
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

STUDIES IN PROBLEM SOLVING:
SUBJECT 3 ON THE CRYPT-ARITHMETIC
TASK DONALD + GERALD - ROBERT

Allen Newell
July, 1967

This work may not be reproduced without the consent of the
author. The research was supported by Research Grant
MH-07722-01 from the National Institutes of Health.

Carnegie Institute of Technology

L
C
C
E
C
m

[

[
c

c

Studies in Problem Solving: Subject 3 on the Crypt-arithmetic*

Task DONALD + GERALD = ROBERT

Allen Newell

This paper provides another item in a larger effort to develop infor-

" mation processing theories of human problem solving. The conceptual foundations

of the theory stem from work in constructing computer programs to accomplish

tasks requiring intelligence. Since the general issues, methodology, and prior

£ work in applying these tools to theories of human behavior have been covered

elsewhere by several investigators, we will only bring out those aspects

necessary to put the current work in context.**

Information processing theories lend themselves to the development of

programs that simulate segments of individual behavior. Typically, a subject .

is put to a task requiring complex reasoning ~ playing chess, proving theorems,

discovering complicated concepts — and asked to think aloud while he works.

CI The raw data available for analysis, usually called the protocol, consists of

a tape recording of the subject's verbal behavior plus other notations necessary

to record pertinent behavior, such as writing. The protocol includes the expert

ly menter's behavior as well, although his participation is usually minimized

intentionally.

* I am indebted to my colleague H. A. Simon for his contribution to this
work. This research was supported by Research Grant MH-0772201 from the
National Institutes of Health.

** The collection of papers in Feigenbaum and Feldman [7] provides many
examples of work in artificial intelligence and computer simulation of cognitive
processes. More extended discussion of the methodology is to be found in
Reitman [24], Newell and Simon [20] and Miller, Galanter and Pribram [12].
The current study is used extensively in a more general paper on protocol
analysis [15],

The task of data analysis consists of at least two steps. First is the

production of the transcript from the raw recording and measurements. This

invariably loses'information, since the total range of verbal behavior is not

rendered with fidelity by standard secretarial-level transcription, even when

done carefully. Pauses, pace, intonations, and much paralinguistic material

are lost. Since no. one has yet concerned himself with this aspect of the data

analysis in connection with simulation studies, we will have nothing more to

say about it here directly (but see [23]). Even without it, a protocol of a

typical session lasting a quarter of an hour provides a wealth of data.

The second stage of analysis is the production of a computer program

that "simulates" the behavior as revealed in the protocol. Simulation means

putting the behavior of the program (whose record is often called the trace)

in one-one correspondence, at some level, with the human's behavior.

There are difficulties in assessing this correspondence. The most

important relates to qualitative comparison on task information. In chess,

for example, both trace and protocol identify not only moves made or considered,

but features of the board that are noticed and evaluated, decision points in

the analysis, etc. Numerical measures are not easily adequate to these com

parisons, since the full range of task content is involved. This difficulty

is a direct consequence of the richness of the theory — of the kinds of things

it is able to assert about the human behavior. Still, it makes the apparatus

of statistical testing difficult to apply.

There are other difficulties as well. Errors in correspondence are of

different sorts. One expects the verbal output to be uneven to pass in

silence over many things of importance. Therefore, not everything in the trace

c
c
[
c

c
c

c

would be expected to show in the protocol. Also, one must specify (but, very

seldom does precisely) at what level the program's behavior is to be taken

seriously. As one moves from gross behavior towards machine code, both the

organization and the instructions reflect increasingly the structure of current

programming languages (and ultimately, computers).

The paradigm presented above suggests the development of a unique program

to correspond to each protocol. In truth, of course, one wishes to postu

late a common set of mechanisms to describe the behavior of the same person

over many tasks, or even to describe the behavior of many people. This commu-

£ nality is to be tempered by the fact that large individual differences do exist,

and that it may be possible to evoke quite distinct sets of behaviors from the

same person by changing the situation sufficiently. In any event, there have '

been some attempts to develop general program structures, within which indi

vidual variants can be formed to account for individual protocols [9, 19].

A difficulty plagues the analyst in doing this. Programs do not lend

themselves to parameterization in the same way that standard mathematical systems

do. More precisely, the variations cannot always be represented easily by re

placing a constant by a variable in the expressions of the theory, where the

variable ranges over a simple domain (such as the real numbers). In programs

the variation is often over a class of data structures, or a class of programs

— e.g., problem solving methods.

Actually, the close fit of the individual program to a single segment

of behavior looks more like a data point than a theory. That is, each program

is a completely particularized version of a more general theory not yet

£ formulated precisely. Hopefully, developing a large number of examples may

13

[
C

[

t
wirr uiiwhy

•MKiienaiM mmun

lead to inducing more clearly the common structure and the form of individual

differences. The particularized program may be the appropriate description of

the raw behavior, from which properties of revelance can be extracted. One

cannot read significant features of the behavior without first describing it this

way, any more than one can read signal out of noise without appropriate statis

tical processing.

The present study continues the accumulation of specific examples and

the development of techniques for protocol analysis. It is devoted exclu

sively to the analysis of a single protocol. It follows up a technique used

in a prior study of a chess protocol [21], in which an attempt was made to

provide a rather exhaustive analysis prior to construction of a program. No

attempt was made there to take the final step to the program. A similar

approach will be taken here, making use of a different task.

We start with an analysis of the task, introducing the technical

apparatus needed to describe the subject's behavior. Then we give a gross

description of the protocol, followed by the detailed analysis.

Analysis of the Task

Crypt-arithmetic task. The following problem is presented to the subject

DONALD D - 5
-fOERALD
ROBERT

In the above expression, each letter represents a digit;

i.e., 0, 1, ... 9. For example, you know that D is 5.

Each letter is a distinct digit. For example, no other

letter than D may equal 5. What digits should be assigned

to the letters such that, when the letters are replaced

r
L

c

[
[

by their corresponding digits, the above sura is satisfied.

This form of puzzle has been christened "crypt-arithmetic» by Maxey

Brooke, who has collected a large number of examples [4]. Apparently, the

only prior use of the task in psychology has been Bartlett's [2], which

[* stimulated our use of the task.

[

£ Problem Spaces. To analyse the behavior of the subject we Introduce

the notion of a problem space. This consists of a set of positions (or nodes)

F each of which represents a state of knowledge about the problem. There is also

a set of operators that apply to states of knowledge to produce new states of

knowledge. A problem is posed in this space by giving an initial state of

£ knowledge and requiring that a path be found to a final state of knowledge

that includes the answer to the problem.*

Many problem spaces can be defined for a single problem. Each is to be

defined by giving the class of expressions that can represent the states of

knowledge, and then defining the set of operators in terms of these expressions.

To do this conveniently we will make use of Backus Normal Form terminology [1].

This permits us to construct schemes for expressions, and assign suitably

restricted domains for them. For instance, consider:

C3

[
c

c

[

e

1

d

= a| b 1 d I e|g[l|n|o)r| t

= 0|1|2|3|4|5|6|7|8|9

These notions are essentially those introduced in constructing heuristic
ns, sometimes going under the name of the maze-model of problem solving programs, sometimes going under the name of the maze-model of problem solving

r [17] sometimes under the name of heuristic search [16]. Our use of the term
L P^blem space is consistent with these; our use of "state of knowledge" for

the node expresses a preferred Interpretation.

The lower case underlined alphabetic symbols represent classes, jd is

the class of digits; 1^ is the class of all letters in the problem. The vertical

bar, |, is a metasymbol, used to separate alternative expressions, or classes of

expressions, for a c l a s s . Likewise, the colon-equal, : = , is used to separate

the class name from its definitions. £ is the class of all expressions where 1

is replaced by a member of 1^ (i.e., a letter) ; 6 is replaced by a digit; and the

assignment arrow, remains. Examples of je are: A<-6, D<-5, etc. Non-members

of e are U-6, 5<-D, G<-10, H<HL, D = 5.

With these definitions in hand we can define a simple problem space for

the DONALD + GERALD task. First, we define £, the set of knowledge states:

s, := ej

We use the metacharacter, to indicate the null expression. The last

component of the definition is recursive. Thus it includes £ and £,£ and

and so on; that is, £ consists of lists of assignments. The inter¬

pretation is clear: an es expression is the association of a digit to a letter;

an js expression is the conjunction of its terms. Therefore, duplicates from

£ iare strictly redundant.

Next we define the set of operators:

(}> := Make e

T h u s , an operator makes an assignment, adding it to the state of knowledge.

If s were the current state and Q were the operator A<-2, then

« Q (s) = s,A<-2

We will call the problem space just defined the legal problem space.

It is about the simplest one in which the total problem can be defined. Simplic

ity refers here to the ease with which such a problem space can be constructed

L
C
c

c

C
c

on the basis of the instructions given about the problem. Let us state the

instructions for the problem in this space:

legal problem space:

SQ := 4

£ s* := s such that

x in 1 implies x in s exactly once
r ~

L x in d implies x in s exactly once

p D<-5 in s
DONALD

+GERALD
ROBERT

Our purpose is not to provide a complete formalization of the specification of

r
L the task. In particular s* is not really defined in the space at all. That

is, a description is given so that a specific state, s, can be recognized as

an s*. It is possible to consider definitions of a problem space in which the

symbolic expression defining s* is an admissible expression in the space. They
D

would be linguistically much more elaborate than the legal problem space we
r
L have just defined. Problem Behavior Graphs. Given the operators and the starting node,

one can lay out trees of search that might either solve the problem or represent

the subject's search (or both). Figure 1, for example, shows the search tree

£"« formed by a problem solving system proceeding under the following rules:

1. Search according to the "depth first" strategy;

[] that is, when at a position s, select an operator

F- 5, find p.(s) = determine if s' is a solution;

- 8 - 3
3 5 . T

5 , O

L R N

3

6 . Z

7 4

8 6

8

6" . z

A

A
6

JL

8.

A

6 6

2

B

9

6

6
6

^ 3

7
8 . 7

A . E . N , B .

J 2. 3
6 ,
7 6
8 . 7 ;

2.
6 l

7 ,

1 ,
3
7
8 .

8 6 _ I

3

4-- 9

4-. 9

8 . I

1 3 a.. 9
4 -
9 . 4

S o l u t i o n

3

Figure 1: Depth first search.

C
C
C
C

c
c

if so terminate (success). If not, search a* according .

to the "depth-first" strategy (that is, recurse). If

the search terminates from a* with success, then

terminate with success. If not, then select the next

^ operator at s_, and repeat. If there are no more operators

at _s, then terminate with failure.

2. Generate operators, 1*^, by generating the columns from

right to left, and 1_ within a column from top to bottom.

Generate d in the order 0 through 9.

The test for terminating a branch Is the construction of a state that cannot

possibly lead to the solution: one having two different digits assigned to

[the same letter, having the same digit assigned to two letters, or having a

false sunt These last steps that reveal the contradiction are not shown in

the figure. If no checking for failure had been done until the end, then a

tree with 10! terminals would have been generated (or 9! if taken into

account).

The search tree is a way of displaying behavior that permits inferences

back to the program used by the subject. It is an empirical question whether

the subject will generate a tree in the course of solution, or will use some

quite different solution technique. Likewise, it needs to be shown that a

significant amount of the tree can be inferred from the protocol. But prior

work and the remainder of this paper settles these doubts.

The example of Figure 1 is overly simple in one important respect: no

* J part of the tree is searched more than once. Thus the time sequence of genera

ls tion can be inferred from the total tree generated. In general this will not

[
c

c

[
r

- 1 0 -

be the case; the subject (or program) will wander over the same ground repeatedly.

Thus we will introduce a modification, which we will call the problem behavior

graph (PBG), which will retain the full information about the dynamics of search.

The rules for PBG's are:

Rules for Problem Behavior Graph (PBG):

A state of knowledge is represented by a node.

The application of an operator to a state of
knowledge is represented by a horizontal arrow
to the right; the result is the node at the
head of the arrow.

A return to the same state of knowledge as
node X is represented by another node below
X and connected to it by a vertical line.

A repeated application of the same operator
to the same state of knowledge is indicated by
doubling the horizontal line.

Time runs to the right and down; thus, the graph
is linearly ordered by time of generation.

These rules are illustrated in Figure 2. The subject starts in node 1

in the upper left-hand corner. The first operator applied is Ql, leading the

state of knowledge indicated by node 2. Then Q2 is applied, leading to "node 3.

At this point the subject returns to the same state of knowledge as in node 2;

this is shown in node 4. The act of returning was not done via an operation

in the-problem space -- that is,-by one of the Q's — but by some other-operation,

such as recalling the prior state, or abandoning the information produced by Q2.

Thus, the move from node 3 to node 4 does not show as an operation. At this

point, Ql is applied to node 5 and then a return is made to the state of know

ledge represented by node 1. Node 6 must go on the line below nodes 4 and 5,

since it occurred later in time. Ql was again applied, as indicated by the

c
c
[
[
c
[
c

£
L"
C¬
c

c
[

11

Figure 2: Basic definition of Problem Behavior Graph (PBG)

double line emanating from node 6. The connection between node 7 and nodes

2 and 4 is not indicated in the graph.

The problem solver is viewed as always being located at some node in the

PBG, searching for a solution by generating yet other nodes. Yet the act of

search itself generates information in addition to that represented by the

state of knowledge at the current node. One variety is path information: the

subject knows something about how he got to the node. Note that there may be

many paths to the same node (as 3+5 = 8, 4+4 = 8, 2*4 = 8, 24/3 = 8, etc.), so

that path information is not necessarily derivable from the state of knowledge.

In our earlier example, given the state it is possible to derive which operators

were applied; but it is not possible to determine either their order or whether

they applied more than once Another variety of additional Information

is about past attempts. At-node 4 (Figure 2).the problem solver must know that

he has been in this state before and that Q2 was applied. Otherwise, he should

apply Q2j iratheT than Ql* It is of c o u i s g possit>1.6 to bs ba.clc in ths same

situation without knowing the full history of past attempts; this is quite"

possible at node 7, for instance. Both these varieties of information are

functions of a node, so that we should think of the state of knowledge in each

node being expanded to include them.

Initially two nodes are given directly to the problem solver, s Q and

s* (often, as we noted, only a test for s* is ;given). During the course of

search additional nodes may be retained in such a way that they are available

to the problem solver "directly" -- that is, without regeneration within the

problem space. Some of these may be tied to the path leading to the current

node, but others may become Independent of the current position. The stock.

[
c
[
[

c
c

c

13 -

as we will call it, constitutes the pool of states that is available for the

continuation of problem solving if the current node is abandoned (as it must be

eventually on every dead branch). It plays an important role in problem solving.

Additional information of a permanent nature (available independent of

£ the current position) may be extracted from the states of knowledge as the

problem solver searches through them. No special representation of such black

ly board information* is included in the PBG, despite Its importance.

n Besides these varieties of knowledge, there is associated with each node
l- several processes:

JP Evaluation:

Does s=s*?
p Does s have information that should be saved?
L S h o u l d * be added to the stock?

Should search continue from s?
Should the problem space be abandoned?

Select next operator to be applied

Is it desirable?
O Will it work?

Has it been used before?

Apply operator to produce new state of knowledge
(May not always be successful)

Select new node from stock

(Given decision not to continue)

All these processes may be highly complex and extended in time. They may

involve further search in problem spaces of their own, and extensive variation

f * "Blackboard" refers to the analogy of many people putting information on
a common blackboard where it is available for all to use, independent of its

- 14 -

in the state of knowledge about facets of the total problem not represented by

this problem space. Likewise, several of the processes may be absent in

special cases, or independent of the current node and so better viewed as a

common process — e.g., the selection of a new node. We will still write a node

at the head of every arrow, even though no new state of knowledge was produced;

thus, a node may be vacuous. This convention is convenient, since the inference

that a result is not actually produced may not occur until late in the data

analysis.

Varieties of problem solving. We are concerned in this section with how

problem solving proceeds in a given problem space. The next section will dis

cuss multiple problem spaces for the same problem.

The basic structure of problem spaces dictates that problem solving takes

the form of search. It also determines where the opportunities (and necessities)

for further choice occur, and hence where intelligence can enter. The three

items just given -- evaluation, operator selection, and node selection —

summarize these entry points. However, they cannot be dealt with independently,

. since problem solving appears to proceed according to various strategies or

methods that dictate coordination between all three categories. Thus, we will

organize our comments around generalized methods.

Forward search. The simplest way of searching involves generating

the operators in some fixed order (according to their own structure, such as

trying the digits in numerical order), and testing for whether a solution (or

progress) is obtained. The search given in Figure 1 was so generated. We will

term any method that uses an operator generator that is basically independent

of the position, a forward search method.

Even with a fixed generator there are still various strategies of

search available. One extreme is the depth-first strategy, already illustrated,

in which a position once generated and accepted immediately becomes the starting

point for further search, and all search that will occur from that position is

completed before returning to any positions prior to i t . Another extreme is the

breadth-first strategy, in which all positions at a given depth from the

initial position are generated before going on to any that are d e e p e r .

Both these strategies have substantial, though differing, memory requirements

for the stock of p o s i t i o n s . The depth-first strategy demands perfect retention

of all the positions in the path leading to the current p o s i t i o n ; the breadth-

first strategy demands perfect retention of all positions at a given depth

(whose number generally will increase exponentially with increasing d e p t h) .

Other strategies can be constructed that have less stringent memory require¬

m e n t s ; these involve repeated searches over the same ground. An example is the

progressive-deepening strategy discussed in the analysis on chess already

mentioned [2 1] . One version of this requires only that the initial position

be retained, since the search always returns to the initial position. However,

some other blackboard information must be retained to gradually move the search

through the space.

Means-ends analysis. In the definition of a problem a desired

object, s*, is given (or determined) . In the forward search method a process

must exist that tests if s is either s* or constitutes progress toward s*.

If, in addition, s* is used in the selection (or ordering) of the operators to

be applied at s, then we term the method, means-ends analysis. That is, the

means (i.e., the operators) are chosen with a view towards the end (i.e., s*) .

Both forward search and means-ends analysis provide direction to thinking. But,

to use some analogies, the direction shown by forward search is like that of

water flowing down a hill: it would spread in all directions, and it is the

shape of the environment that makes it appear to seek the bottom of the hill

(the tests of progress). The direction of means-ends analysis is like that of

the servo: a comparison is continually made with the final end, and action

taken to diminish the difference.

In general means-ends analysis requires the detection of a dif

ference between the current state of knowledge and the desired one, d(s, s*),

and this difference is used to make the selection, Q - f(d). Of course, only

selection functions leading to operators that reduce or eliminate differences

would be of much use. Only in limiting cases will the selection be dependent

only on s*. These mechanisms are well illustrated in GPS [19], where the

difference is obtained by a match process and the selection function (f, above)

is given explicitly as a table of connections.

In terms of the PBG there is no need to represent the final state

in the graph, since it is common information available at all nodes. Conse

quently, the existence of means-ends analysis will be revealed only by the kind

of lawful behavior shown in the selection of operators.

Goals and goal hierarchies. As we have just noted, in case there

is a single goal there is no need to represent it in the PBG. However, if the

goal changes from time to time, then it is important to know what goal (or goals)

is being attempted from a given state of knowledge. We could view this infor

mation as being part of the state of knowledge. This would require, however,

that we augment the set of operators with some that set and abandon goals,

[
[
c
[

c
c

[

c
[

r
[

17
for we have identified the states of knowledge as constructable on the basis

of the operators: if we are at s and apply then the new state of knowledge

is s' = £(s). If there were to be an unrecorded change of goals, this would

no longer be the case.

|T What sorts of goals are possible within the framework of a problem

space? First, one can seek states of knowledge as yet unattained. That is, one

may say "get s." This implies that _s is obtained through the application of

operators to states of knowledge that already exist. It need not be the case

that the desired s_ is fully known; the s* in our legal problem space is only

jH specified as a member of a set of s. Exactly what sets are possible of expres

sion depends on the particular problem space. It will have to be specified as

clearly as we have specified operators, in order to define the goal setting

operators. It is also possible to "check s"; that is, to verify some knowledge

already obtained.

Besides seeking new states of knowledge, it is possible to seek

to apply operators. A given operator need not be applicable to an arbitrarily

given state of knowledge. One can then have a goal to "apply Q to s." Such a

goal can be attained only if something changes, since, by hypothesis, p. cannot

be applied to £. One can either seek an s/, such that Q can be applied to s';

or seek a 0/ such that does apply to s, (one might fiddle with both, of

course). In fact the former appears much the more likely, since the problem

space is already devoted to obtaining new s/s. To find new Ojs in any way be

sides relatively fixed operator selection processes, requires a problem space

that has operators for states of knowledge and metaoperators for searching

|S through these.

r
L

- 18 -

These ideas lead to PBG's like that shown in Figure 3. At si the

act of setting a goal is selected, so that at s2 the search is on for s*.

. Operator Ql is applied, yielding a new state, s3. From s3 operator Q2 is

attempted but fails, and the goal of applying Q2 is selected instead. Thus at

s4 the search is on for how to do Q2. Q3 is applied, leading to s5, which is

apparently the end of the search for the acting goal, since Q2 is applied, lead

ing to s6. Next, Q4 is applied

Figure 3 is ambiguous about what goal is being sought at s 6 . One

assumption, which defines some of the path information kept by the problem

solver, is the following:

Goal stack assumption: The goals occurring in the path
to the current state of knowledge are stacked in the
order of their occurrence (most recent on top). The top
goal in the stack is the current goal. When it is
attained or abandoned the stack is popped, and the next
goal down becomes the new current goal.

It is an empirical matter whether this goal stack assumption is

justified for a particular problem solver. If it is (and it will be true to a

first approximation for the protocol of this paper), then Figure 3 becomes an

adequate representation of the search; and Q4 is being applied in the search

for s*.

We have discussed the representation and mechanics of goal for

mation, but have not dealt with the various rules for when to change goals and

what new goals to introduce. For instance, one rule used by GPS is always to

set up the subgoal of applying an operator if there is difficulty in so doing.

In fact, the simplest versions of GPS can be completely described as a means-

ends analysis problem solver obeying the goal stack assumption and always

[
[

c
[
c
c
c
[

19

si S2 S3 si
*

S2 S3

s 4 Q 3 ^ s5 Q 2 So s 4 s5 So

c
[
c

Li

[
c

Figure 3: Example of goals as operators.

- 20 -

setting up apply operator subgoals.*

Desired states, as we have already seen, may be expressed as a

set of possible states to be attained. Desired operators may also be only

partially specified. For example, "Adding some odd digit" is a possible operator

in the DONALD+GERALD task. In both cases it is possible that further actions

could be taken to specify the goal. Thus Figure 4 shows a series of specifying

actions, both of the desired state and of the operator to attain it. In terms

of problem spaces we could say that there exists a problem space whose states

of knowledge are the various expressable subclasses of operators. The operators

of this space are acts of specification that produce ever smaller subclasses.

Likewise, we could talk of a similar problem space for the specification of

desired states. In some cases we may feel that such problem spaces are nec

essary to describe the subject's problem solving. More often, as will be the

case in the analysis of this paper, the specification acts can be adequately

characterized as fixed processes of the same kind as operator selection and

state evaluation processes.

Several problem spaces. The foregoing comments have tried to make clear

some of the different ways problem solving might proceed in a given space and

how it might be reflected in the PBG. Even there, as we enriched the kinds of

things talked about — to desired states and desired operators -- we had to

decide whether to introduce several spaces or stay with one. More generally,

problem solving can proceed with the aid of several related spaces, as long

* This is the information expressed in the diagram showing the three main
methods [see, for example 19, Figure 3],

[
r
L

[
c
c
c
[
c
c

21 -

G e l R
(Known e m)

S d e c f
Col wi*l< R

Col 6: 5 A d d o d d

AAA 3

£3

[
E
C¬
C

C
c
c

Figure 4: Example of gradual specification of operators.

- 22 -

as operations exist for passing information back and forth between them. Of

course, given two problem spaces (s_, OJ and (s', £') it is always possible to

consider that there is only a single space, whose states are the pair (s,

and whose operators are the union (JuQ/ ; where it is understood that an operator

only acts on its own subspace. Factorization into two spaces makes sense where

interaction between them expressed by the number of cross-over links -- is

low enough for the spaces to have separate identities. Let us consider some

examples.

Working forward and working backward.. Given a problem space,

(s_> PJ, we can construct another, (f_, that has the same states of know

ledge, but uses the operators inverse to those in Working with <J is working

forward; working with 0/ is working backward. It is possible for a problem

solver to wander freely from one of these spaces to the other ~ closing the

gap from either direction. Often, both for computer programs and for humans,

solving occurs exclusively in one or the other. If a problem solver worked

alternately in one for awhile and then the other for awhile, one would still

want to keep the two spaces separate. Sometimes the difficulty in working back

ward stems from the additional generality required. Thus, in the legal problem

space the desired state, s*, is given as a set of states. Consequently the in

verse operators of Q cannot work on it. To work backwards would require creating

operators that derive an expression for the states that lead to classes of

states. Once this was done, one could apply these extended operators both for

wards and backwards and have a more powerful problem solver. But none of the

subjects we have observed created such operators in DONALD+GERALD.

External and internal responses. The amount of information

obtained from subjects about an instance of problem solving can vary. At the one

extreme we can obtain only the final solution, If found. Alternatively, we might

provide some way for the subject to indicate something about where he is during

the solution process. In the DONALD+GERALD task a natural way to do this is to

permit (or require) the subject to write down the various digits associated with

the letters as he determines them. We can view the subject as working in a

problem space that has a written display of the problem with various letters re

placed by digits. Figure 5 describes this a little more formally, where the

| display is indicated by rows (r) and columns (c).

We view the subject as doing considerable internal processing, so

I that the act of writing (including the decision of what to write) is not a simple

(operation, but is itself developed after a search in some internal problem space
i
I .

(or spaces). We use verbal behavior to tap into this internal space. Now, the

verbal comment

' "Well, N might be 7. If it were.."

I . is as much an overt response as the command "Will you write down N equals 7 on

[• the board." However, rather than erect yet another problem space, we will view
1 the verbal behavior as a direct sampling of the internal space.

S The question at the moment is how to represent the action taking

place in the two spaces. One view is given in Figure 6. The PBG in the internal
r ' i
L t space is represented as if it were the main one. At those nodes where a decision

I is made to apply an operator in the.external space, a notation is made. In our
1 figure this is shown by a vertical line down to the lower plane. The external
r

PBG is much distorted, since the position of the operators is dictated by the

internal PBG.

External Problem Space

r := rl|r2|r3

c := Cl|c2|c3|c4|c5|c6|c7

w := ljd

i := l|lcllcr

rows (r dropped if clear)

columns (c dropped if clear)

characters in display

instances of a letter

7654321
wwwwww rl

X : = wwwwww r2
wwwwwww r3

WO : = d / i | l / i

board
DONALD

XI : GERALD
ROBERT

write operators

XI 1

50NAL5
GERAL5
ROBERT

5/D12 write 5 for D at cl,r2
9/E5 write 9 for E at c5
2/G write 2 for G
L/L21 rewrite L at c2,rl

Figure 5: External problem space definition.

- 26 -

An alternative view is shown in Figure 7. This is the view from

the external space. Each writing act is shown having an entire PBG in the

internal space devoted to its determination. Such a subgraph might be devoted

to selecting the operator, to testing its feasibility before "actually"

applying It, etc.

Each of these two views can be correct under different assumptions

about the processing. Figure 6 assumes that the act of writing produces no

change in the state of knowledge. The external space is epiphenomenal, so to

speak. However, it still might play a role with respect to the recording of

information — functioning as the blackboard or the stock of nodes to which the

subject can return. Contrariwise, Figure 7 assumes that all the processing in

the internal space is entirely subservient to the external act, so that after

the external act is made, no other information is available to the subject than

that shown by the now external state. A completely stimulus bound organism

would be represented by Figure 7. If neither of these extremes were approxi

mated, one could treat the two spaces as one, stowing operators of both kinds

Intermixed in one large PBG.

Individual operators and class operators. Let us start with the

legal problem space (s., 0.) for DONALD+GERALD. If we take the kinds of infor

mation that make up its states of knowledge — the assignments, l^d ~ as

primitive, then we can construct a new problem space whose states of knowledge

are disjunctions of these primitive individuals. That is, it may be known only

that R is 1, 3, 5, 7 or 9 or that E is 0 or 9. For these states of knowledge to

be operational there must exist operators thet take such states of knowledge and

- 27 -

W R I T E

Figure 7: Internal-external PBG, type 2.

f

- 28 -

produce new ones. For example, knowing that two letters were assigned odd

digits, we could conclude that their sum is even, without ever considering the

exact digits that were assigned. Thus, class information need not be given as

an explicit enumeration, but according to some system of properties (in this

case even-oddness).

