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1. Introduction

Design is the specification of man-made artifacts. Among the reasons one designs is to

both predict the expected performance of the artifact, to make sure these are responsive to

apriori criteria, and to identify the set of actions that will efficiently lead to realizing the

artifact, eg. fabrication planning. Many specifications are used during design, as intermediate

products leading to the final specification.

Until recently, design has been a handicraft. The generation, selection and representation

of intermediate and final specifications have been done manually. Starting about 25 years

ago, computer-aided design (CAD) has developed as an alternative to handcrafted efforts.

During most of this period, CAD has meant the mechanization of specific design tasks, eg.

analysis of the behavior of some form of structure or drawing a perspective of some

assembly, as discrete application programs. Recently, integration of these separate programs

has been pursued in several design fields, involving structuring in a machine readable

database information regarding the product being designed. The product, for example a car,

chemical plant or building, is represented in an evolving integrated model that is a

replacement to the many disparate collections of information traditionally used, i.e. drawings,

engineering calculations, written specifications, etc. The benefits resulting from use of design

databases include reduced costs of preparing data for application programs, especially

analyses, reduced cost of producing the final specification, improved consistency management

af forded by the machine readable model and opportunities for further automation.

Design databases have many of the same functional requirements as management oriented

databases. They must provide effective file management and means of associative access, as

wel l as controls for concurrent use. Both types of database must provide a common interface

to a number of applications. Both types need to be able to generate reports - both tabular

and graphic - and to provide backup in case of system failures. They both must provide

securi ty against unauthorized access. The unique system requirements of design databases

per ta in not to these general capabilities, but from the need to organize information and

process it in a manner that supports design use and decision making.

In this paper, I attempt to lay out the special needs of design databases, as compared to

the facilities provided in conventional database systems now available. Special attention is
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given to the needed system level functions that we have come to believe best respond to the

process of design, as it is now practiced. Our response to these needs is also presented, as

we have approached them in the implementation of GLIDE and GLIDE2. The ideas have been

developed and implemented in GLIDE and GLIDE2 through the combined efforts of a team of

students and staff that has been working on design databases since 19741. This paper is

one of a series by the author's group on information processing in design (see also [Akin,

1979], [Eastman, 1979] and [Lafue, 1979;1979a]).

2. Nature of design

Design has been romanticized in our culture, to an unprecedented degree. In many

people's minds, it is associated with an almost mystical creation of "something new" (see for

an example [Koestler,l970]). But any design is ultimately the composition of existing entities,

though the result may be objects with entirely new properties. Different approaches to

design, then, can be ordered according to the degree that they parameterize existing objects.

Design involving object descriptions whose parameterization is at a disaggregated level and

where the interaction effects have not been thoroughly explored can thus lead to

unanticipated classes of solutions. It is on this class of design that I wish to focus.

Most design problems are decomposed into functional subsystems, where the subsystems

are defined by convention. (For an interesting effort to formally decompose a design

problem into its appropriate subsystems, see [Alexander,1964]). A subsystem is a abstraction

of the total object. The abstraction may be useful because models exist of the subsystem's

behavior along with standards for its performance or because it is compatible with models of

other subsystems [Eastman,1979]. Subsystems typically can be based on any of several

technologies, each having its own models of performance. Thus no one set of models is

sufficient for evaluating subsystems whose technology has not been fixed. Subsystems are

hierarchical. At most levels in the hierarchy, the choice exists (at least theoretically) of

selecting an existing subsystem or designing one's own, recursively. The open-endedness of

design can easily explode when the hierarchical definition of subsystems becomes deep.

The sequential definition of subsystems can follow many different orders. In current

practice, various orders are selected, in response to different problem contexts and goals.

The advantage provided by a particular decision sequence is that if subsystem A is defined

*The participants in this work include Mark Birnbaum, David Baker, Max Henrion, Gil la a Lafue, Robert Thornton and
Kevin Wailar.

For a food review and torn* ntw contributions to tha scientific literature on design, see [Akin, 1979].



before B, then sensitivity of the design of B to changes on A can be explored iteratively.

The reverse, however, is not possible.

Constraints on the sequence of dccisionmaking are the dependencies of variables on each

other. Most design decisions require input values that are the result of other decisions.

Such a relation is called a functional dependency [Bernstein, 1976]. Cyclic dependencies

correspond to simultaneous equations. In practice, functional dependencies restrict decision

sequences only marginally. Experienced engineers and designers rely on normative data for

early estimates of subsystem performance, allowing them to make decisions in almost any

order desired. Iteration allows later replacement of the normative data with a detail design.

