Appears in the proceedings Gbrrect Hadware Design and &fification Methods (CHARME ‘99).. Pierre and
T. Kropf, eds, LNCS 1703, Springeverlag, September 1999, pp. 37-53.

Superscalar Piocessor ¥rification Using Efficient
Reductions of the Logic of Equality with Unintepreted
Functions to Propositional Logict

Mir oslav N. Velev" Randal E. Bryant¥
mvel ev@ce. crmu. edu randy. bryant @s. cnu. edu
http://ww:. ece. crru. edu/ ~nvel ev http://ww. cs. crmu. edu/ ~br yant

*Department of Electrical and Computer Engineering
*school of Computer Science
Carngjie Mellon Unversity, Pittsturgh, A 15213, U.S.A.

Abstract. We present a collection of ideas that w&kothe pipeline erification
method pioneered by Burch and Dill [5] to scaggyveficiently to dual-issue super-
scalar processors.&\achiee a significant speedup in therification of such proces-
sors, compared to the result by Burch [6], while using an entirely automatic tool.
Instrumental to our success arleiting the properties of posit equality [3][4]

and the simplification capabilities of BDDs.

1 Intr oduction

The properties of posite equality [3][4] were proposed as aymo increase the com-
putational eficiency of a decision procedure for the logic of Equality with Uninter-
preted Functions and Memories (EUFM). EUFMsintroduced by Burch and Dill [5]

for verifying of pipelined processors. In collaboration with German [3][4], we recently
shaved that by gtending the syntax of EUFM and by applying certain abstractions, it
is possible to use distincales for all the instruction addresses and data operands.
The result is a significantly increased computatiorfadieficy of EUFM.

The main contribtion of this paper is in presenting an entirely automatic tool that
works on term-leel models and is able to handle compprocessors, including a
dual-issue superscalar DLX [10] withdveomplete pipelines. 8/emply a \ariety of
techniques that enhance the performance at eseh iecluding an automatic detec-
tion of positve equality comparisons, the encoding method of @&bal.[8] modified
to account for posite equality and an automatic BDDaviable ordering. By compari-
son, in our preious work on positie equality [3][4][20], we only demonstrated the
potential of the logic by erifying eficiently single-issue DLX processors imple-
mented at the bit-lel. Furthermore, the uselaw required to define the initial pipeline
state and to ge hints for the BDD ariable ordering.

Our earlier vork [18] shaved the @erhead for erifying bit-level processors with
functional units (FUs) implemented at thegelevel to be prohibitre for a BDD-based
tool, due to the compiéty of the generated formulas. The major sources of comple
ity were the symbolic modeling of all the bits of data in the data path and the feedback
loops, created by the foaxding logic. V& then emplged abstraction and arfiefent

1. This research as supported in part by the SRC under contract 99-DC-068.

encoding technique for representingrdrlevel values [19]. While that allwed us to
verify more complg designs, we ran into BDD Meup, due to contradictory BDD
variable ordering requirements. Using pesitequality andxploiting techniques that
malke the FUs dierent for each»ecuted instruction, we succeeded arifying pipe-
lined processors withery laige instructions set architectures [20¢tYlater we were
not successful in scaling these techniques éoifying dual-issue superscalar proces-
sors. In this paper wexamine abstract termyel models of processors, as has most of
the work in this field [5][6][8][12][13]. An area for future research will be toy@dhat

the correctness of an abstract terrelenodel implies the correctness of the original
bit-level design.

The correctness criterion of Burch and Bilihethod is presented in Fig. 1. The
implementation with transition functidf,, is verified by comparison agnst a spec-
ification with transition functiorFgpe. On each clockycle the implementation ini-
tiates the recution of between 0 and instructions, wheren is bounded by the issue
rate of the processdn each transition, the specificatioreeutes 1 instruction. ¥Muse
Fg‘pec to denotem applications of functionFgpe. It is assumed that the implementa-
tion and the specification start from a pair of matching initial sta@gmprandQspeq
respectiely—where the match is determined according to an abstraction fuAttion
The correctness criterion is that theotivansition functions should yield a pair of
matching final statesQmp and Q'spee respectiely—where the match is deter-
mined by the same abstraction function. In otherds, the abstraction function
should mak the diagram commute. This correctness criterion is due to Hoare [8] who
used it (in a grsion wheren = 1) for \erifying computations on abstract data types in
software.

m
FSpec
" e
QSpec Q Spec

Flmpl :
lepl Q Impl

Fig. 1. Commutatie diagram for the correctness criterion

The correctness criterion, as formulated by Burch [6]xjsessed by:

OQimpt EM [ABSFpi(Qumpn) = F Sped ADSQimp)] 1)

Burch and Dills contritution [5] is a conceptually ajant way to automatically
compute the abstraction functiddsthat maps the pipeline state of a processor to its
matching state in the specification by symbolic simulation of the lzaeddesign.
Namely starting from a general symbolic initial st&g,, they simulate dlushof the
pipeline by feeding it with dtbbles for a stitient number of gcles to allev all par-
tially executed instructions to complete. Thenytkensider the resulting state of the
uservisible memories (e.g., thegister file and the program counter) to be the match-

ing stateQgpec Experiments by Isleat al. [13] to \erify a single-issue pipelined DLX,
without using flushing as an abstraction function, ran out of mergvgn 1 GB vas
available.

Burch [6] has gtended the method to superscalar processification by pro-
posing a flushing mechanism suitable for multi-issue processors and by decomposing
the commutatie diagram into three commutadidiagrams which are easier trify.

A correctness proof of this decomposition is presented in [21]. The weakness of his
work is that it requiresx@ensve manual interention in both decomposing the com-
mutative diagram and in identifying case-splittingpeessions, used to speed up the
validity checking of the correctness criterion formulas.

Pnueliet al. [15] also &ploit the positve and ngative equality structure in order
to reduce the comptéy of the decision procedure. Their and our method are not
directly comparable, since thelo the analysis after eliminating function applications
by Ackermann$ method [1]. That typically introduces both positiand ngative
equalities for domainariables, which wuld only appear as posi¢i equalities in our
scheme. Hence, thewill not exploit the benefits of posite equality as é&tiently as
we do by using distinctalues for a lage number of domainaviables.

In the remainder of the pap&ect. 2 reiews the logic of EUFM. Sect. 3 summa-
rizes the benefits ofxploiting positve equality Sect. 4 presents our algorithm for
transforming an EUFM formula into a propositional formula, whaselity implies
the \alidity of the original EUFM formula. Sect. X@ains our manipulation of the
EUFM DAG during the transformation. Experimental results are presented in Sect. 6.

