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ABSTRACT

As personal wearable devices become more powerful and ubiquitous, soon everyone will be capable to continuously
record video of everyday life. The archive of continuous recordings need to be segmented into manageable units so
that they can be efficiently browsed and indexed by any video retrieval systems. Many researchers approach the
problem in two-pass methods: segmenting the continuous recordings into chunks, followed by clustering chunks.
In this paper we propose a novel one-pass algorithm to accomplish both tasks at the same time by imposing
time constraints on the K-Means clustering algorithm. We evaluate the proposed algorithm on 62.5 hours of
continuous recordings, and the experiment results show that time-constrained clustering algorithm substantially
outperforms the unconstrained version.
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1. INTRODUCTION

As personal wearable devices become more powerful and ubiquitous, capturing everyday life without losing
any precious moments will soon become commonplace. Mobile phones nowadays can record short video, and
in the foreseeable future they will be able to continuously record video for days, as already demonstrated by
many research prototypes.1–3 This is a step towards the Vannevar Bush’s vision of Memex, “in which an
individual stores all his books, records, and communications”.4 With the complete recording of one’s life
available, the personal video archive allows the owner to retrieve episodes of past events,5–8 to automatically
create biographies,9 and to share memories with others.

In order to support efficient indexing, browsing, and searching provided by any video retrieval systems,
continuous media steams need to be segmented into manageable processing units in order to be processed for
any video retrieval systems. Each browsing unit must have a start and end point to begin playing video and
to end the playback. As text retrieval systems define documents as the unit of retrieval, video retrieval for
continuous recordings needs an equivalent. Unlike segmenting structured video (e.g. broadcast news and TV
sitcoms10), continuously recorded video contains no pre-defined units, which makes segmentation and clustering
continuous recordings nontrivial tasks.

Most researchers approach the problem of structuring continuously recorded personal memory archive in two
passes,11, 12 as illustrated in 1. Firstly, a continuous recording is segmented into chunks based on a pre-defined
coherence criterion. In the second pass, a clustering algorithm is performed to group similar chunks together.
As pointed out by,13 the reason to take the segment-then-cluster approach is that clustering algorithms usually
make no attempts to assign adjacent chunks into the same cluster, resulting in often unsatisfactory clustering
results.

However, the segment-then-cluster approaches make no effort correcting segmentation errors. In Figure 1,
the recording where the wearer walked on a sky bridge was wrongly segmented into three chunks, i.e. over-
segmentation. A unconstrained clustering algorithm puts two of them in the correct “sky bridge” cluster but
puts the middle segment in the wrong cluster, which is not satisfactory given the surrounding segments were
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Figure 1. An example continuous video illustrates time-constrained clustering. Inside the “Sky Bridge” and “Corridor
5300” clusters there are errors caused by the first segmentation step, and the second clustering step fails to correct the
errors. On the contrary, by imposing time constraints we not only accomplish two tasks in one step but also eliminate
the segmentation errors.

all in the “sky bridge” cluster. In this paper we address the problem and propose a novel one-pass method to
accomplishing segmentation and clustering at the same time, which saves the trouble of running two separate
steps over a large collection of continuous recordings. Moreover, by imposing time constraints on a clustering
algorithm, K-Means, we encourage contiguous video frames to be clustered together, and thus segmentation
errors can be corrected. The experiment results show that time-constrained K-Means algorithm substantially
outperforms the unconstrained version.

Note that our use of time constraints is very different from Yeung and Yeo’s work.10 They utilized the
linearly narrative structure of TV sitcoms to constrain the members of a cluster to be close in time, i.e. the same
story unit, while our motivation for imposing time constraints is to reduce segmentation and clustering errors
due to spurious light change or body-induced camera motions, and thus we constrained the cluster assignment
of a video frame to be as consistent as the cluster assignments of the neighboring frames, not the members in
the same cluster. The video frames of a cluster, say, “office” cluster, can occur multiple times in the continuous
video. Imposing time constraints in Yeung and Yeo’s way would have many local “office” clusters, while our
method will generate a single, global “office” clusters, enabling the user to quickly find all “office” segments.

The rest of the paper is organized as follows. We briefly review the K-Means clustering algorithm in Section 2,
and discuss why K-Means often results in poor clustering results on continuous recordings. We describe the
proposed Time-Constrained K-Means algorithm in Section 3. In Section 4, we present experiment results that
objectively evaluate the proposed time-constrained clustering algorithm on 62.5 hours of continuous recordings.
Finally we conclude and discuss future work in Section 5.

2. K-MEANS CLUSTERING ALGORITHM

K-Means is a one of the most popular clustering algorithms. The K-Means algorithm attempts to partition
data into groups by minimizing the within-group squared Euclidean distance. More formally speaking, K-Means
partitions data set X = {xi}ni=1 into k disjoint clusters C = {Ci}ki=1, where every data points x belongs to only
one of the cluster Ci, i.e.