Because of the number of dependencies involved, decisions are tentative and are open to

change with new evidence. New evidence commonly takes the form of revised estimates of

performance or resource consumption resulting from the detailing of other subsystems. At

the same time, the cost of iterative changes grows quickly as new decisions are based on the

variables that one desires to change.

Most subsystems affect multiple performances or otherwise interact by consuming common

resources such as available space, dollars, allowed rates of failure, weight, electrical service,

efficiency, maintenance resources, etc. (For an important characterization of subsystem

interactions, see [Freeman and Newell, 1971]). Performance evaluation consists of

determining the value of a dependency for which a criterion has been specified.

Many representations are used in design. Any representation is useful to the degree that

it either helps to maintain specified dependencies or facilitates evaluating them. Thus

multi-functional objectives result in multiple representations.

Eventually, subsystems are defined whose performances can be predicted with satisfactory

certainty and in enough detail to guarantee the artifacts construction. This constitutes a

"complete" design. Currently, specifications for the design are generated in parallel with the

design itself, so that specification preparation is not considered a distinct task.

All of this requires great mental involvement. This involvement has the important

side-effect of providing many cognitive cues to the designer. They are useful for retrieving

from experience possibly relevant uses or contextual conditions not defined in the initial task.

The ability to enrich design objectives in this way is one of the means by which design is an

artistic activity. Extending the set of objectives is an important source of innovation in

design.

This very cursory description of the design process is obviously sketchy, but adequate to

identify the issues I wish to take up shortly. The above description may be condensed into



the following propositions regarding design:

1. artifacts to be designed are decomposed into subsystems. Alternative
decompositions result in different subsystems. Choice of subsystems is an
important design decision.

2. because of the many dependencies and criteria that must be satisfied, designers
should retain control of the decision making sequence, including the ability to
iterate and vary the order of decisions during different iterations.

3. designers should be able to use normative data as a surrogate for detail
designing for any of the subsystems available to them.

4. many representations are needed to effectively evaluate a design's multiple
performances.

5. information flow to and from designers should be of high density, supporting full
engagement of their intellectual capabilities on the design problem.

3. Current limitations of database systems

Current database systems do not respond very well to several of these requirements .

Most of their shortcomings derive from three sources: the static structure of database

systems, the speed of their access mechanisms and their lack of tools for managing integrity.

3 .1 . Their static structure

Conventional databases distinguish and separate the data definition language (DDL) from

the data manipulation language (DML). The DDL supports declarations of data types such as

records, variables and constants. It also includes various inter-record accessing structures,

such as ISAM, inverted file or linked lists. The database structure as defined in the DDL,

including al! permanent record declarations and accessing structures between them, is called

its schema*. As in most languages, alteration of the schema forces re-compilation of the

database program. The DML, on the other hand, incorporates sort and merge or set

operations, as well as access operators for the various structures offered in the DDL. Thus it

provides tools for accessing the database in application programs. These facilities are

separated so as to respond to different personnel responsibilities, as described below.

Two sets of standards have been proposed for database systems, fenersted by the CODASYL Data Bata Taak Group
[1971] and fh» ANSI-SPARC committees [Jardina, 1977) Thaaa etendarda ara the baaia for moat of the feneret
assertions offarad rafardinf existing database practices.

The CODASYL Report propoaes a einfle schema. The ANSI standard proposes three different types of schemes,
based on different ebstractions of the database.



Applications are developed in general purpose languages, especially COBOL and FORTRAN,

and linked with the database system. Adding a new application to an existing database

involves relinking the system and re-loading the stored data. Thus they are added to

conventional database programs only occasionally. In addition, if the application requires

extension of the schema, then the database must be recompiled.

The users of database systems typically are distinguished as one of three types.

Responsibility for the schema organization and for the loading of data into data structures are

those of a database administrator. This responsibility is distinct from the application

programmer, who develops programs that use but do not alter the database structure (though

record instances certainly may be created or destroyed). Thus the DDL is the tool of the

database administrator and the DML the tool of the application programmer. Users apply the

application programs and/or read data in the database.

For a design database, the costs associated with schema modification and extension of

applications are great. It is often impossible to anticipate at the outset all subsystems

needed or analyses required and their associated subschemas. A fixed schema also

determines the major order of decisionmaking, another conflict with the earlier stated

propositions. Thus a much more dymanic schema definition facility is needed.