2 Logic of Equality with Uninterpreted Functionsand Memories
The logic of Equality with Uninterpreted Functions and Memories (EUFM) presented
by Burch and Dill [5] can bexpressed by the folleing syntax:
term = |TE(formula, term, term)
O function-symbol (term, . . . ,term)

Oread(memory, term)

memory = memory-symbol
Owrite(memory, term, term)
OITE(formula, memory, memory)
formula ::= true O false O (term=term) O (memory = memory)

O (formula Oformula) O (formula Oformula) O —formula
O read(memory, term) [predicate-symbol (term, . . . ,term)

In this logic,formulas have truth \alues whileterms have values from some arbi-
trary domainMemories can be viered as mappings from domaialues, representing
addresses, to domain or Booleaues (as determined by the type of the memory),
representing data.efms are formed by applications of uninterpreted function sym-

bols, and by applications 6TE (for “if-then-else”) andead operators. ThéTE oper-

ator chooses betweendwerms based on a Boolean contralue, i.e., ITE(true, x;,

Xo) yieldsx; while ITE(false, X4, Xo) yieldsx,. Theread operator taks two agu-
ments, the first of which is a mempind the second one a term that egras an
address. This operator returns a term for #aesof the gien memory at the location
specified by the address termm&mory can be a memory symbol, representing an ini-
tial memory state. It can also be the result ofl@hoperator that selects betweerotw
memories. This can be used ipress conditional writes to a memoRynally, a mem-

ory can be avrite operator that tads three guments, the first of which is a memory
the second is a term that represents a memory address to be updated with the third—
a term, representing the wne data walue for that address. Semantically
read(write(memory, waddr, wdata), raddr) is equvalent tol TE(raddr = waddr, wdata,
read(memory, raddr)), i.e., aread that follovs awrite to a memory returns thelue of
thewrite when the read and write addresses are equal, andltleeof the memory at
the read address otherwise. The base case foeati®perator is to read from the ini-
tial state of a memoyyepresented by a memory symbglin which case there are no
writes to account forso that theead operator can be represented as an uninterpreted
functionf,,, that is specific for memory symbwl

Formulas are formed by comparingavterms for equalityby comparing tw
memories for equalityoy applying theead operator to return the contents of thguar
ment memory at the address specified by thharaent term, by applying an uninter-
preted predicate symbol to a list of terms, and by combining formulas using Boolean
connectves. A formula epressing equality between dwierms or tvw memories is
called aregquation. Equations with memory gmments are alleed to occur only in the
top-level verification condition to xpress the equalence of memory states in the
implementation and the specification. The rules for eliminationg reads from memories
of type formula are analogous to those for reads from memories of type term, as
defined in the prdous paragraphxeept that reads from initial memory state are rep-
resented as uninterpreted predicates.

Every function symbof has an associatamider, denotedord(f), indicating the
number of terms it tads as ayuments. Function symbols of order zero are referred to
asdomain variables. We use the shortened formyrather thav() to denote an instance
of a domain ariable. Similarly every predicate has an associated orded(p). Pred-
icates of order zero are referred tqegpositional variables.

The truth of a formula is defined relatito a domaim of values and an interpre-
tation| of the function, predicate, and memory symbols. An interpretatissigns to
each function symbol of ordéra function fromDK to D, to each predicate symbol of
orderk a function fromDX to {true, false}, and to each memory symbol a function
from D to D or fromD to {true, false}, depending on the type of the memoBiven
an interpretation of the function and predicate symbols and gpressiorE, we can
define thevaluation of E underl, denoted[E], according to its syntactic structufrge]
will be an element of the domain whEris a term, and a truthelue wherk is a for-
mula.

A formulaF is said to berue under interpretation | whenl[F] equalstrue. It is

said to bevalid over domain D when it is true for all interpretationser domairD. F

is said to bauniversally valid when it is \alid over all domains. It can be sho that if

a formula is alid over some suitably lge domain, then it is uersally \alid [1]. In
particular it sufices to hae a domain as lge as the number of syntactically distinct
function application terms occurring

3 Positive Equality

In collaboration with German, we V&recently shan [3][4] that major imprgements
can be obtained byxploiting the polarity of the equations in the original formbla
before replacing gnfunction applications with domainaxiables. Let us introduce
some notation garding the polarity of equations and their dependent function sym-
bols. For a formulaF of the formT, = T,, we say that this equation is a pagtequa-
tion of F. For formulaF of the form-F,, ary positve equation of, is a ngative
equation ofF, and ag negative equation of, is a positre equation of. For formula

F of the formF,; O F, or F; O F,, ary positive (respectiely, negative) equation of
eitherF, or F, is a positie (respectiely, negative) equation of as well. Note that all
equations of a formula that controls [ai operator will be both posit and ngative
equations of a formula containing tHEE, since such equations are implicitlygated
when selecting the “elseqeression” of anTE. We call equations which are both pos-
itive and ngative in a formulaF, general equations of F. Equations of the form
m; = m,, wherem; andm, are memories, are alled to occur only as posié equa-
tions.

For termT of the formf(Ty, . . . ,Ty), function symbof is said to be a data symbol
of T. For termT of the formITE(F, T4, T,), ary function symbol that is a data symbol
of eitherT; or T, is also a data symbol &f

A function symbolff is said to be a “p-function” (posi function) symbol of a
formulaF if there are no rgative or general equations fhfor whichf is a data sym-
bol of one of the equation guments. All other function symbols are said to be
“g-function” (general function) symbols & Using appropriate abstractions, we can
represent all processor operationgolaing instruction addresses and data operands
with p-function symbols, leéng only register identifiers as g-function symbols.

We can gploit the presence of p-function symbols to greatly reduce the number
of interpretations that must be considered to determine tiversal \alidity of the
original formula. Le® denote a subset of the function symbols occurrirg iNe say
that interpretatiot is diverse with respect tb for F when for ag function application
termf(S,, . . . ,S) wheref O X and ay other function application terg(U,, . . . ,U))
we hael[f(S;, . ..,S)]1 =1[g(U, ..., U)]iff f=gandI[S] = I[U;] for L<i <k Inter-
pretationl is said to be “maximally derse” if it is dverse with respect to the set of all
p-function symbols ifr. The follawing result is from [3][4]:

Theorem 1. Aformula F isuniversally valid iff it istrue in all interpretations that
are maximally diverse for F.

The essential idea behind this theorem is that a maximaitysdi interpretation

forms aworst case as far as determining the validity of aformulais concerned. For any
less diverse interpretation I, we can systematically derive amaximally diverse interpre-
tation I' such that among the equations, only the positive ones can change their valua-
tions under I, and these can only change from true to false. Therefore, the valuation
of F under the two interpretations must either be equal or satisfy I[F] = true and
I'[F] = false. The proof of the above theorem is presented in [3][4].

4 Transforming an EUFM Formulato a Propositional Formula

We proceed through a series of transformations, starting from the initial EUFM for-
mula, expressing the correctness criterion, and ending with a propositional formula
whose validity implies the validity of the original one. At each step we apply various
optimizations and simplifications, with the major steps being ordered as:

1. Replace equations of the form m; = my,, where m; and m, are memories, by the
equation read(my, a) = read(my, a), where aisanew domain variable. As defined
earlier, such equations can appear only as positive equations in the top-level for-
mula when checking that the two sides of the commutative diagram updated the
initial state of a memory in exactly the same way. Since the new domain variable
represents an arbitrary address, it is easy to seethat if the two sides of the commu-
tative diagram modified that address identically, then they would have modified
all addressesidentically.