Much additional power comes through the ability to work with

classes rather than individuals. Basically, it provides the ability to do in

one search what would take a vast examination of cases if the members of the set

were enumerated. (When dealing with infinite sets, of course, such enumeration

is ruled out in principle.) Thus in the even-odd example, the same conclusion

about the sum can be reached by considering 5x5 = 25 cases (since we are working

only with the ten digits).

It should be clear that there are not just two spaces, the primi

tive one admitting only elementary facts, and the one admitting all degrees of

classification. Rather, there is a series of increasingly powerful spaces

depending on what operators exist for producing new states of knowledge. In

general one would expect a problem solver to operate in the most powerful space

for which he has the operators. However If the more powerful operators are too

costly In some way (such as having to take time to write on paper), then the

subject might alternate between a less powerful space (in his head) and a more

powerful one (on paper).

Planning. To drive across the country one can first consult a map

and then, having planned the trip, take to the car and actually drive it. It is

clear that problem solving in two spaces is being carried out: in the space of

the map and in the space of the actual country. Figure 8 shows the relationship.

- 29 -

7 ^ 7

\

|

Figure 8: PBG for planning.

- 30 -

The top plan is the map, the bottom the country. Problem solving first takes

place in the map. When a solution ("the plan") is found there, as indicated

by the first sequence of nodes, labeled (1) through (4), problem solving

("implementation") can start in the more detailed space. Each of the nodes in

the plan sets up a goal in the lower space, which requires some search to attain

it.

The map-country example involves two spaces that are quite distinct

in their characteristics. However, planning and implementation often can occur

in the same space. The requirement is a rich enough set of operators so that a

solution can be found that ignores or assumes some kinds of information. Then

this solution path can become the plan for working out the details. Actually,

in the DONAI.D+GERALD protocol that we will examine no extensive planning occurs.

However, a conceivable type of planning is one that endeavors to determine what

order to consider the letters, as in the following line of reasoning:

Since D is determined, then T is determined. Thus, the

carry into column 2 is known. Hence something is known

about R. But then column 6 should tell us something

about G, D being known and R being partly known. But the

carry into column 6 isn't known, so the value of 0 and

maybe E had better be found first. ..."

The operators here are akin to the counting of equations and unknowns. The

result is a good order for the generation of operations, as in Figure 1. (It

is doubtful that a plan at this level could discover the optimal order.)

- 31 -

First Phase Analysis of the Protocol

Overview of the protocol. The previous section has given us enough

tools to start the protocol analysis. The protocol is reproduced in full at

the end of the paper. It was taken in the Spring of 1960; little is known about

the subject except that he was a male college student at Carnegie Institute of

Technology. No separate record is available on what was written down, although

it is usually clear from the protocol when something is written, as in B9.

Likewise, no separate timing information is available. However, there are a

total of 2186 words. Since other protocols under similar conditions average

about two words a second, we estimate the length of this one at about 20 minutes.

Timing information is not critical, since we have no way of making use of it..

'.' The protocol has been broken up into short phrases, labeled Bl, B2,

B321. This includes the remarks of both the subject and the experimenter. The

(phrasing is based on a naive assessment of what constitutes a single task

| assertion or reference. It is meant to ease reference and does not affect the

analysis explicitly. However, the total number of phrases, 321, does give some

indication of how many data are present -- one phrase every three to four

seconds. Considering how much most of us think can go on in a few seconds this

r
L may seem a rather low density.

f The most basic question about such data is to what extent the phrases

have an unambiguous meaning. The verbalizations are free, and so we can expect

J - -- and get -- exchanges such as B169 - B176 which includes "I still feel as

though I'm baring my soul." In general, however, the task provides an extremely

I narrow context which makes interpretation relatively easy.

] One might feel that the verbalizations should be encoded into some formal
{ i l

r

- 32 -

categories, in order to make it clear what information was being used in the

analysis. This was tried in the chess analysis already mentioned [21], without

returns commensurate with the effort. There appear to be some objections In

principle to such an encoding, especially where the content of the utterances is

to be preserved. In any event, in practice those parts which are easy to code,

don't need it « e.g., B189: "I'm going to make R a 9" or B208: "that means that

A + A has to equal 10." Those parts which are not, should be kept In their

original form in order to extract any information they do contain -- e.g., Bl6

and B17: "that are each somewhere --" or B62 - B65: "Now if the Oh, I'm

sorry I said something incorrect here, I'm making — no, no, I didn't either."

As a matter of fact, breaking the utterance up into small phrases goes a long

ways towards isolating a series of unambiguous 'Measurements" of what information

the subject had at particular times. These measurements carry the main burden

of the analysis; the ambiguous ones that are left operate mostly as weaker checks

of consistency.

We now turn to an analysis of S3*s problem solving behavior. Various

additional issues of interpretation will be dealt with as they come up in the

context of the analysis.

The Problem Spaces of S3. An examination of the protocol shows the

following characteristics, which must be encompassed in a formalization of the

subject's problem spaces.

1. The subject writes some things down, but long periods go by with

no writing. Thus, there are at least two problem spaces.

2. Several kinds of actions occur; the assigning of digits to letters;

inferring of relationships from the columns of the sum; and the generating of

digits that satisfy certain relationships. For example:

B 4 3 . "if we assume that L is, say, 1." (assignment)

B4 4. "we'll have 1 + 1 t h a t s 3 or R --" (inference)

B26. "So R can be 1, 3, not 5, 7 or 9." (generation)

3 . The relations that occur are equality, inequality, and even-oddness.

Equality must be kept distinct from assignment, since the subject appears to

know throughout whether a digit has been inferred equal to a letter or assigned

to that letter. Examples:

B 1 3 4 . "A would have to equal 5." (equality)

B 5 8 . tfR has to be a number greater than 5." (inequality)

B 2 2 . I !which will mean that R has to be an odd number." (parity)

B 9 5 . "Of course, this is all going on the assumption that
R is 7 -- " [after B 6 1 . fBo w e f l l start back here and
make it a 7."] (assignment distinct from equality)

4 . The subject is able to consider disjunctive s e t s . Example:

B 7 4 . "But now I know that G has to be either 1 or 2 . "

5. Although the subject frequently states equations, these all corres

pond to the reading of a column; there is no evidence of the algebraic manip

ulation of equations. (Such manipulations do show up clearly in protocols of

other subjects.)

6. With respect to carries, the subject is able to use them in infer

ences, to infer them, to seek them, and (possibly) to assign them. For example:

B7 0. "because 3 + 3 is 6 + 1 is 7." (use)

B 8 5 . 'which would mean that I was then carrying 1 into
the left hand column." (inference)

- 34 -

B261. "There's no place where I can get L + L

to G c j u a . 1 moirs tHcLn 1 0 j so I could t n a l c e (S G G I C)

B 2 2 1 • Suppos G X would c c i i r i r y 2 firoro t t i G column* (3 . s s }

Tbc 13st .̂ xainp 16 shov*s fcb3.t thG valuGS of t h 6 csnry ccinnot be restricted to 0

3 T i d 1 fQ-£ tins subj GC t *

7-r There exist a few actions and kinds of information that lie outside

the range indicated above* These occur so rarely that they must be handled in

3J^L fs-shion in any event. Examples.
B40. "Possibly the best way to get to this (reference to

problem is to try different possible a method)
. solutions."

. - B50. "it's not possible that there could be (an operation to
another letter in front of this R is it? obtain infor-
Is it or not? mation from

exp er imen t er)

We can now describe the problem space that appears to cover most of the

protocol. It is an internal space, in which writing operations into an external

space occur occasionally, in the manner of Figure 6. This internal space is
shown in Figure 9. It is an expanded version of the legal problem space,

although for completeness we have repeated things set forth earlier. Some of

the distinctions made within it are dictated by considerations yet to come.

A few examples will serve to make the specification clear and to explain

the few special symbols that occur in it.

35 -

Internal Problem Space

1

d

d*

_t

v

Is

= A | B S D | E | G | L 1 N 1 O | R | T

= Q|l|2|3|4|5|6|7|8|9

= 'd|x|y

« tl[t2|t3|t4|t5|t6|t7

lj j_,ls ds := d|d,ds

cs

rel

pro

suf

ee

:= cjc,cs

:= HH>I<
:= even|odd|free

= !|?|-p = v|v rel d*lv rel ds|v pro.
= ee suf

= eje,s

:= PC(c)|GN(v)|AV(v)|TD(l,d)

:= get v|get ee|get ls|

check e|check £s

letters

digits

digits or variables for digits

carries

variables

letter sets
Is = all 1
fls » all d still free

digit sets
ds = all d
fds = all d still free

column sets

properties

suffixes

elementary expressions

expressions

5̂ t €L t S

operators

goals

Figure 9: Internal problem space definition.

- 36 -

0<-x

A=5-p

G=3,4

t6?

get B

get t3=l

N free

the letter 0 is assigned a digit x
<a specific one, but whose value is
not yet known)

A=5 is not possible

G is 3 or 4

The value of t6 (the carry into column 6)
is unknown.

Obtain the value of B

Obtain the value of t3 to be 1

N is any digit; i.e., there is no additional
constraints to the selection of a value of N.

Four operators are given, which are used to generate new states of infor

mation from old. Initially, we will describe these in gross terms by the kind

of information they put out and the kind of information they use as input. This

will be enough to identify their occurrence In the protocol. We will discuss

later what consistent algorithms can be fashioned that describe the occurrences

of the operators.

PC(c) Process column c. The input to PC is all the information
In the state about the three letters and two carries
associated with a column. The output is an expression, e,
about some of the variables (1 and _t) of the column.
The specification of what variable to get information
about may or may not be determined prior to performing
PC; if so we can write PC(c,v).

Examples: t rl + r2 = r3

cl 0 D=5 D=5 T

c2 1 L L R

c6 ? D=5 G R<-7

t
i + l

 o u t P u t

? T=0, t2=l

? R odd

0 G=l,2; t6?

- 37 -

GN(v) Generate v. The input to GN is a variable with
whatever information is known about it. The output
is the set of admissible values, not taking into
account whether or not the values are assigned t account whether or not the
other letters.

Examples

L (nothing known)

R odd

R odd, R>5

to

are assigned to

output

0,1,2, ...

1,3,5,7,9

7,9

AV(v) Assign value to v. The input it to AV is a variable with
whatever information is known about it. The output is
an assignment of a digit to that variable. If the digit
to be assigned is determined prior to performing AV,
we can write AV(v,d).

Examples

AV(L)

AV(R)

output

L<-1

R<-9

TD(l,,d) Test if d admissible for 1. The input to TD is a
letter with whatever is known about it, and a
digit. The output is a statement either that the
digit is admissible or that Is not. TD takes into
account 1) whether d is used for another 1, or 2)
whether d is outside" the known restrictions for
the given 1.

The Problem Behavior Graph of S3. Figure 10 gives the behavior graph

for the subject. The conventions are those already laid out. No operations

into the external problem space are shown; instead at those points where some

thing was written we have put an Xi in the upper right hand corner of the box,

giving the name of the new external display. These are shown on the last page

of the figure. Figure 10 has had to be folded rather badly to get the tree onto

page-sized sheets. Figure 11 gives the outline of the total tree. It also

1 z 3 4 -

P C (T A)

5

B L X I C D B 5 P C C C O B 0 K 2 RFETR B Z O P C (T A)

T = 0

P C C C A)

3

4

5

6

7

8

9

R - 1 3 5 , 7 , 9 1

> T D 8 1 8

R = 5 - P

6 3 1 P C F R O B 3 5 . 1

& E V E N

8 3 6 P C (< = 0 B 3 9

S A B J A C F 3 (6 0)

D O N A L D

D E R A L D

R O B E R T

B 4 0 A V (Q

L * - I

P C C «) B 4 5 X 3 P C (C G) B 4 B

R = 3 T 7 - L F

& U 7 « > 8 5 0 . 1

- P

B 5 7 - I

R » 3 - P

6 5 8 P C (< 6) D 5 9

R > 5

0 6 1 R V (F O B 6 2 P C (T Z) E S S T D

R - 7 > 9 R * - 7 L * 3 - P

1

P C M P C M
T D

B 7 2 X 4

L = 3

PCfto)

I

10

II

12

13

B 7 8 P C G S)

1 3
B B O . I

E = 0

P C (C 5)

1 3
B B O . I

E = 0

P C (C 5) B 8 I P C (C 5) B B S

E « O

P C (C ^ B B 3 P C (C ^ B B S

E - 9 , T 5 S |

B B 3 B B S

E - 9 , T 5 S |

P C (C 5) & 8 S P C (C 5) B 9 0 . I

1 3 .

P C C ' 3)

1 3

8 9 1
P C C ' 3) © 9 4 -8 9 1

1 4

B 8 5 . I

^ P C (^ -) L P 9 S . | L C F C K R » 7 . & N (r Y

li D
0 9 *

R ~ 9

]
3
'3
3
3
3

F I G U R E 1 0 : C R Y P T - A R I T H M E T I C : I N I T I A L S E G M E N T O F P R O B L E M B E H A V I O R G R A P H .

14

15

(691)
,12.

698 PC(c3)
13

B98-I
Eeven

CTN(6>
>4 15"

BlOO

Biol PCCcfO BI03 * T P B 103.1
E - 9 - p

Biol
b=D,9 ^

B 103.1
E - 9 - p

16
17
16

8 8 10
BI04 B)0« 8 lofl.i T D B 1 0 6 . 2

L * 9 R»9 R=9-P

8107
L*-9-p

6 ?C(c6)
7

Bui ?C(c6) BII4.I
R>5

(B?8)

19
20
21
22

13 i4 i 7 16
BUS PCM) B|J6 PCCcO & I I 7 . 1 BH8 PCfcf) B I I 9 I

N O

AV(A) PCfc5) AV(A) BI23 PCCcV) Bli*.l PCfc5) BJ2.4
&1 A*X E =

BJ2.4
&1

Atfe) PC(c3) T D BI25 Atfe) BI2.6 BI29 PC(c3) B13I T D B»3l-l
&4r9 £= 0 A - S - p

•

PC(c3) PC(c3) BI35" T D B13&
A=5-P

(B2J)
1 4 f

PC(tfi)
6 7

AV(R)
6 •

23
BI37 PC(tfi) BU-0 GMCR) AV(R) BI4-3.I

23 Road R>5- R*7,8 R«-7,R*9

(BltS)

24
25
26
27

1 4 I S "
e m BI47.1 6148 PC(c5) 8148.1
fget E) A«-X

B H 9 BI5Z PCCcS} 8)53.1
E *9,15*1

5154 Av(e) BIS4.1 PC(c5) B 1 6 4 . 2 .
E*9,tfrl

8155 Ave©) B I 5 6

— r ~

PCfrS) [BtS6. l

28

29

BIG* X5
(r~ 1 &)66

E=9-P BIG* X5
(r~ 1 &)66

E=9-P

6167
... .. PCCc3) DI69

E=9-p
6167
... ..

DI69
E=9-p

BIS'

BI59

1 PC(c5) (D

1?
BJ50.J
E=0-P

AVCE) B160
E*-9 PCCc5) 16 B16|.f +5=1 8162.

t6-l
PCC<&)

30

31
11

33
BJ79 PC(c3l [0101

Exg-p

PC(c3) PC(c3)

B>75 BI76.I

R*9

19 21 22.

l-PCC'2) BIB2.J chkR*7
B102.4 AV(R) BI83

BIB2.J
R<-9

34
35

2 3 PC(cl) 8|8* Yl

36
37
38

BI86 Y2 AV(L.)

4 6"
B187 Y3
L<-9 BlOO

K*9
TD B 188.1 -P

0189 AVCIO BI90 R«-9 PC(c2') | BUI Y4] PC(c6) BI99.» get *6

BI93.2 Bioo TD B2oi

E~ 9-p 10
PC(c*>

02.03.2, TD 02,03.3

t 5"=l E=9 E=9- P
AV(t5) PCC*5) PC(c3) 11

B204 AV(t5) B205 PCC*5) PC(c3) BP-09 TD £ - o . A** A=5- p
PC(c3) PCCc2) 12 B2I0 PC(c3) B2II PCCc2)

L>E>? E3*l? L>E>?
get L>5

13 1 4-B2H.2 B1I2. G PC(«) 15 16 R=3 TP BZ14 .
-P (RV5)

:hk R>5* 17 18 8X17 R=%9

r

6

blSQ

3 9

4 0

4 1

42
43
44
45
46

82)8 AVfeO 8 B220 PCQ:5) B 2 H , get tŝa 10 PCfr4) it B2U.I - P
ONCE) B224 ? TP 16224? 6*Q,9 $ 1 EsS-

622?
c«0~P

6226 TP IB227.I E=Q-p
B728 G-M(E) 02Z9

E s O t 9 TD B229.)
- P

e£US=2 8230 PCCcf)
B23I PCCc4) «sl,B*B TD II B234.I

B=8-p

B23? T D B237 E-O-p B238
A = Q - P

+7
48

B24 2.1
AAA,

B244

(8189)

C8I90} J±__

B239 AWE) BZ40 E*9 PC(cy) PCU5")
B243 TP

3 _
B243.I
g * l - p

Av(e) B249 X6

50

B2S7 PCfr3) 82S7.I
A-p

82S7.I
A-p

8*58 B269
A~ P

B269
A~ P

9

r L.

(6258)
9

B 2 6 0 ~ B2G0-I
II

ezei P C (c f l

12. 13 14- I P 16 17
8 2 6 2 g e + L > 5 B 2 6 2 . I A V (0 8 2 6 2 . 2 P C C c 2 A TX> B 2 & 3 c k k f c > 5

" L > 5 ? L«-6 R = 3 - P(R>5)
P C (< 6)

B26+.J
R>5"

52

53

8 2 6 5 "

6 2 7 0

I S 19_
& BZ78 X8 PCCciD B 2 7 9

A = 4 , E A 9

54

A V C O B268 . I
L + -7

AV(L)
14

L « - 8

2 0
P C C c 4)

55

N -faee

2.4
D29I

B2.93

I 56
B 3 o G
T = 0 , t l - l

P C (A

2.S 2.6

B 7 9 3 5 T P e m 1) z j J *J '̂ 1 — r
e m

B2.99 P C (c 4) D30I X O
B * 3

P C (c 2 > B268.2. TD B 2 6 9
R=5 R = 5 - P

15"
P C (c 2) B 2 . 7 3 T P B Z 7 4 g e t 13=1 62.76

R ~ 7 + CR<-7) (t 3 = 0

2.1
82 .88 AY(N)

N - 3 , 6

2.1
B289 B 2 9 0 P C M B 2 9 0 . I

t 3 * l

* 7 2 8 29
AV(»0 B 2 9 5~X9

N<r6
PCCcA) B 295.1

B - 3
T D B 2 9 5~X9

N<r6
B 295.1

B - 3

B 2 9 6 T D B 2 9 7

A V « A B3°2 . xii 0 3 o 3 e h k c s B 3 e * B3°2 . xii 0 3 o 3 B 3 e *

37
B3<>9
R*7.42 = |

I 38 1
BSD P C (c 4)
E=9,-t3=0

39
B 3 I 3
B- -3 /14 - I

I 4-o_
B 3 I ? PCCcG)

P C C c 4)

pc(cn

B3)7 &318 6 3) 9
R = 7 - P

e>3zo

I

F i g u r e 10 (c o n t i n u e d)

Y . .

Bl XI

B8 X2

B45 X3

B72 X4

DONALD
GERALD
ROBERT

50NAL5
GERAL5
ROBERO

50NA15
GE3A15
3OBE30

50NA35
GE7A35
T O I E T O

B164 X5 50NA35
1E7A35
7OBE70

DONALD
GERALD
ROBERT

B185 Yl

B191 Y4

B186 Y2 DONAL5
GKRAT.5
ROBERO

B187 Y3 DONA95
GERA95
ROBERO

50NA45
GE9A45
9 O I E 9 0

5xNA35
197A35
7xB970

5xNA85
197A85
7^970

5xN435
197485
7xB970

B249 X6

B271 X7

B278 X8

B295

- 4 3

X9

B301 XI0

B302 Xll

5x6485
197485
7xi970

5x6485
197485
7x3970

526485
197485
723970

Notes for numbered operators

(1) Interaction with experimenter to define
problem.

(2) Asking experimenter about t 7 - - i.e.,
— definition of the problem. on

we (3) Recall of information from B136;
have no operator for this.

(4) Experimenter interjects E=0-p(T=o:>. ,

(5) Digit based operation (given 0-p find
all 1 affected)?

(6) Given a solution, to evoke checking behavior.

(7) Given a solution, to evoke finding all
solutions.

(8) Shifting assignments, but how?

t 2 3 4 5
6
7 0 9 10
Is 14 IS IS IT
id
19 21 « 23 24 25 28 27 28 29
10 31 32 13 34 55 36 37 30 33 40 41 42. 43 44
4«
4r 43 49 50 5' 52 53 f4 55

11 5 4-5 6 7 8 91011 It 13 14 15 16 \7 18 13 20 Z\ 21 232425 2B 17 It 253031 }l 33 3435 38 37 5f| 33 Wil)t 4J Uevcn, r,*wW«. Subject 3(60)
_ D O N A L D
U W*|,R = 3 notpo«.bl« G E R A L D

J R O B E R T

} R=>7,°; R*-7, L-3, 6 = 1,2; êtE D<r5

>- Worry about E= O o»-E-9

. , . } resold £*-9
J E.-9-p (A=4andU3*o~)

= 9

} stŝiovert ^ 9 , L=4, &=3,4, get E } E'Oo. E= 9 ; resolved E = 0 > trt, for t3=l, fail
| worry about E:E-o,E=9,t5=E-

J resofv«:E=9 necessary (ihêfore f̂ 9-p)
X go back to /irj-t \>o3rd 1 , r r ^

J , } ̂ M •fc M 3 G r
a38 nodes

Figure 11: Crypt-arithmetic: Total Problem Behavior Graph.

[

.0

- 45 -

provides a summary of the main problem solving episodes, a matter that we shall

not take up until all the other analysis is complete.

Each of the nodes corresponds to an interval in the protocol. The

B-numbers in the upper left give the approximate starting point; and lines have

been drawn across the protocol at these points. Where the divisions were not

fine enough, we have simply used decimal numbers — e.g., B64.1 — to indicate

an occurrence somewhere after the phrase. Occasionally items of information

occur that are sufficiently unique so that it did not seem appropriate to add

them to the repertoire of operators or states; these are indicated by circled

footnote numbers — e.g., around B48, B49. The only other convention adopted can

be seen at B30.1. Here each generated digit is tested by TD and one of them,

R=5, is rejected. Rather than depict the entire loop between GN and TD, we have

simply put a jagged right side to B30.1 to indicate that the B28 box is sub

ordinated to the generator and executed repeatedly. Other examples of this

occur at B99 and B103.

Let us see how the encoding goes. We adopt a point of view that anything

that makes a difference in the state, as defined by s, should be noted and made

| into an operator. (The four operators given are the end result of coding, of

course, and were not decided upon a priori.) Various other kinds of information,

most notably what column is being considered, are not shown in this problem

f space.

Starting at the beginning (Bl) we have an exchange that is really outside

the problem space, since it involves clarification of the rules. Not wanting to

include it in the first real node, we simply indicate this by a special footnote

(1). Likewise we conventionally indicate that the initial board position, XI,

- 46 -

is already set up by the experimenter. For the second node, B5, we have a clear

statement considering the two D's, asserting their value, and concluding that T

is zero. The coding of this as the operator PC(cl) is clear. Some open

questions are 1) when did the inference actually occur; 2) why was cl considered;

3) was it desired to find the value of T before processing cl; and 4) was it also

concluded that t2=l? About some of these questions we do not need to have .

answers. As to the first question, we only need the approximate ordering of

processing, which is quite clear from the protocol. As to the second question

we have declared the selection of columns to be internal to each node and thus

irrelevant to the problem graph. (Actually, we will return to it later.) The

third question is relevant, but we adopt the view that unless specific infor¬

mation is available on the variable desired, we will not record it. Finally, .

although it is plausible that t2=l is inferred since 5 + 5 = 10, there is no

immediate evidence. However, later behavior (B21) shows that in fact this

information was retained.

Turning to the next node, B8, we will find it useful to consider it in

conjunction with node B20. In this latter we clearly have a consideration of

c2 with the inference of R odd. If we write down what happens before this we

have:

B8-B9 Writing prior result

B10-B11 Searching for a next step with no result
in terms of our problem space.

B12-B13 Another writing step, when the D in c6 is
noticed; conceivably new information is
obtained, but certainly no evidence for it
appears.

B14-B19 Consideration of c2, c3, A, L and R in the
f apparent search for a next step. No new
1 . ' . information obtained in our problem space.

[B20-B22 Processing of c2.
1 The concern with R, clearly indicated in B18 and B19, lead to the inference that

j the decision to process c2 is based partly on the decision to obtain some infor

mation about R. Thus we code B8 with the goal of getting R. The things occur-

^ ring prior to B18 all belong within a node: the operations of writing and the

(attempted) selection of columns on which to work. If the inference to "get R"

were less clear, we would have only a single node for B8 to B22, whose operator

would be PC(c2).

It is clear that in B23 and B25 the reasoning used in B20 to B22 is

* repeated. Why the repetition occurred is not as apparent. It might be that the

repetition is to check the processing -- to assure that the inference is correct.

That a correction can occur the second time around is shown by the sequence B32 -

[B35, yielding G even, and the immediate repeat, B36 - B38, leading to the reali

zation that no such.inference is possible. However, the repetition may also be
L-. determined by the structuring of the experimental situation to get the subject

to talk. In any event, we need to create a node, B22.1, for the result of the

first PC(c2) and then back up one for the second at B23.

In B26 - B30 there is an explicit generation of the odd digits, following

f immediately upon the (confirmed) conclusion that R is odd. Thus the inference
L that GN(R) occurred is not problematic. It is also apparent that the generation

does not take into account what values are already used. That is, the already

used digit, 5, is generated and explicitly rejected, rather than skipped over.

This supports the inference that TD was applied to the output of GN. It is not

as clear, of course, that TD was applied to 1, 3, 7 and 9, since these were OK

and no special indication of their acceptability is provided. Thus, some assump¬

tions of parsimony enter into the coding: if TD was applied sometimes and some

times not, then a process must have existed to make this decision; but this

process would have had to perform (uniformly) the same function as TD, namely,

to determine if a digit were used; consequently, it is simpler to assume that TD

was applied uniformly. (A comment has already been made on the special struc

turing of the graph for B30.1 and B28.)

B31 signals a pause, since the experimenter breaks in with a prod to talk.

Since there is no evidence in what follows B32 that the refinement of the infor

mation to R=l,3,7,9 is used, rather than the more primitive, R odd, it is

inferred that the search backed up. It is quite possible that some additional

processing did go on from B30.1 during the pause, but since we have no evidence

for it, we make no explicit note of it. If some new information were obtained,

either it should show up at B31 (which it doesn't) or at some later time in terms

of some facts for which there is no way to account for how the subject obtained

them.

Our purpose is served in the last three pages if they give some appre

ciation of how one gets from the^data to the behavior graph. Most of the

instances discussed so far are quite transparent. Similar discussion could

elaborate the rest of the graph. Since we have discussed above about 4$ of the

graph, another 70 pages would be required. Much of it would be equally trans

parent (and equally dull); a few places would raise serious issues of interpre

tation. Following the protocol at the end of the paper, we have added notes

that discuss most of these interesting cases. They are labeled by the corres

ponding B-number.

- 49 -

Summary. The problem graph is a projection of the total behavior of the

subject into a space of our own devising. Thus, in interpreting the problem

graph we must take into account the various possibilities for the true situation

relative to what we see in the graph. Let us state first, in strong form, what

the problem graph implies: and then follow this with some possibilities that

could seriously qualify these statements.

The successful encoding of the S3's behavior into the problem graph of

Figure 10 implies:

1. The subject's problem solving proceeds in the set of states

of knowledge given in the figure. That is, evidence exists that S3 had these

various states of knowledge and that paths exist through them that go from the

initial state to the solution,

f 2. The operators PC, GN, AV and TD account for all transitions

to new states of knowledge, (Returns to prior states are governed by other

processes.)

3. The operators, along with a set of processes for selecting

i.... operators, evaluating states of knowledge for termination, and selecting prior

f nodes to which to return, constitute a sufficient set of processes for explaining

the subject's behavior.