3.2. Limited speed of access mechanisms

An attribute of most of the components in a design, that affects both resources and a

variety of performances, is their shape. Shape also provides information for high bandwidth

interaction, eg. graphically. Until recently, the modeling of shape information has focussed on

surfaces [Barnhill and Rcisenfeld, 1974]. However, the last five years has seen development

of a theory of solid shape integrity. These new results allow shapes to be defined and

sculpted as complete structures, without user concern for the geometric or topological

components defining them [Baer, Eastman and Henrion, 1979]. Geometric modeling of both

surfaces and solid shapes requires variable numbers of face, edge and vertex entities and the

numbers change as the shape is manipulated.

This dynamism produces a second problem with traditional databases. Most commercial

database systems rely on fixed format records, where each logical record corresponds to a

physical record on secondary storage. As a shape often has hundreds of geometric entities

defining it and a drawing has hundreds of separate shapes, computing a drawing currently

may require thousands of separate record accesses. If each access is a random one, with

latencies typical of current devices, the result is that geometric modeling of shapes or

surfaces in a database is a slow and expensive proposition. In contrast, interactive design



requires that a drawing be displayable in seconds. Needed is either a hardware technology

that greatly reduces latency times for random accesses on mass storage or else variable

length data structures or the ability to store arbitrary sets of records in adjacent physical

locations for consecutive access .

3.3. Lack of tools to aid integrity management

A third problem is that available database systems provide very limited facilities for

managing integrity in large data structures. While semantic integrity is an important issue in

all database problems, it is especially important in design. Current practice already relies on

multiple representations so as to both maintain and evaluate particular relationships. Keeping

these multiple representations consistent, however, is a significant problem.

Integrity maintenance in databases is wholely the responsibility of procedures that

manipulate data. Thus integrity is the responsibility of (all) application programmers. With

extensible and dynamic schemas, such an approach becomes almost impossible. Some means

to centralize or modularize the responsibility of integrity management is called for. While the

CODASYL and ANSI standards include procedural attributes, few systems have implemented

this feature. Thus no support is provided for the procedural representation of data, an

important tool for integrity management. One line of effort to improve integrity is relational

databases [Codd,1970]. They decompose a database into small sets of variable types (called

Relations) that in all uses have the same semantic relationship. Relational databases can

simplify that task of writing "correct" operations.

4. C-MU work on design databases

The initial work on design databases at Carnegie-Mellon University resulted in a program

called BDS (Building Description System). It was a program for defining and composing large

numbers of polyhedra. Its control structure was a hierarchy of menus [Eastman, Lividini and

Stoker, 1975]. Later, we embedded the geometric modeling facilities developed in BDS into a

general programming language, in a configuration thought directly useful for developing

design applications. The new system was called GLIDE (for Graphical Language for

interactive DEsign) and became operational in 1977 [Eastman and Henrion,1977]. Recently,

we were asked to develop a portable, production version of GLIDE. In this undertaking, we

chose to re-think many of our earlier assumptions. The result is GLIDE2, now being

implemented [Eastman and Thornton,!979]. Below, I attempt to relate the evolution of our

Relational databases can potentially reduce this problem if they support a major restructuring of physical records
when applying the "join" operation. CODASYL databases that support repeating groups also alleviate this problem.



thinking about the system features needed for design databases, as they have been

embedded in GLIDE and GLIDE2.

4 .1 . The Structure of GLIDE

The general conception of a design database can be characterized as shown in Figure 1.

The information describing a particular design effort is organized as a project database. It

holds part and assembly information, data needed for engineering analyses and other

information unique to the current project. The project database may refer to project

independent data, that describes supporting information determined exogenously from any

particular project. Typical contents of project independent data might be material properties

and standard part catalogs. Multiple users access and extend the project database, each

class of user interacting through a unique subschema or view of the database. From the

project database, data is extracted and passed to a number of integrated or stand-alone

application programs. An interface to independently implemented applications would consist

of a mapping program that computes needed dependent data and formats it with other stored

information to generate the proper input stream for the application, in character or possibly

binary form. A number of reports also are generated, including intermediate and final

drawings, specifications, and production information.

Within this general framework, the process of design requires a method for adaptive

extension of the model imbedded in the project database schema. As subsystem technologies

are defined, the data for defining instances of the technology, applications supporting their

definition and programs for evaluating them, must be added to the database.