2. Eliminate all read operators from updated memory state, as explained in Sect. 2.
In our tool we perform this step dynamically as we parse the expressions of the
EUFM formula. The result will be that the original read will be replaced by a
nested | TE expression with aread from the initial state of the memory as aleaf of
the expression.

3. Identify the p-function symbols and general function symbols (see Sect. 3).

4. Eliminate UFs and reads from initial memory state (see Sect. 4.1).

5. Trandlate the reduced EUFM formulato a propositional formula (see Sect. 4.2).
6. Check that the resulting propositional formulais atautology.

4.1 Elimination of Readsfrom Initial Memory State and of UFs

Reads from initial memory state and applications of UFs are eliminated in a depth-first
way, after all their argument expressions have their reads from initial memory state and
UFs eliminated. Specifically, UFs are eliminated by our method of using nested I TEs
for imposing consistency of the function outputs [19]. Given an UF symbol, say ALU,
which takes two arguments, with the first eliminated application of this UF being
ALU(T44, Tqp), Wwhere T4 and T4, are terms, that UF application is replaced by a new
domain variable v;. Then, the second eliminated application of the same UF, ALU(T,,,
T22), is replmed by |TE((T21 = Tll) O (T22 = le), V1, V2), where Vo isanew domain
variable introduced for the case where the new pair of arguments does not equal the
previous pair of arguments. Similarly, the third eliminated application of the same UF,
ALU(T31, T32), is repl aced by |TE((T31 = Tll) O (T32 = le), V1, |TE((T31 = T21) O

(T3o =Top), Vs, V3)), where vz isanew domain variable introduced for the case where
the new pair of arguments does not equal any of the previous pairs of arguments. One
can see that the above scheme achieves consistency of the UF's outputs: when
Ty1 = T11 and Ty, = T4y, the second application of the UF ALU will evaluate to the
value of the first application of ALU—the domain variable v;. The same technique can
be used to eliminate applications of an uninterpreted predicate, using new proposi-
tional variables instead of domain variables. This transformation is defined
formally in [4].

Although aread from initial memory state is semantically equivalent to an unin-
terpreted function, we handle the trandlation differently. If the memory is addressed by
p-function symbols only, the reads from its initial state are eliminated as applications
of an uninterpreted function. However, if amemory is addressed by a g-function sym-
bol, then the reads from its initial state are eliminated by pushing every such read to
the leaves of the nested ITE address term, i.e., until reaching a domain variable, and
introducing a new domain variable for the initial state of the memory at that address.
For example, read(RegFile, ITE(F, regl, reg2)), whereregl and reg2 are two domain
variables, is transformed to ITE(F, read(RegFile, regl), read(RegFile, reg2)) after
pushing the read to the leaves of the address term, and read(RegFile, regl) is replaced
by the new domain variable datal, while read(RegFile, reg2) is replaced by the new
domain variable data2, so that the resulting expression is ITE(F, datal, data2). This
can be viewed as initializing the memory for every distinct domain variable that can be
selected to be an address term. Note that this technique does not result in equations
between two domain variables used as addresses; it is also a conservative approxima-
tion since it does not enforce the constraint that the equality of two addresses implies
the equality of their initial states. Thisis one of the keys to the efficiency of our tool.
The same scheme can be applied to eliminating uninterpreted function applications as
well.

4.2 Trandation of the Reduced EUFM Formulato a Propositional Formula

Let F* be the translation of the original EUFM formula F, resulting after the elimina-
tion of read and write operators, as well as function and predicate applications. Then
F" contains only logic connectives, equations, and I TEs, as well as domain and propo-
sitional variables.

Our method [3][4] can exploit positive equality by considering only distinct inter-
pretations of the domain variables that are generated when eliminating the p-function
symbols. Let Vp be the union of the set of domain variables occurring in F that are p-
function symbols, and the set of all new domain variables generated when eliminating
the applications of each p-function symbol f. Similarly, let Vg be the union of the set of
domain variables occurring in F that are g-function symbols, and the set of all new
domain variables generated when eliminating the applications of each g-function sym-
bol h. Let V denote the set of all domain variablesin F*. The followi ng theorem was
developed in [3][4]:

Theorem 2. EUFM formula F is universally valid iff its trandation F"istrue
under all interpretation I that are diverse over Vp.

The algorithm that we presentxdiés a modification of the one proposed by Goel
et al. [8], extended to account for posiéi equality by considering asiable inVp to
be equal only to itself.

Let Dep(T), the dependency set of term T, be the set of domairariables thai
may e/aluate to. Br example, if T = ITE(by, v4, ITE(by, Vo, V3)), Wherevy, v,, andvy
are domain ariables, theep(T) is {vq, V,, vg}. For each ternT and each ariable
v O Dep(T), we generate the formuT, v) that represents the conditions under which
T would evaluate tov.

For each formul&s, we generate a formu@ which is a propositional translation
of G. In the base case f&(T, v), whenT is the domain ariablev, E(T, v) istrue. For a
term T of the form ITE(G, T;, Tp), the formula E(T, v) is defined as
G OE(T4,v) O -G OE(T,, v). The method of translating into G is as follavs:

1. ifGis=Gq then G = ﬂél;
2. if GisGy *» G, then G = él . éz, wheres» is eitherl or [
3. if GisT{ =T, then

G = \/ E(T, V) OE(T,v) O \/ E(T1, vi) DE(T2, V) U eming j),maxd,j)
v O Dep(Ty) n Dep(Ty) v 0 Dep(Ty) n Vg,

v; O Den(Tp) n Vg,

I #]
whereg; is a propositionalariable introduced toxpress the equality relation between
the g-function domainariablesv; andy;. Note that we introduce agj variable only
whenvy, andvj are syntactically distinctariables inVg. Also, we e&ploit positive
equality by consideringariables invp to be equal only to themsels—the are used
only in the left disjunct of the alie formula.

Our propositional formulas do not enforce the trawisjti constraints
ek g U &, and none of our correct models needed such constrainésifying
them. Note that if a formulB evaluates tdrue without transitvity constraints, it will
also @aluate totrue when such constraints are imposed, e.g., by implication:
(ekUeg U &) O F whereF is alreadytrue. However, when using BDDs fonalua-
tion of the final propositional formula, we emyplthe stratgy by Goelet al. [8] in
order to check that a counteaenple is not due to a violation of the trangiti con-
straints. Namelywhen the final BDD is ndrue, it is neggated in order toxgress all
countergamples. Gien an implicant in the resulting BDD, our tool automatically
p_hecks Fhat for each We_d ariableg;, there is no SeqUENER;, Bk, -+ By of pos-
itive \ariables that wuld imply that the ngated \ariablee; should ealuate totrue,
thus canceling the implicant. The first implicant that is not canceled is printed as a
countergample.

