:A′. ei. In this case, consider Σ′′
i ⊇ Σ′

i, such that Σ `
Σ′′

1 . v′′1 ∼ Σ′′
2 . v′′2 : A′. By definition, Σ ` Σ′′

1 . [v′′1/x]e1
∼= Σ′′

2 . [v′′2/x]e2 : A′′, simply
because Σ′′

i ⊇ Σ′
i ⊇ Σi.

Lemma 18 (Symmetry and transitivity)
1. If Σ ` Σ1. e1

∼= Σ2. e2 : A [C], then Σ ` Σ2. e2
∼= Σ1. e1 : A [C].

2. If Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ ` Σ2. v2 ∼ Σ1. v1 : A.
3. If Σ ` Σ1. e1

∼= Σ2. e2 : A [C], and Σ ` Σ2. e2
∼= Σ3. e3 : A [C], then

Σ ` Σ1. e1
∼= Σ3. e3 : A [C]

4. If Σ ` Σ1. v1 ∼ Σ2. v2 : A, and Σ ` Σ2. v2 ∼ Σ3. v3 : A, then Σ ` Σ1. e1 ∼
Σ3. v3 : A

Proof
Symmetry is obvious, so we present the proofs for transitivity. The proofs are by
induction on the definition of the judgments. For transitivity of the relation on
expressions, we only consider the case when the supports Ci are empty, as it is easy
to generalize to the case of non-empty supports.

By assumptions, (Σ,Σ1), e1 7−→ (Σ,Ψ1), v1, and (Σ,Σ2), e2 7−→ (Σ,Ψ2), v2, such
that Σ ` Ψ1. v1 ∼ Ψ2. v2 : A. Also, (Σ,Σ2), e2 7−→ (Σ,Ψ′

2), v
′
2, and, (Σ,Σ3), e3 7−→

(Σ,Ψ3), v3, such that Σ ` Ψ′
2. v′2 ∼ Ψ3. v3 : A.

By determinacy of evaluation, we know that there is a permutation of names
π such that Ψ2 = π(Ψ′

2) and v2 = π(v′2), and thus by Lemma 15, Σ ` Ψ2. v2 ∼
Ψ3. v3 : A. Then, by the last induction hypothesis, Σ ` Ψ1. v1 ∼ Ψ3. v3 : A, and
therefore, Σ ` Σ1. e1 ∼ Σ3. e3 : A.

For the relation on values, we only present the case A = A1 → A2 and vi =
λx:A1. ei. In this case, let Σ′

1 ⊇ Σ1 and Σ′
3 ⊇ Σ3, such that Σ ` Σ′

1. v′1 ∼ Σ′
3. v′3 :

A1. By name permutation, we can assume that Σ′
3 and Σ2 are disjoint; otherwise, we

can just rename the conflicting names in Σ2. By symmetry and transitivity at type
A1, we obtain Σ ` Σ′

3. v′3 ∼ Σ′
3. v′3 : A1. By weakening, Σ ` Σ′

1. v′1 ∼ Σ2,Σ′
3. v′3 and

Σ ` Σ2,Σ′
3. v′3 ∼ Σ′

3. v′3; therefore Σ ` Σ′
1. [v′1/x]e1

∼= (Σ2,Σ′
3). [v′3/x]e2 : A2 and

Σ ` (Σ2,Σ′
3). [v′3/x]e2

∼= Σ′
3. [v′3/x]e3 : A2. Finally, by first induction hypothesis at

type A2, we get Σ ` Σ′
1. [v′1/x]e1

∼= Σ′
3. [v′3/x]e3 : A2.

It is simple now to extend the above results to logical relations over expressions
with free variables. The following lemma restates the relevant properties.

Lemma 19
1. (Name permutation) Let R1 : Σ1 → Σ′

1 and R2 : Σ2 → Σ′
2 be bijections where

Σ′
1 and Σ′

2 are well-formed in Σ. If Σ; ∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], then

Σ; ∆; Γ ` Σ′
1. R1 e1

∼= Σ′
2. R2 e2 : A [C].

2. (Name localization) Let ∆, Γ, A, C are well-formed in Σ. Then (Σ,Σ′);∆; Γ `
Σ1. e1

∼= Σ2. e2 : A [C] if and only if Σ; ∆; Γ ` (Σ′,Σ1). e1
∼= (Σ′,Σ2). e2 :

A [C].

Names and Necessity 35

3. (Weakening) Let Σ′ ⊇ Σ, and Σ′
1 ⊇ Σ1, Σ′

2 ⊇ Σ2, ∆′ ⊇ ∆, Γ′ ⊇ Γ and
C ′ ⊇ C, so that Σ′

1,Σ
′
2,∆

′, Γ′ and C ′ are well-formed with respect to Σ′. If
Σ; ∆; Γ ` Σ1. e1

∼= Σ2. e2 : A [C], then Σ′;∆′; Γ′ ` Σ′
1. e1

∼= Σ′
2. e2 : A [C ′].

4. (Symmetry) If Σ; ∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ; ∆; Γ ` Σ2. e2

∼=
Σ1. e1 : A [C].

5. (Transitivity) If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], and Σ; ∆; Γ ` Σ2. e2

∼=
Σ3. e3 : A [C], then Σ;∆; Γ ` Σ1. e1

∼= Σ3. e3 : A [C]

Proof
The proofs proceed in a straightforward manner, following the definition of the
judgment on open expressions. First we consider the case when Γ is non-empty, but
both C and ∆ are empty. Then we generalize to the case of non-empty C, before
finally a non-empty context ∆ is considered. Just as in the definition of the logical
relations, it is easy to check that in each step of the proof we only rely on the
previously established results.