⋂
1≤i,j≤k Ci, Cj = ∅. K-Means minimizes the following objective function to find the

best partition function on X ,

JK-means(C) =

k∑
i=1

∑
xj∈Ci

||xj − µi||
2 (1)

where µi is the mean of the data points belong to the cluster Ci, i.e. µi = |Ci|−1
∑

xi∈Ci
xi.



The minimal value of (1) can be found in an iterative fashion, as shown in Figure 2. The convergence
can be easily verified by observing that both “cluster assignment” and “mean re-estimation” steps in the loop
decrease the value of the objective function in (1).14 The solution found by the iterative algorithm, however,
is not guaranteed to be globally optimal, and the problem is usually partially alleviated in practice by trying
different initial values and selecting the one with the lowest objective value. The time complexity of the K-Means
algorithm for each iteration is O(nkp), where n is the number of examples, p is the dimension of the feature
vector, and k is the number of the clusters. Our implementation of K-Means algorithm is based on.15
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until convergence;

Figure 2: K-Means Algorithm

The difficulty of näıvely applying K-Means to structuring continuous video recordings can be attributed to
the independence assumptions made on data. For continuous captured video, the video frames, in fact, are very
dependent in time. The K-Means algorithm implicitly assumes that data points are independently sampled from
an unknown distribution with k components, which clearly contradicts with the realty that individual video
frames are closely related to surrounding frames in time. Therefore, we should exploit the temporal relationship
to constraint the clustering process such that adjacent frames are not assigned into different clusters.

3. TIME-CONSTRAINED K-MEANS CLUSTERING ALGORITHM

In order not to ignore temporal relationship between data points in K-Means, we extend the K-Means algorithm
to incorporate temporal relationship between data points, and call this extended version Time-Constrained
K-Means, TCK-Means.

The temporal constraints is captured as an additional penalty term in the objective function of the TCK-
Means algorithm , as shown in the following equation,

JTCK-Means =

k∑
i=1

∑
xj∈Ci

⎛
⎝||xj − µi||

2 +
∑

xj �∈Ci

w(xi, xj)

⎞
⎠ (2)

where w(xi, xj) is the cost function that determines the penalty of clustering adjacent frames xi and xj into the
different clusters.

By designing a proper cost function that penalizes the cluster assignment of one video frame into a cluster
different from adjacent video frames, TCK-Means encourages video frames that are close in time to be clustered
together.

The (local) optimal solution to (2) can be found in an iterative manner similar to the K-Means algorithm,
as listed in Figure 3.

The TCK-Means algorithm looks similar to the K-Means algorithm, except for the cluster assignment step.
TCK-Means takes the temporal relationship into consideration, and thus any data points are preferably assigned
to a cluster not only close in the feature space but also close in the temporal domain.

The convergence of the TCK-Means can be argued in the same way as K-means because the objective in (2)
keeps decreasing or stays the same in the alternate steps.16 The time complexity at the first sight seems to
jump to O(n2k) due to the cost summation step. However, if we restrict the scope of the time constraints within
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Figure 3: TCK-Means Algorithm

the small number of neighbors that is much smaller than p, as shown later in Section 3.1, the time complexity
of TCK-Means can be kept the same as K-means in the order of O(nkp).

TCK-Means is inspired by a class of clustering algorithms called pairwise-constrained clustering.17, 18 Usually
pairwise constraints are specified as “must-link” constraints, i.e. two points must be clustered together, and
“cannot-link” constraints, i.e. two points must not be clustered together. Here time constraints can be interpreted
as the soft version of the must-link and cannot-link constraints. When two video frames are close in time, they
are encouraged to be in the same cluster, which is like relaxed “must-link” constraints. When two video frames
are far away, they can be discouraged to be in the same cluster, which is like relaxed “cannot-link” constraints.

3.1. Cost Function in TCK-Means

The time cost function w(xi, xj) plays a crucial role in the TCK-Means algorithm. The function determines
quantitatively how strongly time constraints are imposed on the clustering algorithm in addition to the Euclidean
distances in the feature space. In this paper we consider the following cost function,

w(xti

i , x
tj

j ) = αI(|ti − tj | < d) (3)

where the superscripts ti and tj are the time offsets of the xi and xj in the continuous video recording, respectively,
I is an indicator function, α is a constant cost, and d is the window size.

If two data points are close in time within the window of w but are not clustered in the same group, that will
incur α cost. If we set α to zero, TCK-Means will behave exactly like K-Means because the constraint term in
(2) disappears. Similarly, TCK-Means rolls back to K-Means when window d is zero. When d is small, clustering
results will tend to over-segment because there is little constraints on temporal consistency. On the other hand,
when d is large, the clustering results will turn to under-segment because of strong constraints on temporal
consistency with neighbors. Therefore, d is the trade-off between strong and weak temporal consistencies.

