
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Syntactic Control of Interference
Part 2

John C. Reynolds1

April 17, 1989

CMU-CS-89-130 ?

School of Computer Science
Carnegie Mellon University

Pi t t sburgh, PA 15213

This is a preprint of a paper that will appear in the Proceedings of
the 16th International Colloquium on Automata, Languages, and
Programming (Stresa, July 11-15, 1989), to be published in the
Springer-Verlag Lecture Notes in Computer Science.

A b s t r a c t

In 1978, we proposed that Algol-like languages should be constrained so that aliasing between
variables and, more generally, interference between commands or procedures would be syntactically
detectable in a fail-safe manner. In particular, we proposed syntactic restrictions that prohibited
interference between distinct identifiers, while permitting interference between qualifications of the
same identifier. However, these restrictions had the unfortunate property that syntactic correctness
was not preserved by beta reduction.

In the present paper, we show how this difficulty can be avoided by the use of a variant of
conjunctive types. We also give an algorithm for typechecking explicitly typed programs.

1 Research supported by NSF Grant CCR-8620191. A portion of the research was also sponsored by
the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976, under contract number
F33615-87-C-1499, monitored by the Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB,
Ohio. The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of any agency of the US
Government.

1. I n t r o d u c t i o n

Whenever a programming language combines assignment with a sufficiently powerful pro
cedure mechanism, the phenomenon of "aliasing" appears , as well as various anomalies
t ha t are often called "interfering side effects". These are all instances of the general
phenomenon of interference: for example, two (phrases denoting) variables interfere if as
signing to either one can affect the value of the other, two commands interfere if either
one assigns to a variable tha t is evaluated or assigned to by the other, and two procedures
interfere if either one assigns to a global variable tha t is evaluated or assigned to by the
other.

Interference is not always undesirable; procedures tha t manipulate common global vari
ables are widely used in programming, and collections of such procedures are the essence
of "object-oriented" programming. But it would be desirable to constrain a programming
language so tha t interference is syntactically detectable (in a fail-safe sense). In partic
ular, such a constraint is necessary in a language tha t provides concurrent processing
with shared variables, in order to enforce the protection of the shared variables by critical
regions [4,1,3].

Eleven years ago, in [7], I proposed syntactic constraints to make interference detectable
t ha t were based on three principles:

• If no identifier occurring free in the phrase p interferes with any identifier occurring
free in the phrase g, then p does not interfere with q.

In effect, all "channels" of interference must be named by identifiers.

• Distinct identifiers do not interfere.

One can still have interfering procedures (or other entities), bu t they must occur within a
single object or, in other words, be named by different qualifications of the same identifier.

• Passive phrases, which perform no assignment or other actions tha t could cause
interference, do not interfere with one another.

Passive phrases include bo th (side-effect-free) expressions and procedures tha t do not
assign to global variables.

Unfortunately, the specific syntactic constraints described in [7] have the unhappy con
sequence tha t certain legal phrases beta-reduce to illegal phrases. In the present paper,
we will use conjunctive types [2] to define constraints, based on the above principles, tha t
avoid this problem. The essential change is tha t , instead of focusing on a relation between

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

1

phrases (denoted by # in [7]) tha t asserts tha t the phrases do not interfere, we will focus on
a relation between type assignments (denoted by _L and called independence) t ha t asserts
t ha t the capabilities represented by the type assignments cannot cause interference.

2 . A n I l l u s t r a t i v e L a n g u a g e

To make our exposition concrete, we will use an Algol-like illustrative language [5] tha t is
an extended lambda calculus with construction and selection operations for named tuples,
a conditional construct , and some of the various operations for expressions and commands
tha t are typically found in imperative languages. We will also introduce an operator ||
t ha t executes two command concurrently; our goal is to prohibit interference between
the operands of ||, so tha t the semantics of our language will be determinate . (In a more
realistic language, indeterminacy would be permit ted, bu t only under the control of critical
regions.)

T h e following productions define the untyped abstract syntax of our language:

rase) : := (identifier) identifiers

A (identifier): (finite set of types), (phrase) abstraction

(phrase) (phrase) application

((identifier) = (phrase), . . . , (identifier) = (phrase)) tupling

(phrase). (identifier) selection

if (phrase) t h e n (phrase) e lse (phrase) conditionals

0 | 0.5 | (phrase) + (phrase) expressions
(phrase) := (phrase) | (phrase) ; (phrase) | w h i l e (phrase) d o (phrase) commands

(phrase) || (phrase) concurrency

Of course in a real language there would be additional operations for expressions and
commands, but such operations are so similar to those we have included tha t they would
add nothing bu t length to our exposition. On the other hand, there are language features,
such as mult iargument procedures, l e t definitions, recursion, and variable declarations,
t ha t we have omit ted since they are syntactic sugar t ha t can be defined in terms of the
above language plus appropriate built-in procedures [5].

This illustrative language is similar to the recently proposed Forsythe language [6],
except t ha t it lacks the escape operator, the merging operation, and the t rea tment of
assignment as a procedure call t ha t occur in Forsythe.

Notice t ha t lambda expressions contain explicit type information, which will be used
to make typechecking feasible.

2

3 . T y p e s

As in [5] and [6], we distinguish between a data type, such as "integer" and "Boolean",
which denotes a set of values appropriate to some kind of variable, and a phrase type,
such as "integer expression" or "proper procedure accepting an integer expression", which
denotes a set (or domain) of meanings appropriate to some kind of phrase. (The unqualified
t e rm "type" will always mean "phrase type".)

