TAM — A Compiler Controlled Threaded Abstract Machine?

David E. Culler
Seth Copen Goldstein
Klaus Erik Schauser
Thorsten von Eicken

{tam@boing.CS.Berkeley.EDU}

Computer Science Division
University of California, Berkeley

Abstract: The Threaded Abstract Machine (TAM) refines dataflow execution models to address the critical
constraints that modern paralel architectures place on the compilation of general-purpose paralel programming
languages. TAM defines a self-scheduled machine language of parallel threads, which provides a path from datafl ow-
graph program representations to conventional control flow. The most important festure of TAM istheway it exposes
theinteracti on between thehandling of asynchronous message events, the scheduling of computation, and theutilization
of the storage hierarchy.

This paper provides acomplete description of TAM and codifies the model in terms of a pseudo machine language
TLO. Issuesin compilation from a high level parallel language to TLO are discussed in general and specificdly in
regard to the 1d90 language. The implementation of TLO on the CM-5 multiprocessor is explained in detail. Using
this implementation, a cost model is developed for the various TAM primitives. The TAM approach is evaluated on
sizable 1d90 programs on a 64 processor system. The scheduling hierarchy of quanta and threads is shown to provide
substantial locality whiletoleratinglong latencies. Thisallowsthe average thread scheduling cost to be extremely low.

1 Introduction

Dataflow execution models have evolved considerably since their origina formulation[1, 15], reflecting an improved
understanding of hardware implementation techniques1, 18, 16, 20, 31, 36], parale programming languages[27, 30],
compilation methodg[38, 43], and resource management strategieq9, 34]. Severa hybrid modelg[5, 12, 23, 28]
have been formul ated which eliminate operand matching, avoid redundant synchronization, or use more conventiona
processor organizations. In addition, message driven model14] demonstrate that the architecture need not dictate
the format and handling of tokens, or rather, messages. The Threaded Abstract Machine (TAM) draws together these
diverse investigations into a coherent execution model that can be implemented efficiently on a variety of machine
architectures. It extends previous work by paying particular attention to utilization of the storage hierarchy in the
context of dynamic scheduling and asynchronous message handling. TAM defines a scheduling hierarchy that reflects
the underlying storage hierarchy and alows the compiler to control the dynamic scheduling of computation.

TAM iseasily understood independent of its dataflow heritage as a general framework for self-scheduling pardlel
threads. Threads enable other threads and generate messages, which are received asynchronously from the com-
munication network and in turn enable threads. The key issues addressed by TAM are how resources are shared
among threads, how scheduling is structured to make efficient use of resources, and how arbitrary parallelism can be
represented.

TAM forms a bridge between traditional dataflow and control flow execution models. We have utilized TAM
primarily as an intermediate step in compiling the high-level datafl ow language 1d90 to conventiona parallel machines,
including the Thinking Machines CM-5. Compiling down to TAM involves trand ating a dataflow graph into control
flow among a collection of threads. A code-generator trandates from TAM to the target machine, optimizing for
specific characteristics of the instruction set. Thus, TAM decouples development of novel paralel languages and
innovationin parallel machine architecture, while providing a meaningful interface between thetwo. Hardware design

1This report appearsin the Journal of Parallel and Distributed Computing, Special Issue on Dataflow, vol 18, June 1993.

alternatives can be evaluated by how they accelerate TAM primitives, weighted by the frequency of use of these
primitivesin programs.

This paper provides a compl ete description of TAM as an interface between the high-level compilation process of
paralel languages and the low-level code generation for emerging parallel machines. We begin by placing TAM in
thisbroad context to understand how theissuesit addresses arise from the combination of festures desirablein parallel
languages and the technology constraints on parallel machines. The description centers around an implementation of
TAM called TLO (Thread Language Zero). Whilesome detailsof TLO areinfluenced by 1d90, the conceptsit embodies
are applicableto paralel languages and machinesin general.

Consider for a moment the evolution of sequential machines and languages. Modern sequentia programming
languages allow the programmer to build arbitrary dynamic data structures and to realize sophisticated algorithmson
these structures using complex control flow. In contrast, first-generation languages directly reflected the capabilities of
the underlying hardware. Fortran, for example, did not support dynamic data structures or recursive control structures.
The insistence on supporting these concepts in the Algol family of languages led to the development of abstract
machi nes which demonstrated how to map the conceptsto conventional hardware structureg 25, 33]. Thisroute proved
more effective than supporting the language concepts directly in hardware] 26].

By analogy, many current parallel languages remain close to the underlying machine, constraining the programmer
tolocal datastructuresand static parallelism. For example, most extensionsof Fortran and C with send/receive message
passing provideexactly onethread of control per physical processor and acrude abstraction of communication channels.
An emerging class of languaged[7, 21, 24, 27] letsthe programmer definearbitrary parallel datastructures spread across
the machine and dynamically spawn computations to perform coordinated actions on these data structures. Dataflow
machines attempt to redlize these concepts directly in hardware. TAM, instead, demonstrates how they can be mapped
efficiently onto conventional parallel machines.

