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SUMMARY This paper presents a general method for com-
puting quantitative information about finite-state real-time sys-
tems. We have developed algorithms that compute exact bounds
on the delay between two specified events and on the number
of occurrences of an event in a given interval. This technique
allows us to determine performance measures such as schedula-
bility, response time, and system load. Our algorithms produce
more detailed information than traditional methods. This infor-
mation leads to a better understanding of system behavior, in ad-
dition to determining its correctness. The algorithms presented
in this paper are efficiently implemented using binary decision
diagrams and have been incorporated into the SMV symbolic
model checker. Using this method, we have verified a model of
an aircraft control system with 10%% states. The results obtained
demonstrate that our method can be successfully applied in the
verification of real-time system designs.
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1. Introduction

A number of algorithms have recently been proposed
for verifying the behavior of finite-state real-time sys-
tems[1],[4],[6]-[8]. These algorithms assume that tim-
ing constraints are given explicitly in some notation like
temporal logic. Typically, the designer provides a con-
straint on response time for some operation, and the
verifier automatically determines if it is satisfied or not.
Unfortunately, these techniques do not provide any in-
formation about how much a system deviates from its
expected performance, although this information can be
extremely useful in fine-tuning the behavior of the sys-
tem.

In this paper we give algorithms to compute quanti-
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tative timing information, such as exact upper and lower
bounds on the time between a request and the corre-
sponding response. Our algorithms provide insight into
how well a system works, rather than just determining
whether it works at all. They enable a designer to de-
termine the timing characteristics of a complex system
given the timing parameters of its components. This
information is especially useful in the early phases of
system design, when it can be used to establish how
changes in a parameter affect the global behavior of the
system.

We model a real-time system as a labeled state-
transition graph, where each path corresponds to an
execution trace of the actual system. This graph is
implemented internally using binary decision diagrams
(BDDs)[2], which generally produce a very compact
representation. By employing symbolic model-checking
techniques[3],[12], we are able to handle extremely
large state spaces with up to 10%° states efficiently. We
show how to determine the minimum and maximum
length of all paths leading from a set of starting states
(representing the request) to a set of final states (repre-
senting the response). We also present algorithms that
calculate the minimum and the maximum number of
times a specified condition can hold on a path from
a set of starting states to a set of final states. These
algorithms are also extended to timed transition graphs
(TTG)[4], a model in which transitions take more than
one time unit to occur. We believe that the techniques
developed can be adapted to other models of computa-
tion as well.

Other approaches for analyzing real-time system ex-
ist. For example, the rate monotonic scheduling theory
(RMS) [97],[10],[13] defines a priority assignment algo-
rithm that guarantees optimal response time[10]. The
RMS theory proposes a schedulability test based on to-
tal CPU utilization; a set of processes (which have pri-
orities assigned according to RMS) is schedulable if the
total utilization is below a computed threshold. If the
utilization is above this threshold, schedulability is not
guaranteed. Moreover, this analysis only considers cer-
tain types of processes with limitations, for example,
on periodicity and synchronization. Another approach
to schedulability analysis uses algorithms for computing
the set of reachable states of a finite-state system [7],[8].
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The algorithms construct the model with the added con-
straint that whenever an exception occurs (e.g. a dead-
line is missed) the system transitions to a special ex-
ception state. Verification consists of computing the set
of reachable states and checking whether the exception
state is in this set. No restrictions are imposed on the
model in this approach, but the algorithm only checks
if exceptions can occur or not.

We develop an analysis method that does not im-
pose any restriction except that the system be modeled as
a set of processes that run in parallel and are defined by
state-transition graphs. For example, the actual func-
tional behavior of each process can be modeled and
analyzed. Schedulability is determined by computing
the minimum and maximum execution times for all pro-
cesses. The process set is schedulable if and only if each
process is guaranteed to finish execution before its next
period starts. Our technique always determines if the set
of processes is schedulable or not, unlike RMS analy-
sis, which may not provide any schedulability informa-
tion if utilization is above the computed threshold. If
the processes are not schedulable, our algorithms deter-
mine which specific deadlines are missed and by how
much. When no deadline is missed, the same results
provide response times for each process, an important
performance measure for real-time systems.

To demonstrate how our tools work, we verify a
simplified aircraft control system. We model the soft-
ware that controls the various components of an air-
plane, and gather timing information about the system
using the tools described above. The system consists of
a set of priority driven processes, where each process is
responsible for a subsystem of the aircraft, such as navi-
gation, display, radar and weapons. The schedulability
of this process set is determined. Moreover the compu-
tation of quantitative characteristics also provides other
valuable results about the system being modeled, such
as:

e The overhead associated with preemption by other
processes. This information is extremely important
for determining the amount of priority inversion in
a system.

e How fast a subsystem responds to an event. For
example, in this model, pressing the fire button
generates a complex sequence of events before the
weapons are actually fired. We were able to deter-
mine the overhead imposed by the firing protocol
and how it affects the overall response time of the
system.

The different types of properties described above
show how versatile this approach is. Many other quan-
titative characteristics can be computed by our algo-
rithms. Moreover, in each case we were able to provide
the user with insight into the behavior of the system, as

797

opposed to only asserting its correctness. This informa-
tion leads to a better understanding of system behavior
and can be essential in improving performance.