We assume tha t the set of da ta types is equipped with a preorder <data> and say tha t
6 is a subtype of 81 when 8 <data 81. Specifically, we assume tha t int(eger), r e a l , and
bool (ean) are da ta types, and tha t int <data r e a l :

r e a l

bool
int

More generally, we assume tha t the set of da ta types is equipped with two binary operations
U and fi such t ha t 6i U 62 {6i n 62) is a finite complete set of upper (lower) bounds of 8\
and 62, i.e.

If 6 e 61 U 82 then 8X <data 8 and 82 <data <5.

If 81 <data 8 and 82 <data 8 then there is a 80 e 81LJ 82 such tha t 80 <data 8.

If 6 e 61 n 62 then 8 <data 81 and 8 <data 82.

If 8 <data #i and 8 <data 2̂ then there is a 60 e 61 f] 82 such tha t 8 <data ^o-

For phrase types, we use the canonical formalism for conjunctive types [6], in which
there is no explicit conjunction operator, but certain contexts require an identifier or phrase
to have all types belonging to some finite set, ra ther t han a single type.

Corresponding to each da ta type 8, there are two phrase types: 8 exp(ression), de
scribing phrases t ha t can be evaluated to obtain a value of da ta type <5, and 6 acc(eptor) ,
describing phrases whose execution can accept a value of da ta type 8. (What is usually
called a 8 variable is a phrase having both of the types 8 e x p and 8 acc .) There is one
additional primitive phrase type: c o m m (a n d) .

If an object possesses a field of type 9 t ha t is named by an identifier i, then the object
has the type c: 9. Notice t ha t no type describes more t han one field; instead an object with
several fields has several types, each describing a single field.

If £ is a finite set of types and 9 is a type, then 9 —> 9 is a type describing a procedure
whose call will have type 9 when its parameter has all of the types in 9. Moreover, if such

3

a procedure causes no assignment to a global variable, it will also have the type 9 -p* 9
and be said to be a passive procedure.

We will part i t ion the set of phrase types into passive and active types. First , however,
we note t ha t , wi thout loss of generality, we can require a procedure whose calls are passive
to itself be passive and to have a passive parameter . Pu t t ing the ma t t e r the other way

A A

round, we require t ha t in 9 —> 9,9 must be active (i.e. not passive), and in 9 -p» 9, 9 must
A

be active if any member of 9 is active.

Henceforth, we will use the following metavariables:

6: da ta types
<j>: passive phrase types
a: active phrase types
9: arbi t rary phrase types
A

<j>: finite sets of passive phrase types
A

9: finite sets of arbi t rary phrase types
t: identifiers.

(For brevity, we will call a finite set of phrase types passive when its members are all
passive.) Then the sets of passive and active phrase types may be defined grammatically:

a
9

:= 8 e x p \$ -p> <f>\9 -p* a\i:<j>
:= 6 a c c | c o m m \9 —• a \ t: a
= <t> I a

The subtype preorder is defined for phrase types and for finite sets of phrase types by
mutua l recursion. For phrase types,

8 e x p < 8' e x p when 6 <data
8 a c c < 81 a c c when 6' <data <5

c o m m < c o m m

9^>9<9'^9'
9 -p>9 <9' — 0' \ when 91 < 9 and 9 < 9*
§ _+ 0 < & QI J

L:9 <i: 91 when 9 < 9',

and in any other case 9 < 9' is false. For finite sets of phrase types,

9 <§' when {W e 9'){39 e§)9<9'.

(Note tha t 91 C 9 implies 9 < 91.) This definition of subtype implies

4

P r o p o s i t i o n 1 If <f> is passive and 0 < <$> then 0 is passive.

P r o p o s i t i o n 2 If 4> is a passive subset of 0, and 0' < 0, then there exists a passive subset
4>' of 0' such that 4>' < 4>.

< 0' 0

C

4>' <
•4>

Proof: Take ft to be the set of passive members of 0'. (End of Proof)

Now suppose two phrases pi and p2 occur in some context, such as pi \\ pi, t ha t prohibits
their interference. Then if some identifier is used actively in either one of px or ft* it must
not be used a t all in the other (though it may occur in a vacuous context such as an
argument to a constant procedure, or an object field tha t is never selected). To formalize
this constraint, let §i and 0 2 be the sets of types with which the identifier is used in pi and
P2 respectively. Then we require tha t &i _L 02 hold, where J_ is defined to be the symmetric
relation on finite sets of phrase types such tha t

A A A A >\ A

0i ± 02 if and only if #i = {} or 0 2 = {} or 0\ U 0 2 is passive .

When 0\ JL §2 we say tha t $1 and §2 are independent. This relation satisfies:

P r o p o s i t i o n 3 If $1 _L 02 and 0[C 0X then 0[_L 02.

P r o p o s i t i o n 4 If 0i ± 02 and 0[JL 02 then (0i U 0[) _L 02.

P r o p o s i t i o n 5^ If 0^ and 02 are subsets of 0 such that 0i J_ 02, and 0' < 0, then there exist
subsets 0[and 0'2 of 0' such that §[± 0'2, 0[< 0l} and 02<02.