In short, the subject's basic problem solving method is search, hence

"trial and error," but in a space defined by intellectual operations of a fair

V degree of sophistication (PC, GN, AV, TD). These operators provide a definition

of basic competence, similar to the abilities that Gagne [8] has tried to

identify in somewhat simpler arithmetic situations.

f
L

- 50 -

The true state of affairs can deviate from the above assertions in several

ways, deriving either from the sort of information actually used by the subject,

or the complexity of the processes.

1. So far none of the component processes -- the operators or the

selection and evalution processes have been spelled out in detail. It may be

that the essential problem solving is done in one or more of these. If this

were so, the analysis of the problem graph might be termed superficial, since

although true enough, it would not explicate the important processing. Note that

the basic issue is not the amount of selection performed by the components (e.g.,

by the operator selection process), but whether problem solving is required:

either search in another space; or some other as-yet-unspecified intellectual

process.

2. It may be that the analysis has gone too far — is too dis

aggregated. Thus, the graph would show the means used to carry out some larger

plan or method without giving any clear indication £bout this higher organization.

An analog would be the trace of the machine instructions carried out by a com

puter in executing a program. Such a situation woul.l reveal itself in the

capriciousness of various selections, viewed in terms of locally available infor

mation, whenever the information about what to do next available in the structure

of the plan or method manifested itself.

3. The worst case is that in which the present graph is epi-

phenomenal. That is, other processes using different (or at least additional)

information would be actually responsible for the problem solving. As a con

sequence of these other processes, the subject would come to know (and reveal)

the information contained in the graph. If these other processes themselves

Involved a search process in some problem space, the situation would be exactly

like that depicted in Figure 6; if it were of some other as-yet-unspecified

nature, a picture is not so easily made.

To illustrate further this possibility, suppose that we had taken as our

problem space the external space, described in Figure 5. Figure 12 shows the

problem graph we would have obtained, and this indeed is epiphenomenal. It

contains very few clues as to the essential processes that are determining the

course of problem solving. Indications of this would arise as soon as one tried

to specify the rules for operator selection in terms of the states of knowledge.

For example, since there is no representation in the external space for the fact

that R is 7 or 9, there Is no way of saying why R was assigned the value 7 at

B61 and 9 at B189. Or again, note that not until B249 does any evidence for a

concern with E, 0 and column 5 occur, although these dominated the subject's

attention from B80 to B162 and from B219 to B243, almost half the total time.

Returning to our graph, evidence that it was epiphenomenal would be

expected in a failure to find any rules based on the states of knowledge of our

problem space for selecting operators and evaluating and selecting nodes.

In all three of the difficulties we have mentioned, in which our chosen

space is superficial, disaggregated, or epiphenomenal, the empirical question is

whether simple selection and evaluation rules can be found that make use of the

information given by the problem space. Examination of these rules is the task

of the second phase of the analysis.

8» •5/DII 5/P.2 0/T
'X2

5/D6 v 1/t.ei i/u2.a B44, .
XI 'X2 'X3

3/RZ 3 / f H 3 / R 6
) > 047

X3

B6I 7/R2 % B6I . # R 4 . 7 /R6
>

3/L2I - 3 / L 2 2 8/2. I/O
X4

3
4

BlOf VI S / P H g/ P » 2 0 / T

0 1 . 6 5 " X 5
— r —

2.

B»8G Y 2

BI09

9 / L 2 I 9 /L22 B I 87
Y3

9 / R a 4/12t ©171,. 9 / R e . 9 /g4

5/P6 BI97
r4

B249 %/<3r5\ */Q'5Z*-9/etr v 9 / E 3 R25* „•. B249 R25* „•.

f l / l . 2 l 6/L2 2
8

4/A3I A 4 / A 3 2
9 IO

3/0
M

f l / l . 2 l 6/L2 2
B 2 7 , v 7

4/A3I A 4 / A 3 2 8217
x s

3/0 B3o2
Xio J* 1 >

B 2 7 , v 7 8217
x s *| . X 9

B3o2
Xio

2/0*51 2/©-52
>)

1 3 .

XII

S u b j e c t 3(6oV

XI

Y l
Q

» X 2 X2. 'X3.

> >
Yfc

->f—

4-

£ > —
' X 4

Y 3

- • — V * — » • >

X3

• S

Y +

K l : D O N A L P £ 4 - 5 "
6 E R A L P
R O B E R T

V 6 X7
A A A _

Xfl X9 X I O
$ 0 — > 0

A

>

A

F i g u r e 1 2 : C r y p t - a r i t h m e t i c : P r o b l e m B e h a v i o r G r a p h i n e x t e r n a l p r o b l e m s p a c e .

Second Phase Analysis of the Protocol
f — :

i We now turn to a more intensive analysis of the component processes

! assumed by the problem graph. Looked at one way, the graph has segmented the

total protocol into 238 parts, each of which has associated with it one of a
r •

finite set of behaviors (the operator with its particular inputs and outputs).
i ,

Each of these nodes also has an associated state of knowledge. If there exist
I

i for the subject definite processes for selection, evaluation, and the carrying

r out of the operators, then within these 238 occurrences enough repetitions of

essentially the same situation may occur to induct the processes and have

faith in their reality. It is clear that repetition of decision situation is the

key issue for if each of the called forth a unique process, then

• could have verification that proposed piroc^ss wss in fetct the on€

I used. Note however that the definition of "the same decision situation" is

not given a priori. Each of the 238 states of knowledge is unique. Therefore

|̂ the amount of repetition is defined after the fact by the nature of a proposed

process and the proposed laws of its evocation.

If the essential problem solving is carried out in the space of Figure 10,

[then we would expect that simple, definite algorithms should exist for the
L component processes. These might utilize information not in tl.* knowledge state,

[but only of either a local kind (such as where attention has been immediately

before) or of a universal kind (such as properties of integers). So far, except

\ for the operators, we have not been entirely specific about the processes to be

< performed, other than designating them by the functions of selection and evalu

ation. It is not clear that the processes should be organized in one-to-one

correspondence with these functions. In fact, our first task is to describe a

scheme for stating rules.

- 54 -

Productions. Given that our data are a set of correspondences between

states of knowledge and the action that resulted, the natural form for a rule is:

cues in knowledge state paction

This is to be taken as a conditional expression, in that the action (meaning one

of the operators along with its operands) will occur only if the cues occur; if

these do not occur nothing is implied about what action will occur.

We can consider that the total behavior of a system is made up of a great

many such conditional rules:

ConditionL >action1

Condition2 >ac tion 2

• • « r ^ • • *

Condition > act ion
n n

Such systems are often referred to as production systems, each rule being termed
•

a production. They are often used in syntax analysis [6], but also have been

made the base of a general theory of algorithms, called Markov algorithms [11].

To get a viable system from a set of productions it is necessary to add

some principle to resolve conflicts when the. conditions of several productions

are concurrently satisfied. The simplest such scheme, corresponds to a simple

priority. Execute the first satisfied production in sequence, starting from the
top; then repeat again from the top. Other, more complex, principles are pos

sible, such as associating with each production a link to the next production to

be considered. But we will try the simplest first. From the viewpoint of

inducing productions from the problem graph, the priority scheme is the last

feature to become evident since it depends on the total system of rules.

V

- 55 -

As introduced above, the action consists of the single operation performed

at the node. We might consider extending the action to include a sequence of

operations:

Condition ^action^ action^ ... actior^

Such productions would consist of short plans of action that would integrate

the behavior over a series of nodes. They would correspond to the fact that our

problem graph was somewhat disaggregated. How much conditionally we admit in the

sequence is an open question, and need not be decided in advance. At one extreme

the sequence is totally unconditional. Next, the sequence might be terminable

if the actions did not produce appropriate outputs for the next action in the

sequence. Thus the sequence could be of variable length, but of fixed compo

sition. Next, it might be permitted to have several alternative routes, as in

the standard flow diagram with conditional transfers:

-action^ a ction 3

Condition > action, j test'

^action 4; action,.

In the limit, of course, one could admit an entire system of productions for the

action part. This latter involves the notion of a subsystem of productions being

evocable in isolated context. With each expansion of the conditionality of the

action part of a rule, the rule becomes less and less a unit of behavior.

Since path information is part of the state of knowledge of the problem

solver, there is no increase in the generality of the behavior producable as we

increase the conditionality permitted. By suitably recording the occurrence of

prior actions any of the more elaborate schemes mentioned above can be reduced

- 56 -

to a primitive production system in which only a single action is taken at each

production. Indeed, the use of a place keeper in the action sequence, which is

required in any of the schemes except the simplest, is just such an encoding of

past behavior.

Production system for S3. The production system given in Figure 13

purports to describe the behavior of S3 in the problem graph of Figure 10. These

rules were inducted by examination of the problem graph along with various

no.tions of how problem solving might proceed in the crypt-arithmetic task.

The notation is that used in describing problem spaces, except for a few

additions, which will be noted in the discussion of individual rules.

The productions are divided into four classes on the basis of their

function.* The first set, Si to S5, involves the selection of one of the opera

tors PC, GN and AV. The second set, Gl to G5, provides mechanisms for setting

goals. The third set, Tl and T2,acts to terminate a line of search. The selec

tion of the fourth operator, TD, is governed by these rules. Finally, the last

set, Rl and R2, permits the repetition of previous paths.

Several new processes are introduced. These all produce outputs that do

not change the knowledge state as we defined it -- they produce columns, letters,

prior actions to be considered. Thus none of these should have been included in

our set of operators. (They do indicate that it might have been worthwhile to

operate in an expanded problem space that made attention control explicit.) We

define these processes here at the same level used for the operators.

* There is no significance to this grouping as far as the operation of the
production system is concerned; we have not yet provided the priority order in
which the rules are to be considered.

Productions

Selection

51 v=d*|v^d* -> FC(v>> c; PC(c) (not repeated)

52 get yjget v=d -*FC(v>> c; PC(c,v)

53 get 1 -»FA(1)=> c[v]; AV(v); PC(c,l)

54 get v[constrained]l [simple]^ d[first] ; AV(v,d)
1 free -> GN(v) (not repeated)

[-simple]=> ds; [small] AV(v)

• .v constrained :̂ v odd|v even|v>d|v^ds[s m a 1 1]

55 check cs -» GNC(cs>> c; PC(c)

Goal setting

Gl ee? get ee

G2 ee[v]-p -* get v

G3 check ee[new] -> get ee

G4 get Is -» FL(ls)=> 1; get 1

G5 -> check ee

(immediately)

(note: ee-p accepted) (immediately)

(not repeated)

Terminating

Tl l=d|GN(l>> d TD(l,d)=0 f+

(l=d-p(ee!;
T2 ee-p ^ FA(ee)=> ee»; ee*-p

Except « -) — ~~ ~

(not repeated)

Repeating

Rl Q=> e[v][unclear] get v; repeat C;

R2 check ee[old] -> FP(ee>> P; get ee; repeat P

Figure 13: Production system.

r

- 58 -

FC(v) Find column containing v. The input to FC is the
variable (1_ or t) for which it is desired to find
the column. The output, if it exists, is a column
that involves that variable. The column currently
being attended to is also known.

FA(ee) Find the antecedent of ee. The input is an expression
or a variable. The output is the column or relationship
that was used in deriving the expression, or that can
be used in determining a value for the variable.

GNC(cs) Generate columns of cs. The input is a set of columns;
the output is the columns of the set from right to left.

FL(ls) Find letter in Is. The input is a set of letters, Is
(not letter occurrences). The output is a letter, 1,
of the set. The display and current knowledge about
letters is available to FL, so it can select, for
instance, that 1_ that is still undetermined and occurs
a maximum number of times in the display.

FP(ee) Find production that produced ee. The input is an
expression that was derived at some prior point in the -
analysis. The output is the production that gave ee;
thus FP is essentially a recall process. (It differs
from FA in providing a production, and not just the
situation on the board.)

We now provide a brief discussion of each of the productions.

Selection Si. In words: if an expression determining a value

(either v-d* or v<-l*) has been produced, then find a column, c, that contains

the variable involved In the expression, and processthat column, PC(c). If no

column Is produced by FC, of course then PC is never evoked; that is* the

sequential action is conditional on appropriate outputs being produced by

prior actions. This production represents the ability to take new information

and apply it elsewhere to get yet more new information. Its evocation depends

only upon some new Information occurring. Once such a production has been

executed it will not be repeated. (This constraint does not apply to repetition

forced by R2.)

- 59 -
I

i
Selection S2. In words: To get a variable, v, or a specific

f

| value for a variable, v=d, find a column, c, containing that variable and then

process that column for the variable, PC(c,v). Again, if no column is produced
I

by FG, PC is not evoked. It can be applied repeatedly to the same variable to
T gradually accumulate information about it. The goal can either be to get infor-
i

mation about a variable, or to obtain some relation, as in, "get t5=l." Both SI

[and S2 have fundamentally the same action sequence; yet they derive from quite

different concerns. (The fact that one has PC(c), the other PC(c,v) has little

' operational significance, since only rarely is there ambiguity over what variable

\ is to be used in PC.)

Selection S3. In words: To get X , find a column, c, from which

* •• 1 can be derived; then assign a value to the other variable, v, that exists in

c, after which 1 may be determined using PC(c,l). Brackets are used to indicate
i

' a dependence, as in c[v], or a condition, as in l_[constrained] (S4). S3 provides

(an alternative means for obtaining a goal. It gives the appearance, whether

justified or not is another question, of being less arbitrary than simply

j assigning a value to 1.

f Selection S4. In words: To get a variable, v, that is constrained

'L In its set of possible values, or to get the value of a free letter, generate its

| values; if the constraint is simple, then generate only the first and assign It

to v; if it is not simple, but there are only a few of them, assign a value,

• AV(v);. otherwise do nothing. This production appears to be complicated because

it consists of two action parts, both involving generation and assignment. The

' Issue is whether to generate all the values or only the first. This decision is

based on the process of generation itself -- whether simple, such as all digits

f

- 60 -

greater than five, or complex, such as all odd digits greater than five. Thus

the test is carried out within the process of generation, and not at the point

where the production is evoked. Additional conditionality occurs in the case of

full generation; namely, that the action sequence only continue to assignment if

the set is small. One rationale for this is that the large set makes the choice

seem too arbitrary, but such an assessment occurs only when the full set is

actually generated.

Selection S5. In words: To check a set of columns, generate the

columns from right to left, executing PC(c) on each. This production is only

evoked once during the course of problem solving; namely at the end. However,

it is sufficiently clear that it is included anyway (and in fact governs a

rather long sequence of behavior).

Goal setting Gl. In words: If an expression is relevant but

unknown, ee?, then set up the goal of getting it. This production must be

applied immediately after ee7 is produced, or not at all. That the expression

ee is unknown only gets evoked because some other process attempts to use ee and

finds that it is unknown. Thus, there does not exist in the knowledge state

expressions for all possible things that are unknown. This illustrates that the

knowledge states are not to be taken in the sense of "all things that the

observer can infer the subject could know are true."

Goal setting G2. In words: If it is known about a variable, v,

that a certain fact is not possible — i.e., ee[v]-p — then set up the goal of

getting v. This production must be evoked immediately upon producing the nega

tive information, or not at all. The additional note in Figure 13 affirms that

this production is not an attempt to deny the new information (which would then

' •' lead to check ee), but accepts the information and looks for what other value v

| might have.
i .

Goal setting G3. In words: To check an expression, ee, that is
j

|- new (that is, has not been derived before), set up the goal of getting it.

, - Although it occurs only rarely, it can happen that a fact becomes assumed or
1 . known without there being any specific prior derivation of it. This production

| simply bridges the gap between the goals "check" and "get" in these situations.

Goal setting G4. In words: To get a set of letters, find one

f
I (according to FL) and set up the goal of getting it. This production simply

moves from a set to its members. Its role is essentially that of finding some-
1 thing to work on vhen all else fails, since the initial problemis stated as

getting Is.
Goal setting G5. In words: If an expression has been critical in

J

i determining some process, as expressed by ee!, then set up the goal of checking

ee. The production has been stated unconditionally, but clearly how certain the

subject is about ee, expressed in some manner, will also condition its evocation.

For instance the subject will not check D<-5. Some, but not all of this is taken -

care of by not permitting repetitions of the production.
f

{ Terminating Tl. In words: Anytime a new digit is derived as the

, value of a letter, l=d, evoke TD. The result is either +, indicating that every

thing is OK, or the expression that l=d is not possible along with the statement

of the critical fact (eel). Tl is also evoked by the generation of digits that

occurs in the context of obtaining values for a variable. Note that there is

| no similar check on the values of a carry.

[

- 62 -

Terminating T2. In words: If it is determined that an expression,

ee, is not possible, then find the expression, ee 1, that was used in deriving ee

and declare it not possible also. Clearly this cannot be evoked on assignments

and these are excluded. This production provides backtracking down a succession

of implications when one Is finally discovered that is contradicted.

Repeating Rl, In words: If the result of a process, £, is unclear,

then repeat Q., setting up as a goal to get the variable that was involved in the

unclear statement. The process in question is normally PC, but can be others on

occasion. As with the terms "simple" and "small," the term "unclear" requires

further delineation. Addition of two digits, as in 5 + 5 = T, must be "clear";

and complex determinations, such as R odd from 1 + L + L = R, must be "unclear,"

at least the first time encountered. Likewise, processes that lead to contra- -

dictions or from which no definite conclusion can be drawn should also be

"unclear."

Repeating R2. In words: To check an expression that has been

previously derived, find the production involved in that derivation and repeat it

(after setting up the goal of getting the expression). R2 implies some memory of

production occurrences.

The production system of Figure 13 is not complete. First, it is still

necessary to specify the priority system to resolve conflict between productions.

These conflicts will occur frequently, since some productions have identical

conditions; e.g., S2 and S3. Furthermore, other productions, such as Si and S2,

although different can both be satisfied at the same node.

More important than the priority ordering is the fact that not all of the

nodes of the problem graph are intended to be covered. The productions arise

from the regularities that are found; and nodes that are either idiosyncratic

in their behavior of sufficiently unclear do not give rise to production. Thus,

the production system is incomplete from a task point of v i e w . It is not capable

of solving the task of DONALD+GERALD, nor many other crypt-arithmetic tasks,

without augmentation.

The productions of Figure 13 form an integrated system in at least one

non-obvious w a y . The context in which the conditions are tested is provided by

the products of the productions themselves, at least insofar as the system is

c o m p l e t e . Thus the conditions can be adequate to make the right discriminations

within the restricted context, even though they would be non-discriminative with

in a larger context. • ' .

We can summarize these rules in relation to the evaluative and selective

functions that are required for any system that is capable of generating a

problem graph.

Operator selection. The function of Si, S 2 , S 3 , S 4 , S5 and "Tl is

to select which of the four operators, PC, GN, AV and TD is to be performed. Two

of these, S3 and S 4 , specify a pair of operators to be applied in sequence, if

all goes w e l l . In addition, Rl also selects an operator, as does R2' indirectly.

Evaluation. Terminal nodes occur either on the occurrence of an

impossibility, ee-p, or on the product of an operator being unclear. Termination

on impossibility is implicit in that none of the productions that can select new

operators do so with ee-p as a condition. Those that do respond to ee-p imply

the selection of an old node from which to proceed, thus terminating the current

one. Positive evaluations ("go on") are implicit in all the selection rules,

and there is no special process to determine this.

- 6 4 -

Node selection. T2, Rl and R2 carry out the function of node

selection. Rl and R2 determine the actual node; T2 simply backs down the tree

eliminating nodes as candidates for starting over. Implicit in T2 Is the reten

tion of path information. Implicit also is the principle that if you are at a

node and it isn't prohibited, then it is selected. This, in conjunction with

path memory, is equivalent to a depth-first search strategy.

Goal setting. The productions that create goals have been pulled

together already in Gl - G5. Three of these, Gl, G2, G5, along with Rl, form

one component of means-ends analysis; namely, that of immediate reaction to dif

ficulties by setting up goals of dealing with it. These produce the phrase

structuring of behavior by setting up subgoals within subgoals.

Empirical Evaluation.

Given the production system of Figure 13 we want to evaluate to what

extent it characterizes the problem graph. The first step is to write down for

each node what production, if any, seems to have been evoked. This is done on

the protocol itself, rather than on the problem graph, to permit comparison of

the productions with the verbal behavior that is the main evidence for them. We

require a few conventions.

First, it is often the case that we can not discern the information on

which the production conditions are based, or can discern neither condition nor

action. We use a question mark (?) to indicate these cases; this is to be dis

tinguished from the question mark associated with outputs, as in production Gl.

Sometimes we make a comment in English, especially when the behavior is clearly

outside the problem space and is coded by a footnote on the problem graph.

I Examples:

Bl ?: (ask Exp. about rules) (outside space)

B137 ?: -.get R (evidence for action only)

! B39 ?: (no production in evidence)
I -

Second, several of the productions cover more than one node. We use an

| * up arrow to indicate at a node that it is covered by the production named at the

preceding node.
[

-

.1 B22.1 Rl: PC unclear get R; repeat PC

! B23 t : PC(c2,R)=0> R odd

Third, on occasion we need to indicate that TD is applied to several

members of a generator. We do this by using a variable (d) for the input to TD-

Sometimes this appears to interrupt another production, since the TD is being

applied to each output.

! B59 S4: get R ^ GN(R)=> 7,9

B60 Tl: R-d -> TD(d,R)=> +

| B61 TS4: AV(R)=> R̂ -7

A question of more substance arises from the fact that once a production

occurs at some point in the protocol, a sequence of production occurrences is

f automatically generated by the outputs of one becoming the inputs of the next.
1 Sometimes several members of this implied sequence happen within a node. An

' example is at B8, where FC=> 4> s o t h a t t w o Si productions occur within the node;

another is at B7 (and several other places) where Tl produces an occurrence of TD

; * for which no node occurs in the graph because TD=> +. The question is whether

to consider the set of production occurrences fixed in advance by the number of

nodes in the problem graph or to expand it by the additional implied occurrences.

- 66 -

We do the latter; consequently expanding the data set from 238 nodes to 275

production occurrences (about 15#). We can call each of these places a context;

i.e., a place where a production was (or should have been) evoked.

Now we are in a position to make an accounting of the productions. Con

sidering each rule separately, the protocol provides all the positive occur

rences. But there could also be a number of other contexts in which the

conditions of the production were.satisfied, but either some other production

was evoked, or no recognizable production occurred (?). These are the negative

instances. This information can be obtained by asking for each context (i.e.,

each place where a production or ? occurs in the protocol) and each production

whether its conditions were satisfied. The data appears at the end of the

protocol in the State -» Production Table. This table was constructed by first

recording the expressions produced as output from the productions that actually

occurred, and also the goal stack. The horizontal lines in the table simply

indicate when an exploration terminated and the arrows at the left show at what

point the new exploration starts out. With this state information recorded,

each production was matched at each context point and one of five marks made:

+ The conditions are satisfied and the production is evoked;

t the production was evoked in a prior context and is
still in effect;

the conditions are satisfied but the production is not evoked.

? the conditions may have been satisfied, but the production
is not evoked.

blank the conditions are not satisfied.

Notice that it is not possible for a production to be evoked but Its conditions

not satisfied; for we do not recognize a production only by its action part. For

example, in B185 the action part is taken to be similar to that of S5, but a 7

coded for the production. However, we accept as evidence for the condition part

either explicit data from the protocol or implicit data output by prior produc¬

tions that have been evoked.

Figure 14 summarizes these data in a matrix. The labels at the top, hence
•

columns, are the productions that did occur in a context; the labels at the side,

hence rows, are the productions that could have occurred in the context. Thus
the

the entry (i,j) of the i row and j column gives the number of times pro¬

duction i could have occurred, but Instead production j did occur. The total

number of times the j production did occur is given by the diagonal entry
0

,1). Each entry has two possible numbers. The top one is the main one; it

counts the contexts in which the conditions of a production were definitely

satisfied, hence marked with a plus or minus ()* The 1 ower number shows

the additional contexts which were Questionable, hence marked with a Question

ma rlc (?) m

For any pair of productions, the symmetric two off"diagonal entries (i>j)

and ^j y 1 ̂ t e 11 tiov/ th ey fared ag,a in.s t e ach o ther« I f t her e v?e re T"LO j o I T I t oc cur

r enc G S j t h en bo th en tries t?o u 1 d b e z e r o j in this case they h ave b e en left b 1 an"k *

Th e zeros that do occur imply $ th en , that c hoices existed^ but the column pro ~

duction was never chosen, Thus, we see that in the 10 cases in which either

Si and S2 could have occurred y Si did in 8, and S2 and 2* Sinn 1arly, in the

1 ̂ cases in which either S3 and SA could have occurred, SA did 14- times and S3

dld not occur at all (̂) *

These s trong biases towards one production dominating a nother are con"

sistent with the imposition of a priority ordering on the production system*

- 68 -

DID OCCUR

own

COULD

OCCUR

own

SI S2 S3 S4 S5 Gl G2 G3 G4 G5 Tl T2 Rl R2 1 t ?

SI 35 2 0 3 0 24 3 18 6

S2 8 29 9 15 6 2 4 13 2 11 34

S3 4 16 9 14 3 1 4 9 1 7 16 19 19

S4 2
2

0
2

24
1

0
3

0 1 3 0 1
2

4
4

2
3

S5 1 6

Gl 0 0 0 11 0 0 3

G2 0 0 . 1 8 0 5 9 11 9

G3
1

2

G4 26 1 __ 4 2 18 8 6 3 9

G5 0 0 0 0
I

0 7 4
4

3
2

3

Tl 1
2

0 0 0 2
1

0 31 2
2

1
3 2

T2 0 1 5 0 4 10 11 9

Rl 0 0 0 0
1

0 0 0
1

0 0 18 18 2
1

R2 4

t 44

~

i 38

Figure 14: Crypt-arithmetic: Matrix showing production conflicts.

The necessity of this was discussed earlier, although it was left somewhat open

whether a more complicated principle of conflict resolution might be involved.

We can attempt to impose a linear ordering on the productions, always placing

production j above production i if the (i,j)th entry is greater than the (j,i)th

entry. In general this can lead to difficulties if there are intransitivities

in the data, such that i before j and j before k, but k before i. However, it

turns out we do not have to face this problem, since no intransitivities show up

in the data. Figure 15 shows the reordered matrix. No entry above the diagonal

is greater than its symmetric mate below the diagonal (there is one tie between

T2 and G5).* Note that the data are not everywhere equally strong, and that in

several cases there is no data at all to specify the ordering. The three pro

ductions that are essentially isolates, R2, S5 and G3, are placed at the top,

but they could equally well be anywhere. The one additional rule we impose is

that once a production is evoked there is no opportunity for evoking new pro

ductions until its action part has run its course. Operationally, this means

that t has top priority of all.

The consistency of the ordering does not imply that a priority system

is without error. Every non-zero entry above the diagonal in Figure 15 gives

* In constructing Figure 15 only the definite comparisons (the top entries

in each cell) have been considered, the questionable ones (? in the State ^

Production Table) being ignored. If these were to be added, the picture remains

about the same. The tie between T2 and G5 would be broken in the direction

opposite from the way we have it; in addition the ordering between G2 and S4

would be reversed. Thus the four consecutive productions, G5, S4, T2, G2, would

become reordered as T2, G5, G2, S4. This would introduce one intransitivity in

that the single comparison between S4 and T2 showed S4 to be preferred.

70 -

DID OCCUR

own

COULD
OCCUR

R2

R2 35 G3 Gl Rl Tl G5 S4 T2 G2 SI S2 S3 G4 t t ? Ex

4 R2 4

Ex

4

S5 1 6 7

G3
1

2 2

11 Gl 11
0

0
0

0 0 C 0 3

2

11

Rl
I

18 0 0
1

0 0 0 0 0 0 0 18 2
1

36

Tl 2
1

2
?

31 0 1
?

0 0 0 1
3 2

31

G5 3
2

7 0 4
4

0
1

0 0 0 3 7

S4
1

1
2

3 1 24 0 0
3

2
2

0
2

0 4
4

2
3

28

T2 11 4 1 10 5 0 0 9 10

G2 11 5 1 9 8 0 0 0 9 8

SI 3 3 24 35 2 0 0 18 6 35

S2 6 2 13 4 15 2 8 29 9 11 34 29

S3 3 7 9 4 14 1 1 4 16 9 16 19 19 25

G4 5 6 18 2 1 8 4 26 4 3 9 4

t 44

t

? 38

Figure 15: Crypt-arithmetic: Reordered matrix according to priority rule.