Note that our \ay of eliminating reads from initial memory state by pushing the
reads to the lees of the address termpressions does not create equations between
register identifier domainariables used as address terms in reads fromdrstaefile
of a processoiThis would not be the case if the consisten€the initial memory state

was imposed by Ackermann constraints[1], read_addrl =read addr2 O init_statel
= init_state?, as done in [8][15], or by our scheme of using nested ITEs [19], where
ITE(read _addrl =read addr2, init_statel, init_state?) isreturned as the initial state
of addressread addr2 given that init_statel was already introduced astheinitia state
of address read_addr1. The result is areduced number of ; variables encoding equal-
ity relations between domain variables used as register identifiers, which translates
into an increased efficiency when evaluating the final propositional formula.

Observe that we are using a conservative approximation by not enforcing consis-
tency of the initial memory state. This makes the verification results sound, but not
complete, i.e., false positives would not occur, although false negatives are possible.
However, by employing a conservative approximation in our verification, we simplify
considerably the propositional formula that has to be checked for being a tautology
and, hence, we gain efficiency. We can informally argue that this optimization is com-
plete when verifying our processor models (see Sect. 6) since they do not have direct
comparisons of source registers in their control logic. Then, the only way for two
source registers to be equal is for them to be simultaneously equal to the same destina
tion register. However, the forwarding logic will then select the result associated with
that destination register and would prevent the initial state of the register file from
being used. Hence, the consistency of the register file initial state will not matter.

As an implementation note, we can view the set of formulas E(T, v) for al v OV,
asavery sparse set, i.e., it will smply be false for many entries. The usual way to rep-
resent such sets is as a list maintained in some canonical order with respect to the
domain variables. Then the various operations described above can be implemented by
processing these lists to generate either anew list or asingle formula.

5 Manipulatingthe EUFM DAG

When building and transforming the EUFM DAG, we impose several simple structural
restrictions in order to achieve maximal sharing of identical expressions. Similar to
BDDs[2], we create only one node equal to the constant true value and only one node
equal to the constant false value. We allow only the logic connectives O and [, from
the possible multi-input connectives. Their inputs are sorted in some canonical order,
with duplicates and non-controlling values (true for [, and false for [J) removed.
Expressions of theformc=a Ob, whereb =d Oe, arerewrittenasc=aOd Oe, in
order to increase the sharing of logically identical expressions. Similar rewritings are
done for expressions with the logic connective [1. The presence of a controlling value
(false for [0, and true for [J), or the presence of both a and —a as inputs, results in
returning the controlling value. Otherwise, the list of sorted inputs, together with the
type of the connective, forms a key, which is used to search an Operations Hash table
for the same expression created previoudly. If such an expression is not found, it is cre-
ated and inserted into the Operations Hash table with the formed key.

Other types of expressions—ITEs, equations, uninterpreted function applications,
and uninterpreted predicate applications, aswell asthe read and write operators—also
have a key formed in some canonical way in order to access the Operations Hash table.

When creating an expression that is the negation of another expression, e.g., b = -4a,
where a is not a constant Boolean value, such that the key - a is not in the Operations
Hash table, we insert two keysin that table: —a pointing to expression b, and - b point-
ing to expression a. In this way we ensure that if an expression ¢ = - b is created |ater,
it will be identified as expression a. Standard simplifications of ITE expressions are
also employed, which we omit due to lack of space.

6 Experimental Results

We started with a 5-stage single-issue pipelined DLX [10] model, 1xDLX-C, capable
of fetching up to 1 new instruction every clock cycle and implementing the 6 instruc-
tion types considered by Burch and Dill [5][6]: register-register, register-immediate,
load, store, branch, and jump. The 5 pipeline stages are Fetch, Decode, Execute, Mem-
ory, and Write-Back. The pipelined model and its non-pipelined specification were
described in our own HDL that uses the primitives of EUFM. Namely, it has support
for basic logic gates, multiplexors (ITEs), equality comparators, memories, latches,
uninterpreted functions, and uninterpreted predicates. The implementation and the
specification were ssimulated with our term-level simulator in order to form an EUFM
formula for the correctness criterion. This formula was generated in the SVC script
format [17].

The instruction memory of both the implementation and the specification was
modeled to produce abstract instructions, consisting of 2 source register identifier
terms, 1 destination register identifier term, an immediate datum term, an operation-
code term, and 3 Boolean variables used to determine the instruction type. The 3 Bool-
ean variables were decoded by a gate-level PLA to produce the pipeline control signals
for the different stages of the pipeline, such that each instruction type gets encoded
with a unique binary pattern of the 3 variables (e.g., the register-register instructions
are encoded with the pattern 000, the register-immediate with 001, and so on). There-
fore, the fetched instructions were restricted to be of only one instruction type,
although no assumptions were made about the sequences of executed instructions.

We did not impose any restrictions on the initial state of the pipeline latches, as
we did in our previous work with bit-level models [18][20]. Hence, we alow the
instruction that is initially in a given pipeline latch to be of all the instruction types
simultaneously. Furthermore, we consider initial pipeline states that can never arise in
actual operation assuming the pipeline interlocks are correct. By not placing any con-
straints on the initial state, we cover a larger set of states than is required, but also
avoid the need to prove any invariants about the state. Note that if a processor is veri-
fied without imposing any restrictions on the instructions in flight, it will also be cor-
rect when such restrictions are enforced, e.g., by using the restrictive condition to
imply the formulafor the correctness criterion, where the formulais aready valid. The
reason why the processors were verified to be correct without imposing invariants for
their initial state istwofold. First, the control logic of our models was not designed to
depend on any invariant property of the pipeline state. Second, the pipeline latches that
are affected by the interlocks, namely the latches before the Execute, Memory, and
Write-Back pipeline stages, get their state reflected on the user-visible memory ele-

10

ments identically along the two sides of the commutative diagram. Note that these
latches cannot be stalled and only transfer their data forward. Hence, the identical ini-
tial state of the user-visible memory elements, that the two sides of the commutative
diagram start from, is modified in the same way by the state of these three pipeline
latches, resulting in new identical state of the user-visible memory elements. There-
fore, imposing the invariant properties that hold for a correct pipelined processor was
not necessary for the verification of our models.

The operation-code term, produced by the instruction memory for each instruc-
tion, was used to identify the instruction sub-type to functional units by being used as
an input to functional units, just as some control hits arein actual pipelined processors.
Specifically, it was carried through the pipeline stages and used as an input to the ALU
in the execution stage (e.g., to discriminate an add from a subtract instruction) and to
the uninterpreted predicate determining the condition for a branch to be taken based on
the comparison of two data operands (e.g., to discriminate a branch-on-less-than from
a branch-on-greater-than instruction). Since the operation-code is not used as an argu-
ment to interpreted equality comparators, it gets identified as a p-function symbol by
our trandation algorithm. Hence, functional units taking the operation-code as an
argument get transformed into distinct functional units for each executed instruction
after the UF elimination by means of nested ITES. This was observed in our previous
work [20], where the same effect was achieved by using the sequential PC (equal to PC
+ 4) which is also a p-function symbol that uniquely identifies each executed instruc-
tion. Theresult is an increased efficiency of the computation, since the functional con-
sistency of ALUs can be imposed with nested ITEs of afew levels of nesting for each
executed instruction. Therefore, the overall DAG for the correctness criterion ends up
being much simpler, compared to the one where the consistency is maintained by
nested I TEs for the entire executed instruction sequence.