To complete the logical relations argument, we need to define the notion of exten-
sional relation on the remaining syntactic category of ν� – the category of explicit
substitutions. This definition will be utilized in the statement and the proof of
Lemma 20 to establish that term constructors of ν� (in particular, the constructs
for explicit substitutions and modal variables) preserve extensional equivalence.

The judgment for logical relation of extensional equivalence between two explicit
substitutions Θ1 and Θ2 has the form

Σ; ∆; Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [C] ⇒ [D]

and is defined by the following clauses:

Σ; ·; Γ ` Σ1. 〈Θ1〉 ∼=
Σ2. 〈Θ2〉 : [C] ⇒ [D]

iff Σ; ·; Γ ` Σ′
1. {Θ1}e1

∼= Σ′
2. {Θ2}e2 : A [D],

for any Σ′
i ⊇ Σi, such that Σ; ·; Γ `

Σ′
1. e1

∼= Σ′
2. e2 : A [C]

Σ; ∆; Γ ` Σ1. 〈Θ1〉 ∼=
Σ2. 〈Θ2〉 : [C] ⇒ [D]

iff Σ; ·; Γ ` Σ′
1. 〈[δ1/∆]Θ1〉 ∼=

Σ′
2. 〈[δ2/∆]Θ2〉 : [C] ⇒ [D] for any

Σ′
i ⊇ Σi, such that Σ ` Σ′

1. δ1 = Σ′
2. δ2 :

∆

As in the case of previous judgments, the relation ∼= on explicit substitutions sat-
isfies the properties of name permutation, name localization, weakening, symmetry
and transitivity.

Lemma 20
Logical relation is preserved by all the expression constructors of ν�, except box.
The constructor box has a stronger requirement that the expressions are related
intensionally. More precisely:

1. (Σ, X:A);∆; Γ ` Σ1. X ∼= Σ2. X : A [X, C]
2. Σ;∆; (Γ, x:A) ` Σ1. x ∼= Σ2. x : A [C]

36 A. Nanevski, F. Pfenning

3. if Σ; (∆, u:A[D]); Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [D] ⇒ [C], then
Σ; (∆, u:A[D]); Γ ` Σ1. 〈Θ1〉u ∼= Σ2. 〈Θ2〉u : A [C]

4. if Σ; ∆; (Γ, x:A) ` Σ1. e1
∼= Σ2. e2 : B [C], then Σ; ∆; Γ ` Σ1. λx:A. e1

∼=
Σ2. λx:A. e2 : A → B [C]

5. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A → B [C] and Σ; ∆; Γ ` Σ1. e′1

∼= Σ2. e′2 : A [C],
then Σ;∆; Γ ` Σ1. e1 e′1

∼= Σ2. e2 e′2 : B [C]
6. If Σ;∆ ` Σ1. e1 = Σ2. e2 : A [C], and Σ; ∆; · ` Σ1. e1

∼= Σ2. e2 : A [C], then
Σ; ∆; Γ ` Σ1. box e1

∼= Σ2. box e2 : �CA [D]
7. if Σ;∆; Γ ` Σ1. e1

∼= Σ2. e2 : �DA [C] and Σ; (∆, u:A[D]); Γ ` Σ1. e′1
∼=

Σ2. e′2 : B [C], then
Σ; ∆; Γ ` Σ1. let box u = e1 in e′1

∼= Σ2. let box u = e2 in e′2 : B [C]
8. if Σ;∆; Γ ` (Σ1, X:A). e1

∼= (Σ2, X:A). e2 : B [C], then
Σ; ∆; Γ ` Σ1. νX:A. e1

∼= Σ2. νX:A. e2 : A 9 B [C]
9. if Σ;∆; Γ ` Σ1. e1

∼= Σ2. e2 : A 9 B [C] then Σ; ∆; Γ ` Σ1. choose e1
∼=

Σ2. choose e2 : B [C]
10. Σ;∆; Γ ` Σ1. 〈 〉 ∼= Σ2. 〈 〉 : [C] ⇒ [D] if C ⊆ D

11. if Σ; ∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [D], and Σ;∆; Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 :

[C \X] ⇒ [D], and X:A ∈ Σ, then
Σ; ∆; Γ ` Σ1. 〈X → e1,Θ1〉 ∼= Σ2. 〈X → e2,Θ2〉 : [C] ⇒ [D]

Proof
To reduce clutter, we just present the selected cases as if the contexts ∆, Γ and the
support C were empty. The general results are recovered by considering the interac-
tion between value substitutions ρ, explicit substitutions σ and modal substitutions
δ, which is well-behaved in all the cases of the lemma.

In case of (3), consider Σ′
i ⊇ Σi such that e1 = e2, and Σ ` Σ′

1. e1
∼= Σ′

2. e2 :
A [D]. We need to show that Σ; ·; · ` Σ′

1. {[[e1/u]]Θ1}e1
∼= Σ′

2. {[[e2/u]]Θ2}e2 : A [].
From the assumption, we have Σ; ·; · ` Σ′

1. 〈[[e1/u]]Θ1〉 ∼= Σ′
2. 〈[[e2/u]]Θ2〉 : [D] ⇒ [],

and then the required equality follows by definition of extensional equivalence for
explicit substitutions

In case of (7), by equivalence of e1 and e2, there exist name sets Ψ1,Ψ2, such
that (Σ,Σ1), e1 7−→∗ (Σ,Ψ1), box t1 and (Σ,Σ2), e2 7−→∗ (Σ,Ψ2), box t2, where
t1 = t2 : A [D], and Σ ` Ψ1. t1 ∼= Ψ2. t2 : A [D]. Then it suffices to show that
Σ; ·; · ` Ψ1. [[t1/u]]e′1 ∼= Ψ2. [[t2/u]]e′2 : B []. But this follows from the second
assumption, by definition of extensional equivalence.