A A A A A A

Proof: If 0I is empty, take 0[to be empty and 0'2 to be 0'. If 0 2 is empty, take 0j to be
empty and 0'x to be 0'. If 0X and 0 2 are passive, take to be 0X U 0 2 , use Proposit ion 2, and

A A A

then take bo th 0[and 0'2 to be 0'. (End of Proof)
Next we extend the operation LJ from da ta types to phrase types. (Eventually, we will

need this operation to typecheck conditional constructs.) Specifically, we define LJ to map
pairs of types into finite sets of types as follows:

Si exp LJ 62 exp = { 6 exp | 6 € 6X U 62 }

Si acc LJ 62 acc = { 6 acc | 6 e 6X f] 62 }

comm LJ comm = {comm}
(01 ^ 0x) U ($2 - ¥ > 0 2) = { (0X U 0 2) - p > 0 \ 0 € 0 I U 0 2 }

{SX -p> 0X) u (0 2 - ^ O 2) Y

(0X —* 0X) LJ (0 2 "p> 0 2) I = { (01 U 0 2) - ^ 0 I 0 € 0i LJ 0 2 }
(0! 0X) U (0 2 — > 02) 4

L: 0I U I: 0 2 = {T: 0 \ 0 € 0i U 0 2 } ,

and in any other case 0i LJ 02 = {} . Then

Proposition 6 0i LJ 0 2 is a finite complete set of upper bounds of 0\ and 0 2 } i.e.

(a) / / 0 <= 0i U 0 2 then 0X < 0 and 0 2 < 0 .

(b) If 0I < 0 and 0 2 < 0 then there is a 0O€0\U02 such that 0Q < 0.

Proof: Each half of the proposition is proved separately by induction on the s tructure of
0. (End of Proof)

(Using Propositions 1 and 6a, the reader may verify tha t the members of 0i U 02 never
violate the requirement tha t , when a procedural type has a passive result type, bo th the
procedural type and its argument type must be passive.)

Moreover, we can define the operation U, mapping pairs of finite sets of types into finite
sets of types, such tha t

0i U 0 2 = IJ{ 0i LJ 02 | 0i e 0i and 0 2 e 0 2 } .

Then

A A A A

Proposition 7 $IU02 is a least upper bound of $i and 0 2 .

6

Now we define a type assignment to be a function from the set of identifiers to the set
of finite sets of phrase types tha t maps all bu t a finite number of identifiers into the empty
set. We say tha t a type assignment is passive when it maps every identifier into a passive
set, and we use the following metavariables for type assignments:

$: passive type assignments
0 : arbi trary type assignments .

We write [] for the type assignment tha t maps every identifier into the empty set, and
[0 | i:0] for the type assignment such tha t [0 | L:0]L = 0 and [0 | L:0]L' = ©L' when
i1 ^ i. We also write [i\\0\ \ ... | in: 0n] to abbreviate [. . . [[] | $i] . . . | £,n: 0 n].

We define the relations C, <, _L, and the operation U on type assignments by pointwise
extension:

0 C ©' =f
 QL C ©'L

©<©' = (Vt) 0* < ©'L

0 1 0 '
 d= (Vt) ©t JL ©'L

(eue')t = ©LU©'L.

As a consequence, Proposit ions 2 to 5 can be extended from finite sets of types to type
assignments:

P r o p o s i t i o n 8 //$ is a passive subset (in the pointwise-extended sense) of ©, and 0 ' <
0 , then there exists a passive subset <&' of 0 ' such that < <&.

P r o p o s i t i o n 9 If ©i ± ©2 and ©[C Qx then ©[J_ 0 2 .

P r o p o s i t i o n 10 If ©x i_ 0 2 and ©i ± 0 2 then (0 i U ©i) ± 0 2 .

P r o p o s i t i o n 11 / / ©i and 0 2 are subsets of 0 such that ©i ± 0 2 , and 0 ' < 0 , then
there exist subsets ©[and ©'2 of ©' such that ©[± ©'2, ©[< Ql9 and ©2 < 0 2 .

4 . T y p i n g s a n d t h e i r I n f e r e n c e R u l e s

If 0 is a type assignment, p is a phrase, and 0 is a type, then the formula 0 h p : 0, called
a typing, asserts tha t the phrase p has the type 0 when its free identifiers are assigned
types by 0 . When 0 is a finite set of types, we write 0 h p : 0 to abbreviate the finite set
of typings

{©\-p:0\0e§}.

The valid typings of our illustrative language are those tha t are provable from the
following rules of inference:

7

Identifiers
0 h t : 0 w h e n ^ e 0 t

Subtypes
©hp:0

when 0 < 0'
©\-p:0'

Abstract ion

[ft | t:fl] \-p:6 w h e n § g 0O, ft C 0 , ft is passive,
A

0 h (At: 0Q. p) '• 0 -p* ^ a n (* ^ ^ * s P a s s ^ v e then 9 is passive

[0 | L:0\ \- p:a A A

— when 0 C $ 0

0 h (A t : 0 o . p) : 0 — + a

Application

0 1 h pi : 0 -p> 0
A L - . 2 when 0 X C 0 , 0 2 C 0 , 0 X J. 0 2

KJ2 ' P2 : " A

and if 0 is passive then 0 is passive
0 h pi P2 • 0
0 X h pi : 0 —• a

0 2 H P2 : * when ©i C 0 , 0 2 C 0 , and ©i J_ 0 2

0 h pi P2 : «

© H Pib : 0

0 h (n = pi , . . . , ^ = p f c , . . . , t n = pn> : (^ : 0)