One approach to adaptive schema development is to rely on procedures capable of

dynamically modifying the database schema. These procedures should be capable of a

variety of actions: adding or modifying existing data in the DB; extracting and computing data

and formatting it for input to another application, or extending the schema format to depict

new data types, variables or constants. The language for defining these procedures needs to

embody the functions of both the DDL and DML of traditional database systems. The implied

goal is to use these procedures to automate the traditional functions of the DB administrator.

In this new organization, his responsibilities are not to determine the physical and logical

organization of data, but to deal with procedural matters, such as to decide on what

application programs should be used and their sequence of application.

In addition to the capability for dynamically evolving a schema, a computing environment

for integrated CAD should include a number of other needed functions, including record

facilities and operations for geometric modeling, graphical input and display functions and a
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Figure 1: Schematic diagram of a design database system.
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user-oriented command processor. Our primary research goals, then, were to provide a

single well-structured environment for both developing integrated design applications,

capable of modifying the database to suit the application, and for executing those applications

in the context of the project database.

These notions were integrated with those of structured programming to produce GLIDE.

GLIDE is a block structured and semi-interpretive language. Its compiler generates code in an

intermediate execution language (called SLIP), as it is entered line by line. At the outermost

block level, each complete statement also is immediately executed. Thus control statements

embedding one or more blocks are executed when the full tree of executable code has been

generated. Compilation is by recursive descent.

Because of the desire for adaptive extension of allowed applications, procedures are

pre-compiled in SLIP and separately stored, then loaded and linked when they are invoked.

This segments the code in large applications. It also allows separately compiled applications

to be added to the database without relinking or reloading of data. Each procedure is stored

as a record on secondary memory, that is automatically accessed and linked when it is called.

Recursion, of course, is supported. Pre-compiling with run-time linking requires the user to

explicitly define those entities that are to be imported into a procedure's execution

environment. The name and type of external objects, including the parameters of procedures

and their types, are defined in an "external" declaration.

GLIDE provides as simple types real, integer, text (variable length) and boolean. These

may be used to define either variables or user-defined attributes (corresponding to a type

declaration). Attributes may be used only to define the components of a Form Record, the

general purpose record type. For defining relations between records, GLIDE provides a

pointer type, called an Item, that may be assigned references to record instances. Both

variables and attributes may be of type Item. In addition, a Set Record is provided, which is

a variable length unordered list of Items. Through these variable types and structures, GLIDE

supports the schema organization recommended by the CODASYL standard.

For geometric modeling, GLIDE provides a Topology record type, for storing the adjacency

structure of faces, edges and vertices and the Polyhedron record type, for storing the

geometry of these entities. Both are variable length, to support shape changes while still

providing fast access. GLIDE includes the Euler operators for defining Topologies, [Eastman

and Weiler, 1979] and the spatial set operators for sculpting and defining complex shapes. It

also includes a Location attribute for placing objects in Cartesian space and a MOVE operator

for relocating and rotating them. Also included are orthographic and perspective display

transformations, simple alphanumeric 1-0 and cursor input, plus translations between screen



and project coordinates for graphic 1-0. These operations can be used to define or

manipulate shapes with planar or approximated simple curved surfaces [Birnbaum, et al,

1978].

GLIDE recognizes two modes of declarations. These correspond to the static and dynamic

modes in Pascal. Local (static) declarations are managed via a stack and exist for only limited

periods of time. Global declarations are allocated to database records and exist permanently.

At the end of a session, the global symbol table is saved along with the records and record

directory for use in later sessions.

Global declarations are given a local identifier during compilation that is used in all compiler

generated code. Global declaration entries are made only at execution time, however, and

thus can be executed conditionally or from within procedures. Record instance creation is of

course a run-time event.

In general, global entries are managed with a reference count. Undeclare operations

eliminate the name of a variable, which is one of its references. When the reference count

drops to zero, a record is deleted automatically.

Because declarations and instantations are run-time events, the compiler cannot check

these and run-time checking must be extensive. Attribute identifiers and their type are

stored in record instances with their values and searched at run-time. (This search time is

inconsequential in comparison to record 1-0 costs).

In GLIDE types are weak. The dynamic adding of record attributes results in the

compile-time definition of a type having no information about record organization. Thus a

type corresponds only to the structure used, eg. Form, Polyhedron, Topology, Set, and to the

simple scalar types.

GLIDE is written in Bliss for the TOPS-10 operating system. It occupies 58K words of core

plus a working area that may be sized by the user [Eastman and Henrion, 1979].