In case of (11), again consider Σ′
i ⊇ Σi, such that Σ′; ·; · ` Σ′

1. e′1
∼= Σ′

2. e′2 :
B [C]. To be consistent with the notation, in this case we assume that D, rather
than C, is empty. To reduce clutter, denote by σ1, σ2 the explicit substitutions
σ1 = 〈X → e1,Θ1〉 and and σ2 = 〈X → e2,Θ2〉. Then we need to show that
Σ; ·; · ` Σ′

1. {σ1}e′1 ∼= Σ′
2. {σ2}e′2 : B []. To establish this, it suffices to prove

that Σ; · ` Σ′
1. σ1

∼= Σ′
2. σ2 [C], i.e., that Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A′ []

for any name Z ∈ C such that Z:A′ ∈ Σ. Then the result would follow from the
extensional equivalence of e′1 and e′2. We consider two cases: Z = X, and Z ∈ C \X.
If Z = X, then A′ = A and σi(Z) = ei and by first assumption, Σ; ·; · ` Σ1. σ1(Z) ∼=
Σ2. σ2(Z) : A. By weakening, this implies Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A. If

Names and Necessity 37

Z ∈ C \ X, then σi(Z) = {Θi}Z, and also obviously Σ; ·; · ` Σ′
1. Z ∼= Σ′

2. Z :
A′ [C \X]. Then by the second assumption, Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A′ [].

The two cases combined demonstrate Σ; · ` Σ′
1. σ1

∼= Σ′
2. σ2 [C], and this completes

the proof.

Now we can prove that our logical relations are reflexive, and thus indeed equiv-
alences.

Lemma 21 (Reflexivity)
1. If Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e ∼= e : A [C]
2. If Σ;∆; Γ ` 〈Θ〉 : [C] ⇒ [D], then Σ;∆; Γ ` 〈Θ〉 ∼= 〈Θ〉 : [C] ⇒ [D]

Proof
By induction on the structure of e and Θ, using Lemma 20.

The lemma has several more interesting consequences. As a first observation, it
shows that the ν�-calculus, as considered in this section (i.e., with no recursion), is
terminating. Indeed, our definition of logical relations on expressions required that
related expressions evaluate to related values. Thus, if a well-typed expressions of
the calculus is related to itself, than it must have a value.

The second consequence of the lemma is that intensionally related expressions are
at the same time extensionally related as well. In other words, if Σ;∆ ` Σ1. e1 =
Σ2. e2 : A [C], where e is a simple term, then Σ; ∆; · ` Σ1. e1

∼= Σ2. e2 : A [C].
This property trivially follows from the reflexivity, simply because the intensional
equivalence, as defined on closed simple terms equates two terms if and only if they
are the same (up to α-renaming) and – more importantly – well-typed. Then the
reflexivity lemma can be applied to extensionally relate these two terms. As a result,
extensional equivalence of modal expressions box e1 and box e2 need not compare e1

and e2 for extensional equivalence (as it is required by the definition), but can only
rely on their intensional equivalence. This is important, as intensional equivalence,
contrary to the extensional one, is defined inductively, and can be carried out as an
algorithm.

Lemma 22 (Fundamental property of logical relations)
If Σ; ∆; Γ ` Σ1. e1

∼= Σ2. e2 : A [C], then

1. if Σ;∆; (Γ, x:A) ` e : B [C], then Σ;∆; Γ ` Σ1. [e1/x]e ∼= Σ2. [e2/x]e : B [C]
2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C1] ⇒ [C], then

Σ; ∆; Γ ` Σ1. 〈[e1/x]Θ〉 ∼= Σ2. 〈[e2/x]Θ〉 : [C1] ⇒ [C]

Proof
By straightforward simultaneous induction on the structure of the two typing
derivations, using the fact that the term constructors of the language preserve
the logical relation.

After developing the theory of the two relations, we will use it to prove some
interesting equivalences in the calculus. But before we do that in the next lemma,
let us remark on an important property of the our presentation. If we dropped the
requirement of intensional equivalence when comparing values of modal types that

38 A. Nanevski, F. Pfenning

would correspond to treating modal values extensionally, rather than intensionally.
In fact, that may be a more relevant approach for this paper, as in the current
presentation of ν� we do not consider any constructs for structural analysis of
modal expressions. In this case, we do not have to limit the modal expressions to
only simple expressions.

Finally, the next lemma lists some equivalences which hold in ν� (irrespective of
the treatment of modal values as intensional or extensional entities). Observe that
the list includes all the β-reductions and η-expansions of ν�. In this sense, we can
claim that the calculus presented in this paper is purely functional.

Lemma 23
In the logical equivalences below we assume that all the judgments are well-formed
and that the terms are well-typed in appropriate contexts.

1. Σ;∆; Γ ` (λx. e1) e2
∼= [e2/x]e1 : A [C]

2. Σ;∆; Γ ` e ∼= λx. (e x) : A → B [C]
3. Σ;∆; Γ ` let box u = box e1 in e2

∼= [[e1/u]]e2 : B [C]
4. Σ;∆; Γ ` e ∼= let box u = e in box u : �DB [C]
5. Σ;∆; Γ ` choose (νX:A. e) ∼= (X:A). e : B [C]
6. Σ;∆; Γ ` (X:A). e ∼= νX:A. choose e : A 9 B [C]
7. Σ;∆; Γ ` λz:A. choose (νX:A1. e) ∼= choose (νX:A1. λz:A. e) : A → B [C]
8. Σ;∆; Γ ` νX. νY. e ∼= νY. νX. e : A 9 A 9 B [C]
9. Σ;∆; Γ ` e1 (choose (νX:A. e2)) ∼= choose (νX:A. (e1 e2)) : B [C]

10. Σ;∆; Γ ` (choose (νX:A. e1)) e2
∼= choose (νX:A. (e1 e2)) : B [C]

Proof
Again, in order to reduce clutter, we present the proofs of these statements in the
case when ∆, Γ, C are empty. In the general cases, we need to consider interactions
between value substitutions ρ, explicit substitutions σ and modal substitutions δ,
but these pose no problems.