Field Selection
0 h p :

Tupling

Conditionals
0 h P l

0 h p 2

0 h p 3

0 h p.t : 0

b o o l e x p
0
0

0 h if pi t h e n p 2 e lsep3 : 0

Arithmetic Expressions

0 h 0 : i n t e x p 0 h 0.5 : r e a l e x p

0 h pi : i n t e x p
0 h p2 : i n t e x p

0 I" Pi + P2 " i n t e x p

0 h px : r e a l e x p
© h p 2 : r e a l e x p

© h pi + p 2 : r e a l e x p

8

• Commands
© H PI : 8 a c c
0 H P2 : 6 e x p

© H P I : = P 2 • c o m m

0 H P L

0 H F T

c o m m
c o m m

© I" P I ; P2 ' c o m m

• Concurrency

© I H P I : c o m m
© 2 H P 2 : c o m m

© I" P I || P 2 c o m m

0 H P I : b o o l e x p
0 H P 2 : c o m m

0 H w h i l e P I d o P 2 : c o m m

when © I C 0 , 0 2 C 0 , and © I _L © 2

In the rules for an application P I P 2 , notice tha t the requirement 0 X J . 0 2 prohibits
interference between P I and P 2 (just as with the concurrent construction P X || P 2) , so tha t a
procedure must not interfere with its argument . This is the basic mechanism tha t insures
tha t reduction preserves syntactic correctness.

A A A

In the rules for abstraction, the condition 0 C 0O (where 0O is the finite set of types
occurring explicitly in the lambda expression) restricts the procedural type tha t can be
inferred; this restriction is introduced to make typechecking feasible.

In what follows, we will prove several propositions by induction on the size of a proof,
using the above rules, of a typing, with a case analysis over the different inference rules
tha t may occur at the root of the proof tree. Fortunately, most of the inference rules fall
into one of two classes tha t can be treated uniformly in such a case analysis:

• An inference rule is called a normal rule if it is equivalent to a (possibly infinite) set
of rules of the form

0 H P I : 0i

ehpn:0n

E H E (f t , . . . , P N) : 0

where 0 , P I , ... , P N are metavariables, e (P I , ... , P N) is a phrase constructed from
P I ? • • • 5 PN without using binding operations, 0U ... , 0n are finite sets of types not
containing metavariables, 0 is a type not containing metavariables, and if 0 is passive
then &I, ... , 0n are passive.

9

• An inference rule is called a noninterference rule if it is equivalent to a (possibly-
infinite) set of rules of the form

©i H Pi : 0i
®2 h P2 : 02 when ©i C 0 , 0 2 C 0 , and 0 X _L 0 2

© l - c (p i , f t) : 0

where © x , 0 2 , 0 , Pi, and p 2

 a r e metavariables, e (p i , p 2) is a phrase constructed
from pi and p 2 wi thout using binding operations, 0X and 0 2 are finite sets of types
not containing metavariables, 0 is a type not containing metavariables, and if 0 is

A A

passive then 0i and 0 2 are passive.

For example, when k and n are integers such tha t 1 < k < n , 0 is a type, and i i , . . . ,
t n are identifiers, let ^ n * ^ . . . ^ be the rule

e h f t : {0}
© h (^i = p i , . . . , LK = pfc, . . . , £ n = p n) : (*,*: 0)

Then the inference rule for object construction is equivalent to the set of rules

{ %nk$n...in | 1 < A; < n and 0 is a type and t i , . . . , t n are identifiers} ,

and is therefore a normal rule.
A

On the other hand, when 0 is a finite set of types and a is an active type, let Zga be
the rule

0 i H Pi : {0 —> « }
©2 H P2 : 0 when 0 X C 0 , @ 2 C 0 , and 0 X J_ 0 2

O \~ P1P2 : a

Then the second inference rule for application is equivalent to the set of rules

{ %ga I 0 is a finite set of types and a is a t y p e } ,

and is therefore a noninterference rule.

The reader may verify tha t , except for the rule for identifiers and the two rules for
abstract ion, every inference rule is either a normal rule or a noninterference rule.

P r o p o s i t i o n 12 If ©' < Q and 0 h p : 0 then 0 ' h p : 0.

Proof: By induction on the proof size of 0 h p : 0.

(1) If the proof root is the rule for identifiers, then p is an identifier 1 and 0 e Qt. Since
Q'L < Q L , there is a 0' € Q'L such tha t 0' < 0. Then the identifier rule gives 0 ' h t : 0' and
the subtype rule gives 0 ' h t : 0.

10

(2) If the proof root is a normal rule, then p must have the form e(pi , . . . , p n) , and the
premisses of the rule must have the forms 0 h pi : 0U . . . , © h pn : 0n. By the induction
hypothesis (applied to each member of each 0 t) , 0 ' h pi : #i, . . . , © ' h p n : 0 n , and by the
rule used at the root, 0 ' h e(pi , . . . , p n) :

(3) If the proof root is a noninterference rule, then p must have the form £(pi,P2) and
the premisses of the rule must have the forms @i H p x : $i and 0 2 h p 2 : 02, where © x and
@2 are subsets of 0 such tha t 0 X JL 0 2 . By Proposit ion 11, there are subsets ©[and © 2 of
0 ' such tha t ©i _L 0!>, ©i < ©i , and ©^ < 0 2 . By the induction hypothesis, ©i h pi : 0X

and ©2 H p 2 : 02? and by the rule used at the root, 0 ' h e (p i ,p 2) : 0.