A second analogy can be drawn with sequential machines, where technological constraints enforced a consensus
on the machine structure — pipelined, single-chip processors operating on a large register set. The RISC view held
that the architecture should provide a set of efficient primitives, rather than general solutions, allowing the compiler to
optimize for frequently occurring simple cases. For the foreseeable future, parallel machines will consist of a number
of processor-memory modules interconnected through a high-speed network. Processors operate directly on loca
memory and communicate with each other by transmitting messages through the network. Access to aremote memory
location involves delivering a request to the remote processor associated with the memory and receiving a reply at
some later time. Some machines will provide hardware support to accel erate the formatting, sending, and handling of
certain messages, such as remote memory accesses, but the fundamental structure of the machine is unchanged. TAM
defines simple primitivesfor initiating and handling communication events, alowing the compiler to optimize the use
of these primitivesin a manner consistent with the high-level language semantics.

Compiling for parallel machines is complicated because data structure accesses may involve long-latency com-
munication and because multiple threads of control, at least one per processor, must be coordinated. To keep the
utilization of each processor a an acceptable leve, it isimportant to treat remote accesses as split-phase operations,
that is, to continue executing instructionswhile the access completes[17, 35]. In some cases this can be accomplished
using prefetching techniques, but in general multiplexing severa logical threads of control onto each processor, called
multithreading, is required. Coordinating threads of control on separate processors presents similar concerns, but the
latencies involved are usually longer and potentially unbounded. The time for a response is determined by the logic
of the program, rather than by hardware parameters. In general, it is necessary to provide multiplethreads of control
per processor to ensure forward progress, so it isnatural to allow execution to proceed while events are pending. The
challenge in multithreading is to keep the cost of thread switching low enough not to compromise the advantages.
When a thread issues a remote reference it must be suspended and the next ready thread must be scheduled. When
the reference completes it must synchronize with the computation to re-enable the waiting thread. Dataflow research
has focused on the obviouscosts: scheduling and synchronizing threads. However, optimizing scheduling costs while
ignoring the effects on the storage hierarchy leads to unredistic solutions. Instead, TAM exposes the scheduling of
threads so that the compiler can coordinate scheduling with the usual management of the storage hierarchy. To aid in
this coupling, TAM alows groups of related threadsto be scheduled together. Thisreduces the cost of scheduling and

permits the compiler to manage storage resources, eg., registers and local variables, across several threads. Finally,
giving priority to rel ated threads tends to improve cache behavior. Overal, the effect isthat datacan be kept at smaller
and faster levels of the storage hierarchy.

To demonstrate the effectiveness of the TAM execution model, we have designed a threaded machine language,
caled TLO, and implemented a compilation path from 1d90 to TLO. This uses the front-end of the MIT dataflow
compiler, which produces program graphg/41] for the TTDA and Monsoon, with additional passes to partition the
graph into threads and synthesize the control flow. The TLO code is used as a machine independent intermediate
form and can be input into a variety of code generators. To date, we have implemented code generators to trandate
into either C or machine code augmented with Active Messageg[45] or conventional message passing as the network
interface. The code generator described in this paper targets the CM-5 multiprocessor, consisting of Sparc processors
with a memory mapped network interface.

The paper is organized as follows. Section 2 describes TAM in detail, emphasi zing how the storage and scheduling
hierarchies are exposed to the compiler. Section 3 discusses the mapping of high-level parallel languagesto TAM. The
compilation process of 1d90 to TLO isused as an example to show how the compiler can construct “storage directed”
scheduling policies. Section 4 describes the implementation of TLO on a CM-5 multiprocessor, focusing on the costs
of scheduling and of accessing the network. These are combined with run-time statisticsin Section 5 to demonstrate
the effectiveness of the TAM scheduling hierarchy. Section 6 relates TAM to other parallel execution models and
Section 7 summarizes the results and discusses open research problems.

2 The Threaded Abstract M achine

This section describes the TAM execution model. We begin with a general description of the model as a whole and
then describe each aspect in more detail. The detailed descriptions can be skipped on afirst reading. TAM differs
in philosophy from traditional dataflow modelsin that it exposes communication, synchronization, and scheduling so
that a high level language compiler can attempt to optimize for important special cases. The compiler can produce
efficient message handling code that is closely integrated with the scheduling of computation. The integration presents
some subtle trade-offs since efficient message handling and efficient computation place opposing demands on the use
of the storage hierarchy. TAM retains an explicit storage hierarchy to alow the compiler to mediate these demands on
a case-by-case basis.