* * :j *
- 71 -

I

cases where the data shows that the production lower on the priority order was in

fact selected. The further off the diagonal it is, the larger is the inversion.

Figure 16 provides a way of looking at the total performance of the pro

duction system. Some productions account for many items of the behavior; some

for only a few. Thus, one can think of adding new productions, each of which in

creases the total amount of the protocol described, but with a diminishing mar

ginal utility (especially, if we view the extra production in the total descrip

tion as a "cost"). In Figure 16 the productions are recorded according to this

marginal utility. Rl comes first with 38 instances; G3 comes last with 2.

As we increase the number of productions in the system, two other changes

occur simultaneously. The total number of contexts increases. Originally 238,

the number of nodes in the PBG, it gradually increases to 275. As described

earlier, this is due to carrying along subsequent evocations of productions to

implied products as long as these are not contradicted by the data. The top

line in Figure 16 is drawn 8 below the total, running from 230 on the left to

267 on the right. This is called the relevant total, since eight contexts are

clearly outside the problem space we are dealing with, involving conversations

with the experimenter, discussion of the rules, and so on. Thus the amount of

the protocol to which some production applied must be viewed against this varying

total. It starts at 16$ with only Rl and climbs to 89$ at the end.

Simultaneously with the increase in the amount of coverage we begin to

get positive errors; that is, contexts in which the wrong production is evoked.

This .is shown by the lower curve. Following the solid line, which corresponds

to the definite errors, it starts out at zero for Rl alone (since there is no

possibility of conflict) and dumbs to 23 errors for the total system. The upper,

zoo.

150
TOTAL
NODES C*V

ZOO

O C C A S I O N S
T 0

APPLY
PRODUCTIONS

150

iOO

50

275 TOTAL

267 R E L E V A N T

237 S U C C E S S F U L

38 E R R O R S + ? E R R O R S

23 E R R O R S

Rl 51 Tl S2 S4 S3 Gl Tfc.G2.S5 G5 RZ <H G3

P R O D U C T I O N S

S U B J E C T 3C60)
DONALD+ G E R A L D

F i g u r e 1 6 : C r y p t - a r i t h m e t i c : S u m m a r y o f p e r f o r m a n c e o f p r o d u c t i o n s y s t e m .

http://Tfc.G2.S5

r

- 73 -

dotted, curve adds in the errors that have been labeled questionable; it rises

to 38 for the total system. These error figures come from adding up the appro

priate subset of entries above the diagonal in the matrix in Figure 15.

If we dock the system for its errors, then we might say that it had

described (237-23)/267 = 80$ of the protocol. In fact, this is not very infor

mative, since it mixes errors of omission (30) and errors of commission (23)*.

More important, we should be interested in understanding both of these types of

errors to see why the system was unable to do better.

Errors of omission (?). The failure to find a production (or sequence

of productions) that fit a segment of protocol has various causes, ranging from

lack of data to lack of ideas about how to construct a mechanism that will do

the task. Below we discuss the types of failures under a series of ad hoc

headings that seem to be indicated by the omitted instances. Two instances

illustrate more than one concern, so the sum of the listed labels is 40, rather

than 38, the total number of ?-nodes.

Although we do not deal with it as a separate category, many of the

failures are due implicitly to lack of information in the protocol. As a

similar point, it will be noted that most of the failures occur at terminals

(26) or beginnings (8). However, the causal arrow undoubtedly runs from failure

to interpret the protocol to the existence of a. termination, and not vice versa.

Given that lines of exploration are not excessively long, once the thread is

lost, for whatever reason, it is unlikely to be picked up again until the subject

has stated a new line. In particular the apparently obvious inference that the

* If we also add in the questionable errors, we get (237-38)/267 = 75$.

- 74 -

model is in most trouble on "evaluation," because most ?-nodes are terminals Is

false, being due to this artifact.

Evaluation. (B39, B119.1, B143.1, B183, B222.1, B238.1.) There

are several nodes where there is explicitly an evaluation — i.e., we do not

just loose the thread — but we are unable to incorporate it. The decision to

"forget it" at B39 is most explicit. B119.1 is an example where the subject

clearly runs out of gas; but it is not clear how to stop the production system.

In B143.1 he. clearly enunciates his options (R^7, R<-9); then decides to remain

with R*~7. Part of the same dilemma is the decision to switch at B183, and then

the decision to switch back at B238.1. In all of these the subject shows some

persistence, then finally backs down. We have no representation of this kind of

evaluation process. A related pair of evaluations concern t5>l. At B222.1 the

subject opts not to investigate t5>l; whereas a little later at B230 he does.

The system only founders on one of these options, but in fact we face a general

problem formulating the effect of multiple tries at the same decision.

Selection of nodes in stock. (B97, B137, B175, B178.1, B217.)

Besides the immediate path and the initial situation, the subject appears to keep

two additional nodes available, the decision situation around R and the one

around E. A look at the total PBG in Figure 11 reveals three substantial breaks

In the continuity of the search (lines 16-18, 23, and 31). (The other candi

dates, lines 7, 17, and 47 are all intermediate nodes in the process of backing

down.) These breaks are all oscillations between E and R, as is the one other

that is hidden, when the subject decides to explore R<-9 at line 34. We do not

have any formulation that predicts these jumps. It might be handled partly by

appropriate evaluation (a difficulty already noted) in conjunction with a better

1

- 75 -

handling of the goal stack. That is, the return to E after a jump to R is

because "get E" never leaves the goal stack, but is simply pushed down.

Memory mechanisms. (B158, B188.1, B275.) A substantial number of

memory mechanisms are built into the problem space as we have used it: know

ledge of the current states, path memory, nodes in the stock, and a goal stack

(see the State<-Production Table). However, in a few places there is clear

evidence of additional memory. At B158, the subject recalls that E=0 leads to

a contradiction (at B136). Although we require memory of values assigned for

the operation of TD, we do not have this more elaborate recognition that exactly

the same path will be followed. At B188.1 we have an immediate recovery from the

error of setting L<-9 to setting R<^9. At B105 the error was the same, but the

recovery was much more involved. Although plausible that he would not stumble

so badly the second time, we have nothing in the production system to make this

sort of change. At B274 we have, first a forgetting that is only partly explain

able by the system, and then a recall for which we have no mechanism.

Although the examples are few, the impression — strongly rein

forced from much else that we know about human memory -- is that we need a more

generalized memory that is not completely tied to the service of the problem

space. On occasion it would deliver some information of useful value, although

it is not clear it could be relied upon to do so.

Extensions of production system. (B90.1, B100, BllO, B124, B148.1,

B155.1, B201, B237, B238.1, B244, B303.) We include here examples of mechanisms

that seem close to being incorporated in the production system, but which we

were unable to formulate properly. An important example are operations that are

digit oriented. That is, instead of selecting a letter and finding a digit,

- 76 -

select a digit and find a letter. The two examples having some of this flavor

are close together. In B237 the subject, after asserting E=0-p immediately

asserts A=0-p; it appears the subject is finding all the things not possible with

0, now that he knows that 0 is used. In B238.1 the subject seems to be deciding

whether to assign 9 to R or 9 to E; that is, the letter to be assigned to 9 Is

the focus, not the digit to be assigned a fixed letter.

A second important type of mechanism is induction, where the

subject sees the general case from an examination of several specific instances.

The one clear example is at B155.1, where the production system does not have

too much difficulty incorporating the generation of values of 0, but cannot make

the inductive step to "Actually, that's almost the case no matter what the

situation is

Most of the other mechanisms seem of lesser moment. There is a

third return to getting E due to unclarity (B90.1), which does not quite fit the

production system. At B100 the subject makes the connection between E even and

E cannot be 9, at least enough to go back and check. There is no place yet in

the system for such partial glimpses. At BllO the gap should be successfully

bridged by setting up a goal to check, but it does not seem to work. B124 (and

its repetition, B148.1) apparently involves seeing that, since one is already

assigning a value to get E (S3), one would be better off to use 0 rather than A.

The key seems already to be in the behavior of the production system in producing

0?, since if the prior scheme didn't lead to determining 0, then it would be

preferable to assign 0 directly. However, the gap from 0? to S3 on c5 doesn't

quite close. At B201 there is apparently a switch to exploiting R<-9, rather

than getting E, once R<-9 becomes the focus of attention via R<-9!. At B244 it is

- 77 -

quite clear that the subject initially thinks in terms of the full digit set

(ds) and then transforms his analysis to use the digits remaining (fds). At

B281 - B282 the same reasoning processes is repeated but more smoothly (and

without causing an omission error, as it happened). The production system could

probably be extended to handle this; the main requirement is to have the internal

structure of GN and AV explicit. Finally, at B303 we have no means of evoking

the final checking operation. We could have written a production that reacted

to the final positive solution. Actually, this is only indicated in a negative

way in the current system, by FL=> o/. Thus, two productions would be required

probably, one to say "Eureka," the other to say, "if Eureka, then check."

Interaction with External Problem Space (B185). The main justi

fication for not making explicit the writing operations is that they do not

appear to affect what goes -on in the internal problem space. B185 is one

exception, not only in terms of the ability to have two external displays, but

also in having a copy operation that takes information from one to build the

other. A second example, not recorded as an omission, occurs at B12, where the

-response to finding D in c6 is to write 5 for D, rather than to process c6. We

might have found more interaction, especially in attention control, if we had

incorporated a set of writing productions and thus tried to determine the

conditions under which writing would be evoked.

Extensions of the Problem Space. (Bl, B39, B50, B169, B224.1,

B225, B317, B318, B319, B320.) Eight of these situations (all but B39 and B169)

were so far outside the problem space as to be irrelevant to evaluating the per

formance of the production system, and deleted from the total set of contexts.

Several of these instances, Bl, B50, B169, B224.1, B225, and B320, involve

- 78 -

Interactions with the experimenter. To handle these involves a quite new problem

space (assuming such were the appropriate construct), and one that should not be

constructed on such skimpy data. However, given that one had developed the

general characteristics of such a model elsewhere, one might import it here with

good effect. Contentwise, the extensions cover the areas immediately bordering

the task itself: concern with the rules (Bl, B50); concern with new methods

(B39); concern whether the top goal is a single solution or all solutions

(B317, B318, B319); and the exit from the problem space to the larger world

(B320). Some of these areas conceivably could be developed as problem spaces,

but they would be more complex than the central one we have worked with. For

example, development of a space of methods for solving crypt-arithmetic problems

is decidedly non-trivial.

As to other types of behavior in this group, B169 is the one clear

example of the injection of emotionally toned behavior. B224.1 and B225 are

task oriented behavior by the experimenter.

Blank periods (B30.1, B85.1, B103.1, B114.1). The last group of

omissions are those that show extended periods of silence, usually broken by the

experimenter asking the subject to continue to talk. Clearly, the PBG of

Figure 10 does not show the final extension of exploration. However, if critical

information were obtained during this period, we would expect it to show up at

some later time. There is no clear evidence of this. It seems more likely that

these silences constitute periods of not knowing how to proceed.

Errors of commission. The 38 errors (23 definite, 15 questionable) In

which the wrong production was evoked according to the established priority

scheme are best discussed by considering the various pairings. Table 1 breaks

- 79 -

Error
pair SET Definite

errors
Question
able errors Nodes

S3/S2 1 9/16 B40,B104,B120,B125,B144,B149,B186,B189,B218

G2/T2 1 5/9 Bl58.1,B203.3/2,B227.1,B229.2,B243.l/2

T2/G5 2 4/4 4/0 B106.2,B203.2,B234.1,B243.1; ?B136,?B229.1,

S2/S4 4 2/15 2/0 B116.B139; ?Blll,?B299

S2/S1 1 2/8 B85,B290.1

Sl/Tl 5 1/24 2/0 B207; ?B129,?B278

G2/S4 2 0/1 3/0 7B158.1 (see G2/T2), ?B265,?B269/2

S3/S4 5 0/14 2/0 ?B104 (see S3/S2), ?B218 (see S3/S2)

G5/R1 0/3 1/2 ?B94

G2/G5 3 0/5 1/0 ?B227.1 (see G2/T2)

23/ 15/

i i

Table 1. Errors of commission

- 80 -

the errors out this way. Taking the top row, S3/S2 indicates that we are

dealing with cases where S3 was chosen over S2, although the priority ordering

(Figure 15) indicates that S2 should be chosen over S3. The next column gives

the separation in the priority ordering; in this case they are adjacent. The

third column gives the number of choices both ways. Thus in 25 co-occurrences,

S2 was chosen 16 times and S3 9 times; thus the number of errors is 9. The next

column gives similar numbers for questionable errors, although in this case there

were none. Finally, the nodes at which these errors occur are listed. In the

rows where questionable errors are recorded, we prefix the node with a question

mark (?) to distinguish them from nodes with definite errors. More than one

error can occur at a node. This happened four times, in each case a question

able error occurring along with a definite error. We have noted these cases in -

parenthesis; e.g., the bottom row shows that the single error of G2 over G5

occurred also with G2 chosen over T2.

S3/S2, S3/S4. The difficulty here is that we do not have the

appropriate discriminators to tell when S3 gets evoked. The 9 errors constitute

all occasions on which S3 was evoked. S3 is clearly a secondary method; it

never gets evoked until after S2 has been tried at least twice.

The total number of errors (9) is deceptive, either as an "amount

of error" or as a sample from which to diagnose what is wrong. There appears

to be only three essentially independent evocations of S3: on R at B40, on E at

B120, and on E at B218. The rest involve various degrees of repetition. B104

repeats B40, as does B186 when the subject starts over with R<-9 instead of R<-7;

and B189 is an immediate repeat of B186 due to an error in executing the latter.

B125 is the shift of B120 to try it on c5 with 0 rather than on c3 with A;

this whole pattern is repeated in B144 and B149. Consequently, how many errors

have really occurred here is quite uncertain. They are not independent, but the

acts of repetition themselves are part of what is to be explained.

G 2 / T 2 , G 2 / S 4 . G2 is the production that converts a failure into

a goal of establishing the value of the variable just affected. Of the 8 occur¬

rences, all but one are implicated in some error, so that it clearly is of

marginal efficacy. Even more significant, when a moderately careful account is

taken of goals (see State-sProduction Table) 5 of the above 8 already have the

goal sitting at the top of the stack. Of the three remaining cases one

(B243.1/2) perhaps should have the goal in the stack, in that the system has

been attending to obtaining 0 for some time before running into the difficulty

that sets the goal of obtaining 0. In the other two cases (B203.3/2 and B229.2)

a genuine switch of attention is made by G2 . Both of these involve, the carry

and are among the most obscure passages in the protocol. In short, with only

slight modifications of the system one might dispense with G2 altogether.

T 2 / G 5 , G 2 / G 5 , G 5 / R 1 . The entire issue here is under what condi

tions a critical feature will trigger off the attempt to check it. As we

observed earlier, we did not add additional discriminating conditions to G 5 ,

even though it is clear that discrimination is necessary. T h u s , all four of the

questionable errors on T2/G5 as well as the single G2/G5 are due to the subject

never checking D*-5! or T<-0 ! (except with the latter, after the experimenter

brings it to his attention) . These are not open to much uncertainty. One can

find plausible reasons in the four cases of definite error why there is little

sense to checking. However, no clear pattern emerges, especially when viewed

- 82 -

against the times when checking is evoked. More generally, there is a relatively

thin line between getting a value and checking a value, and our explication of

this is only marginally satisfactory.

The one case of G5 over Rl is with noting, since it is one of the

few places where a critical feature is generated by a process other than TD.

The protocol at B94 is quite clear on the attention directed at t3=0. However,

it is possible that B95 reflects a much more general switch to a concer»~wIth

R — this happens elsewhere in the protocol. In fact, B95 provides a nice

instance of ambiguity over the antecedent of "this."

S2/S4. All four errors in this case involve repetition in some

way, and show that our system is.not explicit enough about exactly what things

are remembered from the past and how processing is handled when guided by the '

past. The two definite errors (B116 and B139) both involve repeating the final

path of a previous branched exploration. In both cases this implies not

repeating the generation of values for the constrained variable. In one ques

tionable error (?Blll) it is unclear where the starting point is in repeating R;

even if it were started from R odd, the previous concern about whether to repeat

the generation still applies. The issue in the last error (?B299) is a little

different. In obtaining a value for B via PC(c4), the subject is sidetracked

because of an error in determining the set of available digits (fds). Having

cleared this matter up the subject returns to get B. He now has both a simple

way to get to B via a repeat of PC (which is what it does) or he can generate

values from the restricted set and assign one of them. This kind of choice only

occurs at this one point in the protocol. In all other places where S4 occurs

there Is no such alternative.

- 83 -

S2/S1. One of these errors (B85) is simply, ambiguous. Both Si and

S2 lead to exactly the same result; namely, the determination of t6. The other

error (B290.1) occurs in the midst of a context of processing larger than the

new information that 1 is carried out of column 4. This test sequence requires

J first deriving t5=l and then backing off to test N. Our production system is .

not constructed to back off this way. Even if one tried to model the method by

a direct recall of t5=l, the error would still crop up. The system has not

captured the higher level of organization adequately.

SI/TI. In all three of these errors, the main question is whether

the produced relationship is new or not. It is clear generally that the subject

does not evoke TD on old material. As we will see in the final summary, the

issue is dritical for the subject — and not just for us — since the failure

i to evoke TD on E=0 at B129 and again at B207 is one of his major errors in

i
problem solving. The definite error here.is at B207; however, this may well be

an analogous repetition for the R<-9 case of the prior processing for the R<-7

case. The correspondent of B207 is B129. This seems like a questionable error

(for us), since E=0 has already occurred several times. The Unquestionable

f error (?B278) occurs very late in the protocol when E=9 and A=4 are rederived;

it is not clear whether they should be treated as new or not.

Any discussion of errors is only partial, and is fundamentally

biased since it takes place against a background of positive choices about how
L to fashion the production system. A number of these errors could have been

transformed into non-errors by modifying the production system. Of,course an

equivalent number (actually somewhat more, in the cases investigated during the

- 84 -

course of analysis) of errors would have shown up elsewhere. Still, this

enumerated discussion provides some feeling for the places where the system is

weak, and for what some remedial actions might be.

Basic processes. In the analysis so far we have introduced a set of

processes that have been defined only by rough input/output descriptions: the

main operators, PC, GN, AV, TD, and the auxiliary processes, FC, FA, FL, FP, GNC.

These descriptions were sufficient for the task required; namely, to permit

identification that a process of the specified type had occurred in the data.

One can determine that a column is being processed, and even know exactly the

information output, without being able to specify by what means that output was

determined.

The use we have made of these processes, both in the PBG and in the

productions, implies that a single process is to be associated with each name,

and not merely that these names stand for types of processes. That is, these

processes are to be subroutines. We should be able to write down expressions

for them in some process language, such that the entire variation of output is

determined by the variation of input. Stated one other way: to predict the

output of the processes we should not have to appeal to information about the

context in which they occur other than the specified inputs.

Insofar as this fails to be the case, the total errors in our description

of the subject are underestimated, since some production occurrences will be

judged correct when in fact any algorithmic specification of the basic processes

consistent with other occurrences leads to an error. Consequently, the errors

in the basic processes require investigation. They should not necessarily be

- 85 -

combined with the errors in the production system, since it is quite possible

for the productions to be correct, even if the basic processes are in error;

e.g., errors in arithmetic are possible. In the present context there is

unlikely to be sufficient evidence to predict why such errors are made or when.

In such cases, the error is assigned properly to the processes underlying PC and

sheds no doubt on the validity of the productions that use PC. At some point,

of course, if such errors are too numerous, they implicate the entire system.

But our independent knowledge that errors of perception, memory, and elementary

processing occur makes division of errors appropriate.

To fully explicate the basic processes requires postulating yet another

set of processes (call them BB for basic-basic processes) in terms, of which the

basic processes can be described. Consideration of the basic processes, shows

the BB-processes to be at the level of elementary operations of perception,

immediate memory and accessing of long term memory. FC, for example, involves

a visual exploration of the board under the direction of already assimilated

information about the structure of the task display; it might take less than a

second. Even the most complex of our basic processes, PC, involves operations

of the order of adding a pair of digits and recalling the known properties of a

letter (e.g., R>5). Thus, a model for the BB-processes Is in f acrr-a-nchrtailed

model of immediate memory and immediate processing.

This is too large an undertaking for the present analysis, requiring

extended consideration of the available experimental material otT^mmediate memory

and processing. However, we can proceed part way, if we permit ourselves to be

considerably more informal and incomplete. We can examine the input/output

correspondences for evidence of inconsistency or complexity of processing that

- 86 -

seems incommensurate with the postulation of these processes as basic.

We give below, grouped into six subsections, a discussion of each of the

nine basic processes. The numbers in parentheses in the section titles give the

number of occurrences of each process. Each section also has a table that pro

vides a listing of each occurrence with its input and output.

PC(88). The most complex of the basic processes by far, PC, also

occurs often enough to give considerable evidence about its nature. If PC were

simply a routine for adding pairs of numbers (as in 5 + 5 gives T=0 and t2=l),

concern over its internal mechanism would reduce completely to concern for how

a human does arithmetic. As noted above, this is indeed an issue involving the

detailed structure of immediate memory, and the detailed handling of attention.

But much more is involved, since PC generates a rather wide variety of final

responses. In fact, the power of S3's problem solving hinges strongly on the

sophistication of PC. (This is evident if S3's behavior is compared with that

of subjects whose PC admits only of simple arithmetic.)

The diversity of processing apparent in Table 2 implies that even

if PC is in some sense a single subroutine, it is a highly conditional one.

Hence, the key question is whether some uniform scheme of processing can yield

this diversity. To provide some evidence on this we give in Figure 17 a sketch

of a production system that might perform PC. There is a general progression

through five stages of processing. First, the variable about which information

is to be obtained (the unknown) is determined. This is done by the subsystem

called U, which consists of the four productions, Ul to U4. It produces

a value for u. If PC is entered with a goal already set -- e.g., get R —

87

N Item Goal £ t rl+r2=r3 t' Result Microsequence

1 B5 cl 0 5 5 T T=0,t2=l U4 Cl 10 A2 A13

2 B20 R c2 1 L L R R odd Cl M4 11 M7 M3 A13

3 B23 R c2 1 L L R R odd Cl M4 11 M7 M3 A13

4 B32 R c6 5 G R[odd] G even Cl A6 C2 M3 A13

5 B36 G c6 5 G odd t6? C2 M3 12 M3 A10

6 B44 R c2 1 1 1 R R-3 Cl 11 A13

7 B47 c6 5 G 3 t7=l? U3 C2 A8

8 B49 t7=l c7 [1] U2

9 B58 R c6 5 G R 0 R>5 Cl Ml A13

10 B62 c2 1 L L 7 L-3 U3 C2 M5 11 A3 A13

11 B65 L c2 1 L L 7 L=3 C2 M5 11 A3 A13

12 B74 c6 5 G 7 G=l,2;t6? U3 C2 11 A13 A13

13 B78 t6 c5 0 E 0 E=0 Ul Cl M6 A5 A6 C2 1

14 B81 E c5 0 E 0 E=0 C2 M4 A13

15 B83 E c5 0 E 0 E=9,t5=l C2 M4 12 A7 A13

16 385 t6 c5 1 0 9 0 t6=l Ul Cl Ml 11 A2 A13

17 B86 E c5 0 E 0 [unclear]

18 B92 E c3 0 A A E E even Cl M4 10 A4 A13

Notes

no new goal

unclear

19 B95 t3=0 c2 1 3 3 7 [0] +,R=7! U2 U4 Cl 11 A10 A12'

20 B98 E c3 0 A A E E even Cl M4 10 A4 A13 —

21 B101 E c5 0 E 0
[even]

E=0,9 C2 M4 12 A7 A13 A13 E even
not used

22 B106 R c2 1 9 9 R R-9 Cl 11 A2 A13

Table 2. PC occurrences

N Item Goal £

23 B108 R c2

24 Bill R c6

25 B115 E c3

26 B116 E c5

27 B118 t5=0 c4

28 B123 E c3

29 B123.1 c5

30 B128 E c5

31 B129

36 B148

42 B161.1

43 B162

c3

32 B132 A c3

33 B138 R c2

34 B139 R c6

35 B147.1 E c3

c5

37 B152 E c5

38 B154.1 E c5

39 B156 E c5

40 B157 E c5

41 B160 c5

c5

t rl+r2==r3

1 9 9 R

Result

R=9

5 G R 0 R>5

0 A A E

0 E 0
[even]

E even

E=0;t5= 0?

N 7 B [0] N<3

0 X X E

0

0

0

E=y

0?

E=0

A=5

. A=5

R odd

5 G R 0 R>5

0 X X E

9 E 9

0 A A 0

0 A A 0

1 L L R

y 0

1 E 1

2 E 2

X E X

X E X

0 9 0

0 9 0

E=y

0?

E=9;t5=:1

E=9;t5== 1

E = 9; t5=J.

E=0

t5=l

t6=l

Microsequence Notes

CI 11 A2 A13

CI Ml A13

CI M4 10 A4 A13

C2 M4 12 A10 A13

U2 U3 C2 Ml A13

CI 10 A13

U3

C2 12 All A13 A10 on E/9?

U3 C2 M5 10 A3 All A8 A3 A13

t't-4 now C2 M5 10 A3 A13

CI M4 11 M7 M3 A13

CI Ml A13

CI 10 A13

U3 C2 M6 A5

C2 11 A8 A13

C2 11 A8 A13

C2 M4 12 A8 A13

C2 M4 10 A13

U3 C2 M6 A5 A6 C2 M4 A7 but t5=l
known

why 11?
0=1?

c6 1 5 G 7 0 G=l

U4 CI M6 11 A2 A13

U3 C2 11 A13

U 4 because
A5 on 0

Table 2 (continued)

•I i

N Item Goal c. t rl+r2=r3 t' Result Microsequence Notes

44 B165 c3 0 A A 9 E-9-p U3 C2 M5 10 A3 (T2) T2 because
A-p => E=9-p

f
]

I
45 B167 A . c3 0 A A 9 E=9-p C2 M5 10 A3 (T2)

f ""
46 B179 E=9 c3 0 A A [9] "P U2 U3 C2 M5 10 A3 (T2)

1
•

47 B182 A c3 0 A A 9 t3=l? C2 M5 A9 12 A3

i' 1 48 B182.2 t3=l 1 3 3 7 [1] U2 U4 Cl 11 A10 A12
I

49 B185 cl 0 5 5 0 1 + U4 Cl 10 A2 A12

50 B187 R c2 1 9 9 R R=9 Cl 11 A2 A13

51 B190 L c2 1 L L 9 L=4 C2 M5 11 A3 A13

52 B197 c6 - 5 G 9 0 G=3,4;t6? U3 C2 12 A13 A13

53 B199.2 t6 c5 0 E 0 E=9;t5=l Ul Cl M6 A5 A6 C2 M4 12 A13 knows .
too much

(

i
54 B203

(t5)
c4 N 9 B t5=l U3 C2 Ml A6 Cl Ml A2 A13 if goal=

Ul Cl Ml A2 A13 get t5

55 B203.1 c5 1 0 E 0 E=9 U3 C2 M4 11 A7 A13 assume U3=>E

56 B206 c5 0 0 E 0 E=9 U3 C2 M4 10 A13

57 B207 c3 0 A A 0 A=5 U3 C2 M5 10 A3 All A8 A13

58 B210 A c3 A A 0(?) t3=l? C2 M5 A9

c • 59 B211 t3=l c2 1 L L R [1] L>5? U2 U3 C2 M5 Ml 11 A3 A13 I>5,
not L>5?