4.2. Experience With GLIDE 1

GLIDE is in use at six institutions. It has been used in a variety of applications, including

architecture, civil engineering and machine design. In October, 1978, we were given the

opportunity to develop a portable production version for the U. S. Army Corps of Engineers,

based on the performance of its prototype version. This provided the opportunity to

re-consider earlier decisions and alter the language where appropriate. In our experience

with GLIDE, three types of shortcomings suggested basic problems:
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1. while the goal of an adaptive program and schema structure was achieved, this
adaptiveness introduced new problems. Global attribute types applied across all
applications; an attribute name could be used only once. Thus an application
programmer had to know all attribute names and some of the associated
semantics in order to develop an application without duplicate definitions.
Application development and especially schema extension required
comprehensive knowledge of the total database schema, or more accurately, all
possible schcmas in which the application might be applied. As a result,
combinatorial issues allowed only modest forms of extensibility. Instead of
automating the role of database administrator, we seemed instead to have
required ewery application programmer to become a database administrator.

2. in GLIDE, compilation and invocation time checking of records is weak; an
argument is checked as a simple type, or as a record structure type, but no
checks are made that the components of a record match what the program
expects. Any command was subject to failing half-way through, leading to half
completed updating and thus logical inconsistencies and integrity failures.
Combined with only simple forms of exception handling, the result was a fragile
system that could easily mangle a database, making it ill-structured for the
desired applications.

3. in predefining the record format for polyhedra, trade-offs were made between
fast execution and the desire to make very complex polyhedra. Also, surface
types and attributes for faces, edges and vertices had to be fixed. Any fixed set
of choices for the record format used in geometric modeling turned out to be
inadequate for some application. Thus a more flexible means to add or modify
geometric entities seemed desirable.

These shortcomings, plus the requirement for portability, became the motivations for

modifying GLIDE. In addition, certain logical inadequacies in syntax and semantics were also

addressed.

4.3. The Extended Objectives of GLIDE2

In order to respond to these issues, several significant changes were made in the design of

GLIDE2. The easiest one to respond to was the limitation on the data structures supporting

geometric modeling. Whereas we had assumed that it was possible to define at the system

level a general structure for geometric modeling, this turned out to be premature. In GLIDE2

we eliminated these record types and instead provide adequate structures for developing

different geometric models, to be offered as system records and procedures. This flexibility

is achieved at a slight cost in processing speed.

The first two problems required a more detailed rethinking of the system design. It was

clear that schema extensions, without strong aids for managing integrity, lead to inevitable

run-time errors. There are two general approaches to improving integrity: First, better

compile-time type checking can reduce the number of run-time errors encountered. Second,
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better rules and procedures could improve the structure of integrity relations and thus

simplify the kinds of integrity issues programmers have to deal with. Strong compile-time

type checking, however, stylistically is not normally considered consistent with an adaptive

system structure. Strong compilation type checking typically results in a rigid static

organization of data and process. The compiled types define the semantics accessible by

programs. New programs may use existing types but new or altered types require

recompilation of the program.

In the earlier version of GLIDE, now called GLIDE 1, the application programmer was

required to have global knowledge of the database context in which each application would

be used, in order to manage the integrity relations between the extensions associated with

the application and its context. This greatly limited the form of extensions that were

possible. More general forms of extensibility seem to require that only (local) knowledge of

the schema context should have to be known.

Local extensibility, as we understand it, involves the following four issues:

1. local naming of permanent data and processes. This implies a segmented name
space, plus either compile-time equivalences and/or multiple pointer references
for accessing shared data.

2. the ability to define new records and the- access paths between them and
existing records during execution.

3. managing the global integrity of the database, including the correctness of data
in the extensions vis-a-vis known permanent data as well as with other
extensions.

4. adding new applications to operate on the extended data schema during
execution.

The database extensions must be well structured, especially if integrity is to be

guaranteed. The kind of structure we envision, that supports a combination of extensions, is

shown in Figure 2. The database schema is organized as a "canonical model" of the object

being designed. Extensions are appended to the canonical model or to other extensions.

What they are appended to is determined by what existing information they depend on, eg.

their functional dependencies. However, the functional dependencies may be in both

directions, ie. an update of data in the extension may require an update in what it is

appended to, and vice versa. Integrity of the extension and canonical model must be

managed when updates are initiated in either location.
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Figure 2: Modular extension of a database schema.