The data memory was modeled as a Finite State Machine with a latch for storing
the present state, as explained in [3]. The result fetched by load instructions was pro-
duced by an uninterpreted function, DMem Read, that takes as arguments the present
data memory state, the load address, and the operation-code term of the instruction (in
this way we modeled byte-level memory accesses). The next data memory state was
produced by an uninterpreted function, DMem Update, taking the same three argu-
ments in addition to the data operand which is to be written to the data memory by a
store instruction. The next data memory state gets written to the FSM latch under the
condition that the instruction is a store instruction that was not squashed by taken
branches or jumps. The reason to model the data memory in this way isto prevent the
outputs of the ALU from being classified as g-terms, due to their role as addresses of
the data memory.

Later, we designed a set of dual-issue superscalar DLX models with in-order exe-
cution, having 2 pipelines of 5 stages each:
2xDL X-AA has two arithmetic pipelines (implementing register-register and register-
immediate instructions), such that either 1 or 2 new instructions are fetched every

clock cycle, conditional on the second instruction in the Decode stage having (or not) a
data dependency on the first instruction in that stage;

11

2xDL X-SA can execute arithmetic and store instructions by the first pipeline and
arithmetic instructions by the second pipeline, so that in addition to the case of the
above data dependency, 1 instruction will be fetched also when the second instruction
in the Decode stage is a store (i.e., thereis a structural hazard);

2xDL X-LA can execute arithmetic, store, and load instructions by the first pipeline
and arithmetic instructions by the second pipeline, so that 2 load interlocks come into
play now (between the instruction in Execute in the first pipeline and the two instruc-
tionsin Decode) and O, 1, or 2 new instructions can be fetched each cycle;

2xDL X-CA has a complete first pipeline, capable of executing the 6 instruction types,
and an arithmetic second pipeline, such that 0, 1, or 2 new instructions can be fetched
each cycle—equivalent to Burch's processor [6];

2xDL X-CS has a complete first pipeline, and a second pipeline that can execute arith-
metic and store instructions, such that 0, 1, or 2 new instructions can be fetched each

cycle;

2xDL X-CL has acompletefirst pipeline, and a second pipeline that can execute arith-
metic, store, and load instructions, such that 0, 1, or 2 new instructions can be fetched
each cycle, conditional on 4 possible load interlocks (between a load in Execute in
either pipeline and an instruction in Decode in either pipeling) and the resolution of the
structural hazard of branches and jumpsin Decode of pipeline two, which need to wait
for pipeline one;

2xDL X-CC has two complete pipelines, 4 possible load interlocks, but no structural
hazards, such that O, 1, or 2 new instructions can be fetched each cycle.

Our results are presented in Tables 1, 2, and 3. The experiments were performed
on a Sun4 with 10 UltraSPARC-I1 processors of 336 MHz, having 6 GB of physical
memory, and running Solaris 2.6, although we used the computer in a single processor
mode. The tautology checking of the final propositional logic formula was done with
the Colorado University BDD package [7]. We applied a very simple BDD-variable
ordering heuristic. The nodes in the final propositional logic DAG are sorted in
decreasing order of their fanout counts, such that if a node is the complement of a
Boolean variable, then the fanout count of that node is added to the fanout count of the
variable. Note that this merging of fanout counts is done only for Boolean variables.
The nodes get their BDDs built according to the sorted order in a depth-first way until
either a node with a computed BDD is encountered, or a Boolean variable is reached,
which gets declared last in the BDD variable order. Furthermore, the recursive BDD
computations for the inputs of an AND (OR) node was discontinued as soon as an
input’'s BDD was evaluated to be O (1). In the case of an ITE node, the BDD of the con-
trolling input was computed first, such that if it evaluated to a constant O or 1 BDD,
only the BDD for the corresponding selected input was computed. Also, we freed
BDDs for internal nodes as soon as the BDDs were no longer needed, i.e., assoon asa
usage count became equal to the fanout count of the node.

Generating the EUFM formula for the correctness criterion by using our term-
level simulator, required lessthan 1.1 MB of memory and 0.1 seconds of CPU time for

12

all the processors. We used Burch’s controlled flushing [6], where auxiliary inputs are
introduced and used only during the flushing of the implementation in order to prevent
the pipeline interlocks from introducing uncertainty in the instruction flow during
flushing. The controlled flushing significantly reduces the complexity of the expres-
sions for the state of the user-visible memory elements. We found the reduction to be
as much as 10 times, in terms of both memory and CPU time, while the effort to add
the auxiliary control inputs was negligible, given afamiliarity with the designs.

DAG Node Counts Topological
Levelsin
Processor o After Final Final
Initial T . <
EUEM DAG ediminating propositional || Propositional
reads and UFs logic DAG Logic DAG
1xDLX-C 299 1,198 334 35
2xDL X-AA 517 2,168 490 21
2xDLX-SA 560 2,534 601 27
2xDLX-LA 623 3,641 1,029 32
2xDL X-CA 759 4,856 1,383 60
2xDL X-CS 779 5,077 1,469 60
2xDLX-CL 796 5,657 1,608 60
2xDL X-CC 850 5,998 1,732 67

Table 1. Statistics from different stages of the translation to a propositional formula. The
topological levelsin the final propositional logic DAG are computed by assigning alevel of 1 to
the Boolean variables (the leaves of the DAG). The nodes in the final propositional logic DAG
areof types—, [J, [J, and I TE.

Flc/zlrggrlnezm Final Vg Propositional Variables
Processor —

o | o | S Pemaol o | o
1xDLX-C 52 13 7 6 27 36
2xDL X-AA 41 19 9 10 66 16
2xDL X-SA 53 19 9 10 66 20
2xDLX-LA 65 19 9 10 72 25
2xDLX-CA 87 25 13 12 116 46
2xDLX-CS 92 25 13 12 116 48
2xDLX-CL 96 25 13 12 116 51
2xDLX-CC 102 25 13 12 120 57

Table 2. Variable gtatistics during the trandlation of the EUFM DAG to a propositional
formula. The final p-function domain variable set Vp and the final g-function domain variable
set Vg were obtained after eliminating the reads and the UFs from the EUFM DAG.

13

Pr ocessor B_DD Max. BDD Memory CPU Time
variables Nodes [MB] [g]
1xDLX-C 63 2,121 5.8 0.25
2xDL X-AA 82 8,979 6.9 0.46
2xDL X-SA 86 8,319 7.2 0.49
2xDLX-LA 97 11,393 8.3 1
2xDL X-CA 162 163,782 15.4 9
2xDL X-CS 164 188,557 16.3 9
2xDL X-CL 167 236,770 15.9 18
2xDL X-CC 177 433,658 18.2 35

Table 3. Checking thefinal propositional logic DAG for being a tautology by using BDDs.
The BDD variables count is the sum of the counts of &; and other propositional variables from
Table 2.