(4) If the proof root is the first rule for abstraction, then its premiss has the form
[$ | L: 0] h • • • , where $ is a passive subset of 0 . By Proposition 8, there is a passive
subset $ ' of ©' such tha t $ ' < $. Then [$ ' | L: 0} < [$ | L: 0] , and thus the induction
hypothesis allows us to replace [$ | i: 0] by [$ ' | t: 0], and the rule at the root allows us
to replace 0 by ©'.

The more straightforward case where the proof root is the second rule for abstraction
is left to the reader. (End of Proof)

P r o p o s i t i o n 1 3 (a) / / <F> is passive and 0 h p : <J> then there exists a passive $ C 0 such
that $ h p : <F>.

(b) 7/ 4> is passive and 0 h p : 4> then there exists a passive K 0 such that $ h p : ft

Proof: By induction on the proof size of $ h p : <J> or $ h p : ft Within the induction step,
we prove (a) by case analysis of the proof root and then show tha t (b) follows from (a).

(a l) If the proof root is the rule for identifiers, then p is an identifier i and <F> e 0 t , so
tha t one can take $ to be [L: { $ }] .

(a2) If the proof root is a normal rule, then p must have the form e(pi , . . . , p n) and
the premisses of the rule must have the forms 0 h pi : ft, . . . , 0 h p n : <£n, where the
ft's are passive. By the induction hypothesis there are passive $ l 5 . . . , $ n C 0 such tha t
$ i h pi : ft, . . . , $ n h p n : <£n. Let $ be $ i U • • • U $ n , which is a passive subset of 0 .
Then, since $, C $ implies $ < $ t , Proposition 12 gives $ h pi : ft, . . . , $ h p n : $ n , and
the rule used at the root gives $ h e(pi , . . . , p n) :

(a3) If the proof root is a noninterference rule, then p must have the form e(p\,p2)
and the premisses of the rule must have the forms ©i H p x : ft and © 2 h p 2 : ft, where
©i and 0 2 are subsets of 0 such tha t 0 2 ± © 2 , and ft and ft are passive. By the
induction ^hypothesis there are passive $ i C 0 X and $ 2 C 0 2 such tha t $ i h pi : <£x and
$ 2 h p 2 : 02. Let $ be $ i U $ 2 , which is a passive subset of 0 . Then $ i and $ 2 are subsets
of $ tha t , since they are passive, satisfy $ x _L $ 2 - Thus the rule used at the root gives
$ H ^(Pi ,P2) : 0.

11

(a4) If the proof root is the first rule for abstraction, then its premiss has the form
[$ | i: 0] h • • • , where $ C 0 is passive. Then, since $ is a subset of itself, we can replace
0 by $ in the consequence of the rule.

The proof root cannot be the second rule for abstraction, since the consequence of this
rule never has the form 0 h p : <t> for passive <f>.

A A

(b) If 0 h p : <f>, then 0 h p : <j>i for each of the finitely many <f>i e <f>. From (a), for each
<f>i there is a passive $t- C 0 such tha t h p : fa. Let $ be the union of these which is
a passive subset of 0 . Then, since $f- C $ implies $ < $ t , Proposit ion 12 gives $ h p : fa
for each fa, and thus $ h p : fa (End of Proof)

A A A A A A

P r o p o s i t i o n 1 4 If 0\ and 02 are subsets of 0 such that 0i ± 02} and 0 h p : 0, then there
A A

exist subsets ©i and 0 2 of © suc/i t/iat «uc/i that ©i ± @ 2, 0 i h p : 0\9 and @ 2 h p : 02.

A A

Proof: If 0i is empty, take ©i to be empty and @2 to be ©. If 02 is empty, take 0 2 to be
A A A A A

empty and © x to be 0 . If 0i and 02 are passive, take <f> to be 0i U 0 2 , use Proposit ion 13b,
and then take bo th ©i and @2 to be $. (End of Proof)

With these preliminaries, we can prove the basic relationship between typings and
substi tut ions. We write (pi/i —» p2) to denote the result of subst i tut ing p 2 for the free
occurrences of i in pi , with renaming to avoid identifier collisions.

A A

P r o p o s i t i o n 15 / / [©i | i: 0] h pi : 0, @ 2 h p2 : 0, and ©i and 0 2 are subsets of 0 sucA
i/iat ©x J_ 0 2 , then 0 h (p i / t —> p 2) : 0.

Proof: By induction on the proof size of [©i | i: 0] h pi : 0.

(1) If the proof root is the rule for identifiers, then pi is an identifier C and 0 e [©i |
0 If L' = ^ then 0 e 0 and (p i / t —> p 2) = p 2 , so tha t @2 h p 2 : 0 gives @2 h (pi/t —• p 2) :

0 and, since 0 2 C 0 implies 0 < © 2 , Proposit ion 12 gives 0 h (PI/L —• p 2) : 0. On the

12

other hand, if i1 ^ i then 0 e ©i</ and (piA -> p2) = i\ so tha t ©i h (px/t p2) : 0 and,
since ©i C © implies © < ©i, Proposition 12 gives 0 h (pi/t -> p2) : 0-

(2) If the proof root is a normal rule, then px must have the form e(pn, . . . , pin), which
is constructed from p n , . . . , pin without using binding operators, and the premisses of the
rule must have the form

[©i | *:0] H P l l : 0 ! . . . [©i | u0] h p i n : 0n .