4.4. The Structure of GLIDE2

These functional needs suggested significant changes from the previous version of GLIDE,

especially in the area of type definition. The needs also identified functional capabilities not

adequately dealt with in existing language designs. In order to focus our efforts on these

new issues and not divert effort to re-inventing other better understood language features,

we chose to make GLIDE2 an extension of an existing language.

An obvious choice was Pascal, which was previously agreed to be the new implementation

language. Pascal is strongly typed, incorporates a powerful set of structuring mechanisms,

incorporates in its heap a run-time form of data allocation and it is relatively portable

[Jensen and Wirth,1974]. In addition, it is amenable to the basic modifications needed to

make a database language. The heap in standard Pascal can be replaced with a space

management system, allocating to secondary storage. This space manager can also be made

to manage routines compiled in P-code, so that a program is segmented and automatically

swapped in and out of primary memory. The symbol table for the dynamic space manager

(now the permanent database) can be stored at the end of a user session along with the

record directory of the space manager for automatic re-start in multiple session use. Also,

the outer block level can be made interpretive, so that compilation and execution follows each

complete outer block statement.

The other features we desired, however, were more difficult, especially because they have
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several possible implementations, each with differing side effects. Below, 1 outline some of

the issues considered and the strategies followed for: segmented namespace, schema

extensions and conversion, and integrity management. These features are still under review

and some may be modified. We drew upon the experience of other recent language design

efforts, especially Euclid [Lampson,1977], Telos [Travis, et al,1977], ALPHARD [Shaw, Wulf and

London,1978] and the many papers reviewing the features of Pascal. For other extensions

and details of the design of GL1DE2, see [Eastman and Thornton, 1979}

4.4.1. Segmented name space

Local naming of variables involves two issues: multiple use of common names, and accessing

common data with differing names.

In most languages, (including Pascal), local use of non-unique names is allowed for stack

allocated items. Uniqueness is required only at the block level. Sharing stack allocated

variables is sometimes provided by an equivalence declaration (Wulf, et al.,1971) but is not a

great importance for our objectives. Thus local naming is an issue only for permanent items

defined in the database. Sharing of dynamically allocated data items and accessing them using

different names is provided by the Pascal pointer. Non-unique names, however, implies some

form of structure to the global namespace that is not provided in Pascal.

Our method for segmenting the namespace was to add a new construct, called a Frame, in

which all permanent declarations reside and which is the context for all actions. Frames are

organized in a tree; multiple Frames may be declared within another one, but each has only

one "parent" Frame. One Frame, called the Root, has no parent. Only one Frame is the locus

(or context) of action at any moment and is called the current Frame. Execution of any

process assumes that all objects it refers to without Frame qualifiers are within the current

Frame. Thus Frames may have declared in them any of the objects supported by GLIDE, in

any order. (Deletion is a more complex issue, see Eastman and Thornton (1979), pp. 23-25).

Names within a Frame must be unique. Objects outside the current Frame must be identified

relative to it. A path through the Frame hierarchy may be specified that starts in the current

Frame and ends with the simple Identifier for the desired object. This construct is called a

Pathname and is defined with the following syntax*:

syntax vd hmrrn it that proposed by Wtrth [1977].
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Pathname = [FrameSpecifler WV1 Identifier.

FrameSpecIf ier = Frameldent If ier { "V Frameldent If ler }§

Frameldentifier = Identifier "ROOT" | w l w | { WV I }

Two special Framenames are provided: ROOT for the root Frame and S for the parent of

the Frame now accessed. A Pathname through a Frame hierarchy is specified by listing the

Frame names that must be traversed, each separated by "\". In addition to the normal set of

actions, we add the ability to move the locus of action from one Frame to another, using the

commands ENTER (Frame) and LEAVE. (S and ROOT do not alter which is the current Frame.)

Other operations are provided for creating and destroying Frames.

It is assumed that different designers will have their own Frames in which to operate.

Some data will be unique to one Frame; other data will be shared by several, using pointer

variables (with possibly varying names) for their common access. Applications can rely on

local names within the context provided by a Frame.

4.4.2. Schema extensions

Schema extension involves, in addition to defining new records and instances of them, some

way to access the new records from existing records, or vice versa. In a strongly typed

environment, these access paths must be defined by types that are extensions to the

definition of the existing types. Three classes of type extension are possible:

- using an existing type to define a new type. The new type can be called a
complex type and a type used in defining the complex type a base type. Access
to all the fields of some complex type should be possible with no possibility of
run-time errors.