The best results were obtained after applying an optimization for eliminating
common subexpressions in the top-level equations. Given an equation T, = T,, where
T, isaterm of theform ITE(f11, T11, ITE(f12, T1, ... ITE(f1 T1x T3))), To isaterm of
the form |TE(f21, T21, |TE(f22, T22, |TE(f2|, T2|, Tg))), and T3 is aterm of nested
|TES—|TE(f31, T31, |TE(f32, T32,))—that is shared by both Tl and T2, then T3 is
replaced by a new domain variable if Dep(Tg) O Dep(Ty;) for i = 1, ..., k and
Dep(T3) [Dep(Ty) forj =1, ..., I. It can be proved that this optimization is both sound
and complete.

As Table 3 shows, our verification times range from less than a second for the
single-issue case, up to 35 seconds for the dual-issue superscalar cases. The memory
requirement (often the limiting factor for BDD-based applications) ranges from 5.8 to
18.2 MB. The number of propositional variables ranges from 63 to 177, with between
27 and 120 comprising the g; variables encoding the equality relations between regis-
ter identifiers. The number of domain variables, identified as p-function domain vari-
ables, is between 2 and 4 times greater than that of the g-function domain variables, as
illustrated in Table 2.

It should be pointed out that our design 2xDL X-CA is comparable to that used by
Burch [6], who could verify hismodel only after devising 3 different commutative dia-
grams, providing 28 manual case splits, and using around 30 minutes of CPU time on
a SUN4. Therefore, we achieved a speedup of two orders of magnitude. And what is
most important of all, we achieve this speedup by an entirely automatic tool.

In order to compare our results to those by Goel et al. [8], who proposed the g;
encoding, we ran experiments for verifying the CMU-Pipe, also used by Burch and
Dill [5]. CMU-Pipe is a 3-stage pipelined data path, which implements only register-
register instructions with 2 source registers and 1 destination register. It has 3 pipeline
stages, and 1 level of multiplexorsin the forwarding logic. Our tool required less than
1.1 MB of memory and 0.02 seconds of CPU time to verify this benchmark, including
the time to simulate it and generate the EUFM formula for the correctness criterion.

14

We did not use Burch’s controlled flushing, which is not applicable since the design
does not have interlocks. Furthermore, the correctness criterion formula was evaluated
to be valid as soon as our tool was done parsing it, due to our strategy of automatically
eliminating reads from updated memory state and using a maximally shared EUFM
DAG. The two terms which represent the state of the register file after exercising the
implementation and the specification, respectively, simply happen to have exactly the
same structure. Using the Operations Hash table helps identify them as exactly the
same term, so that when the final equation expression is parsed and its two argument
terms are found to be exactly the same expression, the equation is automatically evalu-
ated to bdrue. Hence, BDDs were not used at all. Also, we did not have to exploit
positive equality. Goe¢t al. [8] reported CPU time of 0.5 seconds and needed over
130,00 BDD nodes. They used extensive manual intervention in order to impose the
constraints for: 1) consistency of the ALU outputs, 2) consistency of the register file
initial state, and 3) reflecting a sequence of writes on the initial state of memories.
They do not present results from other benchmarks.

Modeling the data memory as a Finite State Machine, as explained earlier in this
section, was crucial to the efficiency of our methodology. An alternative way for rep-
resenting the data memory is to use an uninterpreted function that will serve as a
“translation box,” accepting the output of the ALU as an input and producing an out-
put that is used to address a regular memory, representing the state of the data mem-
ory. In this way, the output of the ALU will still be automatically classified as a p-
term, while it will be mapped to a g-term (via the translation box) that will address the
memory. Byte-level memory accesses can be modeled by a read-modify-write strat-
egy, by using an uninterpreted function to change the present state of the address.
However, when verifying such versions 2fDLX-CA and 2DLX-CC, the BDD
package ran out of memoayter 8 and 5 hours, respeetiy.

In order to assess the performance of BDDs when verifying incorrect designs, we
created 100 versions 2kDLX-CC, each with a different error. They were all detected
by usually using up to twice the CPU time, memory, and BDD nodes required for the
verification of the correct processor. However, in the worst case, one of these models
did need 1,600 seconds of CPU time, 168 MB of memory, and 8,100,000 BDD nodes.

We also ran experiments using the Stanford Validity Checker (SVC) [17] to eval-
uate the validity of the EUFM formula forxDLX-C. SVC did not finish within
24 hours. Computing the automatically generated correctness criterion (1) using a non-
BDD-based validity checker for the logic of EUFM results in a considerable increase
in complexity, due to the prohibitive number of case splits that are required even for a
simple 5-stage DLX processor. In our BDD-based tool, evaluating the Boolean expres-
sion for (1) is made trivial by the simplification capabilities of the BDD package.

Using the SAT-checker GRASP [9][14] as a tautology checker instead of BDDs,
resulted in 2 seconds of CPU time for verifyimgDLX-C, 70 seconds for verifying
2xDLX-AA, and 224 seconds for verifyingxBLX-SA, and 1:50 hours for verifying
2xDLX-LA. Prover, a commercial SAT/tautology-checker based SiAlmarcks
method [16], required 10 seconds of CPU time &aifying 1xDLX-C, 60 seconds for
verifying 2xDLX-AA, 5.5 hours for ‘erifying 2xDLX-SA, and more than 24 hours

15

(the run time limit) for erifying 2xDLX-LA. None of the SA-checlers was able to

verify 2xDLX-CC within 24 hours. Then, we applied these toolsenfying an incor-

rect \ersion of our last model xBDLX-CC. SVC, Preer, and GRASP could not pro-

duce a counterample within 24 hours, while usi®®8PDDs for checking the formula of

the same incorrect design resulted in generating a counterexample in 37 seconds, con-
suming 18 MB of memoryExperiments with another SAheclers—SAO [22]—

shaved that it vas not more successful than GRASP and/é&trdherefore, BDDs

were the most efficient means to verify both correct and erroneous processors.

7 Conclusions

We hare achiged considerable speedup in therification of dual-issue superscalar
DLX processors, compared to the result by Burch [6]. Furthermore, our tool is entirely
automatic and does not require manual irgetion, compared to prious work based

on the logic of Equality with Uninterpreted Functions and Memories (EUFM)
[5][6][8]. The keys to our success were: Rpdoiting the properties of posit equal-

ity [3][4], which allov domain wariables used in non-gated equality comparisons to

be treated as distinct fromyaather domain ariable; 2) using; Boolean @riables [8]

to represent the outcome of those domairiable equality comparisons, which are
used both ngated and non-mated in the formula, when translating the EUFM for-
mula to a propositional formula; 3) eliminating the reads from the initial state of mem-
ories in a vay that does not create equality comparisons betwesnead addresses;

4) defining the ALUs in the abstract models inayvthat will turn them into distinct
functional units for eachxecuted instruction, based on the properties of pesiti
equality; 5) manipulating the EUFMAT in a way that results in a maximal sharing of
nodes; and, 6) using BDDs tuatuate the resulting Boolean formula, by applying an
efficient BDD \ariable ordering heuristic.