By the induction hypothesis (applied to each member of each 0 t) ,

0 H fan A -> ft) : h ... O h (p l n / t -> p2) : 0 n ,

and by the rule at the root,

© H e((piiA P2), • • • , (Pm/^ -+ P2)) : 0 .
But since e is constructed without binding operators,

e((ftlA-*ft)» ,{PLN/*>-+ P2)) = (̂ (Pll, ••• jPlnJA"* ft) = (PiA-* ft) •

(3) If the proof root is a noninterference rule, then pi must have the form e (p n , p i 2) ,
which is constructed from p n and p12 without using binding operators, and the premisses
of the rule must have the forms

[0 i i I H P11 : ${ and [0 1 2 | ^ :0 2] h p12 : 0'2 ,

where

0 i i C 0 ! 0 1 2 C ©x 0 n JL 0 1 2

01 C 0 0 2 C 0 0i ± 0 2 .

Then, since 0 2 h P2 : 0, Proposition 14 shows tha t there are 0 2 i and 0 2 2 such tha t

0 2 1 C 0 2 022 C 0 2 021 ± ©22

©2i l~ P2 : #i ©22 h p 2 : ^2 •

Since ©i _L @ 2 , Proposit ion 9 gives

©11 _L ©21 ©12 ± ©22 ©11 ± ©22 ©12 J- ©21 •

Then the induction hypothesis (applied to each member of §[and 6'2) gives

© n U ©2i I" (p n / t -+ P2) : $[©i2 U ©22 \~ (PU/L pa) : 6'3 .

By Proposit ion 10, (Q N U 0 2 i) J. (@i 2 U ©22)- Thus the rule used a t the root gives

© I" « ((p n / t -+ P 2) , (pia/t -»• P2)) : 0 ,

13

or, since E is constructed without binding operators,

0 h (f t/t -> p 2) : 0 .

(4) If the proof root is the first abstract ion rule, then its instance must have the form

[[*x|6;l]|t';g'] 1-^:0'
[0 i | i:0] h (At'r^o.pi) : * ' - p *

where 0' C 0O> $i C © x is passive, and C 0 is passive. Moreover, since renaming
obviously preserves typings, we can assume without loss of generality tha t C is distinct
from L and does not occur free in p ^ and thus tha t 0 2 maps £ into the empty set.

A A A

Since 0 is a passive subset of 0 and 0 2 h p 2 : # 5 by Proposit ion 13b there is a passive
A

$ 2 Q 0 2 such tha t $ 2 h p 2 : (F>. Since i/ ^ the premiss of the abstract ion rule instance
can be rewrit ten as

[[* i | t ' : f '] l « £] » - | > i : * ' .
and since $2t' is empty and $ x and $ 2 are passive,

[*i | i':0'] ± $ 2 and [$ x | t ' : 0 '] u $ 2 = [iU 2 | i':6'] .

Thus the induction hypothesis gives

[$ 1 U $ 2 | . ' : 0 '] ^ (p i A - P 2) : ^ ,

and, since $ i U $ 2 is a passive subset of 0 , the first abstract ion rule gives

0 h (\L':0o. (pi/t -> p 2)) : 0' -p> 0 ' .

Finally, since 0 is distinct from i and does not occur free in p 2 ,

((Ai':0o. Pi) A ft) = A^:^o. (piA -> p2) .

The simpler case of the second abstract ion rule is left to the reader. (End of Proof)

Notice, however, t ha t the converse of Proposition 15 does not hold. For example,
suppose

Pi is (x.a)(x.b)
p 2 is (a = y, 6 = z)

t is i
0 is [y: {{comm} —• comm} | z: {comm}]
0 is comm

Then 0 h (pi/i -> p 2) : 0 is

[y: {{comm} —> comm} | z: {comm}] h ((a = y,6 = z) .a)((a = y, 6 = 2).6) : comm,
14

which is a valid typing. However, there are no 0 l 5 0 2 C 0 and 0 such tha t

[©i | x:0] h (x.a)(x.b) : c o m m

0 2 h {a = y,b = z) : 0 ,

since the second typing requires every member of 0 to be either 6: c o m m or a: 0 —• c o m m
where c o m m e 0\ which makes the first typing impossible.

From Proposit ion 15, the reader may verify tha t be ta reduction preserves typings:

P r o p o s i t i o n 1 6 If © h (\L:0$. p i)p 2 : & then 0 h (pi/o —*• p 2) : 0-

The reader may also verify tha t the reduction of tuples, and its inverse, preserves typings:

P r o p o s i t i o n 1 7 0 h (LX = p x , . . . ,tk = pk, . . . ,<,n = p n) . ^ :0iffQ\~pk : 0.