60 B212 c2 1 6 6 R 1 R=3 U4 Cl 11 A10 A13

61 B220 E c5 8 E 8 . t5-2? C2 A7

V.
62 B222 t5=2 c4 N 9 B [2] ~P U2 U3 C2 Ml Al

63 B230 t5=2 c4 N 9 B [2] -P U2 U3 C2 Ml Al

64

65

B231

B240

t5
(max)

c4

c5

N

0

9

9

B

0

B=8;t5=l

t5-l

Ul Cl M9 12 M9 A2 A13

U2 C2 M6 A5 A6 M4 A7 A13

N Item Goal £ t rl+r2=r3 t« Result Microsequence Notes

66 B242 c5 1 0 9 0 0'free U3 C2 M6 11 A5 A13

67 B255 c4 N 7 B 1 N>2,t4? U3 C3 Ml 12 A13 A13 =>N>l,N>24t4i

68 B257 t4 c3 0 A A 9 A-p Ul Cl M4 10 A4 A10

69 B258 A c3 0 A .. A 9 A-p A6 C2 M5 10 A3 continuation
of 68

70 B260 A c3 A A 9 A=4,t3=l? C2 M5 A9 12 A3 A13 - y r . :

71 B261 t3=l c2 1 L L R [1] L>5? U2 U3 C2 Ml M4 11 A3 Att -5*303; -
not I>5?

72 B262.2 c2 1 6 6 R [1] R=3 U4 Cl 11 A2 A10 A13

73 B264 R c6 5 6 R 0 R>5 Cl Ml A13

74 B268.1 c2 1 7 7 R [1] R=5 U4 Cl 11 A2 A10 A13

75 B271 c2 1 8 8 R [1] R=7 U4 Cl 11 A2 A10 A13

76 B276 c3 1 A A E [9] A=4,E-9 U3 C2 M5 11 A3 A10 A13 =>A=4,+

77 B278 c5 1 X
[free;

9 x
| [free]

+ U4 Cl M4 11 A10

78 B279 N c4 0(?)N 7 B N free C2 Ml A13

79 B290 c4 0(?)x 7 B B=y,t5=l U4 Cl M8 A10 recollecjL.t5=l

80 B290.1 N c4 0(?)N 7 y 1 N>2 C2 Ml A13

81 B295 c4 0 6 7 B 1 B=3 U4 Cl 10 A10 A13 • -

82 B299 B c4 0 6 7 B 1 B=3 Cl 10 A10 A13

83 B304 cl 0 5 5 0 1 + U4 Cl 10 A10

84 B306 c2 1 8 8 7 1 + U4 Cl 11 A10 * • — —

85 B309 c3 1 4 4 9 0 + U4 Cl 11 A10

86 B311 c4 0 6 7 3 1 + U4 Cl 10 A10

87 B313 c5 1 2 9 2 1 + U4 Cl 11 A10 -

88 B315 c6 1 5 1 7 0 + U4 Cl 11 A10

- 91 -

PC: U - > C — » M - » I — > A

| Determine unknown (U)
i

' Ul get t 1 -» set u=s

I U2 get v=d -* set v=d; get new goal

U3 u undefined and I above -> set u=l

U4 u undefined and no 1_ above -> set u=s

| Set to compute (C)

Cl u below -> set to add; set a=r2
f

(C2 u above _> set to subtract; set a=r3

: Modify operand (M) (comparison of operand and a)

Ml d vs 1 -> convert 1 to inequality:
1 above -»>0
l=r3 and t'=0 -> <10

i l=r3 and t«=l -»>9
1 l=r3 and t*=2 >19

l=r3 and t'? ->undetermined
i .

M2 1, vs inequality -> convert X to inequality

[" " M3 d vs even/odd -* convert d to even/odd

M4 1 vs same 1 -> convert 1 to 1:1, (i.e., 1 unit of 1)

M5 operand = u and on same side -> add 1 to n:u

M6 operand = u and on opposite side -> subtract 1 from n:u

M7 d_ vs 2:1 -> convert 2:1 to even

M8 d vs specified unknown digit >̂ convert d to specified unknown digit

M9 v and max and add -> GN (v) [top]
(others from (max,min)x(add,subtract) not used)

Figure 17: Micro production system for PC.

- 92 -

Carry into (I)

10 t=0 set operand = 0

11 t=l -> set operand = 1

12 t? get with t=l

Analyze answer (A)

Al a>9 and u above -» -p

A2 a>9 and u below -* decompose a into digit and carry

A3 n:u and n>0 -> divide a by n

A4 a=2:^ -> convert a to even

A5 0:u u undetermined

A6 a undetermined and another v -» change u to v

A7 a=0, subtract d-^a, complement d

A8 a-p(too small) t'=l? ^

A9 a-p ~* set t?

A10 u is also e -> compare a to e

All a=d - operand -» -p

A12 u is get v=d compare a to d

A13 -> u=a (including a undetermined)

Notation

u = unknown

a = the developing answer (accumulator)

s = sum = r3+10t'

t = carry into column

t 1 = carry out of column

- 93 -

then u will already be determined. The second stage (C) sets up the system for

how to calculate. Either operands are to be added into the accumulator (called

a), or operands are to be subtracted. In the latter case r3 is set as the

initial value of a. Then follows as the third stage a series of attempts to

take the information in the column and arithmetically combine it with the devel

oping answer. However, since the operands can be other kinds of information than

digits a set of reactions is required, which depend on the nature of the operand

and the nature of the developing answer. These reactions are contained in M.

The fourth stage (I) consists of determining whether there is a carry into the

column (t)» and taking it into account. To do so may involve additional operand

modifications. The last stage (A) analyses the answer. It may require some

additional operations on the accumulated answer, a, depending on the nature of

the unknown, u.

Table 2 gives not only the occurrences of PC along with the inputs

and the result, but also the sequence of micro-actions that supposedly would

generate the result if the production system of Figure 17 were in operation. A

couple of examples will make clear how the system works.

The simplest case is shown by the first item B5. No unknown is

specified, and all letters above the line have digits for values (both D=5);

hence U4 is evoked, which makes u = T. Since u is below the line, Cl is evoked

which sets to add. Addition of the two 5's proceeds without need for modifi

cation, and 10 obtains no carry, leaving a with the value of 10. A2 is evoked

since a is greater than 9; thus the answer is decomposed into a digit of 0 and

a carry of 1. Finally, A9 makes the assignment of a to the unknown; thus getting

T=0, and t2=l.

- 94 -

A more complex case is shown in the third occurrence, B23. Since

getting R is already the goal, no U-production is evoked, and Cl sets to add

with a initially equal L. Since the next operand is L, M4 is evoked, which then

allows a to become 2:L. Next, II fetches the carry of 1 and the attempt to add

a digit to 2:L evokes M7. This says, in essence, that there is no way to add

apples to oranges and so abstracts the 2:L to even. The attempt to add 1 to

even evokes M3 which forces the conversion of 1 to odd. This leads to odd plus

even is odd for the value of a, which A9 then assigns to R. (Thus the system is

capable of both digit arithmetic and even/odd arithmetic.)

We asserted earlier that we would not produce a formal model of

immediate memory and processing, but would proceed informally. The scheme of

Figure 17 is in this spirit. There are several ways in which it falls short

of a complete model, most notably in not being completely specific on what evokes

each production, on how the various operands are actually picked up, and on the

handling of the answer (a) when it consists of both a digit and the carry out

(t'). Even so,it does indicate one kind of system that can yield the variety

of responses recorded for FC. It also shows that there is no gross inconsist

ency in the behavior of PC from occasion to occasion.

One regularity is apparent. The carry is attended to only after

the other operands. There are eleven instances in the data in which some evi

dence of language is available on the order of addition (B20, B23, B36.B65, B182,

B271, B276, B306, B309, B313, B315) and in all of these the carry is dealt with

afterward. Furthermore, no evidence of any kind exists for the carry being

considered at any other position (such as picking up the first operand, adding

f - 95 -

in the carry and then the dealing with the second operand). This issue hears on .

another one; namely, whether the carry is in fact taken into account at all on

some occasions. There are three occasions (B20, B32-36, B73-81-83), all at the

beginning, where the carry is not attended to at first. However, it is always

discovered eventually, and throughout the remainder of the protocol the best

fitting assumption seems to be that the carry will always be taken into account.
[*

[Very often, of course, when the carry is 0 or when it is undefined, there is

f nothing explicit in the protocol to indicate that the carry has been noted.

The system of Figure 17 also points to a few rough spots. Among

the more prominent difficulties is the handling of c5; in particular, whether

E=9 is obtained by subtraction, by complementation, or by some form of recog

nition. As to the last, in a highly overlearned task, such as arithmetic

operations on simple numbers, the possibility always exists that answers are

obtained by recognition rather than by applying arithmetic operations. Sometimes

the language evidence is compelling that operations occurred, but often it is

not. Thus in the present case, transforming 0+E=0 into E=0, the subject may

.simply recognize that 94-1 provides a solution, and then afterwards connect the 1

with t5. Subtraction seems less likely, especially since no questions about

whether t'=l appear to get raised (as the evocation of A6 would imply). We chose

to encode with complementation, both to avoid the difficulties of t' and because

item 61 (B220) seems consistent with taking the complement of 8 to get 2, over

looking the fact that it is 0 that is 8 and not E.

In addition to the bias of the present scheme toward doing opera

tions rather than recognizing the answers, it does not reflect any short term

- 96 -

learning, some of which must be going on. A good example of this failure is

item 53 (B199.2) where the subject has been through c5 enough times (15) not to

have to go through the extended sequence of micro-actions shown. On the other

hand, it should be noted that there is little evidence from other sources (and

none from the present behavior) that the subject does not go through the motions

of the arithmetic operations even though the sequence has become quite familiar

and the outcome is expected (in the sense of being recognized as familiar, not

of being produced in immediate memory prior to finishing the sequence).

There are a few cases in which the outcome of the microsequence is

somewhat at variance with the outcome used in the rest of the analysis. In item

59 (B211) and again in 71 (B261) the scheme produces L>5 rather than L>5?. This

might have some effect on the main analysis, since the ? evokes Gl which sets

the goal of obtaining L. (The apparently analogous case at B58 where R>5- is

obtained, already has the goal of getting R established.) In item 67 (B255) the

microsequence puts out both N>1 and N>2, whereas the main analysis stated only

N>2; however, this has no effect on the analysis. Likewise, in item 76 (B276)

the microsequence includes the comparison via A7, which is only implicitly in

cluded in the main analysis; again, no consequences flow from this difference.

GN(27),AV(27). These two processes (given in Tables 3 and 4) are

discussed together, since AV(v) can be viewed as:

AV(v): GN(v)=> d; AV(v,d)=C> v^d

AV(v,d) is essentially the operation that occurs in a standard paired associates

learning task. It may differ somewhat, since recall can be via either v or d.

and this may modify the way the subject stores the information. Also, one of

N

1

2

3

4

5

6

7

8

9

11

13

19

21

Item

B26

B59

B96

B98.1

B140

B150

B154

B155

B159

Prod. V

S4 R

S4 R

S4 R

S4 E

S4 R

tS3

tS3

tS3

10 B178

B182.4

12 B204

B211.2

14 B215

15 B223

16 B228

17 B235

18 B239

B242.1

20 B248

B262.1

22 B268

23 B270

S4 E

S4 R

S4 R

S4 t5

S4 L

S4 R

S4 E

S4 E

S4 E

S4 E

S4 0

S4 0

S4 L

S4 L

S4 L

Set

odd

odd,>5

odd,>5

even

odd,>5

ds

0,9;-0

7,9;-7

odd,>5

0,1;-1

>5

7,9

0,9

0,9

0

0,9;-0

free(ds)

free(fds) <j>

>5 6

7

8

Result

1,3,5,7,9

7,9

7,9

2,4,6,8

7,9

2
interrupted

9

9

7,9

0

6

7,9

0,9

0,9

0

0

1

Notes

repeat B59

repeat B59

} one generation

possible R odd,

repeat B223

S one generation

)

)

Table 3. GN occurrences

N Item Prod. V Set

24 B285 S4 N fds

25 B291 S4 fds

26 B298 S4 N fds

27 B301/3 S4 0 fds

- 98 -

Result Notes

3,6

3,6 repeat B285

2

2

- 99

N Item Prod. V Set Result

1 B42 S3 L ds L*4

2 B61 TS4 R 7,9 R<-7

3 B105 S3 L 7,9;-7 L . V

4 B120 S3 A ds A<-K

5 B125 S3 0 ds 0*-9

6 B143 tS4 R 7 » 9 R<-7,R<-9

7 B147 S3 A ds A<-K

8 B150 tS3 0 1

9 B154 T S3 0 2 Ck-2

10 B155/1 ? 0 ?

11 B159 S4 E 9 E<-9

12 B178 S4 R 9 R<-9

13 B182.4 S4 R 7,9;-7 R<-9

14 B186 S3 L 9 L<-9

15 B189 S3 R 9 R<-9

16 B204 S4 t5 0 t5<-0

17 B211.2 S4 L 6 L<-6

18 B219 S3 0 -0,-9 0*-8

19 B239 S4 E 9 E<-9

20 B248 S4 0 4 OM C

21 B262.1 S4 L 6 L<-6

22 B268 S4 L 7 L^7

23 B270 S4 L 8 L^8

Notes

repeat B120

repeat B105

only t

Table 4. AV occurrences

- 100 -

N Item Prod. V Set Result

24 B288 S4 N 3,6 unclear

25 B289 Rl N 3,6 N^c

26 B264 S4 N 3,6 N^6

27 B301/3 S4 0 2 0<-2

- 101 -

the components (v) remains in view at all times, even though embedded in a

display. Actually, 13 of the 27 occurrences of AV are essentially AV(v,d),

where a single value has been delivered externally, either by GN (in S4) or be

cause S3 goes slowly enough for us to see the generation going on (B150-B154).

There are 5 cases where AV assigns a symbolic value; e.g., 0«c at

B248. These symbols simply stand for "a value" and are not more complex than

digits. There is certainly no difficulty assuming that AV(v,x) can associate

such symbols. However, it does imply additional structure to that shown above.

In particular, some processes must evoke by-passing of GN and going into the

abstract mode. There is not enough data in the present situation to pin the

mechanism down; indeed, it is clear that more than one mechanism is involved.

B120 and its repetition, B147, involve a kind of planning; whereas B248 is a

way to indicate that 0 is taken care of, even though its value is unknown until

the end.

If we add in the remaining 9 cases of AV, which contain a buried

GN, we get a total of 36 cases of GN. The main form of this process,' accounting

for 24 cases, is to start at the low member of the set and generate values in

ascending order. Included in this total are three cases in which the set has

one or no elements. Also included is B98.1, which generates E even, starting

from 2 rather than from 0. This is undoubtedly correct (only programmers start

counting from 0), even though for the problem at hand 0 is the correct starting

place. (The consequences of this will be apparent later.)

A somewhat different mechanism seems to be involved in 6 other

cases, in which there is a two element set of which one member has been deter

mined to be not possible just prior to the evocation of GN. The proximity to

- 102 -

this new information implies that the basic set of values has not yet been up

dated; indeed, one can view the GN as the performance of this updating. This

could be accomplished, of course, by a generate and test, using GN and TD. How

ever, with only a two element set there is the strong possibility of a mechanism

that says "pick the other one." The coexistence of the two mechanisms is

possible, unique clues for evoking this one being clearly present. In general,

an organism with a small immediate memory may be expected to handle small sets

quite differently than large ones, which must necessarily involve serial

generation.

This leaves us with 6 cases. Three of these are unimportant,

involving either incomplete GN's for which no information is available (B155,

B288), or an already discussed unsatisfactory situation, which is probably digit'

centered rather than letter centered (B235). In the final three there"Is evi

dence both that a set of values exist and that the top one in the range is

selected, rather than the bottom one (they involve generation of only a single

value). In the two cases where 0^9 (B125) and Ck-S (B219) there are complexities

going on that we can sense, but have not captured. For instance, by assigning

0 to be 9, the dilemma for E=0,9 is resolved. Likewise, 0^8 is probably confused

with E=8, since it evokes t5-2 (or is determined by t5=2, a shift of interpre

tation we explored, but discarded, at an earlier stage of the analysis). The

final case of generating from the top occurs at B294 and leads to the selection

of N<-6 instead of N«-3. This follows upon an extensive comparison of the conse

quences of each value, which apparently ended indecisively. The failure here

is our inability to discover the additional considerations that went into the

decision.

- 103 -

TD(31). The central part of TD(l,d) consists of two attempts to

associate:

Is d associated to anything?

If so, is it 1?

Is 1_ associated to anything?

If so, does it contain d?

For the present subject, who appears to work always from 1_ to d, presumably if

any letter is associated with d, it need not be tested to see if it is 1_. That

is, we find no instances in Table 5 in which TD was evoked with a variable that

already had a value. In the other direction, however, it is possible for 1 to

be constrained, hence for a given d to lie outside the admissible set for 1_.

This happens in three cases, two for R>5 and one for E even. Whether these two

accesses are done in the order shown, the inverse order, or as a single access

on a compound stimulus (l,d) Is unclear. It may vary with the circumstances,

being I first and then d, when a new assignment is being proposed, but d first

during a generation of digits. Such variation, of course, requires either that

•TD be two different processes or that there be enough executive structure in TD

to permit adaptation to circumstances. Additional executive structure is indi

cated, at least for B229, where two values of E are discarded, one because T=0,

the other because R*-9.

The only other noteworthy occurrence of TD is at B295.1 where the

subject becomes aware that if he permits the conclusion that B=3, there will be

no other digits available (fds=o/) even though a letter (0) is unassigned.

Clearly this inference does not come from the two associations listed above, but

- 104 -
N Item Prod. 1 d Result Notes

1 B7 Tl T 0 +
2 B28 T l R 1,3,5,7,9 R=5-p(D<-5.,)

3 B45 Tl R 3 +
4 B60 Tl R 7,9 +
5 B63 Tl R 3 L=3- P(R=3- P«)

6 B66 Tl L 3 +
7 B84 Tl E 9 +
8 B99 Tl E 2,4,6,8 +

O
N

 B103 Tl E 9 E=9-p(E even!)

10 B106.1 Tl R 9 R=9-p(L^-9!)

11 B131 Tl A 5 A=5-p(D^5!)

12 B135 Tl A 5 A=5-p(D^-5:) repeat

13 B163 Tl G 1 +
14 B188 Tl R 9 R=9-p(L<-9!) repeat

15 B190/2 Tl L 4 +
16 B200 Tl E 9 E=9-p(R<-9!)

17 B203.2 Tl E 9 E=9-p(R<-9!)

18 B209 Tl A 5 A-5-p(D^-5!)

19 B213 Tl R 3 R=3-p(R>5.')

20 B224 Tl E - 9 E=9-p(R^9')

21 B229 Tl E 0,9 E=0,9-p(T=0!,R<-9!)

22 B233 Tl B 8 B=8-p(0<-3!)

23 B236 Tl E 0 E=0-p(T=0!)

T a b l e 5. TD occurrences

- 105

N Item Prod. 1 d Result

24 B243 Tl 0 1 0-l-p(G=l!)

25 B262.3 Tl R 3 R=3-P(R>5!)

26 B268.2 Tl R 5 R=5-p(D^-5!)

27 B273 Tl R 7 +
28 B293 Tl N 3,6 +
29 B295.1 Tl B 3 B=3-p(fds=jf!)

30 B300 Tl B 3 +
31 B301 Tl 0 2 +

Notes

- 106 -

requires other processing. If our model had some way of handling "noticing,"

this event could be handled differently (and also B202-203, which raises some

of the same issues).

FC(64). The defined input to FC is the variable whose column is

being sought. Thus, we require additional specification of mechanism when there

is more than one column that involves the given variable. Table 6 shows the

alternative outputs in the column labeled 'Others. " For a carry both the column

that determines it and the adjacent column that uses it are listed. Among the

64 cases there are 10 that are repeats of other occurrences of FC (noted in

the last column) and another 8 that have uniquely determined columns:

for these there is no further concern. For the others, the key feature seems to

be whether the processing of that variable on the current column has occurred or

not. This is indicated on the table by ayes or no in the column labeled

c done?, which is left blank if the subject is not located on any particular

column. Suppose we assume the rules:

1. If current column is unprocessed for the variable,
always select current column;

2. If current column is already processed for variable,
do not select current column.

The first rule accounts for 6 cases. The second rule accounts for 30 cases, in

that it reduces the set from which selection must occur to either one or no

elements. These cases are labeled rule 1 and rule 2, respectively.

We are left with 10 cases in which one column was selected from a

set of two or three eligible columns. Almost all (8) involve the selection of a

T o t a l S e t
N I t e m P r o d . V £ d o n e ? R e s u l t O t h e r s N o t e s

1 B5

2 B I O

3 B 1 2

4 B2 0

5 B 3 2

6 B 4 7

7 B 4 9

8 B 5 8

9 B 6 2

10 B 7 2

1 1 B 7 4

12 B 7 8

13 B 8 5

14 B 8 6

15 B 9 2

16 B 9 5

17 B 9 8

1 8 B 1 0 1

19 B i l l

20 B 1 1 5

2 1 B 1 1 6

S I

S I

S I

S2

S2

S I

S2

S2

S I

S I

S I

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

R

c l y e s

c l y e s

c 2 y e s

c 2 y e s

4

t 7 c 6 y e s

R c 6 n o

R c 6 y e s

L c 2 y e s

R c 2 y e s

t 6 c 6 y e s

t 6 c 5 n o

E c 5 n o

E c 5 y e s (?) c 3

t 3 c 3 y e s c 2

E c 3

E

R

E

E c 3 y e s

c 3 y e s

c l c 6 c l m o s t c o n s t r a i n e d

4 c l c l o u t b y r u l e 2

c 6 c l c l o u t b y r u l e 2

c 2 c 4 , c 6 c 2 m o s t c o n s t r a i n e d

c 6 c 2 , c 4 c 2 o u t b y r u l e 2 ,
c 6 m o s t c o n s t r a i n e d ,

c 6 c 2 , c 4 c 2 o u t b y r u l e 2 ,

c 6 m o s t c o n s t r a i n e d

c 7 c 6 c 6 o u t b y r u l e 2

c 6 c 2 , c 4 c 6 b y r u l e 1

c 2 c 4 , c 6 c 6 o u t b y r u l e 2 ,

c 2 m o s t c o n s t r a i n e d

c 2 c 2 o u t b y r u l e 2

c 6 c 2 , c 4 c 2 o u t b y r u l e 2 ,

c 6 m o s t c o n s t r a i n e d

c 5 c 6 c 6 o u t b y r u l e 2

c 5 c 6 c 5 b y r u l e 1

c 5 c 3 r e p e a t

c 5 c 5 o u t b y r u l e 2 (?)

c 3 c 3 o u t b y r u l e 2

c 5 r e p e a t

c 5 c 3 c 3 o u t b y r u l e 2
c 6 c 2 , c 4 r e p e a t
c 3 c 5 r e p e a t

c 5 c 3 r e p e a t

T a b l e 6 . FC o c c u r r e n c e s

c

D

T

D

R

R

- 108 -
Total Set

N Item Prod. V £ done? Result Others Notes

22 B118 S2 t5 c5 yes c4 c5 c5 out by rule 2

23 B123.1 SI E c3 yes c5 c3 c3 out by rule 2

24 B129 SI E c5 yes c3 c5 c5 out by rule 2

25 B138 S2 R c2 c4,c5 repeat

26 B139 S2 R c2 yes c6 c2,c4 repeat

27 B148 SI E c3 yes c5 c3 repeat

28 B160 SI E c5 no c5 c3 c5 by rule 1

29 B161.1 SI t5 c5 no c5 c4 c5 by rule 1

30 B162 SI t6 c5 yes c6 c5 c5 out by rule 2

31 B164/1 SI G c6 yes 4 c6 c6 out by rule 2

32 B165 SI E c5 yes c3 c5 c5 out by rule 2

33 B179 S2 E c3 c5 repeat

34 B182.2 S2 t3 c3 yes c2 c3 c3 out by rule 2

35 B191 SI L c2 yes 4 c2 c2 out by rule 2

36 B197 SI R c2 yes c6 c2,c4 c2 out by rule 2,
c6 most constrained

37 B199.2 S2 t6 c6 yes c5 c6 c6 out by rule 2

38 B203 SI R c4 c2,c6 Note c2, not c4,
most constrained

c2,c6 Note c2, not c4,
most constrained

39 B203.1 SI t5 c4 yes c5 c4 c4 out by rule 2

40 B206 SI t5 c5 no c5 c4 c5 by rule 1

41 B207 SI E c5 yes c3 c5 c5 out by rule 2

42 B211 S2 t3 c3 yes c2 c3 c3 out by rule 2

43 B212 SI L c2 no c2 4 unique

44 B222 S2 t5 c5 yes c4 c5 c5 out by rule 2

Total Set
t I. f\4-U N Item Prod. V £ done Result Others Notes

45 B230 S2 t5 c5 yes c4 c5 c5 out by rule 2

46 B240 SI E c5 c3 Neither most constrained

47 B242 SI t5 c5 no c5 c4 c5 by rule 1

48 B255 SI t5 c5 yes(?) c4 c5 c5 out by rule 2 (?)

49 B257 S2 t4 c4 yes c3 c4 c4 out by rule 2

50 B261 S2 t3 c3 yes c2 c3 c3 out by rule 2

51 B262.2 SI L c2 no c2 4 unique

52 B264 S2 R c2 c6 c2,c4 c2 out by rule 2 S2
c6 most constrained

53 B268.1 SI L c2 no c2 4 unique

54 B271 SI L c2 no c2 4 unique

55 B276 SI t3 c2 yes c3 c2 c2 out by rule 2

56 B278 SI A c3 yes 4 c3 c3 out by rule 2

57 B278/2 SI E c3 yes c5 c3 c3 out by rule 2

58 B279 S2 N c4 4 unique

59 B290 SI N c4 no c4 4 unique

60 B290.1 S2 N c4 no c4 4 unique

61 B295 SI N c4 no c4 4 unique

62 B299 S2 B c4 no c4 4 repeat

63 B301 SI B c4 yes 4 c4 c4 out by rule 2

64 B302 SI 0 c5 yes 4 c5 c5 out by rule 2

- 109 -

- 110 -

column for R; one involves the initial selection of a column for D, and the

remaining one the selection of a column for E after the final decision has been

made to assign E the value 9. Any variation on a concept of "select the most

constrained" will account for all these cases but B203 and B240. The subject

would select either c2 or c6 for R in preference to column 4, and cl for D in

preference to c6. One must be careful in evoking such a mechanism, however,

since it can easily imply considerable computation and comparison of all columns

before a selection is made. This clearly does not occur. For example, B12 makes

it highly probable that the subject did not select the initial column for D

(at B5) by a deliberate comparison of cl and c6. Of the two cases not explained

by maximum constraint, one (B203.) appears to involve a genuine anomaly (already

discussed) in which the concern for R leads the subject to evoke Si on R<-9,

rather than take off on E<-9. In the other case (B240) we have no clues why c5

should have been selected over c4 after E<-9 (with the subject not located at any

column).

FA(19), FP(4). These two processes(presented in Tables 7 and 8)

are grouped together because the essential component in both is the recall of

past behavior. In both FP and the FA in production T2 the call is for some past

information. But even in the use of FA in S3, which on the surface simply calls

for a relationship that determines the input variable, the result is never a new

relationship, but one which has been used already. Thus, in B42, which concerns

the assignment of L to get R, it seems implausible to think of FA as having the

choice between three columns for R (as in FC). Rather, return is to c2 which

was used to derive that R is odd.

c
[
[
c
C c
c
c

111 -

0

c
I
E c
E

N Item Prod. V Result Notes
1 B42 S3 R c2,L no alternatives
2 B56 T2 t7=l R=3 no alternatives
3 B105 S3 R c2,L repeat B42
4 B106.2 T2 R=9 L«-9 no alternatives
5 B120 S3 E c3,A c5
6 B125 S3 E c5,0 parallel B120, .
7 B136 T2 A=5 E=0 0 ^ but hypo the

CO B147 S3 E c3,A repeat B120
9 B149 S3 E c5,0 repeat B125

10 B186 S3 R c2,L repeat B125
11 B189 S3 R c2,L repeat B186
12 B203.3 T2 E=9 t5=l no alternative
13 B219 S3 E c5,0 no alternatives
14 B229.1 T2 E=0,1 t5=0,l no alternatives
15 B234.1 T2 B=8 t5>l no alternatives
16 B238 T2 E R<-9 0<-8 possibly?
17 B243.1 T2 0=1 0 free no alternatives
18 B264.1 T2 R=3 L<-6 no alternatives
19 B269 T2 R=5 L<-7 no alternatives

Table 7. FA occurrenc

N Item Prod. Action
1 B95.1/2 R2 repeat S4 on R W
2 B182.4 R2 repeat S4 on R̂ -7
3 B214 R2 repeat S4 on R>5
4 B263 R2 repeat S2 on R>5

c3

Table 8. FP occurrences

- 112 -

With this view there is very little to. say about the mechanisms of

FA and FP without a more detailed model of memory. Table 7 for FA shows that

for 9 cases there are no alternatives to the output provided, and that 5 others

are repetitions of prior sequences. This leaves 5 cases which are worth some

discussion. Three of these concern whether 0*-d could have been evoked by FA.