In the case ∆, Γ and C are empty, the statements (3) and (4) are trivial, as the
two expressions evaluate to the same value. In (5), the expressions evaluate to the
same value, modulo the choice of a local name Y to stand for X in choose (νX:A. e).
But this choice is irrelevant, by the name permutation property. The statement (10)
is completely symmetric to (9).

To establish (1), let Σ; ·;x:B ` e1 : A, and Σ; ·; · ` e2 : B. As the calculus is
terminating, there exist Ψ and v2 such that Σ, e2 7−→∗ (Σ,Ψ), v2, and therefore also
Σ ` e2

∼= Ψ. v2 : B. By the fundamental property of logical relations (Lemma 22),
Σ ` [e2/x]e1

∼= Ψ. [v2/x]e1 : A. But it is also the case that Σ ` (λx. e1) e2
∼=

Ψ. [v2/x]e1 : A, simply because the two expressions evaluate to the same value.
Then by transitivity, we get Σ ` (λx. e1) e2

∼= [e2/x]e1 : A.
To establish (2), let Σ, e 7−→∗ (Σ,Ψ), (λx. e′), so that Σ; ·; · ` e ∼= Ψ. (λx. e′) :

A → B. By transitivity, this holds if Σ ` Ψ. λx. e′ ∼ λx. (e x) : A → B. In
order to prove this, consider Σ′

1,Σ
′
2 such that Σ ` Ψ,Σ′

1. v1 ∼ Σ′
2. v2 : A. It

suffices to show Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B. By the name permutation
property (Lemma 15), we can assume that Ψ and Σ2 are disjoint. By the properties

Names and Necessity 39

of evaluation, (Σ′,Σ′
2), (e v2) 7−→∗ (Σ′,Σ′

2,Ψ), [v2/x]e′, and thus

Σ ` Σ′
2. (e v2) ∼= (Ψ,Σ′

2). [v2/x]e′ (*)

By type preservation, (Σ,Ψ); ·;x:A ` e′ : B [], and thus by reflexivity Σ; ·;x:A `
Ψ. e′ ∼= Ψ. e′ : B []. Then by definition,

Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= (Ψ,Σ′

2). [v2/x]e′ : B (**)

Finally, from (*) and (**), by transitivity, we obtain the required

Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B.

To establish (6), let (Σ, X:A), e 7−→ (Σ, X:A,Ψ), (νY :A. e′). Then, by definition,
we have Σ ` (X:A). e ∼= (X:A,Ψ). (νY :A. e′) : A 9 B. By transitivity, it suffices
to show that Σ ` (X:A,Ψ). νY :A. e′ ∼ νX:A. choose e : A 9 B

By definition of the logical relation for values at the type A 9 B, this holds
if and only if Σ ` (X:A,Ψ, Y :A). e′ ∼= X:A. choose e : B. Indeed, we could
chose X:A in the local context of the second argument by the name permuta-
tion property. But the last equation is obviously true, as (Σ, X:A), choose e 7−→∗

(Σ, X:A,Ψ), choose (νY :A. e′) 7−→ (Σ, X:A,Ψ, Y :A), e′.
For (7), the considered equivalence holds iff Σ ` λz:A. choose (νX:A1. e) ∼=

(X:A1). λz:A. e : A → B, iff Σ; ·; z:A ` choose (νX:A1. e) ∼= (X:A1). e : B. But
this is true by (6).

To establish (8), notice that by definition, the required equivalence holds if and
only if Σ ` (X:A, Y :A). e ∼= (Y :A,X:A). e : B. In this equation, we are justified in
choosing the same names X and Y in both sides, by the name permutation property
(Lemma 15). But the contexts (X:A, Y :A) and (Y :A,X:A) are same, because the
type A does not depend on neither X nor Y . Thus, the result follows by reflexivity
of ∼=.

To establish (9), it suffices to show that Σ ` e1
∼= (X:A). e1 : B′ → B and

that Σ ` choose (νX:A. e2) ∼= (X:A). e2 : B′. Then the result would be implied
by the fact that term constructors preserve the equivalence. The first of the above
equivalences follows by reflexivity and weakening. The second has already been
established as the β-reduction for the type A 9 B′.

The developed logical relations analyze the equivalence of terms from the outside,
rather than by considering their observable operational behavior. A more general
notion of equivalence is the contextual equivalence, by which two terms e1 and e2

are related if and only if any observable behavior produced by a use of e1 in a
complete program is also produced by a use of e2, and vice versa.

Logical relations, however, are related to contextual equivalence in the following
sense: whenever two terms are logically equated, their behavior in any program
context is indiscernible. In other words, logical equivalence is sound with respect to
the contextual equivalence. We establish this result in the remainder of the section.
The opposite direction of this implication, that is, the completeness of the logical
relations with respect to contextual equivalence remains future work.

We start by formalizing what it means to use an expression in a program. For

40 A. Nanevski, F. Pfenning

that reason, we define two notions of program contexts: a notion of expression con-
texts, and a notion of substitution context. An expression context (resp. substitution
context) is an expression E (substitution F) with a hole, where the whole can be
filled with some expression. We write E [e] (F [e]) for the expression (substitution)
obtained when the hole of E is filled with e. Furthermore, we consider only contexts
that are extensional, i.e. whose hole does not appear under a box.