5 . T y p e c h e c k i n g

To show tha t the typings defined in the previous section can be checked, we define a
computable typechecking function \&, which accepts a type assignment and a phrase. Es
sentially \&(0o, p) produces a finite set 0 of types such tha t 0 O f~ p : 0 holds if and only if
there is a member of 0 t ha t is a subtype of 0. However, \&(0 o ,p) also produces additional
information: the 0 e 0 are paired with type assignments 0 C 0 O t ha t are jus t sufficient to
give 0 h p : 0. Thus \&(0 O , p) is a set of pairs, each consisting of a type assignment and a
type. This function is defined by induction on the s t ructure of phrases:

(© o , A t : 0 o . p) =

{ (0 , 0 -p>0) ([0 | L:9],9) e # ([0 O | t:8o],p) and 0 t = {} and 0 passive} U

{ (0 , 0 —• 0) ([0 | t :0] ,0) e # ([0 O | I:0o],p) and 0 t = {} and 0 not passive}
#(©o ,P iP2) = { (0 i U 0 2 , 0) | 0 X ± 0 2 and

(30) (((© i , 0 -p> 0) € # (0 o , P i) or (0 i , 0 — 9) e # (0 o , P i)) and

(3T? e * #(©o,p2)) (©2 = U and (V0' e 9) [n9'\2 < 9')) }
6'ES

n
¥(e 0 ,<n = pi, . . . , t „ = pn» = U{<e>4*:*> | (©,0) e # (© o , P *) }

fc=i
(© o , p.t) = { (0 , 0) | (0 , 0} e # (© o , p) }

15

#(©o, if Pi then p2 else p3) =
{ (0i U 0 2 U @3, 0) I (30i, 02,03) 0i < bool exp and 0 e 02 LJ 03 and

(01,0!) € #(0o, Pi) and (02,02) 6 #(©o,p2) and (03,03) e #(©0,p3) }
#(©o,0) = {([],int exp)}
#(©o,0.5) = {([],real exp)}
(© 0 , P l + P 2) =

| (©i U 0 2, int exp) (30i,02) 6\ < int exp and 02 < int exp and
(01,0!) e #(0o, Pi) and (02,02) e #(©o,P2) } U

{ (0i U 02,real exp) (30i, 02) 0i < real exp and 02 < real exp and
(0i, 0i) e #(0o, Pi) and (02,02) e #(©o,Pi) }

#(©0,pi := Pa) =
| (©i U 0 2, comm) (30i, 02,6) $i < 6 acc and 02 < 6 exp and

(0i, 0i) e #(0o, Pi) and (02,02) 6 #(©o,Pi) }
#(©o,Pi;p2) =

| (©i U 0 2, comm) (30i, 02) 0i < comm and 02 < comm and
(0i, 0X) 6 #(©o, Pi) and (02,02) € #(0O, p2) }

#(©o, while pi do P2) =
J (@i U @2, comm) J (30i, 02) 0i < bool exp and 02 < comm and

(0i, 0i) 6 #(©0,Pi) and (02,02) € #(0O, P2) }

#(®o,Pi || Pi) =
J (©i U 0 2, comm) ©i J_ @2 and (30x, 02) 0i < comm and 02 < comm and

(0i, 0i) e #(0o, pi) and (02,02) e #(0O, P2) }
In the equation for #(0 o ,piP2), the expression 0 #(©o,p2) denotes the finite set of all
functions from 0 to #(©o,P2), and [T70']I and [»70']2 denote the first and second components
of the pair rjd'.

This typechecking function meets the following specification:

Proposition 18 (a) // (0,0) e #(0o,p) then 0 C 0O and 0 h p : 0 and if 0 is passive
then 0 is passive.

(b) // 0 C ©o and 0 h p: 0 then (3(0', 0') e #(0O, p)) ©' C 0 and 0' < 0.

16

Proof: (a) By induction on the s tructure of p. We give the details of the case where p is
an application p i p 2 , and leave the tedium of the remaining cases to the reader.

Suppose (0 , 0) e >£(®o?PiP2)- By the definition of \I>, there are Qu © 2 , and 0 such tha t
© = © i U 0 2 , ©i ± 0 2 , and either (©i ,0 -p> 0) or (©i ,0 —• 0) belongs to # (© 0 , P i) . Also,
there is a function rj from 0 to *(©o ,P2) such tha t

©2 = (J [7,0']! and (V0' € 0) [!70']2 < 0 ' .

For each 0' € 0, since rj0' e *(©o ,P2)? the induction hypothesis for p 2 gives [ri$']i C 0 O and
[f70']i H p 2 : [r?0']2 and if [r70']2 is passive then [ry0']i is passive. Then, since [r/0']2 < 0', we
have [r?0']i H P2 ' 0' and, by Proposit ion 1, if 0' is passive then [*70']i is passive. Thus , since
0 2 is the union of [r?0']i over 0' E 0, we have 0 2 C 0 O and @ 2 H p 2 : 0 and if 0 is passive
then 0 2 is passive.

By the induction hypothesis for pi , we have 0 X C 0 O and either © X H pi : 0 -p+ 0 and
©i is passive (since 0 -p> 0 is passive) or ©i H pi : 0 —• 0. Thus 0 = ©x U 0 2 C 0 O and,
by the inference rules for application, 0 H p x p 2 : 0. Moreover, if 0 is passive then our
restrictions on procedural types prohibit the type 0 —• 0 and insure tha t 0 is passive, so
tha t ©x and 0 2 , and thus 0 , are passive.

(b) By induction on the proof size of 0 H p : 0. We give the details of the case where
the proof root is an application rule, and leave the remaining cases to the reader.

Suppose 0 C ©O and the root of the proof of 0 H p : 0 is one of the inference rules for
A A A

application. Then p = P ip 2 , either ©i H pi : 0 -p+ 0 or ©i H pi : 0 —> 0, and 0 2 H p 2 : 0,
where 0 X and © 2 are subsets of © such tha t ©i J_ @ 2. By the induction hypothesis for
Pi and the definition of < for procedural types, there are 0 ' l 5 6', and 8' such tha t either
(©i ,0 ' -p» 0') or <©i,0' —• 0') belong to # (0 o , P i) , ©i C ©!, 9 < §', and 0' < 0.