These assignments do stand in the PBG prior to the evocation of the production in

question (always T2). In fact, no consequences follow from the assignment of

values to 0, but incorporation of this would seem to require a memory that keeps

track of additional connections other than just the tree ordering. The other

two cases (B120, B125) belong together as one, since B125 is a parallel version

of B120, with c5 and 0 substituted for c3 and A. This in itself reveals that at

B120 there was a choice between c3 and c5 as a way of determining E. However,

we have no proposed mechanism for making this initial selection.

We do deal with two different,forms of memory in these processes:

with path memory for FA, and production occurrence memory for FP. These are

probably not distinct, but are all interwoven in the memory of past behavior.

However, as already noted, there is little additional light we can shed on this.

GNC(2), FL(4). Both of these processes are represented by so few .

instances that essentially nothing can be said about their internal mechanisms.

They both exist in response to needs for sufficiency — e.g., it is not possible

to add up a sequence of columns serially (B304-B316) without sequencing through

the columns.

The only instance of FL that offers food for thought is the

extended attempt at B14-B18 to select a letter for processing. The subject

N Item Prod. Input Results

1 B185 ? cl

2 B303 S5 c3 cl to c6

Figure 9. GNC occurrences

N Item Prod. Input Results

i 1 . B14 G4 Is: all - 1,D R

2
r

B278 G4 Is: N,B,0 N

i 3 B301 G4 Is: 0 0

4 B302 G4 Is: 4 4

Figure 10. FL occurrences

I . .

I H"ht LIBRARY ^ WITT

- 114 -

clearly is considering letters and their multiple occurrences. Thus a mechanism

that chooses the unprocessed letter with the maximum number of occurrences will

be as good an approximation as one can get (even though it may differ consider

able from the actual set of considerations that the subject goes through).

J

[
c
c
c

- 115 -

Discussion

We have finished the detailed analysis. It remains only to pull a few

threads together, and view the effort somewhat more broadly.

Overview of S3's behavior. Figure 11 (page44) provides a way of glimpsing

£ the total problem solving effort in which S3 engaged. This can almost be told

as the play of .a game. The opening development is straightforward. The subject

takes each piece of new information and feeds it back into the problem to harvest

further information (essentially production Si). This straightforward approach

founders in the attempt to infer that G is even. Then follows the first attempts

£ at assignments. These are done systematically. The first one, L«4, fails almost

immediately, but leads to the discovery that R is 7 or 9. The second assign

ment, R t 7 , leads to a moderately advanced position, and ends the "opening game."

Then S3 enters a long phase (lines 11 to 29) in which he worries whether

E is 0 or 9. This, of course, is the key to the problem for any approach that

relies on "reasoning" through to the solution. It appears that the crucial

feature is the subject's failure to recall that T=0 is already used. However,

three features of the subject's behavior contribute to his difficulties.

1. The failure to note that T=0 so that E=0-p

c
[
c
E

C
E

E
E

2. The inability to produce a solid analysis of c5
so that E=0 or E=9 is a clear dichotomy; he
continually iterates on the analysis.

E'
3. The failure to see that t3=l is possible and so to lay

to rest the contradictions that keep arising from E=9.

As to the first, the production system asserts that TD shall be applied whenever

a new value is obtained. Why did it fail? We can pinpoint the places where

E=0 is produced, and where, therefore, TD perhaps should have been evoked:

E

B 7 8 , B 8 1 , B 9 8 . 1 , B 1 0 3 , B 1 1 6 , B 1 2 8 , B 1 5 7 , B206, B 2 2 3 . Right after B223 (at B225)

the experimenter could contain himself no longer and asserted that ^You've used

the zero, too.' 1. From that point on the fact was established.

Of these nine instances, five (B103, B116, B 1 2 8 , B 1 5 7 , B223) can be

eliminated from concern, since TD is not evoked on a familiar relationship.' This

obvious bit of efficiency clearly unstabilizes the problem solving processes.

Slips made at critical junctures may never be corrected. This is reminiscent of

the "Einstellung 1 1 effect, [10] , in which subjects, once a method has proved

successful, find difficulty in calling it into question when the situation

changes. Here it is.a test for digit admissibility that drops out, whereas in

L u c h i n f s task the method selection process drops out. Nevertheless, both produce

a cul-de-sac through the effects of familiarity.

Of the remaining four instances, two (B78, B81) occur where PC, being

unclear, is repeated. According to the priority ordering, production Rl (repeat)

is evoked in preference to Tl (TD) (see Fig. 1 5) . Unfortunately, this evidence

is hardly compelling, since Rl and Tl only compete 2 times solidly (namely, these

two at B78 and B81) and two times where there is doubt as to whether Tl should

have been evoked or not (B156.1 and B 2 8 8 . 1) . Furthermore, Rl and Tl are adjacent

in the priority order, so that there is no indirect support for the contention

of the model that TD would not be evoked if PC was unclear. In any event, by

the time PC produced a result that did not evoke a repeat the result was not

E=0 but E=9.

This leaves B98.1 and B206. The first, B 9 8 . 1 , involves the generation of

E even. This has been taken to start at 2 rather than 0 and hence the TD at B99

- 117 -

does not get applied to 0. Furthermore, although TD is used a moment later to

reject E=9, E even is used, rather than E=0. Hence, again the opportunity for

getting TD asked of 0 slips by. This reconstruction of the subject's behavior

is consistent with the total system and plausible (if a person is asked to give

the even numbers he starts with 2, not with 0). However, there is no explicit

evidence at B98.1 that the generation occurred or that it started at 0.

B206 is the first encounter with E=0 in the second phase of the problem

solving where the subject is exploring the consequences of It might seem

that the subject would treat E as a new item and evoke TD. However, the text

makes clear that the information is not so treated, since the subject immediately

re-evokes the impossibility of A^5, which is implied by E=0. This availability

of the inference on c3 is also reflected in B158, where the subject in doing PC

on c5 asserts that "E can't' be zero." This might seem to indicate awareness of

T=0, but the analysis makes clear that A^5-p is the source of this conclusion.

We have discussed in detail the failure of S3 to note E=0-p(T=0!). It

seems that "if it had been otherwise" the subject would have solved the problem

much more quickly. However, the other features of his behavior should not be

overlooked. The second feature, his general inability to make a clean analysis

of c5, shows clearly in the total PBG, but not so clearly from the production

system. It is basically a property of PC, and beyond the level at which we have

modeled it. One might think, perhaps, that additional information — e.g., from

c3 -- should help. But such information, although it can give clues for dis

covery and add confirmation, may be unable to produce surety, which is what the

subject needs. His PC is already good enough to derive the results in question;

namely, E=9, t5=l.

- 118 -

The third feature concerns the subject's inability until the sixth en

counter with c3 finally to break free from the assumption.that t3=0 (B94, B131,

B168, B182, B208 and finally B257). This is one of the main traps offered by

crypt-arithmetic puzzles — ignoring the possibility of carries by identifying

the result at a column with the named letter at that column. The trap is deeper

than the E=0 issue, which depends only on whether the subject will ask the right

questionf TD(E,0). At B94 the subject states his conviction on t3, "because I

know I'm not carrying 1." At B168 he directly faces the issue of A+A=9 without

calling into question t3=0. At B182 he finally considers the need for t3=l

("If that were 4 + 4 plus . . ") . However, this leads only to his rejecting R«-7

and setting up to explore R<-9. For the subject these are still the two alter

natives for c2 and he does not become clear that R*~9 will not solve his problems -

(i.e., make t3=l). Again, at B208 he considers getting t3=l'(B211: "If I could

get L to be more than 5 ..") and rejects it after an analysis that apparently

consists of looking only at L<-6. Finally, starting at B257 he goes again to

L>5, repeats the L^6 investigation, and only then breaks himself free to consider

other values for L and R: "Now suppose these were real big numbers, not just

little — not 10, but way more than 10" (B265-267).

The three features combine to keep the subject oscillating around a point

of moderate advancement, achieved early in the session. This is almost the total

story of the "middle game." It can be seen clearly in the gross structure of the

PBG: The long plateau from lines 9-33, punctuated with reviews of R<-9, leading

to starting over with R<-9; and a second plateau (lines 35-46) much like the first

in character although shorter. Finally, thanks to the experimenter, the issue

- 119 -

is finally resolved, E=9 is posited, and the "end game" proceeds very rapidly

to a successful conclusion (lines 48-55).

The ability to record attempts externally plays some role in the subject's

behavior. It permits him to start over without losing the other solution. When

he drops back to the initial attempt (line 48) it is still available. In par

ticular, G=l is still recorded and does not have to be re-derived (it is never

mentioned in the protocol during the final advance).

Comparison with earlier work. The present analysis grows out of a con

tinuing effort to use information processing systems to model human problem

solving. The two most relevant studies, mentioned already at the beginning of

the paper, are the attempts to simulate human behavior in simple tasks in '

symbolic logic using GPS [17, 18, 19] and the analysis of a chess protocol [21],

which is similar in spirit to the present analysis.

Taking the chess study first, the subject conducts a forward search from

the existing position, and we were able to construct a PBG much as in the present

analysis. The problem space was not handled as formally as in the present effort,

•but clearly the elements were positions and the operators were by and large legal

moves. Those that were not were classes of moves defined functionally — e.g.,

Q-move, defend-B. The PBG showed a striking regularity. The subject always

returned to the base position before engaging in another long deep and little

branching foray. Thus, the subject could be described as following an overall

search strategy -- it was called progressive deepening -- which could be con

trasted with the depth-first and breadth-first strategies widely used in problem

solving programs. The PBG of the present subject shows no such global regularity,

- 120 -

and we have characterized his behavior simply as a production system without any

overall search strategy. Besides the always present fact of individual dif

ferences, two features of the tasks may be involved in this difference. First,

chess has a permanent memory of the base position always available, but no

ability to record new positions externally. Thus, dropping back to the base

position is returning to certainty. In our crypt-arithmetic task, advanced

positions were recorded, and hence there was no need to return always to the

base position. The current external position could operate as a base. For

example, R«r7, L=3, T=0, D<-5 was used for very large periods. However, even here

some additional non-written information was available -- e.g., R=7,9 in the

state just mentioned.

The second difference between chess and our task that might account for

the lack of global search strategy is familiarity with the task. Chess was a

familiar game to our chess subject, whereas this was the first crypt-arithmetic

task S3 has done. Thus S3 had only his unadapted reasoning procedures available

for the task; the chess subject had had plenty of time to develop a style of

analysis.

In the chess analysis we were able to develop what amounted to a set of

productions to be applied at each node which produced the moves considered at

that node. These productions were of the form:

features of position -» function to be performed => moves

That is, the features of the board do not directly yield legal moves to be con

sidered, but rather yield the function (defend, attack, etc.) to be performed.

This function, in turn, is used to generate the legal moves that perform that

- 121 -

function. The situation is entirely analogous to the productions that yield PC,

which, when applied to the particular column at hand, yields concrete assignments

(either of form l^d or l_=d). This view implies a problem space for chess whose

operators are the function terms rather than the legal moves.

The production scheme developed for the chess analysis does not handle

selection of the base move, nor modulation of the exploration. Some rules were

adduced in the chess study for the latter, involving repeated re-examination of

a path if successful, and working through the productions according to a priority

list of a priori relevance if unsuccessful. Nothing in the present analysis

corresponds to this. In part the chess problem solving takes place within the

framework of a search strategy that gives meaning to factoring the problem into

separate types of rules, whereas no corresponding factoring makes sense in the

crypt-arithmetic task.

In summary, the chess analysis is generally supportive of the present

analysis. However, there exists no theoretical frame large enough to explain

adequately the differences in the two resulting schemes of problem solving. This

is just what we should expect, of course. At least a modest number of analysed

examples are needed before such a frame can become clear.

GPS presents a different problem of comparison. Its program organization

is quite different, not being composed of a production system, but of a problem

solving interpreter with a set of problem solving methods.* Initially, the

*~ GPS has had several basic organizations over the years, each of which
is quite different from a production system [5, 13, 14].

- 122 -

techniques of the present paper — the PBG and the production system — were

developed as preliminary schemes for data analysis — as ways of organizing the

data so a program, of type unspecified, could be inducted that would incorporate

the regularities so exposed. However, it is now clear that the production system

offers an alternative organization, which might be extended to a fully func

tioning program.

We indicated earlier how the behavior of GPS might be viewed in terms of

the problem space: a system which follows the goal stack assumption and which,

whenever an operator fails to be applicable, sets up the subgoal of modifying its

input so that it can be applied. This, of course, covers only the central core

of GPS and not all of the methods — e.g., how to select a new goal to work on

after one has been abandoned. Given this much correspondence, a set of produc

tions could be developed that would carry this out. One of the main differences

between such a system and existing versions of GPS would be the subgoal tree.

GPS keeps a record of all the intermediate goals along a path from A to B:

transform A to B; transform A' to B; transform A" to B, ... In the problem

space version, although there must be some path memory, which we have never

specified for S3, it would undoubtedly not be the goal stack. The system might

simply keep an anchor point (e.g., the original position) and the current

position; that is, the goal would remain "get B," always with the current

position understood.

Without carrying out the reformulation of GPS and the analysis of the

behavior in logic -in terms of the new production system it is not possible to

do more than note the general correspondence that is implied by the possibility

- 123 -

of this change of representation. The problem space will consist of logic

expressions as elements and the legal logic rules as operators. The subjects

introduce a large number of function terms (e.g., eliminate, decrease, reverse),

which GPS currently treats as differences and uses to select relevant operators.

In the light of the use of similar function terms in chess, these might show up

as an expansion of the set of operators.* However, unlike chess and like S3 on •

crypt-arithmetic, the subject is new at the task, and cannot be expected to have

the function terms so internalized that they seem to be the real operators.

As noted, Bartlett (2, pp. 49-63) considered crypt-arithmetic, seeing it

as an example of evidence in disguise. Apparently, Bartlett gave the problem to

several people, asking them to write down the steps they followed.** The eight

written protocols that Bartlett reproduces are almost completely consonant with

the present study. They show the same form of reasoning as the present case.

Several are better, going directly from cl to c5 and deducing that E=9; a few

were worse, floundering in trial and error. The one exception generated corre

spondences of letters with digits according to global rules — e.g., A=1,B=2,

C=3,... .

Bartlett's discussion is also largely consonant with our account, although

formulated only in generalities. He sees the subject taking a series of steps,

each drawing out some information that has been disguised, thus filling the gap

between the initial state of information and the final one that solves the

problem. Bartlett's analysis and ours diverge in his division of processes into

* In [15] a PBG for logic is given along these lines.

** No procedural details are given; this is within the spirit of the work,
which is exploratory and discursive.

three types: analytical, guessing and insightful. The first corresponds reason

ably well to PC and the second to an AV sequence followed by PC. The third,

insight, he describes as seeing the answer without going through the steps nec

essary to develop it. Generally his notion of insight is supported by examples

of perceptual problems, where the person suddenly "sees" the answer with no

ability to report intermediate stages. In crypt-arithmetic Bartlett focusses on

the lack of evidence in his written protocols of intermediate steps; e.g., the

subjects simply write down the inference on E from c5, with no indication why

they were led to consider this. From our point of view, his data corresponds

more to the PBG from the written record (Figure 12) than to the PBG from the

verbal protocol (Figure 11). It is clearly incomplete, and cannot support the

kind of argument he constructs upon it. Thus, we do not end up with our subject

showing insight. Whether such a process is needed in addition to analysis and

guessing remains inconclusive.

There is little profit going further afield for comparison with the

picture of human problem solving presented by the present analysis. The general

features of search, of the ability to do symbolic processing, of goals and sub-

goals, and of means-ends analysis are all here. Beyond that, other studies do

not provide information at a detailed enough level to illuminate whether the pro

duction system is a good model for the organization of human problem solving

system; and to what extent S3's behavior is either typical or noteworthy.

Observations on production systems. We have already remarked that the

type of system used to represent the subject's behavior is a quite general form

of process organization. A certain comfort can be drawn from this. Whatever

model is eventually adopted for describing human problem solving must have the

power of a Turing machine — that is, be able to perform arbitrary calculations.

Some points about this are worth noting. The requirements for a Turing

machine — for universal calculational ability — are really quite simple: the

ability to write symbols in a m e m o r y , to find and read them out a g a i n , and to

react differentially to them. For production systems this memory is the work

space — that which the condition part of a production is contingent u p o n . T h u s ,

the production system writes by putting information into the work s p a c e , and

reads by evoking productions conditionally on the contents of the work s p a c e .

There must be available a finite memory of such differential r e a c t i o n s , and these

correspond to the finite number of different p r o d u c t i o n s . In a Turing machine

the system reads a symbol and reacts to i t , not only writing a symbol but by

going into a new state of its (finite) memory, since the entire set of produc¬

tions is exposed each t i m e . * The affixing of a ? in our system is a typical

example of how an internally introduced symbol is used to effect a selection of

a specific production on the next step. Similarly, the use of sequences of

actions, rather than selecting afresh, each elementary action from the total

production system is another way of achieving context dependence. If we were

restricted to a single elementary action per production, then each would put in

a tinique cue symbol in addition to the desired output, so that the appropriate

next production could be uniquely selected.

The final requirement for general calculational ability is that the system

have an unbounded memory capable of being addressed repeatedly. In a Turing

machine this is accomplished by an infinite tape with operations for moving the

tape left and right under the reading head (which defines the immediate access

capability of the m a c h i n e) . In the present system the domain of the conditions

* In some productions systems used for practical purposes — e.g., syntax
analyses an explicit link to the next production is provided, so that this
property does not hold.

- 126 -

is the immediate memory, which clearly we do not wish to be infinitely extend

able. Thus, our system as it stands does not fully satisfy the conditions for

"general calculability."

As already noted, some sort of conflict resolution doctrine is required

in a production system. We adopted a priority scheme, which is both simple and

frequently used. The priority order became a free parameter of the system and

its value^was determined to best fit the data. The resulting order seems

fragile, at least in part. Determination of a production's position in the order

is sometimes based on only a few cases. An example occurred in trying to under

stand whether failure to evoke TD on E=0 was explainable by the production system

or was a failure of the production system to describe the behavior adequately.

The argument hung partly on whether Rl had higher priority than Tl. Although the

matrix yielded a positive answer to the question, it was with slight margin of

confidence. Yet, much of the psychological import of the system is buried within

the priority rules. It remains an open question whether the priority scheme is

an appropriate decision structure. After all, no direct psychological case has

been made for it. However it could also be that the shortcoming (small N per

cell) is inherent in any attempt to describe a system which has so much mecha

nism to be determined.

As we come to consider the production system as a possible theoretical

form for describing human problem solving, the psychological significance of its

various features becomes important. Perhaps the most fascinating is the way the

system shreds the generators of behavior into a set of independent parts — that

bears a resemblance to a collection of S-R connections. The productions are,

- 127 -

in some sense, independent and "additive." That is, each may be added to the

set of productions without concern for the others that are there. The behavior

that arises from this is certainly not a sequence of independent actions. But

the interaction comes entirely from the symbols the evoked productions put in

the immediate memory. This situation may be contrasted with that of a flow

diagram, where the structure of the system as well as the compc; mt processes

determine the total behavior. Of course, this means only that - duction

systems, as opposed to flow diagrams, provide a homogeneous way to encode the

total information necessary for a process. We have already discussed how one

can often pass from one to the other by introducing additional symbols which

serve to link productions uniquely. Such a change in representation is none the

less useful for being understandable. However, the independence of the compo

nent productions fails to the extent that the conflicts must be resolved by a

rule, such as a priority ordering, that depends on a global property of the set

of productions.

Each production, considered separately, has the form of a stimulus (the

condition part) evoking a response (the action part). Thus, the entire system

has the flavor of a network of stimulus-response bonds. What distinguishes this

from a garden variety S-R system as considered in experimental psychology? First

of all, it is highly mediational. That is, there are many internal cycles of

stimulus to response to stimulus before any external response is made. The

immediate memory plays a central role in this. Second, the action parts are not

simple responses -- that is, not some invariable pattern in immediate memory.

Rather, the response is a sequence of processes each of which produces a new

- 128 -

pattern in immediate memory. It is this secondary pattern which defines the

next stimulus and selects the next response. Thus the immediate memory plays

a second role, as well.

There are two concerns with these actions. First, each is a sequence of

actions (or responses) rather than a single one. However, as already discussed,

we may view this as a convenience in writing productions and we could modify the

system so each production had a single action (which, however, must then produce

at least two "symbols"). More important is the nature of these actions. If

they are not representable as similar S-R systems, then there is a non-S-R link

in the total chain. Given the schematic micro-production system developed for

PC a further reduction might seem plausible, but the question is clearly still

open.

A third difference between the production system and the standard S-R

system lies in how the next action is selected. The current system has a match

routine which responds to structured symbolic expressions. The usual concept

of strengths of connection is absent. Likewise, there is strict selective

attention to part of the total stimulus (the total immediate memory). Most .

important, the match routine uses variables. That is, it permits the passing of

parameters from the working memory to the actions. Hence, the latter are

functions, rather than simply self contained processes. The system mechanisms

required to do this more complex matching and parameter passing must itself be

explained in simple S-R terms. It is not enough to show it can be performed by

some production system. This latter is like showing that an Algol compiler can

be written in Algol; it does not settle the issue of whether a given device can

- 129 -

compile Algol. One might show, however, how a system of productions that was

parameter free could perform the parameter passing. Even.this would not settle

the whole issue, since it would imply that the S-R mechanisms exhibited in our

production system were being performed interpretively by another simpler S-R

mechanism. In short, there may be requirements on the total system of produc

tions which go beyond what a simple S-R system can produce.

We mention the possibility of viewing the production system as an S-R

system, not because the interpretation is clear, but because the resemblance is

striking enough to be worth exploring. When one looks at information processing

theories represented as flow diagrams — e.g., the concept formation system of

Johnson [9] — there appears to be no connection at all between an information

processing model and an S-R model. When one looks at a production system, a .

relationship seems possible.

Turning from the general properties of production systems to the par

ticular one developed here raises some additional issues. For one, the system

is not complete. If turned loose on DONALD+GERALD, or almost any other crypt¬

.arithmetic task, it would simply fail to evoke an action at some point. From

a data analysis point of view the ability to be incomplete and still useful for

describing the data as a source of great strength. However, it prevents us from

really verifying whether the system performs as we claim. In fact, knowing the

vagaries of hand simulation, there are surely additional difficulties, which

have been glossed over unawares in the present analysis. As already remarked,

one major source of incompleteness is the lack of a sufficiently detailed model

of immediate memory so that actions, such as FC, can be fully specified.

- 130 -

Another issue concerns the psychological significance and generality of

our productions. If this model represents structurally what is going on, then

the individual productions must be learned, transferred, etc. Are the same

productions used in other tasks? Do the same productions show up in different

people? Here it seems to me, we are in better shape than we have any right to

expect. A number of productions are clearly of general utility: Gl, G2, G3, T2,

Rl, R2. Most of the others could be so reframed. For example, S2 needs to have

FC abstracted to "find a thing that involves v" and PC abstracted to "process

that thing for information about v." The processes corresponding to FC and PC

could now not be unit actions; they might have to be set up as goals, which

would evoke yet other productions. Still, they would carry the kernel of

organization of some behavior:

Whether these same productions occur in other subject's behavior is not

within the confines of this study. Cursory work with a few other subjects does

show a few major productions, such as Si and S2. This is true only for subjects

who attempt the problem in the same general way. For example, some subjects

attempt to use sets of simultaneous equations, others to use global rules for

generating correspondence between digits and letters. One would not expect the

same productions in such cases (nor even production systems as the useful form

of description).

These comments do not.offer substantial demonstration of the generality

of these productions over people and over tasks. Yet the situation is not with

out hope.

c
R

[
L

[
[

C

E
C

r-
[

c
[

- 131 -

Summary. Despite discussion of the prospects of production systems

developing into a better way to write information processing theories of human

problem solving, this paper should still be viewed primarily as a detailed case

study of a single problem solving episode, adding thereby one more bit of data

to the study of human problem solving. We have been concerned with how diffi

cult it is to carry out such analyses, and have developed a number of data

analytical tools to help with the task. These operate in the context of an

information processing theory of problem solving based on the concept of

heuristic search in a problem space. These tools are:

P 1) The formalization of the problem space, including both
L " the knowledge states and operators, so that it becomes

easier to determine what changes of knowledge are going on.

2) The Problem Behavior Graph (PBG), which is a way of
plotting the subject's search through the problem space.

3) The production system, which permits one to extract the
regularities of behavior at a node of the PBG.

p 4) The determination of the priority ordering of the
L production system by minimizing the number of wrong

selections of the production system.

5) The display of the performance of the production system
in a graph that shows both the coverage and the errors
against the addition of new productions.

Most of these steps are "simply" data analysis. No theory underlies them, in

£ the sense that we expect statistical theory to underlie proposals for tests of

significance or techniques of parameter estimation. They are not less useful

for that. In an area -- protocol analysis -- which has few tools we need all

we can get.

The generality of these tools remains to be seen. In the shorter paper

- 132 -

devoted to protocol analysis [15], which is largely based on the present work, we

did present PBGs from several different tasks: logic, chess, crypt-arithmetic,

and the missionaries and cannibals puzzle. However, further steps involving

production systems have not been carried through on any body of data as sub

stantial as the one represented here.

Finally, although of necessity concerned with methodology, the main

contribution of this paper is the information it provides about a problem solving

attempt. How well this particular analysis will hold up remains to be seen.

Like the chess analysis it is bedeviled by being only a single instance. Also,

like it, the analysis has not proceeded to working programs. Consequently, one

of the main security devices of information processing theories, simulation, is

absent. Still, a substantial amount of information has been extracted from the

data and brought to bear on inducting the processing structure of the subject.

The web of cross dependency is sufficiently great that a critic tampers with an

isolated bit of the protocol at his peril. Any attempt to "patch up" the expla

nation at one point runs the risk of introducing new errors at other points.

There are very few examples of analyses of problem solving behavior in

the literature that provides enough structure to support conjectures of how the

behavior is organized. A comparison of this analysis with the material on

crypt-arithmetic in Bartlett's book on Thinking [2] will emphasize the point.

Even in our analysis the evidence often has turned out to be much thinner than

we would like. The field needs even larger bodies of data, processed even more

finely than the present one.

References

1. Backus, J. W., "The syntax and semantics of the proposed international
language of the Zurich ACM-GAMM Conference. 1 1 Information Processing,
UNESCO, 1959.

2. Bartlett, F., Thinking, Basic Books, 1958.

3 . Bobrow, D . G., MA question-answering System for high school word algebra
p r o b l e m s , " Proc. Fall Joint Computer Conference, 2 5, 1964.

4. Brooke, M., 150 Puzzles in Crypt-arithmetic, Dover, 1963.

5 . Ernst, G . W . and Newell, A., GPS and Generality. Carnegie Institute of
Technology, 1 9 6 6 .

6. Evans, A., "An Algol 60 Compiler, 1 1 Annual Review in Automatic Programming,
Pergamon Press, 1 9 6 4 .

7. Feigenbaum, E. and Feldman, J., Computers and Thought, McGraw-Hill, 1963.

8 . Gagne, R., and Paradise, N . E., "Abilities and learning sets in knowledge
acquisition," Psychol. Monogr., Whole N o . 518, 1961.

9. Johnson, E . S., "An information processing model of one kind of problem
solving," Psychol. Moriogr., Whole N o . 581, 1964.

10. Luchins, A. S., "Mechanization in problem-solving," Psychol. Monogr.,
Whole N o . 2 4 8 , 1942.

11. Markov, A. A., Theory of Algorithms, Academy of Sciences, USSR, 1954.

12. Miller, G., Galanter, G., and Pribram, K., Plans and the Structure of
Behavior, Holt, 1960.

13. N e w e l l , A., "Some problems of basic organization in problem-solving
p r o g r a m s , " in M. C Y o v i t s , G. T. Jacobi and G. D. Goldstein (eds.)
Self Organizing Systems, Spartan, 1962.

14. N e w e l l , A., A Guide to the General Problem Solver Program G P S - 2 - 2 .
The RAND Corporation, 1963.

15. N e w e l l , A., "On the analysis of human problem solving protocols,"
Proc. International Symposium on Mathematical and Computational Methods
in the Social Sciences, 1966, (in press) .

16. N ewell, A. and Ernst, G. W., "The search for generality," E. W. Kalenich
(ed.) Proc. IFIP Congress 6 5 , pp 17-24, Spartan, 1965.

- 134 -

References

17. Newell, A., Shaw, J. C , and Simon, H. A., "The processes of creative
thinking," in H. E. Gruber, G. Terrell and M. Wertheimer (eds.)
Contemporary Approaches to Creative Thinking. Atherton, 1962.