- a more powerful extension is to extend a type and all the variables and
components it defines by another type. The extension adds new fields to the
existing variables. Again, strong typing should prevail.

- the most general type extension is to an individual variable. That is, a variable
is extended to be the union of its current type and some new base type.

Simply allowing new components to be added to existing types (and possibly all variables

of that type) loosens type definitions and results in the possibility of run-time errors. Thus,

in parallel to the notion of type extension, means must be provided for accessing the

extensions, without the possibility of run-time errors, eg. by providing unambiguous

determination whether or not the extended components are present in a particular variable.
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This implied to us not only that a type extension results in an item being composed of

multiple types, but that the components of only one type are accessible at a time.

Conversion from one type to another must be handled explicitly.

In GLIDE2, type conversion is provided by a special form of discriminating case statement,

called a Typccase. The Typecase has the following syntax:

TypeCaseStatemcnt = "TYPECASE- Selectorldent " : = " Expression
"OF" TypeCase { M r TypeCase } [ -OTHERWISE- statement
{ M r statement } ] "END\

TypeCase = [TypeCaseLabel " : " Statement],

TypeCaseLabel = Type lden t i f i e r ,

Se lec to r lden t = I d e n t i f i e r ,

The Selectorldent can be a variable of any type. The statements internal to the Typecase

statement are labelled with type identifiers, called TypeCaseLabels. In the execution of the

Typecase statement, each of the TypeCaseLabels is compared, in order, with the allowed type

conversions of the Selectorldent. For each match, the corresponding statement is executed.

Within each executed statement, the Selectorldent has as its type the type matching the

TypeCaseLabel.

The Typecase statement isolates the conversion of a dynamic variable of one type to

another type, allowing the extended fields to be accessed. The conversion is executed only if

it is legal. The result is that programs not accessing an extended type need not be changed

in any way. A schema extension however, defines new types that can be accessed by the

applications that require them, using the Typecase for the conversion.

Since the third type of extension, of individual variables by a new base type, seems

inevitably to result in run-time checks on the type of each data object and because its

possible applications were not well understood, it has not been incorporated in GLIDE2. The

first two have. They allow an application programmer to define extensions to the types

available to a CAD system and to the components of existing records. Type extension of

existing variables requires recompilation of the extended data objects but not the code that

accesses them.

Tha currant syntax provides • compile-time definition for defining new types as an extension of existinf ones. I t
also provides s run-time procedure for extending existing types and all declared objects of that type or which use it aa
• component. The need for both compile-time and run-time constructs is beinf questioned, and %mdmr review.
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4.4.3. Integrity management

Integrity of the extended model must be managed in two ways, corresponding to the two

ways that updates may come about. Updates to the extended part of the schema can rely on

operators provided within a structured programming Module that defines the extension, eg.

the Form construct in Alphard [Flon,1975; Wulf, London and Shaw,1976). Such a structure

type has been added to those provided by Pascal, in part because of its general value in

supporting structured programming. A Module may include a number of fixed components,

including types and procedures. It is an isolatable construct that has no Knowledge about

objects outside of itself (unless they are explicitly Imported) and likewise the names internal

to the Module are not available to be accessed from outside of it unless they are explicitly

Exported. This provides a hiding mechanism that allows the programmer a narrow and

well-defined interface between the outside world and the information internal to the Module.

Types declared within a Module may not be Exported, though those outside may be Imported.

Imported objects are bound to their corresponding objects for the scope of execution.

Objects of type Module can be created in the same manner as other data types, eg. by

declaring them or by dynamic creation.

For the needs of CAD, the definition of a Module may incorporate a schema extension, in

terms of the new type definitions internal to it and in terms of extensions to existing types,

the procedures that use the extended data and the operators allowed on the extended data.

Instantiation of the Module creates the schema extension, as data of new types related to

extensions of existing types. Because the application programmer knows to what part of the

already extant schema the extension is related to, the Module operators can maintain both the

internal integrity of the extension and the integrity resulting from modifications to the

extension and requiring updates or checking of the extant schema.

Updates to the canonical model either directly or indirectly by the Module operators,

however, must respond to the effects of many uncoordinated extensions. An update to it may

have many effects, not known at the time the canonical model was defined. Needed is some

way to add modularly to the semantic definition of the extant schema those relations it has to

the extensions. These definitions must be additive in their effect.