A more formal definition of extensional expression and substitution contexts is
given in the table below.

Extensional expression contexts E ::= [] | X | x | 〈F〉u | λx:A. E | E1 E2 |
box e | let box u = E1 in E2 |
νX:A. E | choose E

Extensional substitution contexts F ::= · | X → E ,F

The decision to restrict extensional contexts so that the hole does not appear un-
der box deserves further explanation: we do this in order to distinguish extensional
contextual equivalence from the related notion of intensional contextual equivalence.
Intensional contextual equivalence studies the behavior of terms in a language with
intensional operations on the syntactic object-level terms – operations like syntactic
comparison or pattern-matching against a syntactic term. The associated notion of
intensional context would permit the hole to appear in a scope of a box, and allow
the intensional operations to act on the boxed hole.

The two contextual relations are obviously different. In a language with inten-
sional operations, conflating them leads to unsoundness, as has already been ob-
served in the case of MetaML in (Taha, 2000). Indeed, two expressions that should
be extensionally equal, like a function application and its β-reduction, cannot be
considered intensionally equal because they do have observably different shapes.
However, both contextual relations can be defined and studied; all it takes is to
appropriately restrict extensional contexts so that the context hole does not ap-
pear in the scope of a box. This is justified because box turns intensionally related
expressions into extensionally related ones (as shown in Lemma 20), but does not
necessarily preserve the extensional relation itself.

We return now to our development of extensional equivalence, and prove that
the extensional relation on expressions and substitutions, as defined previously, is
a congruence with respect to extensional contexts.

Lemma 24 (Congruence)
If Σ;∆; Γ ` Σ1. e1

∼= Σ2. e2 : A [C], and E , F are an expression and substitution
context respectively, then the following holds.

1. Σ′;∆′; Γ′ ` Σ′
1. E [e1] ∼= Σ′

2. E [e2] : B [D], if E [e1], E [e2] are well-typed in their
appropriate variable contexts.

2. Σ′;∆′; Γ′ ` Σ′
1. 〈F [e1]〉 ∼= Σ′

2. 〈F [e2]〉 : [D] ⇒ [D′], if F [e1], F [e2] are well-
typed in their appropriate variable contexts.

Names and Necessity 41

Proof
By straightforward simultaneous induction on the structure of E and F , using
Lemma 20.

The use of an expression in a complete program context of base type defines the
contextual equivalence between expressions in the following way.

Definition 25 (Extensional contextual equivalence)
Let e1, e2 be well-typed expressions such that Σ,Σ1;∆; Γ ` e1 : A [C], and Σ,Σ2;∆; Γ `
e2 : A [C], where Σi are local to ei. Then e1 and e2 are contextually equivalent, writ-
ten

Σ; ∆; Γ ` Σ1. e1
∼=ctx Σ2. e2 : A [C]

if and only if for every extensional expression context E such that ` E [e1] : b and
` E [e2] : b, we have

E [e1] 7−→∗ v iff E [e2] 7−→∗ v.

It is trivial to show that the defined relation is indeed an equivalence. We can now
proceed to establish the soundness of the logical relations with respect to contextual
equivalence, as we only need to restrict the attention to program contexts of base
types.

Lemma 26
If Σ; ∆; Γ ` e1

∼= e2 : A [C], then Σ;∆; Γ ` e1
∼=ctx e2 : A [C].

Proof
By the congruence property of ∼= (Lemma 24), for any well-typed extensional con-
text E , we have that E [e1] ∼= E [e2]. In the special case when E [ei] are closed and
of base type b, the relation ` E [e1] ∼= E [e2] : b by definition implies that E [e1] and
E [e2] evaluate to the same value. Because E is chosen arbitrarily, the expressions e1

and e2 are contextually equivalent.

6 Related work

The work presented in this paper lies in the intersection of several related areas:
staged computation and partial evaluation, run-time code generation, metapro-
gramming, modal logic and higher-order abstract syntax.

An early reference to staged computation is (Ershov, 1977) which introduces
staged computation under the name of “generating extensions”. Generating exten-
sions for purposes of partial evaluation were also foreseen by (Futamura, 1971), and
the concept is later explored and eventually expanded into multi-level generating
extensions by (Jones et al., 1985; Glück & Jørgensen, 1995; Glück & Jørgensen,
1997). Most of this work is done in an untyped setting.

The typed calculus that provided the direct motivation and foundation for our
system is the λ�-calculus. It evolved as a type theoretic explanation of staged
computation (Davies & Pfenning, 2001; Wickline et al., 1998a), and run-time code-
generation (Nielson & Nielson, 1988; Lee & Leone, 1996; Wickline et al., 1998b),
and we described it in Section 2.

42 A. Nanevski, F. Pfenning

A significant amount of work on functional metaprogramming today is related
to the development of MetaML (Taha & Sheard, 1997; Moggi et al., 1999; Taha,
1999; Taha, 2000) and its variant MetaOCaml (Calcagno et al., 2003b; Taha &
Nielsen, 2003), which are themselves extensions of the the λ©-calculus. Formulated
by (Davies, 1996), λ© features a type constructor © that classifies open object
code. The original motivation of λ© was to develop a type system for binding-
time analysis in the setup of partial evaluation, but it was quickly adopted for
metaprogramming through the development of MetaML.

MetaML builds upon the open code type constructor of λ© and generalizes the
language with several features. The most important one is the addition of a type
refinement for closed code. Values classified by the closed code types are those open
code expressions that do not contain any free variables from the present stage. If
an expression is typed as a closed code, then it may be evaluated.