18. Newell, A. and Simon, H. A., "Computer simulation of human thinking,"
Science, vol. 134, no. 3495, pp 2011-2017, 1961.

19. Newell, A. and Simon, H. A., "GPS, a program that simulates human thought,"
in H. Billing (ed.) Lernende Automates Oldenbourg, Munich, 1961.

20. Newell, A. and Simon, H. A., "Computers in psychology," in R. D. Luce,
R. R. Bush, and E. Galanter (eds.) Handbook of Mathematical Psychology,
vol. 1, Wiley, pp 361-428, 1962.

21. Newell, A. and Simon, H. A., "An example of human chess play in the light
of chess playing programs," in N. Wiener and J. P. Schade (eds.)
Progress in Cybernetics, vol. 2, pp 19-75, Elsevier Publishing Co.
Amsterdam-, 1965.

22. Paige, J . and Simon, H. A. /"Cognitive processes in solving algebra word
problems," in B. Kleinmuntz (ed.) Problem Solving: Research Method and
Theory. Wiley, 1P66.

23. Pittcnger,R. F., Hockett, C. F. and Danehy, J. J., The First Five Minutes,
Martineau, 1960.

24. Reitman, W., Cognition and Thought, Wiley, 1965.

Crypt-arithmetic
Subject 3 Problem DONALD D=5

•fGERALD
ROBERT

1 '
1

\

Bl Each letter has one and only one
numerical value —

(ask Exp. about rules)

i fc

B2 Exp: One numerical value.
i B3

B4

There are ten different letters

and each of them has one numerical
value.

B5 Therefore, 1 can, looking at the
two D's —

SI: D<-5 ->FC(D)=> cl; PC(cl)=> T=0

B6 each D is 5;

B7 therefore, T is zero. Tl: T=0 •-» TD(T,0)=> +

B8 So I think I'll start by writing
that problem here.

B9 I'll write 5, 5 is zero.

BIO Now, do I have any other T's? SI: T=0 FC(T)=> 4

Bll No.

B12 But I have another D. SI: D<-5 -^FC(D)=> c6 (no PC(c6))

[.
B13 That means I have a 5 over the

other side.

Bl4 Now I have 2 A's G4: get Is -» FL(ls)^ R; get R

B15 and 2 L's

B16

B17

B18

B19

that are each —

somewhere -¬

and this R —

3 R's —

B20 2 L's equal an R — S2: get R ->FC(R)=> c2; PC(c2,R)=> R odd

B21 Of course I'm carrying a 1.

B22 Which will mean that R has to
be an odd number.

B22.1 Rl: PC unclear ^ get R; repeat PC

B23 Because the 2 L*s — t : PC(c2,R)=> R odd

B24 any two numbers added together
has to be an even number

B25 and 1 will be an odd number.

B26 So R can be 1, S4: get R GN(R)^> 1,3,5,7,9

B27 3,

B28 not 5, Tl: R=d -> TD(R,d)=> R=5-p(D<-5')

B29 7,

B30 or 9. •

B30.1 - - ? :
B31 Exp: What are you thinking now?

B32 Now G -- S2: get R ~»FC(R)^> c6; PC(c6,R)=> G even

B33 Since R is going to be an odd
number

B34 and D is 5,

B35 G has to be an even number.

B35.1 Rl: PC unclear get G; repeat PC

B36 I'm looking at the left side
of this problem here where it
says D + G.

t : PC(c6,G)=> t6?

B37 Oh, plus possibly another number,

B38 if I have to carry 1 from the
E + 0.

B39 I think I'll forget about that
for a minute.

? : -

B40 Possibly the best way to get to
this problem is to try different
possible solutions.

B41 I'm not sure whether that would
be the easiest way or not.

B42 Well, if we assume — S3: get R -> FA(R)=> c2; AV(L)=> L<-4,

B43 if we assume that L is, say, 1,

B44 we'll have 1 + 1 that's 3 or R — t; PC(c2 ,R)=> R=3

B45 We'll put in a 3 here, Tl: R=3 TD(R,3)=> +

B46 and one here.

B47 Well, 5 plus something has to
equal 3 in that case —

SI: R=3 ^ 1 C (R) = > c6; PC(c6)=> t7=l?

B48 I suppose it's -- Gl: t7=l? -» get t7=d

B49 Well, not, S2: get t7-l ->FC(t7)=> c7; PC(c7)-> -p(zl!)

zl: 1 at r3 of c7 not exist

G5: zl! -> check zl

B50 it's not possible that there
could be another letter in
front of this R is it?

? : check zl ^ z2=> 4
z2: Ask Exp.

B50.1 Rl: z2 unclear ~> get z2; repeat z2

B51 Is it or not? t: z2 => zl (from Exp.)

B52 Exp: No.

B53 It's not —

B54 all right --

B55 so if —

B56 if that couldn't be a 13 on
the left side,

T2: t7=l-p FA(t7=l)=> R=3; => R=3-p

B57 then R cannot be 3.

B57.1 G2: R-3-p -> get R

B58 R has to be a number greater
than 5,

S2: get R ->FC (R) = > c6; PG(c6 ,R)=> R>5

B59 which means that it can be
either 7

S4: get R ->GN (R) = > 7,9

B60 or 9. Tl: R=d -4 TD(R,d)^> +

B61 So we'll start back here
and make it a 7.

tS4: AV(R)=> R*-7

B62 Now if the -- Si: R<-7 -> FC(R)=C> c2; PC(c2)=0 L-3

B63 ^ r s ; . 1 said somethlns Tl: L=3 TD(R[sic],3)^ L=3-p(R=3-p«)

B64 I'm making —

B64.1 Rl: PC unclear -> get L; repeat PC

B65 No, no, I didn't either. t: PC(c2,L)=^L=3

B66 R is going to be a 7, Tl: L=3 TD(L,3)=> +

B67 then this will be 7,

B68 and that will be 7,.

B69 and it's the L's that will
have to be 3's,

B70 because 3 + 3 is 6

B71 + 1 is 7.

B72 Now, it doesn't matter anywhere
what the L's are equal to —

SI: L=3 ->FC(L)^>^

B73 so I'm independent of L when I
get past the second column here.

B74 But now I know that G has
to be either 1

SI: R<-7 ^FC(R)=>c6; PC(c6)=> G=l,2; t6?

B75 or 2,

B76 depending on whether or not
E + 0 is greater than 10

Gl: t6? -> get t6

B77 or greater than 9. *

B78 Now I have this 0 repeating here S2:
In the second column from the left;

get t6 ^FC(t6)=> c5; PC(c5,t6)^> E=0

B79 that is, itself plus another
number equal to itself.

B80 This might indicate that E
was zero,

B80.1 Rl: PC unclear -> get E; repeat PC

B81 In fact, it might have to t : PC(c5,E)^ E=0
necessarily indicate that.

B82 I'm not su r^ " MT~lc^U^~^geOI repeTTPc"

B83 Or, E could be 9 t; PC(c5,E)=> E=9,t5=l

B84 and I would be carrying 1, Tl: E=9 TD(E,9)=> +

B85 which would mean that I was S2: get t6 ^ FC(t6)^> c5; PC(c5,t6)=> t6=l
then carrying 1 into the left
hand column.

B85.1

B86 Exp: What are you thinking r.ow? S2: get E -» FC(E)=> c5; PG(c5,E)=> [unclear]

B87 I was just trying to think over
what I was just --

B88 about the possibility

B89 the implications of an 0 + another
number equaling an 0,

B90 and what that necessarily implies.

B90.1 • ? :

B91 Let's see ~

B92 I have two A's equaling an E. S2: get E ->FC(E)=> c3; PC(c3,E)=> E even,
t3=0.'

B93 Therefore, E has to be an even
" number,

B94 because I know I'm not carrying 1. G5: t3=0' -> check t3=0

G3: check t3=0 -> get t3=0

B95 Of course this all going on S2- get t3=0 -^FC(t3)=> c2; PC(c2, t3=0>>+(R<-7.'.)
the assumption that R is 7 --

B95.1 G5: R->7.' check R<-7

R2: check R<-7 repeat S4

B96 R could be 9 also. S4: get R GN(R)=> 7,9

B97 Well, maybe I'll just continue ? :
to try to work this through again.

B98 If E has got to be an S2: get E FC(E)=> c3; PC(c3,E)~> E even

B98.1 S4: get E - > G N (E) = > 2,4,6,8

B99 Now, wait a second. Tl; E=d -»TD(E,d)=> +

B100 I got something out of this. ? : (9 not in)

B101 E has to be an even number S2: get E -*FC(E)=> c5; PC(c5,E)=> E=0,9

B102 and E + 0 = 0 —

B103 E cannot be 9. Tl: E=d -* TD(E,d)=> E=9-p(E even!)

B103.1 ? : -> (change R, use 9)

B104 Exp: What are you thinking now?

B105 I'm going back over these L's
here and try to think what
would happen If they are ni —

S3: get R -^FA(R)=> c2; AV(L)=> L*-9

B106 rather -- t: PC(c2,R)=> R=9

B106.1 Tl: R=9 -> TD(R,9)=> R=9-p(L<-9!)

B106.2 T2: R=9-p -> FA(R=9)=> L<-9; => L<-9-p

B107 Let's see, how did I arrive at
the point of that?

Rl: PC unclear -* get R; repeat PC

B108 This is going to be a little
confusing to start trying to
trace back here.

PC(c2,R)=> unclear (L<-9-p)

B109 What's the reasoning here?

BllO I'm thinking in the back of my
mind what this R was.

? : (vacuous?)

Bill I decided that R had to be
greater than 5,

S2: get R FC(R)=> c6; PC(c6,R)=> R>5

B112 because that was given

B113 and R + G,

B114 or rather, D + G = R.

B114.1 ? :

B115 I know you're wondering what
I'm thinking.

S2: get E -»FC(E)=> c3; PC(c3,E)=> E even

B116 I'm still trying to look at this
second column here, where

S2: get E ^FC(E)=Oc5; PC(c5,E)=0 E=0,t5=0?

E -f" 0 — 0

B117 and A + A = E.

B117.1 Gl: t5=0? get t5=0

B118 Then again, that's assuming S2* get t5=0 ~> FC(t5)=> c4; PC(c4,t5=0)=> N<3
that N is less than 3,

B119 because I don't want to be
carrying 1 into that E + 0 column.

t B119.1 ? :
B120 I think I'll try once more here - S3: get E ->FA(E)=> c3; -AV(A)=> A**,

B121 just trying to sort of bluff my
way through this.

B122 That is, just assume some value
for A,

B123 so I can get that E. t : PC(c3,E)=> E=y

B123.1 SI: E=y
— 1 "" , • ' i — 1 ™ ~

-*FC<E)=> c5; PC(c5)-> 0?

B124 I can do better than that.

B125 I — S3: get E ->FA(E)=> c5; AV(0)=> 0^9

B126 I know that E + 0 has to equal 0,

B127 and, at most, 0 is going to be 9;

B128 in which case E would be zero. f: PC(c5,E)=> E=0

B129 If E is zero. Si: E=0 ->FC(E)^> c3; PC(c3)=> A=5

B130 -A + A —

B131 But A can't equal 5 — Tl: A=5 TD(A,5)=> A- .,(D«-5!)

B131.1 Rl: PC unclear -> get A; repeat P C

B132 That is, A + A would equal E t : PC(c3,A)=> A=5

B133 and if E were zero,

B134 A would have to equal 5;

B135 but A can't equal 5. Tl: A=5 -» TD(A,5)=> A=5-p(D«-5!)

B136 And — T2: A=5-p FA(A=5>i> E=0; => E=0-p

B137 See -- ? : —> get R

B138 I decided .that R had to be S2: get R - » F C (r) = > c2; PC(c2,E) = > r odd
an odd number,

B139 and has to be greater than 5 S2: get R -» FC(R) A> e6; PC(c6,R)=> R>5

B140 which leaves only 7 S4: get R -»GN(R)=> 7,9

B141 and 9.

B14 2 I think that reasoning is •
correct.

B143 W e l l , at worst I have only two f: AV(R)=> R<-7, R*4
solutions to work on in that
case, starting from that point.

B143.1 ? :

B144 Let's see what do I want that E
to be ?

B145 I think that you're absolutely
right.

B14 6 It might take a full 30 minutes.

B147 A + A = E — S3: get E - A F A (E) = > c3; AV(A) = > A<HK,

B147.1 t : PC(c3,E)=> E=y

B148 E + 0 = 0. SI: E=y - » f c (E) = > c 5 ; PC(C5)=> 0?

B148.1 ? :

B149 I'd better start back at this
here.

0 S3: get E -> FA(E)=> c5,

B150 What values could 0 have? ? : GN(0)=> 1; A V (0 , l) = O 0U

B151 Suppose 0 were 1

B152 and E would have to be 9, t : PC(c5,E)=> E=9,t5=l i

B153 and I'd have to be carrying a 1. —

B153.1 t : : (return to G N)

B154 Suppose - t : GN(0)=> 2; AV(0,2)=> 0<-2,

B154.1 t : P C (c 5 , E) = > E = 9,t5 = l

B154. 2 t : (return to G N)

B155 s'pose — t : G N (0)

? : -> A V (0) = > C H - x ,

B156 Actually, that's almost the tS3:
case no matter what the situation
is —

PC(c5,E)^> E=9,t5=l

B156.1 Rl: PC unclear -> get E; repeat PC

B157 Unless E is zero — t : PC(c5,E)=> E='0

B158 But E can't be zero — ? : E=0 —> (recall c3)^> E-O-p

B158.1 G2: E=0-p -> => get E

B159 Therefore, E might have to be 9 S4: get E -» GN(E)=> 9; AV(E)=> E<-9

B160 and I have to carry SI: E<-9 ^FC(E)=> c5; PC(c5)=> t5=l

B161 in order to have the 0 = the 0.

B161.1 SI: t5=l ~>FC(t5)=> c5; PC(c5)=> t6=l

B162 In that case, it looks like
G is going to be 1,

SI: t6=l ->FC(t6)=> c6; PC(c6)=> G=l

B163 because I am going to be
carrying 1.

Tl: G=l -»TD(G,1)=> +

B164 I think I'll tentatively .put
that in there.

SI: G=l -> FC(G)=> 4

B165 And I'll call E -- SI: E=9 FC(E)=> c3; PC(c3)^> E=9-p

B166 Let's see, E can't be 9 though. Rl: PC unclear ~> get E; repeat PC

B167 It doesn't look like E can be 9, t: PC(c3,A)=> E=9-p

B168 because A + A has to equal E.

B169 Am I irritating you being so far
off the course?

» *

B170 Exp: No.

B171 I still feel as though I'm baring
my soul to my mind here.

B172 Exp: What are you thinking now?

B173 Well, I see you here pacing
around the room.

B174 You have me all worried.

B175 Now I'm going back to see if I've
made some obvious fallacy.

? : -» get R

B177 I sort of thought --

B178 Of course, I did have the
choice of making this R a 9.

S4:. get R ->GN(R)=> 9; AV(R)=> R<-9

B178.1 ? :
B179 I seem to be running into

trouble the way I am here.
S2: get E=9 ->FC(E=9)^ c3; PC(c3,E=9)=> -p

B180 Having trouble getting this E --

B181 I can't make E a 9. Rl: PC unclear ^ get E; repeat PC.

B182 If that were 4 + 4 plus -- t : PC(c3,A)=> A=4,t3=l?

. B182.1 Gl: t3-l? -» get t3=l

B182.2 S2: get t3=l FC(t3)=C> c2; PC(c2,t3=l)
=> -p(R^')

B182.3 G5: R<-7. -» check R<-7

B182.4 R2: check R*-7 -> repeat S4
S4: get R ->GN(R)=> 7,9; AV(R)=> R<-9

B183 I think I'll make myself another
model on the other side,

7 :

B184 and compare these two.

B185 Now I had a column 5 + 5 = 10. ? : - 4 GNC=> cl; PC(cl)=> +

B186 Now the change I'm going to make
. is that I'm going to make L a 9.

S3: get R
*

^ FA(R)=> c2; AV(L)=> L<-9

B187 Which means — t : PC(c2,R)=> R=9

B188 I'm sorry Tl: R<-9 -» TD(R,9)-> R-9-p(L*-9«)

B188.1 ? :
B189 I'm going to make R a 9, S3: get R -*FA(R)=> c2; AV(R)=> R<-9

B190 which means that L has to be 4. t : PC(c2)=> L=4

Tl: L=4 -» TD(L,4)=> +

B191 I wish that L appeared somewhere
else,

SI: L=4 -» FC(L)=> 4

B192 since I can get it within at
least 1

B176 Exp: You haven't made any
obvious fallacies.

P193 or 2 of right.

B194 Now, since R equals 9,

B195 and in the far left hand total
is going to be a 9,

B196 and the R in GERALD is going
to be 9.

B197
*

Now instead of G plus 5
being 9,

SI: R<-9 - > F C (R) = > c6; PC(c6)=> G=3,4; t6?

B198 G can be either 3

B199 or 4.

B199.1 Gl: t6? H> get t6

B199.2 S2: get t6 ->FC(t6)=> c5; PC(c5,t6)=>
E=9,t5=l

B200 Of course now my E can't
be a 9,

Tl: E=9 TD(E,9)=> E=9-p(R<-9!)

B201 since I've used the 9 for R .

B202 And also am using R as 9.
instead of a 7

B203 makes me think it more likely
that I'm going to be carrying
1 into that E + 0 column. .

SI: R<-9 ^ F C (R) = > c4; PC(c4)=> t5=l

| B203.1 SI: t5=l ^ F C (E) = > c5; P C (c 5 , E) - > E=9

B203.2 Tl: E=9 TD(E,9)=> E = 9 - p (R ^ 9 i)

J B203.3 T2: E-9-p ->FA(E=9)=> t5=l; => t5=l-p

G2: t5=l-p -» get t5
1 . B204 Oh, or zero -- S4: get t5 -*GN(t5)=> 0; AV(t5)=> t5^0

B205 Suppose I were to —

B206 This implies that E is zero
perhaps.

SI: t5<-0 - > F C (E) = > c5; PC(c5)-> E=0

B207 But as soon as E is zero SI: E = 0 - * F C (E) = > c3; PC(c3)=> A=5

B208 that means that A + A has to
equal 10,

B209 and I don't find any way to do
that.

Tl: A=5 TD(A,5)=> A=5-p(D<-5.')

B209.1 Rl: PC unclear -> get A; repeat PC

B210 Let's see — 1 : PC(c3,A)=> t3=l?

B210.1 Gl: t3=l? -> get t3=l

B211 If I could get L to be
more than 5 —

S2: ' get t3=l ->FC(t3)^> c2; PC(c2,t3=l)=0 L>5?

B211.1 Gl: L>5? -> get L>5

B211.2 S4: get L>5 -^GN(L)=0 6; AV(L)=> L<-6

B212 On the other hand L + L has
to equal R

SI: L<-6 -> FC(L)=> c2; PC(c2)=> R=3

B213 and R has to be greater than 5. Tl: R=3 ^ TD(R,3)=> R=3-p(R>5!)

B214 So I'm in sort of a dilemma
in that case.

G5: K>5! _ check R>5

R2: check R>5 -> repeat S4

B215 Now I really think that R is
either 7

S4: get R GN(R)=> 7,9

B216 or 9

B217 And let's get back to E + 0. ? : -> get E

B218 Something we're missing here.

B219 Suppose 0 were something like 8. S3: get E ^FA(E)=> c5; AV(0)-> 0^8

B220 8 plus something has to equal 8. T : PC(c5,E)=> t5=2?

B221 Suppose I would carry 2 from
the column.

Gl: t5=2? -> get t5=2

B222 That's sort of difficult in
this particular problem.

S2: get t5-2 -> FC(t5)=> c4 ; PC(c4,t5-2)=> -p

B222.1 ? : (vacuous?)

B223 I sort of keep coming up with
Idea that E should equal zero,
or 9.

S4: get E -> GN(E)=> 0,9

B224 Of course I've used the 9 — Tl: E-9 -> TD(E,9)=> E=9-p(R^>!)

- 147 -

B224.1

B225 Exp: You've used the zero, too.

(interrupted)

-» E=0-p(0 used!) (from Exp.)

B225.1 Rl: TD unclear -» get E=0, repeat TD

B226 Yeah, that's certainly true. t : • TD(E,0)=> E=0-p(T=0!)

B227 I used the zero. •

B227.1 G2: E=0-p -> get E

B228 Well, I'm getting into problems
here if I can't make E either
zero

S4: get E -»GN(E)=> 0,9

B229 or 9, Tl: E=d -> TD(E,d)=> E=0,9-pCr=0:,R^9!)

B229.1 T2: E=0,9-p -4 FA(E)=> t5=0,l; => t5=0,l-p

B229.2 G2: t5=0,l-p -» get tSLVO.l] (get t5=2)

B230 and it doesn't seem as though
I'm going to be able to carry
more than 1 in any case."

S2: get t5=2 ->FC(t5)=> c4; PC(c4,t5=2)=> -p

B230.1 Rl: PC unclear ~i get t5; repeat PC

B231 That is true. t : PC(c4,t5)=> t5=l,B=8

B232 The most I could have any column
total to would be 18.

B233 And even that can't occur Tl: B=8 TD(B,8)=> B=8^p(0^8!)

B234 unless the column immediately
preceding equals 0.

B234.1
ft . . , _̂

T2: B=8-p ^ F A(B=8)=> t5>l; =>-t5>l-p

B235 I've used the zero, S4: get E ^ GN(E)=> 0

B236 so E can't be a zero. Tl: E=0 -»TD(E,0)=> E=0-p(T=0!)

• B237 and A can't be zero. A=0-p(T=0!)

B238 I'm finding difficulty in
making it a 9.

T2: E-p -> FA(E)=> R^9; => R^9-p

B238.1 ? :
B239 We'd better make E a 9 S4: get E -> GN(E)=> 9j AV(E,9)=> E<-9

B240 I'm going to have to carry 1 Si: E<-9 -*FC(E)=> c5; PC(c5)=> t5=l

B241 in order to satisfy the other
conditions.

B242 It looks then as though my
solution for 0 is going to
be independent of the rest
of the column.

Si: t5=l ^FC(t5)-> c5; PC(c5).=> 0 free

B242.1 S4: 0 free -> GN(0)=C> 1

B243 But -- Tl: 0=1 -* TD(0,1)=> 0=l-p(G=l!)

B243.1 T2: 0=1-p FA(0)=> 0 free; => 0 free-p

G2: 0 free-p -> get 0

B244 No, it's not either, ? : (shift to fds instead of ds)

B245 because I'm only going to have.*-

B246 I only have 10 letters to use —

B247 10 numbers to use for 10 letters.

B248 So it's probably going to be S4: 0 free -* GN(0)^> 4\ AV(0)=> O^c
the last one I ever find.

B249 I'll put an x in here for the 0.

B250 Make E a 9.

B251 which leaves my right hand —

B252 (noise) —

B253 which leaves this left hand
solution.

i

B254 Now, R is 7.

B255 I have to have it so it carries
1 into the E + 0 column.

SI: t5=l ->FC(t5)=c4; PC(c4)=> N>3,t4?

B256 Yeah, this is looking pretty
good right now.

Gl: t4? -> get t4

B257 I guess I still have a problem. S2: get t4 -*FC(t4)=> c3; PC(c3,t4)=>A-p

B257.1 Rl: PC unclear ->get A; repeat PC

- 149

B258 Yes, I have an awful problem t : PC(c3,A)=> A-p

B259 I can't make A + A - 9 very
well.

Rl: PC unclear -> get A, repeat PC

B260 A + A -- t : PC(c3,A)=> A=4,t3=l?

B260.1 •Gl: t3=l? get t3=l

B261 There's no place where I c*n
get L + L to equal more than 10,

S2: get t3=l ->FC(t3)=> c2; PC(c2,t3-l)=>
L>5?

B262 so I could make Gl: I>5? get L>5

B262.1 S4: get L>5 -» GN(L)=> 6; AV(L)=>

B262.2 SI: L< 6 -*FC(L)=>c2; PC(c2)=> R=3

I B262.3 Tl: R=3 -> TD(R,3)=> R=3-p(R>5!)

B263 Well, then the problem is over
here on this R --

G5:

R2:

R>5.'

check R>5

-> check R>5

-> repeat S2

B264 This R, it seems to me, has to
be greater than 5.

S2: get R ->FC(R)=> c6; PC(c6,R)=> R>5

B264.1 T2: R-3-p -^FA<R=3)=> 1^6; => 1^6-p

I

B265 Now, suppose these were real
big numbers,

G2: L<-6-p -> get L>5

1

B266 not just little —

1 B267 not 10, but way more than 10.

B268 Suppose that was something
like 7

S4: get L>5 ^ GN(L)=> 7; AV(L)-> Le7

B268.1 SI: L<-7 ->FC(L)=> c2; PC(c2)=> R=5

- B268.2 Tl: R=5 -> TD(R,5)=> R=5-p(D<-5:)

B269 No, make it even bigger -- T2 : R=5-p FA(R=5)=> 1^-7; L̂ -7-p

G2: W - p get L>5

B270 Make it 8. S4: get L>5 ->GN(L)=> 8; AV(L)=> 1 ^

B271 If we let L be 8 and 8 SI: L<8 -»FC(L)=> c2; PC(c2)=> R=7

B272 and the 1 carried would be 17,

B273 so my R is still 7. Tl: R=7 ->TD(R,7)^> +

B274 Now, I sort of forgot why I was
going through all this trouble.

B275 Oh, yes, I wanted to carry 1 ? : (recall get t3=l)
into the A+.A column,

B276 which will make A now equal to Si:
4 + 4 ,

t3=l ->FC(t3)=> c3; PC(c3)=> A=4, E=9

B277 and the 1 I am carrying gives
me a 9 for the E,

B278 which satisfies the requirements Si:
in the second column from the
left.

A=4 -> FC(A)=> 4

•SI: E=9 -> FC(E)=> c5; PC(c5)=> +

G4: get Is -> FL(ls)=> Nj get N

B279 Now I have an R + N, S2: get N _» FC(N)=> c4; PC(c4,N)=> N free

B280 7 + something = B.

B281 This looks like I'm getting
into the independent part of
the solution right now.

B282 Of course, it all has to satisfy
the fact that I have 10 letters
for 10 numbers.

B283 I rather feel I'm pretty close
to it right now.

B284 Let's see what I am doing here.

B285 I just need — S4: get N ->GN(N)=>3,6

B286 I'm only two numbers short,
aren't I?

B287 3 and a 6.

B288 So I'll make the -- t : AV(N)=> (output unclear)

B288.1 Rl: AV unclear -» get N; repeat AV

B289 suppose I make the N a — t_j AV(N)=> N*x

B2 90 Well, I have to carry one
in that column.

SI: N<HK -»FC(N)=> c 4 ; PC(c4)=> B=y,t5=l

B290 . 1 • S2: get N. ->FC(N)=> c4; PC(c4,N)=> N>2

B291 Well, 3 S4 : get N GN(N)=> 3,6

B292 or 6,

B293 either one would do it. Tl: N=d -> TD(N,d)=0 +

B2 94 Suppose I make this a 6. ts4: AV(N)=> N<-6

B295 Now, this R plus N is 7 + 6 - SI: N<-6 -> FC(N)=> c4; PC(c4)=> B=3

B295. 1 Tl: B=3 -> TD(B,3)=> B=3-p(fds*'!)

B295.2 Rl: TD unclear -> get B; repeat TD

B2 9 6 Have to make B a — t : ->TD(B,3)=> B=3-p(fds=9<'!) .

B297 I must be missing another
number here.

G5 : fds=9<'., -¥ check fds=4

G3 : check fds=9(-» get fds

B298 Yeah, I'm missing 2 also. S4: get fds -> GN(fds)=> 2

B2 9 9 7 and 6 is 13, S2: get B -> FC(B)=> c4; PC(c4,B)=> B=3

B300 so B becomes 3, Tl: B=3 -> TD(B,3)=> +

B301 which leaves me a 2 for 0. SI: B=3 -> FC(B)=> 4

G4 : get Is -> FL(ls)=> 0; get 0

• S4: get 0 -»GN(0)=> 2; AV(0)=> 0<-2

Tl: 0=2 ->TD(0,2)=> +

* B302 Now I think I may be satisfied . SI: 0<-2 -> FC(0)=> 4

G4: get Is -> FL(ls)=> 4

B303 Probably better check the
addition.

S5: check cs .