We also sheed BDDs to be unmatched by SVC [17], applied to the original
EUFM formula, and by Preer [16], SAO [22], and GRASP [9][14], used as alterna-
tive tautology chedals of the propositional logic formulas generated by our tool. In
contrast to these four methods based on combinatorial search, BDDs capture the full
structure of a problem as a single data structure, rather than repeatedly enumerating
and disprging possible countexamples.

Acknowledgements

We would like to thank Amit Goel for implementing a translation procedure from
propositional logic to CNFthe input format of SFO and GRASPWe epress our
gratitude to Steen German of IBM for his detailed comments on this paperalso
extend our thanks to Jodo Marques-8ibf the Echnical Unversity in Lisbon, Portu-
gal, for his help with GRASRo Clark Barrett of Stanford Uversity for his help with
SVC, to G. Stalmarck of Pver Technology AB, Sweden (URLhttp://

wWww. prover . con, for licensing a cop of Prover to Carngie Mellon Unversity,

and to Arne Boralv of the same compdar helping us use Pver eficiently.

16

References

(1]
(2]
(3]
(4]
(5]
6]
[7]
(8]
9]
[20]
[11]

[12]

[13]

[14]
[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

W. Ackermann Solvable Cases of the DecisioroBlem North-Holland, Amsterdam, 1954.

R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagt#n@y Com-
puting Sereys, \ol. 24, No. 3 (September 1992), pp. 293-318.

R.E. Bryant, S. German, and M.Nel&/, “Exploiting Positve Equality in a Logic of Equality with
Uninterpreted Functior’$, ComputerAided \érification (CA’99), LNCS, Springeierlag, June
1999.

R.E. Bryant, S. German, and M.Nel&/, “Processor ¥frification Using Hicient Reductions of the
Logic of Uninterpreted Functions to Propositional Ld‘éid’;echnical Report CMU-CS-99-115, Carn-
egie Mellon Unversity, 1999.

J.R. Burch, and D.L. Dill,Automated ¥rification of Pipelined Microprocessor Contra,omputer
Aided \érification (CAV‘94), D.L. Dill, ed, LNCS 818, SpringeYerlag, June 1994, pp. 68-80vall-
able from:ht t p: // sprout . st anf or d. edu/ papers. htnl .

J.R. Burch, “Bchniques for ¥frifying Superscalar Microprocessdr83rd Design Aitomation Con-
ference (DAC'96), June 1996, pp. 552-557.

CUDD-2.3.0, URL:ht t p: // vl si . col or ado. edu/ ~f abi o.

A. Goel, K. Sajid, H. Zhou, A. Aziz, and Binghal, “BDD Based Procedures for a Theory of Equality
with Uninterpreted FunctiorisComputerAided érification (CA/'98), A.J. Hu and M.YVardi, eds,
LNCS 1427, SpringeYerlag, June 1998, pp. 244-255.

GRASRURL: http://andant e. eecs. um ch. edu.

J.L. Hennessyand D.A. Rtterson,Computer Athitecture: A Quantitative Apmad, 2nd edition,
Morgan Kaufmann Publishers, San Francisco, CA, 1996.

C.A.R. Hoare, “Proof of Correctness of Data Representdtidweta Informatica 1972, \bl.1, pp.
271-281.

R. Hojati, A. Kuehlmann, S. German, and R.K. Braytoralitfity Checking in the Theory of Equality
with Uninterpreted Functions Using Finite Instantiationisternational Vérkshop on Lgic Synthe-
sis May 1997.

AJ. Isles, R. Hojati, and R.K. Brayton, “Computing Reachable Control States of Systems Modeled
with Uninterpreted Functions and Infinite Mempr@omputerAided \érification (CA/'98), A.J. Hu
and M.Y. Vardi,eds, LNCS 1427, Springeverlag, June 1998, pp. 256-267.

J.P Marques-Sila, and K.A. Sakallah, “GRASP: A Search Algorithm for Propositional Satisfigbility
IEEE Transactions on Computgnol. 48, No. 5, May 1999, pp. 506-521.

A. Pnueli, Y Rodeh, O. Shtrichman, and M. §& “Deciding Equality Brmulas by Small-Domain
Instantiations, ComputerAided Vérification (CA/'99), LNCS, Springeiverlag, June 1999.

G. Stalmarck, A System for Determining Propositional Logic Theorems by Applyiatu& and
Rules to Tiplets that are Generated from arfAula”, Swedish &ent No. 467 076 (appred 1992),
U.S. Ratent No. 5 276 897 (1994), Europeateht No. 0403 454 (1995), 1989.

Stanford \Alidity Checler (SVC), URL: htt p: // sprout . St anf or d. EDU/ SVC.

M.N. Velev, and R.E. Bryant, “®fification of Pipelined Microprocessors by Correspondence Check-
ing in Symbolic Ernary Simulatiofi? International Confegnce on Application of Conciemcy to
System Design (CSD'9Q8EEE Computer Societarch 1998, pp. 200-212.

M.N. Velev, and R.E. Bryant, “Bit-Leel Abstraction in the &tification of Pipelined Microprocessors
by Correspondence Checkih%;, Formal Methods in Computékided Design (FMCAD’'98)
G. Gopalakrishnan and ®indley, eds, LNCS 1522, Springeverlag, Nowember 1998, pp. 18-35.
M.N. Veley, and R.E. Bryant, “Exploiting Posie Equality and &tial Non-Consistencin the For-
mal \erification of Pipelined Microprocessdrs36th Design Atomation Confence (BAC'99), June
1999, pp. 397-401.

PJ. Windley, and J.R. Burch, “Mechanically Checking a Lemma Used in an Automeiificetion
Tool,” Formal Methods in Computekided Design (FMCAD'96)M. Srivas and A. Camillerieds,
LNCS 1166, SpringeYerlag, Nowember 1996, pp. 362-376.

H. Zhang, “SAO: An Efficient Propositional Preer” International Confegnce on Atomated
Deduction (CADE'97)LNAI 1249, SpringeiVerlag, 1997, pp. 272-275v4ilable from:ht t p: //
WWW. CS. Ui owa. edu/ ~hzhang/ sat o. ht ni .

2. Available from: htt p://www. ece. cnu. edu/ ~nvel ev

17

Appendix |: Using the Sifting Variable Reordering Heuristic

After submitting the final version of the paper, we found the sifting dynamic BDD
variable reordering heuristic [23], which isimplemented in CUDD [7], to result in sig-
nificant reductions in the maximum number of BDD nodes required for the BDD-
based evaluation of the propositional formula. The improved results for three of the
benchmarks are shown in Table 4.