It might be of interest here to point out a certain similarity between our concept of
supports and the dead-code annotations used in MetaML with references (Calcagno
et al., 2003a). MetaML cannot naively allow references to open code, in order to
avoid the extrusion of scope of bound variables. At the same time, limiting references
to closed code types is too restrictive because it disallows references to functions.
Thus, scope extrusion has to be allowed, but only if the extruding variables are never
encountered during evaluation. As a solution, MetaML with references annotates
each term with the list of free variables that the term is allowed to contain in
dead-code positions.

In contrast to MetaML, in the ν�-calculus, free variables are represented by
names, and they are built into the calculus from the beginning. As a consequence,
only one modal constructor suffices to classify both closed code and code with free
variables, leading to a conceptually simpler type system. Furthermore, we do not
foresee any significant problems in the extension of ν� with references.

The approach of MetaOCaml to the problem of combining closed and open code
is based on environment classifiers (Taha & Nielsen, 2003). MetaOCaml has also
been extended with type inference for a relatively expressive subset of its type sys-
tem in (Calcagno et al., 2004). Intuitively, environment classifiers serve as labels for
various object stages of computation; because the stages are labeled, each stage can
be revisited multiple times and variables declared in previous visits can be reused.
This feature provides the functionality of open code. The environment classifiers are
related to our support variables in the sense that they both are bound by universal
quantifiers and they both abstract over sets. Indeed, our support polymorphism ex-
plicitly abstracts over sets of names, while environment classifiers are used to name
parts of the variable context, and thus implicitly abstract over sets of variables.
Syntactically, this implicitness may allow for a more compact programming idiom.
For example, the exponentiation function from Section 3, can be written in MetaO-
Caml as shown below. In this example we paraphrase the syntax of MetaOCaml
as follows. The type constructor (’a,’b)code classifies object code of an arbitrary
stage ’a and type ’b. Here ’a is an environment classifier. The constructors .<

and >. enclose object code, .~ splices code into a larger context, and .! explicitly
evaluates object code.

Names and Necessity 43

fun exp (n:int) (x:(’a, int)code) : (’a, int) code =

if n = 0 then .<1>. else .< .~ x * .~(exp (n-1) x)>.

When applied to an argument 2, the function exp generates an object-level code
for squaring, which can then be explicitly evaluated using the constructor .! to
obtain a function for squaring.

- sqmeta = .<λ x. ~(exp 2 .<x>.)>.

val sqmeta : .<λx. (x * (x * 1))>. : (’a, int -> int) code

- sq = .! sqcode

val sq = [fn] : int -> int

In contrast to .! from MetaOCaml (which is also present in MetaML), the
ν�-calculus does not need any special constructors for code evaluation. For ex-
ample, if e : �A, then a ν� program for evaluating e can be written simply as
let box u = e in u. In this sense, ν� is more strongly grounded in logic. On the
other hand, the explicit support annotations and support polymorphism of ν� cer-
tainly make it much more verbose than MetaOCaml, and we plan to address these
issues in future work on type and support inference. However, we believe that the
current explicitness of type annotations may also prove beneficial. For example,
explicit support polymorphism, in addition to the type polymorphism, seems es-
sential for metaprogramming languages that allow recursion over syntactic object
expressions. Such recursion ought to be name-polymorphic (and will thus require
explicit term constructors for abstraction over sets of names), because scanning
past variable binders will have to generate new names to be used as placeholders
for these variables.

Coming from the direction of higher-order abstract syntax, probably the first
work pointing to the importance of binders like ν-abstraction is (Miller, 1990).
The connection of higher-order abstract syntax to modal logic has been recognized
by Despeyroux, Pfenning and Schürmann in the system presented in (Despeyroux
et al., 1997), which was later simplified into a two-level system in Schürmann’s
dissertation (Schürmann, 2000). The system presented in (Bjørner, 1999) is capable
of pattern-matching against object-level programs, but is not concerned with their
evaluation. There is also (Hofmann, 1999) which discusses various presheaf models
for higher-order abstract syntax, then (Fiore et al., 1999) which explores untyped
abstract syntax in a categorical setup, and an extension to arbitrary types (Fiore,
2002).

However, the work that explicitly motivated our inclusion of names in the calculus
is the series of papers on Nominal Logic and FreshML (Gabbay & Pitts, 2002;
Pitts & Gabbay, 2000; Pitts, 2001; Gabbay, 2000). The names of Nominal Logic
are introduced as the urelements of Fraenkel-Mostowsky set theory. FreshML is a
language for manipulation of object syntax with binding structure based on this
model. Its primitive notion is that of swapping of two names which is then used
to define the operations of name abstraction (producing an α-equivalence class
with respect to the abstracted name) and name concretion (providing a specific
representative of an α-equivalence class).

44 A. Nanevski, F. Pfenning

On the logical side, the most direct influence comes from (Pfenning & Davies,
2001) which presents a natural deduction formulation for propositional S4. But in
general, the interaction between modalities, syntax and names has been of interest
to logicians for quite some time. For example, logics that can encode their own
syntax are the topic of Gödel’s Incompleteness theorems, and some references in
that direction are (Montague, 1963) and (Smoryński, 1985). Viewpoints of (Attardi
& Simi, 1995) and contexts of (McCarthy, 1993) are similar to our notion of support,
and are used to express relativized truth. Finally, the names from ν� resemble non-
rigid designators of (Fitting & Mendelsohn, 1999), names of (Kripke, 1980), and
virtual individuals of (Scott, 1970), and also touch on the issues of existence and
identity explored in (Scott, 1979).