2.1 Concepts

A TAM programisacollection of code-blocks, where each code-block consists of several threadsand inlets. Typicaly
a code-block represents a function or loop body in the high level language program. Threads correspond roughly to
basic blocks. The activation frameis the central storage resource and the critical concept for understanding TAM. As
suggested by Figure 1, the frame provides storage for the loca variables, much like a conventional stack frame. It
also provides the resources required for synchronization and scheduling of threads, as explained below. Invoking a
code-block involves alocating aframe, depositing argumentsintoit, and initiating execution of the code-block relative
to the newly alocated frame. The caller does not suspend upon invoking a child code-block, so it may have multiple
concurrent children. Thus, the dynamic call structureforms atree, rather than a stack, represented by atree of frames.
This treeis distributed over the processors, with frames as the basic unit of work distribution. Finer grain paralelism
is not wasted; it is used to maintain high processor utilization. Thread paralelism within aframe is used to tolerate
communication latency and instruction parallelism within athread is used to tolerate processor pipelinelatency.

I nitiating execution of acode-block means enabling threads of computation, where each thread isasimple sequence
of ingtructionsthat cannot suspend. Each of the arguments to a code-block potentially enables a distinct thread. A
processor may host many ready frames, (the activation tree is usually much larger than the number of processors)
each with several enabled threads. The TAM scheduling queue is a two-level structure comprising a collection of
frames, each containing one or more addresses of enabled threads in a region of the frame called the continuation
vector. The compiler is permitted to speciaize the frame-level structure, but typicaly it isalinked list of frames per

processor. When a frame is scheduled, threads are executed from its continuation vector until none remain. The last
thread schedules the next ready frame. Thus, the frame defines a unit of scheduling, called a quantum, consisting of
the consecutive execution of severa threads. This scheduling policy enhances locality by concentrating on a single
frame as long as possible.

Instructionsin a thread include the usual computational operations on registers and local variables in the current
frame. The basic control flow operation isto enable, or FORK, another thread to execute in the current quantum. The
SWITCH operation conditionaly forksone of two threads. Threads are also enabled as aresult of message arrivals. Each
code-block contains a collection of inlets, which are compiler-generated message handlers for the remote accesses
and call/return linkage. For example, arguments to a code-block invocation are sent to inlets of the code-block with
the newly allocated frame as the context. Inlets typically deposit message data into the designated frame and post
threads into its continuation vector. Precedence between threads, i.e., data dependences and control dependences, are
enforced using synchronization counterswithintheframe. Synchronizng threads have an associated entry count which
is decremented by forks and posts of thethread. The thread is enabled when the count reaches zero.

Observe that TAM threads are self-scheduled; there is no implicit dispatch loop in the moddl. Thus, the compiler
can control the scheduling by how it choosesto generate forks, posts, and entry counts. Thereisalso no implicit saving
and restoring of state, so the compiler manages storage in conjunction with the thread scheduling that it specifies.
Since threads do not suspend, values that are local to athread can clearly be kept in registers. In addition, whenever
the compiler can determine that a collection of threads always execute in a single quantum, it can alocate vaues
accessed by thesethreadsto registers. Asshownin Section 5 bel ow, observed quantaare usually much larger than what
static anaysis could determine, because several messages arrive for aframe beforeit is actualy scheduled. Since the
frame switch is performed by compiler generated threads, it is possible to take advantage of this dynamic behavior by
allocating values to registers based on expected quantum sizes and saving them if an unexpected frame switch occurs.

Accessing the global heap does not cause the processor to stal, rather it istreated as a specia form of message
communication. A request is sent to the memory module containing the accessed location while threads continue to
execute. The request specifies the frame and inlet that will handle the response. If the response returns during the
issuing quantum, the inlet integrates the message into the on-going computation by depositing the valuein aframe or
register and enabling athread. However, if adifferent frame is active when the response returns, the inlet depositsthe
valueinto theinactive frame and postsathread in that frame without disturbingthe register usage of the currently active
frame. The global heap supports synchronization on an el ement-by-element basis, aswith I-structures[4]. Thus, there
are two sources of latency in globa accesses. A hardware communication latency occurs if the accessed element is
remote to the i ssuing processor and, regardless of placement, a synchronization latency occurs if the accessed element
isnot present, causing the request to be deferred.

Compared to dataflow execution models, TAM simplifies the resource management required to support arbitrary
logical parallelism. A single storage resource, activation frames, that is naturally managed by the compiler as part of
the call/return linkage represents the parallel control state of the program, including local variables, synchronization
counters, and the scheduling queue. TAM embodiesasimpletwo-level scheduling hierarchy that reflectstheunderlying
storage hierarchy of the machine. Paralelism is exploited a severa levelsto minimize idle cycles while maximizing
the effectiveness of processor registers and cache storage.

The remainder of thissection provides amore precise specification of TAM and itsrealizationin TLO. Itisincluded
for completeness and as grounding for the empirical data presented later. However, it may be skimmed on first reading
without compromising the main line of reasoning.

2.2 StorageMode

The TAM storage model includesfour distinct regions: code storage, frame storage, registers, and heap storage. TAM
code storage contai ns code-bl ocks representing the compiled form of the program. It appearsidentical to al processors
and is accessible through fast local operations.

Frame storage is assumed to be distributed over processors, but each frame is local to some processor and