Since 0 < 0', for any 0" € 0' there will be a 0 € 0 such tha t 0 < 0" and, since © 2 h p 2 : 0,
©2 t~ P2 : 0. Then by the induction hypothesis for P2 there is a {©',0') e #(00, P2) such
tha t 0 ' C 0 2 and 0' < 0. Let 77 be a function mapping each 0" e 0' into such a pair (©', 0').
Then 77 is a function from 0' to # (© 0 , P 2) such tha t [n0"}i C 0 2 and [r/0"]2 < 0" hold for
all 0" e 0'. Let 0 2 = \Je„eS,[n0"]u so t ha t 0 2 C 0 2 .

Since ©i C 0 l 5 0 2 C 0 2 , and ©i J_ 0 2 , we have ©i J_ © 2 by Proposition 9. This
completes the conditions needed to show tha t , by the definition of # ,

<eiue a ,0 ')e¥(eo,piP2)

and also ©i U © 2 C 0 and 0' < 0. (End of Proof)

17

To illustrate type checking, we consider a example tha t is similar to one of the prob
lematic examples at the end of [7]. Suppose [n: { i n t e x p }] C 0 O . Then

([n: { i n t e x p }], i n t e x p) e \&(©o, n)

([n: { i n t e x p }], i n t e x p) € \&(©o, n + 1)

([n: { i n t e x p }] , a : i n t e x p) e * (0 O , (a = n + 1,6 = •••))

([n: { i n t e x p }] , i n t e x p) e * (©o, (a = n + 1,6 = • • -).a) ,

where • • • can be any phrase, even one tha t has no typing. Moreover, if we abstract on any
identifier other t han n , we get

([n : { i n t e x p }] , { } -p+ i n t e x p) e \P(@ 0, Ac: • • •. (a = n + 1,6 = -).a)

([n: { i n t e x p }] , i n t e x p) G ^ (© O , (A C : • • •. (a = n + 1,6 = • • •) . a) (• • •)) •

Thus each te rm of the reduction sequence

(Ac: • • •. (a = n + 1,6 = • • -).a)(- • •) ==> (a = n + 1,6 = • • -).a n + 1

takes on the type i n t e x p under any type assignment containing [n: { i n t e x p }] .

6. T h e R e m a i n i n g P r o b l e m s

Beyond the progress reported here, much remains to be done:

• The efficiency of the typechecking algorithm needs to be understood and, if possible,
improved.

• There is need for an alternative form of procedure tha t can interfere with its argu
ment . Such a construct seems to be necessary to define active procedures recursively
(as can be seen by considering the right side of the fixed-point equation Yf = f{Yf)
when / is active). Another motivation is the desire to regard assignment as a pro
cedure call (as in [6]), so tha t x := x + 1 becomes an abbreviation for x(x + 1).
We speculate tha t such procedures might be obtained by abstract ing on qualified
identifiers (e.g. on x.a ra ther than simply x).

• A substantial generalization is needed to deal with g o t o ' s , escapes, or other opera
tions tha t require continuation semantics.

• A semantic model is needed tha t will make it evident t ha t distinct identifiers possess
noninterfering meanings.

18

Despite these problems, however, the present work illustrates the utility of conjunctive
types. It seems possible tha t their application to the syntactic control of interference may
generalize to the syntactic t rea tment of a variety of program properties.

A c k n o w l e d g e m e n t s The author wishes to thank Bob Tennent and Steve Brookes for
their encouragement, and Mary and Edward Reynolds for their patience.

R e f e r e n c e s

[1] Brinch Hansen, P. Structured Multiprogramming. C o m m u n i c a t i o n s of t h e A C M ,
vol. 15 (1972), pp. 574-578.

[2] Coppo, M., Dezani-Ciancaglini, M., and Venneri, B. Functional Characters of Solvable
Terms. Z e i t s c h r i f t fi ir M a t h e m a t i s c h e Log ik u n d G r u n d l a g e n d e r M a t h e -
m a t i k , vol. 27 (1981), pp. 45-58.

[3] Hoare, C. A. R. Monitors: An Operating System Structuring Concept. C o m m u n i c a
t i o n s of t h e A C M , vol. 17 (1974), pp. 549-557.

[4] Hoare, C. A. R. Towards a Theory of Parallel Programming. In: O p e r a t i n g S y s t e m s
T e c h n i q u e s , edited by C. A. R. Hoare and R. H. Perro t t . Academic Press, London,
1972, pp . 61-71 .

[5] Reynolds, J . C. The Essence of Algol. In: A l g o r i t h m i c L a n g u a g e s , edited by J. W.
de Bakker and J. C. van Vliet. North-Holland, Amsterdam, 1981, pp. 345-372.

[6] Reynolds, J . C. Preliminary Design of the Programming Language Forsythe. Report ,
no. CMU-CS-88-159, Carnegie Mellon University, Computer Science Depar tment , June
1988.

[7] Reynolds, J . C. Syntactic Control of Interference. In: C o n f e r e n c e R e c o r d of t h e
F i f t h A C M S y m p o s i u m o n P r i n c i p l e s of P r o g r a m m i n g L a n g u a g e s , Tucson.
1978, pp . 39-46.

19