7 Conclusions and future work

This paper presents the ν�-calculus, which is a typed functional language for
metaprogramming, employing a novel way to define a modal type of object expres-
sions with free variables. The system combines the λ�-calculus (Pfenning & Davies,
2001) with the notion of names inspired by developments in FreshML and Nominal
Logic (Pitts & Gabbay, 2000; Gabbay & Pitts, 2002; Pitts, 2001; Gabbay, 2000).
The motivation for combining λ� with names comes from the long-recognized need
of metaprogramming to handle object programs with free variables (Davies, 1996;
Taha & Sheard, 1997; Taha, 1999; Moggi et al., 1999). In our setup, the λ�-calculus
provides a way to encode closed object expressions, and names serve to stand for
possibly free variables. Names can be operationally thought of as locations that are
tracked by the type system, so that a name cannot escape the scope of its introduc-
tion form. The set of names appearing in the meta level of a term is called support
of a term. Support of a term is reflected in the typing of a term, and a term can be
evaluated only if its support is empty. We also considered constructs for support
polymorphism.

Names in the ν�-calculus are second-class objects, and it is an important future
work to consider extensions with first-class names and name equality. For example,
it may be possible to define a new type constructor

N : Type → Type,

so that N(A) classifies all the names of type A. The question then becomes how
first-class names interact with the modal operators and with explicit substitutions.
It is likely that such an extension will require explicit substitutions over (ordinary)
variables.

Even when dealing with second-class names, it seems possible that other ap-
proaches may be employed for managing dynamic name generation. For example,
the variable declaration u:A [C] may be viewed as binding the names listed in C, so
that these names have scope local to the explicit substitutions associated to u. This
idea has been employed in (Nanevski et al., 2003) to define a dependently typed
calculus for representing metavariables in logical frameworks.

Finally, it is an important future work to investigate embeddings of λ© and

Names and Necessity 45

MetaML into ν�, in order to formally compare the expressiveness of the three
metaprogramming systems. An interesting step in this direction may be to consider
the proof-irrelevance of (Pfenning, 2001) and (Awodey & Bauer, 2001), as a way
to represent cross-stage persistence of MetaML.

8 Acknowledgments

We would like to thank Dana Scott, Bob Harper, Peter Lee, Andrew Pitts and
the anonymous reviewers for their helpful comments on the earlier versions of the
paper, and Robert Glück for pointing out some missing references.

References

Attardi, Giuseppe, & Simi, Maria. (1995). A formalization of viewpoints. Fundamenta
informaticae, 23(3), 149–173.

Awodey, Steve, & Bauer, Andrej. (2001). Propositions as [Types]. Tech. rept. IML-R–34-
00/01–SE. Institut Mittag-Leffler, The Royal Swedish Academy of Sciences.

Benaissa, Zine El-Abidine, Moggi, Eugenio, Taha, Walid, & Sheard, Tim. (1999). Logical
modalities and multi-stage programming. Workshop on Intuitionistic Modal Logics and
Applications, IMLA’99.

Bjørner, Nikolaj. (1999). Type checking meta programs. Workshop on logical frameworks
and meta-languages.

Calcagno, Cristiano, Moggi, Eugenio, & Sheard, Tim. (2003a). Closed types for a safe
imperative MetaML. Journal of functional programming, 13(3), 545–571.

Calcagno, Cristiano, Taha, Walid, Huang, Liwen, & Leroy, Xavier. (2003b). Implementing
multi-stage languages using ASTs, gensym, and reflection. Conference on Generative
Programming and Component Engineering, GPCE’03.

Calcagno, Cristiano, Moggi, Eugenio, & Taha, Walid. (2004). ML-like inference for clas-
sifiers. Pages 79–93 of: European Symposium on Programming, ESOP’04.

Davies, Rowan. (1996). A temporal logic approach to binding-time analysis. Pages 184–
195 of: Symposium on Logic in Computer Science, LICS’96.

Davies, Rowan, & Pfenning, Frank. (2001). A modal analysis of staged computation.
Journal of the ACM, 48(3), 555–604.

Despeyroux, Joëlle, Pfenning, Frank, & Schürmann, Carsten. (1997). Primitive recursion
for higher-order abstract syntax. Pages 147–163 of: de Groote, Philippe, & Hindley,
J. Roger (eds), Typed lambda calculi and applications. Springer-Verlag LNCS 1210.

Ershov, A. P. (1977). On the partial computation principle. Information processing letters,
6(2), 38–41.

Fiore, Marcelo. (2002). Semantic analysis of normalization by evaluation for typed lambda
calculus. Pages 26–37 of: International Conference on Principles and Practice of Declar-
ative Programming, PPDP’02.

Fiore, Marcelo, Plotkin, Gordon, & Turi, Daniele. (1999). Abstract syntax and variable
binding. Pages 193–202 of: Symposium on Logic in Computer Science, LICS’99.

Fitting, Melvin, & Mendelsohn, Richard L. (1999). First-order modal logic. Kluwer.

Futamura, Yoshihiko. (1971). Partial evaluation of computation process - an approach to
a compiler-compiler. Systems, computers, controls, 2(5), 45–50.

Gabbay, Murdoch J. 2000 (August). A theory of inductive definitions with α-equivalence.
Ph.D. thesis, Cambridge University.

46 A. Nanevski, F. Pfenning

Gabbay, Murdoch J., & Pitts, Andrew M. (2002). A new approach to abstract syntax
with variable binding. Formal aspects of computing, 13, 341–363.

Girard, Jean-Yves. (1986). The system F of variable types, fifteen years later. Theoretical
computer science, 45(2), 159–192.

Glück, Robert, & Jørgensen, Jesper. (1995). Efficient multi-level generating exten-
sions for program specialization. Pages 259–278 of: Hermenegildo, Manuel, & Swier-
stra, S. Doaitse (eds), Programming languages: Implementations, logics and programs.
Springer-Verlag LNCS 982.