The cost constant α is likely to vary from data to data , and it is unreasonable to expect users specify the
parameters externally. Our solution is to set α proportional to the average squared distance of the data set,
resulting in equal emphasis on within-cluster coherence and temporal consistency in (2). Users are therefore free
from the burden of setting α.

4. EXPERIMENTS

4.1. Data Collection

One of the authors wore a video a recording device to continuously capture his everyday life for two to six
hours on weekdays, and the experiment lasted for a month. The wearable recording device consisted of a small,
wearable camera and a 1.6 GHz laptop, as shown in Figure 4. The laptop was equipped with an extra battery
pack such that it could operate continuously for at least six hours without re-charging.

The high-fidelity video recordings pose a significant challenge to the wearable storage system. In order to
provide playback quality for offline browsing and searching, we opt for 320 × 240 pixels video resolution and



(a) The wearable camera, cir-
cled in red, is positioned in the
front chest, which is one of the
best sites on the front of the
upper body to attach optical
device.19

(b) A video camera is
connected to the note-
book in the backpack.
The laptop computer per-
forms real-time video com-
pression and stores video
recordings.

Figure 4. Wearable Continuous Video Recording Device

capture 29.412 frames per second in the 24-bit color depth. Without any compression, raw video continuous
recordings would quickly overflow the hard-disk space with data rates as high as 24 Gigabytes per hour for the
chosen video resolution. In order to acquire high-quality video and meet the constraints of the storage capacity
of the laptop at the same time, we take a two-step approach to reduce the size of the video recordings. All raw
video recordings are compressed online by a fast video encoder. After finishing recording at the end of a day,
video recordings are uploaded to the server and then compressed offline by a slower two-pass MPEG-4 encoder
with higher compression rate. In the end, a total of 62.5 hours of continuous video of everyday life were collected
and took a total of 37.9 Gigabytes of disk space.

We represent a continuous video as a series of one-second units, and extract color features from the middle
frame of each unit. 5 by 5 by 5 3-D color histogram in RGB color space∗ is calculated, resulting a 125-dimensional
feature vector. Visual content within one second does not vary dramatically.

Every second of the everyday recordings is annotated with locations. Location is arguably one of the most
important user’s context,20 and is of particular interest since positioning technologies like GPS do not work
indoors. While granularity of locations can range from meters to kilometers, we set the functionally useful
granularity at the room level, partially due to the nature of the wearer’s life as a graduate student. In addition
to office rooms, the corridors, staircases, and elevators in different building are labeled . All outdoor scenes are
labeled as “campus outdoors.” There are total 34 locations in the 62.6 hours of recordings. Note that data are
annotated here for the evaluation purpose, and the goal of this study is not to learn to identify place as in the
supervised learning framework.21 The sheer amount of recordings make it unrealistic to ask a user to annotate
hours of training data.

∗While determining the best feature set for continuous video is a very important research question, it is not the main
goal in our paper. For illustration purposes we use RGB color histogram as the instance of any number of available
features. Our algorithm is definitely not limited by color histogram, and color histogram can be replaced with more
advanced features.



4.2. Evaluation Metrics

Clustering can be seen as the process of recovering underlying true location labels (clusters) from the data in a
unsupervised fashion. Therefore, a clustering algorithm performs well if the clustering results show high degree
of consistency with human-annotated labels on the data. We calculate how often a pair of data points that a
clustering algorithm put into the same group are indeed in the same labeled group, i.e. precision, and how many
pairs of data points that are labeled as the same group are recovered by the clustering algorithm, i.e. recall, and
the harmonic mean of precision and recall, i.e. F1, in the following formulae,

precision =

�
xi

�
xj

I(xi,xj∈Ck and xi,xj∈Tk′)
�

xj

�
xj

I(xi,xj∈Ck)

recall =

�
xi

�
xj

I(xi,xj∈Ck and xi,xj∈Tk′)
�

xi

�
xj

I(xi,xj∈T k′)

F1 = 2×precision×recall
precision×recall

where Tk′ is a set of data points with the true label k′. All of the metrics range between 0 and 1, and the higher
the score, the better the performance.

4.3. TCK-Means vs. K-Means

We compare our proposed TCK-Means with K-Means† on the continuous recordings, and the results are shown
in Table 1. Moreover, we provide three random baselines for comparisons, including clustering all video frames
into a single cluster (All Same), clustering each video frame into its own cluster (All Different), and randomly
assign each video frame into clusters (Random). The relative improvements in percentage are shown in the last
row of the table.