Pr ocessor Max. BDD Memory CPU Time
Nodes [MB] [<]
1xDLX-C 2,127 57 0.24
2xDLX-CA 24,227 10.8 6
2xDLX-CC 59,530 14.6 28

Table4. BDD statisticsfor three of the benchmarksin Table 3, when the evaluation isdone
with the sifting dynamic BDD variable reordering heuristic.

While the maximum number of BDD nodes for evaluating the simplest bench-
mark, 1xDLX-C, is amost unchanged, there is a 7 times reduction in the maximum
number of BDD nodes for the other two benchmarks.

We also discovered an error in the simulation sequence for the experiments on
modeling the Data Memory with a regular memory and a p-term to g-term translation
box for the address terms produced by the ALU. One of the phase clocks was not
released, which turned the pipeline latches into transparent latches during one of the
simulation clock cycles, and that generated an erroneous EUFM formula for the cor-
rectness criterion. After fixing the error, we obtained the results presented in Tables 5,
6, and 7. The extension “-M” of the processor names designates the use of the memory
model with a regular memory and a trandlation box for the address terms. Note that
this memory model is a conservative approximation of an actual memory. If a proces-
sor is correct with this model, it will aso be correct when the uninterpreted function
that implements the translation box is replaced with the identity function, i.e., a direct
connection that passes the unmodified input term to the output.

DAG Node Counts Topological
_ Levelsin
Processor s After Final Final
Initial LT L <
EUEM DAG eiminating propositional || Propositional
reads and UFs logic DAG Logic DAG
1xDLX-C-M 346 1,575 468 40
2xDL X-CA-M 855 6,045 1,917 89
2xDL X-CC-M 1,024 8,450 2,698 99

Table 5. Statistics from different stages of the translation to a propositional formula for
the experiments on modeling the Data Memory with a regular memory and a translation
box.

18

e [| e
Processor] -
vgl | ovg Rse';;‘;fs D% ?;;O: Other & | Other
1xDLX-C-M 52 20 8 6 6 49 36
2xDLX-CA-M || 87 35 14 12 9 165 | 46
2xDLX-CC-M || 102 38 14 12 12 200 57

Table 6. Variable statistics during the translation of the EUFM DAG to a propositional
formula for the experiments on modeling the Data Memory with a regular memory and a
trandation box.

The category “Other” g-terms of the “Final Vg* set in Table 6 consists of the
g-terms produced by the translation box in the memory model. The equality compari-
sons between these terms resulted in more than 50% increase in the number of g; vari-
ables for the most complex benchmark, 2xDLX-CC-M, relative to its version with the
FSM model of the Data Memory (see Table 3).

Without Dynamic BDD With theS_|ft|ng Heurl_stlcfor

) - Dynamic BDD Variable

Variable Reordering .
Reordering
BDD
Processor :
variables CPU CPU
Max.BDD | Memory Time Max.BDD | Memory Time
Nodes [MB] Nodes [MB]

[s] [s]
1xDLX-C-M 85 4,637 6 0.35 4,004 59 0.52

2xDL X-CA-M 211 4,427,745 92 153 82,008 14 44
2xDLX-CC-M 257 Out of Memory >5.5h || 1,760,815 40 3,007

Table 7. Checking the final propositional logic DAG for being a tautology by using BDDs
for the experiments on modeling the Data Memory with a regular memory and a
trandation box. The experiment with 2xDLX-CC-M without dynamic BDD variable
reordering required more than 1.8 GB, the amount of memory and available swap space.

As Table 7 shows, the sifting dynamic BDD variable reordering heuristic resulted
again in a considerable improvement of the performance, compared to the case when
no dynamic BDD variable reordering is used. However, the maximum number of BDD
nodes and the CPU time for the most complex benchmark, 2xDLX-CC-M, are 60 and
100 times bigger, respectively, compared to the results from verifying the version with
the FSM model of the Data Memory (see Table 4). Therefore, the significance of the
FSM model of adata memory for the efficient verification of our processor models.

References

[23] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” International Con-
ference on Computer-Aided Design (ICCAD’93), November 1993, pp. 42-47.

19

Appendix I1: Correctness Criterion for Multi-1ssue Processor s

We can eliminate the existential quantification in the correctness criterion formula (1)
by forming a digunction over the possible values of m. We can also eliminate the uni-
versal quantification by making it implicit. Then, a dual-issue processor will have the
correctness formula:

ADS(Fmpi(Qimpl)) = AbS(Qymp1) O
ADS(F |l (Qimpl)) = Fpec(AS(Qimpi)) U
ABS(Fi i (Qimpi)) = Fépec(AbS(Qimpi),)

which isillustrated in Fig. 2, where equalityO, equalityl, and equality2 stand for the
fisrt, second, and third disjunct above, respectively, and represent the conditions that
the 2-issue processor will execute 0, 1, and 2 instructions, respectively. Given that the
implementation has three user-visible state elements—a program counter PC, a regis-
ter file RegFile, and a data memory DMem, we would define:

(RegFil€ gpec = RegFilegyecp) L (DMe gpec = DMemgpeco), (3)
equalityl = (PC'gpec = PCgpect) [

(RegFil€ gpec = RegFilegpect) [(DMem' gpec = DMemgpecy), (4)
equality2 = (PC'gpec = PCqpeco) [

(RegFil€ gpec = RegFilegyecp) [(DMe gpec = DMemgpeco). (5)

The above expressions ensure that all the state elements have changed “in sync.”
Forming the correctness criterion formula for a processor that can fetch more than
2 ingtructions per clock cycleisdonein asimilar way.

Qo Qo >

Flmpl :
lepl Q Impl

Fig. 2. Commutative diagram for the correctness criterion of dual-issue processors

Note that the correctness criterion for a processor that can execute either 0 or 1
instruction every clock cycleisequalityd [0 equalityl. In contrast, when checking the
correctness of such a processor, Burch and Dill [5] would require the user to provide a

20

Boolean formula, executedl, indicating the conditions for that processor to have exe-
cuted 1 instruction. Then, they would check the validity of the two formulas
executedl [equalityl and -executedl 0 equality0. However, forming the correct
formula for executedl is not easy in a pipelined processor, since the new instruction
fetched by the implementation might traverse the pipeline in many ways, due to differ-
ent interlock conditions, and in each of them might get squashed in a number of pipe-
line stages, due to taken jumps or branches. Needless to say, forming the formula
executedl requires the intervention of a highly qualified user. Furthermore, forming
manually similar formulas for the number of executed instructions in amulti-issue pro-
cessor becomes extremely difficult.

Computing the automatically generated correctness criterion (2) using a non-
BDD-based validity checker for the logic of EUFM will result in a considerable
increase in complexity, due to the prohibitive number of case splits that are required
even for asimple 5-stage DL X processor, as was shown in Sect. 6. In our BDD-based
tool, evaluating the Boolean expression (2) is made trivial by the simplification capa-
bilities of the BDD package.

21