-» check cs

-> GNC (cs)

B304 5 and 5 is 10, t : =0 cl; PC(cl)=> +

B305 carry 1;

- 152 -

B306 8 and 8 is 16 t: => c2; PC(c2)=C> +

B307 and 1 is 17

B308 carry 1;

B309 4 and 4 is 8 1: => c3; PC(c3)^> +

B310 and 1 is 9;

B311 7 and 6 are 13, t: ^> c4; PC(c4)^+ ~

B312 carry the 1;

B313 9 and 2 are 11 t: =£> c5; PC(c5)=> +

B314 and the 1 is 12;

B315 5 and 1 is 6 t: => c6; PC(c6)^> +

B316 and 1 is 7.

B317 Just for the sake of really
giving a complete answer,

• ?: (get another solution)

B318 I imagine you could shift
these numbers around here
a little bit to make this —

?: (method; shift assignments ^> d,

B319 Well, I really don't know
how to check.

?:

B320 I think I've completed the
problem.

?: (end)

B321 Exp; That's right.

- 153 -
Notes on protocol

Bl The exchange deals with the definition of the problems, hence is outside
the problem space.

B5 The subject has been told that D<-5 prior to the start of the tape.

B8 We do not encode writing operations.

B16 After identifying A's and L's, searching for more occurrences.
The pattern shows for R in B18-19.

B28 "not 5" shows S3 is generating and testing at same time.

B30.1 Don't know what S3 does after GN.

B35 Shows S3 has ignored carry.

B39 Don't know what the decision is based upon; however, there is no place
to go as long as assignments are not made (see B40).

B40 One of the few indications of development (or change) of methods.

B44 S3 is writing 3's at C2, C4, C6.
-B46

B48 "I suppose it's [not possible]." Determined by repeat in B50.

B55 Precursor to B56.

B61 "back here" indicates C2.

B62 "Now if the [R is 7, L must be 3] . "

B63 The difficulty is R=3-p coupled with a general confusion between L and R.
The continuation through B71 adds support: "its the L's that will have to be
3's." B105 and B186 where S3 assigns L<-9 and not R<-9, confirms this.

B72 Evidence for FC being evoked after new informatioh derived (L=3).

B74 Note that S3 says G=l,2 not G=2,l. This latter would be expected if he
worked without t5 and then remembered it later.

B77 Probably "or less than 9"; but could be a restatement with slight correction
of "greater than 10." The ambiguity is created by 1) "whether or not,"
which would normally be followed by only the single condition and 2)
"greater" which is ambiguously > or > in casual conversation.

B84 Taken as t5=l, since B85 states t6=l as a consequence.

- 154 -

B85.1 Don't know how much further S3 goes; e.g., to c6 and G=l: thence to Si,
which gives FC(G)=>j/.

B87 Clearly reworking C5, but unclear whether any information derived.

B90 Note the "necessarily" and the parallelism of phrasing to B81.

B94 Is the emphasis a precursor to his checking t3 rather than following up
on E even?

B95 An alternative interpretation is that S3 simply reflects on the contingency
of the current line of attack; however the concern with t3 in B94 makes
the chosen interpretation more plausible.

B98 'If E has got to be an [even number]." Note the "an"; also compare B93
and B101.' The assumption is that S3 starts counting from 2 and not from
zero; otherwise might have seen E=0-p(T=0.').

B99 It Is unclear what clue evokes the possibility that E=9-p. but does not
-B100 yet settle it. That E=9 has not occurred in the generation is a possi

bility. In B101-B103 S3 goes through the argument as if for the first time.

BIOS "they are ni[ne]" makes clear the assignment is misplaced from R^9 to Lt-9.
- This (and B186) might be due to the use of production S3, which to get x

assigns a value to a different variable, y.

B106 The confusion, starting here and running to B109, stems from the assign
ment error. But why so confused, rather than simply recognizing the mis-
assignment? The peculiarities of PC(L,9) make it plausible:

1. 9+9+1 = 19; thus get R=9, which is the true assignment.

2. Thus, to assign R<-9 would seem to lead back to L<-9, as given
above. (That this is not necessary, since 4+4+1=9 as well,
would not be apparent.)

3. TD(R,9) leads to rejecting L<-9; but once L<-4 is rejected then
TD(R, 9)->+.'

B113 Can make nothing substantive of the slip.
-B114

B114.1 Might have to go on to R-7,9 as he did in B137-B143.

B116 The phrasing of B116, B117 is c5, c3. However, the subsequent behavior
concerning c4, which refers to carries into c5, indicates that a repetition
of the reasoning from E even (c3) to E=0 (c5) to t4=0 (c4) is going on.
Hence the order is c3,c5.

-155 -

B122 An explicit statement of production S3, implying the ability to go over a
method in a particular context without carrying through the calculation
in detail.

B124 Do better than to assign A to get E; namely, assign 0 to get E. Is this
better, because it is closer to the difficulty; namely E in c5?

B125 Precursor to B126.

B127 Why 0<-9 rather than 0^1? Perhaps because S3 excludes E=9; perhaps because,
by maximizing 0 he maximizes chance of getting t6=l.

B128 If Ck-9 and E=0,9 then E=0; however, probably PC.

B136 "and [that means E can't equal zero]."

B137 "[Let's] see." Precursor to B138.

B145 Outside the problem space.

B146 Outside the problem space.

B147 The designation of c3, c5 followed by the assignment of values to 0, make
it plausible that a repeat of B120 to B124 is occurring. An alternative,
less structured and less attractive, is the he simply "considers" each
in turn.

B154 "Suppose [0 were 2] . " The grounds for inferring a generation comes from
B150, which announces it explicitly, and the parallelism between B154
and B151.

B155 "S'pose [0 were - -] . " Unclear whether he actually sets up another value
(0<-3) or senses the fact that the reasoning would give the same answer
(as indicated B156).

B156 Subject has inducted the general form from a sequence of cases. We have
coded this as the assignment of a general variable (AV(0)=X><-x) and the
carrying through of a symbolic calculation in PC. PC certainly has these
capabilities (B122-B123, B249-B250). An alternative is a mechanism for
inducting directly from the invariance of the internal process in PC for
the different specific values of 0. There need not be any checking with
0<KX; i.e., no performance of PC after 0<-x.

B158 Recalls B128-B136. Not E=0-p (T=0.').

B159 "might have to be" indicates the force of "E=0,9 and E=0-p therefore E=9"
rather than PC(c5). Also supporting is the "have to carry" (B160), which
indicated E=9 imposed from outside c5.

- 156 -

B162
-B165

B164

B169
-B176

B177

B182

B185

B186

B187

B188

B191

B194
-B196

B202
-B203

B204

B205

B208

The only reference to G=l until it shows in checking the answer (B315).
Apparently G-l was recorded (B164) but E=9 was not (B165-166). Thus, when
going back to the first display, the E must be written in (B250) but the
G=l is already there.

There is little evidence for FC(G); the production system demands it and
there is no evidence against it.

The only major interaction on non-task matters with the experimenter.

Unclear what he thought <that R<-7 was necessary?).

Indicates either 1) awareness that t3 might be 1; or 2) a consideration of
whether it might be so. The decision to try the alternative route (R<-9)
is probably influenced by the fact the 9>7, but clearly does not represent
any detailed consideration of whether R<-9 implies t3=l (it is independent
of it, of course).

Simply copying over the first column, not rederiving it. However, still
does a PC.

Note the error: means R«-9. Compare B63 and B105.

"which means [that R has to be 9] . "

The fact that he catches himself more readily then at BIOS may indicate
some learning. This might simply be recall of recovery at B105.

Good indication of Si evoked when there is no column to be found. See also
BIO, B72.

Writing in R<H9.

This appears to be a place where the noting of R<-9 for TD leads to attending
to the R in c4, rather than get E in c5. Clearly, sees that R<-9 in c4
leads to t5=l, rather than working back from c5 (where in fact E=9-p leads
to t5=0).

Now checks c5 and sees that t=0 is implied.

"Suppose I were to [make t5=0]."

Does not consider A+A=0.

B212 Clearly does not see L<-8 or L<-9, since he thinks L>5 implies R<5. This
might be done by general reasoning; trying L̂ -6 seems more plausible.

- 157 -

B219
-B221

B222

B225

B226

B230

B232

B233

B234

B235
-B237

B238

B240
-B241

B242
-B247

B248
-B249

B251
-B253

Why 0<-S? Clearly means 0 from B220. Two alternatives:

1. Since E=0,9 not select 0=0,9. If generating from top
(see B127) then 0^8 is next. However, why generate from top?

2. Confuse 0 with E so that E=9-p implies try E(=0)^S. Getting
t5-2? implies this, since 0^8 does not imply anything about t5.

We chose the latter interpretation.

t>l is not possible with only two addends. However, S3 is not completely
sure.

Apparently, the experimenter can contain himself no longer. Too bad.

This makes it clear that B158 did not mean E=0-p(T=0!)

Confirms B222.

Either 1. max - 9+9 and ignore carry.

or 2. max - 9+8+(t=l).

We don't have to choose,

"that" - sum = 18.

However

Shows still 0<-8.

Probably digit oriented action: x-O-p(T-OI) with x=E and x=A.
current production system doesn't accommodate this.

"it" = R (not E), as evidenced by B239.

"carry" = t5 and the "conditions" are c5 (not c3, see B257). '

"independent" means can be chosen arbitrarily; i.e., by GN. Whether
GN=>1 and 0=l-p(G=l!) in order to see that this"is not possible, is only
a conjecture (although the production system generates it).

Clearly GN(0)=>/, but there is no mechanism to realize it will be the
last one and to put 0<-x.

Starts to correct current version (R<-9), then switches to earlier one (R<~7).

B254 Reading off R-7 in c4.

- 158 -

B265 Making L>6. Confirms L<-6 at B211-B214.
-B268

B269 Sees 7+7 = 15 -p (D<-5.').

B273 This is a check of R<-7 but not one that requires "check," since all
right at c2.

B274 Trouble with goal stack. Not implausible because of duration since get
-B275 t3=l. However, exact mechanism of forgetting and of recall obscure.

B281 Coded simply as analogous to c5 and 0 (B242-B249), since B and N are
mutually undetermined. However, could be more to it. "From now on all
letters are undetermined; or "the independent part is localized here in
c4 and c5."

B282 Note that there is little hesitancy in asserting here what took sub
stantial effort in B244-B249.

B283 Unclear whether evaluation is more than a way of summarizing that all
terms left are "independent." Might be evoked because can't go further,
but needs to indicate (to himself) that the failure doesn't mean it
can't be done.

B285 "I just need [N and B] . "

B286 Error: short 2,3,6. Unclear why error is made. Possibly, leads to
-B287 need two, leads to generating the first two d. But then why 3,6 and not

2,3?

B288 "So I'll make the [N] — " Cannot decide on whether N is 3 or 6.

B289 Repeat of B288.

B290 "that column" - c5.

B295 "Now this R plus N is 7 + 6, [which is 13]."
-B296 "Have to make B a [3]."

Detects difficulty from checking with TD, since there are no more digits,
and aware (peripherally) that 0 still to go. However, not a clear
inference so repeats. The break in sentence between B295 and B296 Is the
clue that something is going on. Alternatively could get B=3 and start to
process c5 before realizing fdsV; however, seems like too much processing.

B304 Note in all the additions that the carry comes after adding digits of
-B316 column.

B318 Unclear exactly what is being tried in attempting to get another solution.

B319 "Well, I really don't know how to check [that there aren't other solutions.]"
Subject was trying to be "complete" in B317-318--i.e., get all solutions.

item result goal stack SI S2 S3 S4 Gl G2 G3 G4 G5 Tl T2 Rl R2 error
D<-5 Is

T

f
*

j

I

!

Bl
B5

B8

B20
B22.1

T=0

+

4
R odd

R,ls

+
+

+

+

+

B23
B26
B28
B30.1

R odd
R=l,3,5,7,9
R=l,3,7,9

R,ls
mm mm *~\~

+

t

+
B31
B35.1 G even

(R,ls) + -
+

1

\

B36.
B39

-3
t6?

G.Rjls t
+

\

i
t .

j
i
i
1

!
i

*

B40
B44
B45

B48
B49

B50.1

L<-1
R-3
+
t7=l?

-P(zi.')

4

R,ls

Is

t7=l,ls
Is
zl.',t7=l,ls

- +
- - t

+
+

- +

+

+

+

S2

B51
B53

u
t7=l-p

z2,zl!,t7=l)ls
Is

t

—
B57.1 R=3-p (Is) +

—

i

B58 ' L R,ls + -

item result goal stack SI S2 S3 S4 Gl G2 G3 G4 G5 Tl T2 Rl R2 ? error
B59

B61 < —
B62
B63
B64.1

R>5
R=7,9
+
R<-7
L=3
-p(R=3-p»)

(R,ls)

Is + -

+

+
+

i

B65 J
B66
B72

B76
B78
B80.1

L=3
+

4

G=l,2;t6?

E=0

L,ls
Is

t6,ls

+
+

+

+
t

?

+
B81
B82

~;

E=0
E,t6,ls
t6,ls

-
+

i

B83

B85
B85.1

E=9,t5=l
+
't6=l

E,t6,ls
t6,ls

Is
- +

+
t

+
SI

B86
B90.1 (unclear)

(E,ls)
_ +

B91
B94

B95
B95.1

B96
B97

E even,t3=0.'

+(R<-7!)

R=7,9

(E,ls)

t3=0!,EfIs
t3=0}t3=0!lJ5,ls
t3=0!,K,ls
R ^ ' ^ O . ' ^ l s

t3=0!,E,ls

+ -

+

+

+
+

+

1

+

+

?R1

B98 (E,ls)

- 161 -j

item result goal stack SI S2 S3 S4 Gl G 2 G3 G4 G5 Tl T2 Rl R2 7 error
i

:

B98.1

B99

B100

E even

E=2,4,6,8

+

(E,ls) mm *•

+

+

•

f

B101

B103

B103.1

(9 not in)

E=0,9 •

E=9-p

(E,ls)

mm m*

+

+

B104 (B61>

B106

B106.1

B106.2

->
L<-9

R=9

-p(L^9.«)

(R,ls)

Is

~ + ?

- - t ?

- +
+

S2,?S4

G5

B107 L=9-p (R,ls)

R,ls

™ *— ? +

t

BllO (B58H>
Bill

B114.1

(unclear)

R>5

(R,ls)

+ - ?

+

+

?S4

1

B115 (B98>

B116

B117.1

B118

B119.1

E even

E=0,t5=0?

N<3

(E,ls)

Is

t5=0,ls

Is

+

+ 9

+

S4

i.

L

B120

B123

B123.1

B124

A<x

E=y

0?

(E,ls) - +

mm <— ^

—|- mm »

? +

S2

B125

B128

B129

B131

B131.1

f

0<-9

E=0

A=5

-p(D<-5!)

(E,ls)

Is

_ +

- ?

?

+

+

S2

?T1

i

B132 A,Is t

i t e m r e s u l t g o a l s t a c k (S i S2 S3 S4 Gl G2 G3 G4 G5 Tl T2 R l R2 i e r r o r

B 1 3 5

B 1 3 6

A = 5

- p (D < - 5 !)

I s

- ?

+

+ ?G5

B 1 3 7 (B 2 3 H

B 1 3 9

B 1 4 0

B 1 4 2

B 1 4 3 . 1

E = 0 - p

R o d d

R > 5

R = 7 , 9

R<-7,R<-9

(R , l s)

+ -

+ - -

- - +

- " .t ?

+

+

S4 . 1

• — i

1

B l 4 4 (B l 2 5)

B 1 4 7 . 1

B 1 4 8

B 1 4 8 . 1

E - y

0?

(E , l s) - +

- - t

+ - -

! +

S2 !

. i

. i B 1 4 9

B 1 5 2

B 1 5 3 . 1

Ck-4

E = 9 , t 5 = l

(E , l s)

I s

- +

?

S2 |

'. . . . J

- t

i

B 1 5 4

B 1 5 4 . 1

E l 54,.. 2

0*-2

E = 9 , t 5 = l

(E , l s)

I s ?

i

B 1 5 5

B 1 5 6

B 1 5 6 . 1 ..

>

0<-x

E = 9 , t 5 - l

(E , l s)

I s

- - t

? +

")
J

B 1 5 7

B 1 5 8

B 1 5 8 . 1

E=0

E = 0 - p

(E , l s)

I s

? +

?

t

>

T 2 , ? S 4 *

B 1 5 9

B 1 6 0

B 1 6 1 . 1

B 1 6 2

E<-9

t 5 = l

t 6 = l

E , l s

I s

- - +

+

+

+ -

1

item result goal stack SI S2 S3 S4 Gl G2 G3 G4 G5 Tl T2 Rl R2 error

B164

B166

G=l
+

4
E=9-p

(Is)
+
+

+

+
B167 p
B169 E=9-p

E,ls
?

t
+

< B175 cW~
B178.1

(R.ls)
R,ls
Is

- - +

+

+

+
B179 h
B181 E=9-p

(E,ls) + -
n a« ^ _ +

+

+

•

B182 U
B182.1
B182.2
B182.3
B182.4

B183

A=4,t3=l?

-p(R<-7!)

R<-9

E,ls

t3=l,Eils
E,ls

R«-7*,t3=l,E,ls

t3=l,E,ls

+

+

+

+

f

+

+
B185
B186 r
B187
B188
B188.1

+

R=9
-p(L^9!)

R,ls

Is

- +

+

+

+

S2

B189 L
B190

B191

B199.1
B199.2 ^

R<-9
L=4
+
4
G=3,4;t6?

(R.ls)
Is

t6,ls

- +
t

+
+

+
+

+

S2

item result goal stack Si S2 S3 S4 Gl G2 G3 G4 G5 Tl T2 Rl R2 7 error
B200 .
B201

E=9,t5=l (t6,ls) - -
mm —

+
+

B202 (B 1 9 & 2

B203.1
B203.2
B203.3

t5=l
E=9
- P C R ^ O

t5=l-p

(t6,ls) *f -
+ -

+

+
+ G5 ;

T2 >
B204
B205
B207
B209
B209.1

-3
t5<-0
E=0
A=5
-p(D^-5!)

t5,t6,ls
t6,ls

+
4- -
+ -

?
+

+

xx]
1

m) ~ I

B210
B210.1
B211
B211.1
B2il.2
B212
B213
B214

B215
B217

t3=d?

L>5?

L<-6
R=3

-p(K>5.')

R=7,9

A,t6,ls

t3=l,A,t6,ls

L>5,A,t6,ls
A, t6,ls

R>5.,R=3,A,t6,ls

A,t6,ls

ii
i

i
i i

i i + i
i t

t
i

+

+

+
+

t

+

• ~ 1 ! 1
i
i I j
!

i
* i

B218
B220
B221
B222
B222.1

0<-8
t5=2?

t5-2-p

E,ls

t5=2,E,ls

- + ?
- - T ?

- - ?

+
+

+

~SV?S4~

*

*

B223 j-
B224 j

l

r E=0,9
(E,ls) *• mm ^|*

+

j

i

! i t e m r e s u l t g o a l s t a c k SJ S 2 S 3 S'I G l G 2 G 3 G4 G 5 T l T 2 R l R 2
1 — , .

e r r o r

i
B 2 2 4 . 1 - P (R < 9 !) (E , l s)

- _ - - +
! B 2 2 5 (B 2 2 *

B 2 2 5 . 1 E - O - p

— -
_ _ - +

+

B 2 2 6 .

B 2 2 7 . 1 - p (T = 0 !) -

E = 0 , l s

I s + - ?
t

T 2 , ? G 5

B 2 2 8 (B 2 2 ;

B 2 2 9

B 2 2 9 . 1

))

V

E - = 0 , 9

" P (T - . 0 , R < - 9)

E , l s

I s

+

1

+
+ ? G 5

i

i

r

|

>

B 2 2 9 . 2 r

B 2 3 0

B 2 3 0 . 1

))

V t 5 ^ 0 , l - p

t 5 - 2 - p

t 5 - l , B - 8

- p (0 < ~ 8 . ')

(E , l s)

t 5 - - . T 2 , E , l s

E , l s

+
+

+

T 2

i

i

r

|

>

B 2 3 1

B 2 3 3

B 2 3 4 . 1

))

V t 5 ^ 0 , l - p

t 5 - 2 - p

t 5 - l , B - 8

- p (0 < ~ 8 . ')

t 5 , E , l s

E . l s - - - +
+

t

G 5

i

i

r

|

>

B 2 3 5

B 2 3 6

B 2 3 7

B 2 3 8

))

V

t 5 > l - p

E = 0

- p (T = 0 !)

A - 0 - P (!)

(E , l s)

I s

+

?
+

+ ? G 5

i

i

r

|

>

B 2 3 8 . 1 () i l 9 0 > ; R < - 9 - p (I s) - - +

i

i

r

|

>

B 2 3 9 flilSS

B 2 4 0

B 2 4 2

B 2 4 2 . 1

B 2 4 3

B 2 4 3 . 1

E < - 9

t 5 = l

0 f r e e

0 - 1

- p (G = l !)

0 f r o e - p

E , l s

I s

+
+
+
- - +

+

+
G 5

T 2

i

i

r

|

>

B 2 4 4

B 2 4 9

B 2 5 6

(0 f r e e)

0 < - x

N > 2 , t 4 ?

0 , 1 s

I s

- - +
+

+

+

1 .

- 1 6 5 -

item result goal stack Si S2 S3 S4 Gl G2 G3 G4 G5 T T T I Rl R2 error

B257
B257.1

t4,ls +
A-p +

B258
B259 A-p

A,t4,ls
Is

B260
B260.1
B261
B262
B262.1
B262.2
B262.3
B263

B264
B264.1
B265

B268.1
B268.2
B269

B27G
B271
B273
B274
B276
B278

B279

A-4,t3=l?

L>5?

L<-6
R=3
-p(R>5!)

R>5
-̂ jL<-6-p

R=5
-p(D<-5!)

L^L^-p

L<-6
R=7
+
t3-l
A=4,E=9

4

A,ls

t3=l,ls

L>5,ls

Is

R>5!,R=3,ls

Is
(L>5,ls)
L>5,ls
Is

(L>5,ls)
I>5,ls
Is

N,ls

+
+

+
+

+
+

+

+

?
+

+

+
+

?
+

+

+
+

+

+

+

?S4

?G5
?S4

?T1

7

7

167

item

B285
B288
B288.1
B289
B290
B290.1
B291
B293
B294
B295
B295.1
B295.2
B296
B297

B298
B299

B301

B302

B303

B304
B306
B309;
B311

result

N free
N=3,6
(unclear)

B=y,t3=l
N>2
N=3,6
+
N<-6
B=3

-p(fds^!)

fds-2
B=3
+
4

0*-2
+

4
4

T=0,tl=l
R=7,t2=l
E=9,t3»0

goal stack

(N,ls)

N,ls

Is

B,ls

fds!,B,ls
fds,fds!,B,ls
B,ls
Is

0,1s
Is

cs!

SI S2 S3 S4

t
Gl G2 G3 G4 G5

+

+

+
+

7

is
t
t
t
r

Tl T2 Rl R2

item result goal stack
S5

SI S2 S3 ?4 Gl G2 G3 G4 G5 Tl T2 Rl R2 ? error

B313
B315
B317 r
B318
B319

B=3,t4=l

>R=7,t6=0 4

t
t

+
+
+

B320 L j •

I

i

s —

—

*

*

j

S e c u r i t y C l a s s L f i c a t t o n

D O C U M E N T C O N T R O L D A T A - R & D

(Security ctamalllcetlon o f title, body o f abstract and Indexing annotation muet be entered the overall report It clntelllodf

I . O R I G I N A T I N G A C T I V I T Y (Corpatate tulhot) B A R N E G I E - M E L L O Q U N I V E R S I T Y
E P A R T M E N T O F C O M P U T E R S C I E N C E

P I T T S B U R G H , P E N N S Y L V A N I A 1 5 2 1 3

2 * . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

U N C L A S S I F I E D

J b . G R O U P

J . R E P O R T T I T L E

S T U D I E S I N P R O B L E M S O L V I N G : S U B J E C T 3 O N T H E C R Y P T - A R I T H M E T I C

T A S K D O N A L D + G E R A L D = R O B E R T

4 . D E S C R I P T I V E , N O T E,»^7VP e
 ° ' « P ° " a n ^ Ineluelve datee)

S . A U T H O R I S) (First name, middle Initial, lamt neme)

A L L E N N E W E L L

0 . R E P O R T D A T E

. J U L Y 1 9 6 7

7 * . T O T A L N O . Of P A G E S . 7 6 . N O . O F H E P S

1 6 9 2 4

S a . C O N T R A C T O R C H A N T N O .

S D - 1 4 6

b, P R O J E C T N O .

9 1 7 8

e.

6 1 5 4 5 0 1 R

d. 6 8 1 3 0 4

M . O R I G I N A T O R ' S R E P O R T N U M B E R | 3 | S a . C O N T R A C T O R C H A N T N O .

S D - 1 4 6

b, P R O J E C T N O .

9 1 7 8

e.

6 1 5 4 5 0 1 R

d. 6 8 1 3 0 4

9b. O T H E R R E P O R T N O (S) (Any other number* that may be ettlgnod
thim report)

1 0 . D I S T R I B U T I O N S T A T E M E N T

D I S T R I B U T I O N O F T H I S D O C U M E N T I S U N L I M I T E D ,

I I . S U P P L E M E N T A R Y N O T E S

T E C H , O T H E R

1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

L i r F O R C E O F F I C E O F S C I E N T I F I C R E S E A R C H (S R I]

1 4 0 0 W I L S O N B O U L E V A R D

A R L I N G T O N , V I R G I N I A 2 2 2 0 9

1 3 . A B S T R A C T

T H E B E H A V I O R O F A S I N G L E S U B J E C T O N A S Y M B O L I C T A S K (C R Y P T - A R I T H M E T I C) I S

E X A M I N E D I N S O M E D E T A I L . T H E S T U D Y I S P A R T O F A C O N T I N U I N G E F F O R T T O U N D E R

S T A N D T H E I N F O R M A T I O N P R O C E S S E S I N V O L V E D I N P R O B L E M S O L V I N G . F O L L O W I N G A

B R I E F R E V I E W O F T H E A D V A N T A G E S A N D D I F F I C U L T I E S I N U S I N G , P R O T O C O L S T O A I D I N

P R O T O C O L A N A L Y S I S . T H E S E A R E E S S E N T I A L L Y D E S C R I P T I V E I N N A T U R E , C O N S I S T I N G

I N A S P E C I F I C A T I O N O F T H E P R O B L E M S S P A C E I N W H I C H T H E S U B J E C T I S W O R K I N G ,

A N D I N A D I S P L A Y O F H I S B E H A V I O R , O F T H E T O T A L B E H A V I O R I N A S E R I E S O F

D E C I S I O N P O I N T S , A N D P E R M I T S A N A N A L Y S I S O F T H E A D E Q U A C Y O F T H E P R O D U C T I O N S

(E S S E N T I A L L Y , A S Y S T E M O F C O N D I T I O N A L S T A T E M E N T S) . A R A T H E R E X T E N S I V E

A N A L Y S I S O F T H E A D E Q U A C Y O F T H E P R O D U C T I O N S Y S T E M I S I N C L U D E D .

F I N A L L Y T H E R E I S S O M E D I S C U S S I O N O F T H E I M P L I C A T I O N S O F T H E P R O D U C T I O N

S Y S T E M , N O T O N L Y A S A D E S C R I P T I V E T O O L , B U T A S A T H E O R E T I C A L S C H E M E .

T H I S W O R K I S H I G H L Y D E T A I L E D I N I T S A P P R O A C H A N D N A R R O W I N I T S '

F O C U S . A N O T H E R P A P E R , A . N E W E L L , " O N T H E A N A L Y S I S O F H U M A N P R O B L E M

S O L V I N G P R O T O C O L S " , I S S H O R T E R , T A K E S A S O M E W H A T B R O A D E R V I E W A N D

I N C L U D E S T H E M A I N R E S U L T S O F T H I S P A P E R . I T I S R E C O M M E N D E D F O R A N Y O N E

• W H O I S N O T I N T E R E S T E D I N E X A M I N I N G T H E B E H A V I O R A N D T H E A N A L Y S I S I N

F U L L D E T A I L .

0 0 , ^ 1 4 7 3

Security Clouslfitatlnii

Security Classif icat ion
1 4 .

K E Y W O R D *
i. I N < A L I N K B L I N K C

1 4 .

K E Y W O R D *

n o u e W T R O L E W T H O L E W T

...

-

1

Security ClacBification