Methods Precision Recall F1

Baseline (All Same) 0.1710 1.0 0.2921
Baseline (All Different) N/A 0 N/A
Baseline (Random) 0.1697 0.1674 0.1600
K-Means 0.7952 0.4101 0.5239
TCK-Means 0.8060 0.4872 0.5930
Improvement +1% +19% +13%

Table 1. Experiment Results: TCK-Means vs. K-Means with d = 1

Both the K-Means and TCK-Means algorithms clearly outperform the three baselines, which suggests that
simple RGB color features can capture large potion of the visual characteristics of various locations. The high
precision shows that color similarity is often sufficient to correctly cluster together two video frames captured
at the same place . However, low recalls suggests that color similarity is sometimes not adequate to cluster
dissimilar video frames from the same environment. Take Figure 5 as an example. While a user is typing in
front of a computer screen in the office, s/he may suddenly turns to a bookshelf to fetch a book, and then comes
back to the seat. While both typing and book fetching events occur in the office, they look very differently
in color histogram, and any unconstrained clustering algorithms will put the two events into different clusters.
However, two events occur close in time, and thus TCK-Means encourages the book fetching event to be in the
same cluster with the preceding and following frames, i.e. the office cluster. The substantial improvement in
recall supports our ideas with empirical evidence.

4.4. TCK-Means with Varied Window Sizes

We vary the window size to look into how window size influence the clustering performance, and the results are
shown in Table 2.

†In order to control the experiment and compare two algorithms fairly without an extra confounding factor, we fix the
cluster number k in K-Means and TCK-Means with the true number of clusters from annotation truth. In practice we
do not know k in advance, and techniques such as “gap statistics”14 can be used to estimate the best k for the data.



(a) typing in front the screen (b) turning to the bookshelf (c) back to the computer

Figure 5. An example shows how time constraints can cluster color dissimilar video frames into the same cluster.

Method Precision Recall F1

Baseline (All Same) 0.1710 1.0 0.2921
Baseline (All Different) N/A 0 N/A
Baseline (Random) 0.1697 0.1674 0.1600
K-Means (d = 0) 0.7952 0.4101 0.5239
TCK-Means (d = 1) 0.8060 0.4872 0.5930
TCK-Means (d = 2) 0.8141 0.4999 0.5883
TCK-Means (d = 4) 0.8165 0.5110 0.5909
TCK-Means (d = 6) 0.8175 0.5104 0.5979
TCK-Means (d = 8) 0.8207 0.5174 0.6029
TCK-Means (d = 10) 0.8262 0.5313 0.6061
TCK-Means (d = 12) 0.8235 0.5297 0.6094
TCK-Means (d = 14) 0.8319 0.5307 0.6169
Improvement +5% +29% +18%

Table 2. Experiment Results: TCK-Means with varied window size (in seconds) vs. K-Means.

When the window size d is increased, we impose greater time constraints, and therefore each video frame is
asked to be as consistent with more surrounding frames as possible. Therefore, small camera motions or transient
movement will not be wrongly clustered into different clusters from the locations immediately before and after.
By enlarging the window size, the recall can improve from 19% (small window size d = 1) to 29% (large window
size d = 14)!

When d is set to be greater than 14, the time constraints were so strong that TCK-Means cannot construct
the same numbers of clusters as oracle anymore, which would confound our comparisons between K-Means and
TCK-Means. Therefore we discard the clustering results that are less than true numbers of clusters and only
report the results less or equal to 14. Eventually the clustering performance of TCK-Means falls back to “Baseline
(All Same)” when the window size is as large as half of the the recording length.

5. CONCLUSIONS AND FUTURE WORKS

With advance of storage capacity and wearable sensors, it will soon become feasible to capture the whole life
of human experiences in digital video. However, before any video retrieval systems can index the recordings,
continuous video need to be segmented into manageable units. In the paper we propose a time-constrained
K-means clustering algorithm to perform both segmentation and clustering in one step. The experiment results
show that TCK-Means achieves substantially better clustering performance than the unconstrained version.

While the experiment results show that TCK-Means outperforms K-Means, it is still not clear to what extent
the performance gain can transfer to continuous video retrieval. We plan to investigate the issue by conducting
video retrial experiments with a set of queries, and evaluate the effectiveness of the video retrieval systems with
our proposed clustering algorithms.



K-Means was chosen in our paper for its simplicity such that we can illustrate the idea of imposing time
constraints on K-Means more clearly than other more complicated clustering algorithms. In future work we plan
to extend our work to other clustering algorithms that can relax the constraint of hard clustering of K-Mean.
Soft clustering algorithms such as Gaussian mixture models allow us to assign probabilities on multiple cluster
assignments, which may improve segmentation and clustering of continuously recorded video.
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