Such integrity management goals were first explored in languages for artificial intelligence

(AI), such as the Planner family of languages [Hewitt,1971]. They provided the concept of a

"demon", a procedure that could be executed after any action to manage local semantic

relations. An alternative tool for semantic integrity was developed in both AI and database

research in the form of integrity constraints. An integrity constraint is (1) an assertion

regarding the database that must be true for its data to be semantically meaningful. In order
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to apply such an assertion, other information is required, including: (2) when the assertion is

to apply and (3) the action to be taken when it does not. These three components are

integrated into an operation called an integrity check. An integrity check is executed just

prior to or after access to the data object it is bound to. It executes in one of three

conditions: on a Read, a Write or Delete. An integrity check is bound to one of three

possible semantic units, eg. by their simple types (or in Relational databases, to domains), or

by their structured types (corresponding to Relations in the Relational model of data) or by

the variables themselves (Relational tuples) see McLeod and Hammer,[1976]. Integrity checks

differ from demons by changing the locus of control from a central mechanism that executed

all integrity procedures after every action, to execution of a procedure only with a particular

data access. The latter form could be structured to execute an integrity assertion only when

one of the arguments of the predicate was altered.

We have implemented a limited form of integrity check mechanism and call them System

Invoked Routines (SIR). In our implementation, the choice was in how to best associate

procedures to a data item. The logical choice was to bind SIRs to types, both simple and

structured ones. However, the need to add integrity procedures to an existing schema meant

they would be added as type extensions. This implied however that Typecase conversions

would have to be defined initially in all code accessing variables that might eventually have

associated SIRs. The Typecase would have to have within it the possible extensions to each

data item in the canonical model. These were exactly the kinds of responsibilities and

required foresight we wanted to remove from the application programmer. Alternatively,

explicit type conversions could be abandoned. But this would reduce the strength of typing,

which to us was not an acceptable alternative.

A third alternative is to treat a SIR's association with data objects as strictly a run-time

event. They would behave similarly to values and be "assigned" to a variable. Multiple SIRs

could be assigned to a variable, however, and when the variable is accessed, the SIRs are

executed in the order of their assignment. Explicit de-assignment is required to remove them

from a variable.

A SIR is invoked just prior to accessing the object it is assigned to. An implicit system

parameter defines the class of access, eg. READ, WRITE, UNDECLARE. The kinds of access

correspond to entry points within the SIR, so that a unique block is associated with each.

Only the block corresponding to the kind of access is executed.

In the context in which they have been introduced here, SIRs are used to update an

extension to the schema, when the canonical model part of the database, or any other part

that the extension relates to, has been updated. Each schema extension binds SIRs to
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variables that if changed, result in changes to the extension. Each extension can add the

needed SIRs to the canonical model to guarantee its own integrity without knowing about

other possible extensions.

An important question is how to manage integrity constraint processing. In many cases,

immediate propagation is not desired, especially when generating trial alternatives. In other

cases, significant pre-processing is sometimes justified. Lafue is exploring alternative means

of managing constraint processing, particularly delayed propagation [Lafue,!979} The proper

management of SIRs so as to guarantee effective processing is an important research area,

not yet adequately explored.

SIRs can be used in many other ways, beyond integrity management between schema

extensions. They can be used for maintaining security of data, when the USERID is a system

variable. They can be used in place of Module procedures, if this need is ever required.

The Module combined with SIRs offer one means for tractably maintaining integrity in a

large adaptively extended system without re-compilation and without global knowledge of its

structure .

5. Conclusion

A major cost in the development of large programs today is the integration of many

stand-alone segments into one integrated package. (Indeed, this has been a major cost in

implementing the two GLIDEs.) However, the ability to adaptively extend a program and

database, without recompiling, offers a new form of program development that may prove

attractive, we suspect, far beyond the area of computer-aided design. To date, only the two

models, of compilation and interpretation, have been available. The ability of a compiler to

aid in determining correctness and the potential for optimization have made compilation the

logical choice for most system development. GLIDE2 suggests that these virtues may be

combined with an incremental form of system development similar to interpretation that could

significantly reduce the costs of producing large systems.

Note: The work described here was supported in parts by the National Science Foundation,

grant number MCS-76-19072 and by the U. S. Army Corps of Engineers, contract number

DACA88-78-R-0014. Helpful comments on earlier drafts were received from Gilles Lafue,

Robert Thornton and Kevin Weiler. Any inaccuracies in describing our joint work, however,

are the author's alone.

Bindtnf of SIR* to variables is not completely satisfactory •specially from » conceptual viewpoint, but provides the
best combination of features we have been able to realize thus far.
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