Glück, Robert, & Jørgensen, Jesper. (1997). An automatic program generator for multi-
level specialization. Lisp and symbolic computation, 10(2), 113–158.

Harper, Robert. (1999). Proof-directed debugging. Journal of functional programming,
9(4), 463–470.

Hofmann, Martin. (1999). Semantical analysis of higher-order abstract syntax. Pages
204–213 of: Symposium on Logic in Computer Science, LICS’99.

Jones, Neil D., Sestoft, Peter, & Søndergaard, Harald. (1985). An experiment in partial
evaluation: the generation of a compiler generator. Pages 124–140 of: Jouannaud, Jean-
Pierre (ed), Rewriting techniques and applications. Springer-Verlag LNCS 202.

Kripke, Saul A. (1980). Naming and necessity. Harvard University Press.

Lee, Peter, & Leone, Mark. (1996). Optimizing ML with run-time code generation.
Pages 137–148 of: Conference on Programming Language Design and Implementation,
PLDI’96.

McCarthy, John. (1993). Notes on formalizing context. Pages 555–560 of: International
Joint Conference on Artificial Intelligence, IJCAI’93.

Miller, Dale. (1990). An extension to ML to handle bound variables in data structures.
Pages 323–335 of: Proceedings of the first esprit BRA workshop on logical frameworks.

Moggi, Eugenio, Taha, Walid, Benaissa, Zine-El-Abidine, & Sheard, Tim. (1999). An ide-
alized MetaML: Simpler, and more expressive. Pages 193–207 of: European Symposium
on Programming, ESOP’99.

Montague, Richard. (1963). Syntactical treatment of modalities, with corollaries on re-
flexion principles and finite axiomatizability. Acta Philosophica Fennica, 16, 153–167.

Nanevski, Aleksandar. (2002). Meta-programming with names and necessity. Pages 206–
217 of: International Conference on Functional Programming, ICFP’02. A significant
revision is available as a technical report CMU-CS-02-123R, Computer Science Depart-
ment, Carnegie Mellon University.

Nanevski, Aleksandar, Pientka, Brigitte, & Pfenning, Frank. (2003). A modal foundation
for meta variables. Proceedings of MERλIN’03.

Nielson, Flemming, & Nielson, Hanne Riis. (1988). Two-level semantics and code gener-
ation. Theoretical computer science, 56(1), 59–133.

Odersky, Martin. (1994). A functional theory of local names. Pages 48–59 of: Symposium
on Principles of Programming Languages, POPL’94.

Pfenning, Frank. (2001). Intensionality, extensionality, and proof irrelevance in modal
type theory. Pages 221–230 of: Symposium on Logic in Computer Science, LICS’01.

Pfenning, Frank, & Davies, Rowan. (2001). A judgmental reconstruction of modal logic.
Mathematical structures in computer science, 11(4), 511–540.

Pitts, A. M., & Stark, I. D. B. (1993). Observable properties of higher order functions
that dynamically create local names, or: What’s new? Pages 122–141 of: Mathematical
foundations of computer science, proc. 18th int. symp., Gdańsk, 1993. Springer-Verlag
LNCS 711.

Pitts, Andrew M. (2001). Nominal logic: A first order theory of names and binding.

Names and Necessity 47

Pages 219–242 of: Kobayashi, Naoki, & Pierce, Benjamin C. (eds), Theoretical aspects
of computer software. Springer-Verlag LNCS 2215.

Pitts, Andrew M., & Gabbay, Murdoch J. (2000). A metalanguage for programming with
bound names modulo renaming. Pages 230–255 of: Backhouse, Roland, & Oliveira,
José Nuno (eds), Mathematics of program construction. Springer-Verlag LNCS 1837.

Reynolds, John C. (1983). Types, abstraction and parametric polymorphism. Pages 513–
523 of: Mason, R. E. A. (ed), Information processing ’83. Elsevier.

Schürmann, Carsten. (2000). Automating the meta-theory of deductive systems. Ph.D.
thesis, Carnegie Mellon University.

Scott, Dana. (1970). Advice on modal logic. Pages 143–173 of: Lambert, Karel (ed),
Philosophical problems in logic. Dordrecht: Reidel.

Scott, Dana. (1979). Identity and existence in intuitionistic logic. Pages 660–696 of: Four-
man, Michael, Mulvey, Chris, & Scott, Dana (eds), Applications of sheaves. Springer-
Verlag LNM 753.

Sheard, Tim. (2001). Accomplishments and research challenges in meta-programming.
Pages 2–44 of: Taha, Walid (ed), Semantics, applications, and implementation of pro-
gram generation. Springer-Verlag LNCS 2196.

Smoryński, C. (1985). Self-reference and modal logic. Springer Verlag.

Taha, Walid. (1999). Multi-stage programming: Its theory and applications. Ph.D. thesis,
Oregon Graduate Institute of Science and Technology.

Taha, Walid. (2000). A sound reduction semantics for untyped CBN multi-stage compu-
tation. Or, the theory of MetaML is non-trival. Pages 34–43 of: Workshop on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM’00.

Taha, Walid, & Nielsen, Michael Florentin. (2003). Environment classifiers. Pages 26–37
of: Symposium on Principles of Programming Languages, POPL’03.

Taha, Walid, & Sheard, Tim. (1997). Multi-stage programming with explicit annotations.
Pages 203–217 of: Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation, PEPM’97.

Wickline, Philip, Lee, Peter, Pfenning, Frank, & Davies, Rowan. (1998a). Modal types as
staging specifications for run-time code generation. ACM computing surveys, 30(3es).

Wickline, Philip, Lee, Peter, & Pfenning, Frank. (1998b). Run-time code generation and
Modal-ML. Pages 224–235 of: Conference on Programming Language Design and Im-
plementation, PLDI’98.