2. Modeling Real Time Systems

The real-time systems we verify are modeled using state-
transition graphs. A statev in this model can be thought
of as a vector assigning values to the state variables
V1,Vg,...,U,. The transition relation N(v,v') can be
represented as a Boolean formula which evaluates to
true when there is a transition in the model from the
state U to the state v/, where ¥ = (vi,...,v,) and
v = (vf,...,v},). We assume that the transition rela-
tion is total (i.e. every state has at least one transition).
A path in the transition graph is defined as a sequence
of states Up, U7, 7z, ... such that N(v;,v;17) is true for
every ¢ = 0. In addition, we define a set of initial states,
and all computations are performed on states reachable
from this set.

A set of states can also be represented by a Boolean
formula which evaluates to true if and only if its vari-
ables are assigned the values of the variables in a state
in the set. Note that if S(v) is a formula representing a
set of states and N(v,v’) is a formula for the transition
relation, the formula 3v[S(v) A N(v,v7)] represents the
set of successors to states in S(v). This operation can
be thought of as a function mapping a set of states S(v)
to the set of its successors S’(v').

We use binary decision diagrams (BDDs)[2] to ef-
ficiently represent Boolean formulas and to manipulate
them using the standard Boolean operations. Because
of the close relationship between a Boolean formula, its
BDD, and the set of states satisfying the formula, we
identify these three entities. In particular, sets and set
operations are more intuitive than boolean operations
on formulas or BDD operations so we present our al-
gorithms using sets, but the implementation uses BDDs
and the corresponding BDD operations.

3. Quantitative Timing Algorithms

We first present the lower bound algorithm (Fig. 1). The
algorithm takes two sets of states as input, start and fi-
nal. It returns the length of (i.e. number of edges in) a
shortest path from a state in start to a state in final, If
no such path exists, the algorithm returns infinity. The
function T'(S) gives the set of states that are successors
of some state in S. The function T, the sets of states
R and R/, and the operations of intersection and union
can all be easily implemented using BDDs.

The first algorithm is relatively straightforward. In-
tuitively, the loop in the algorithm computes the set of
states that are reachable from start. If at any point, we
encounter a state satisfying final, we return the number
of steps taken to reach the state.
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proc lower (start, final)
1 =0;
R =start;
R =T(R)UR;
while (R’ + RA RN final = 0) do
=14+ 1;
R=R;
R =T(R)UR;
if (RN final £ 0)
then return :;
else return oo;

Fig. 1 Lower bound algorithm.

proc upper (start, final)
i=0;
R =TRUE;
R’ =not_final,
while (R’ & RA R' N start & 0) do
i=i+1;
R=R/;
R' = T~Y(R') N not_final;
if(R=R)
then return oo;
else return i;

Fig. 2 Upper bound algorithm.

Next, we consider the upper bound algorithm
(Fig.2). This algorithm also takes start and final as
input. It returns infinity if there exists an infinite path
beginning in a state in start that never reaches a state in
final. Otherwise, it returns the length of a longest path
from a state in start to a state in final The function
T—1(S’) gives the set of states that are predecessors of
some state in S’. We also denote by not_final the set of
all states that are not in final. As before, the algorithm
is implemented using BDDs.

The upper bound algorithm is more subtle than the
previous algorithm. A backward search from the states
in not_final is more convenient in this case than a for-
ward search. Proofs of both algorithms can be found
in Ref.[5].

We have also developed algorithms that calculate
the minimum and the maximum number of times a spec-
ified condition cond can hold on a path from a set of
starting states to a set of final states. For this purpose,
we define a new state-transition system, in which the
states are pairs consisting of a state in the original sys-
tem and a positive integer, denoting the number of states
in cond that have been traversed on such a path. Thus,
if the original state-transition graph has state set .S, then
the augmented state set will be S, = S x IN. The aug-
mented transition relation N, C S, x S, is defined in

terms of the original transition relation N C.S X S by

incrementing the integer component & whenever a state
in cond is traversed.

N, ((s,k),(s' k")) = N(s,s)
A" € cond Nk =k+1Vs &cond Nk = k)
The algorithms use the augmented transition re-
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lation and the value of the counter component k to
produce the desired information. We have applied the
same technique to a more powerful model of real-time
systems, timed transition graphs[4], in which the time
taken by a transition is defined by a time interval. These
extensions can also be found in[5].

4. Example — An Aircraft Control System

One of the most critical applications of real-time sys-
tems is in aircraft control. It is extremely important
that time bounds are not violated in such systems. Be-
cause of the risks involved in the failure of an aircraft,
only conservative approaches to design and implemen-
tation are routinely used. Many modern techniques for
software design such as formal methods are not com-
monly employed. We believe that formal verification
can be very useful in increasing the reliability of these
systems by assisting in the validation of schedulability
and response times of the various components.

This section briefly describes an aircraft control sys-
tem used in military airplanes. Such a control system
can be characterized by a set of sensors and actuators
connected to a central processor. This processor ex-
ecutes the software to analyze sensor data and control
the actuators. Our model describes this control program
and determines whether its timing constraints are met.
The requirements used are similar to those of existing
military aircraft, and the model is derived from the one
described in Ref.[11].

The aircraft controller is divided into systems and
subsystems as shown in Table 1, each of which performs
a specific task in controlling the airplane:

e Navigation: Computes aircraft position.

e Radar Control: Receives and processes data from
radars. It also identifies targets and target position.

e Radar Warning Receiver: This system identifies
possible threats to the aircraft.

e Weapon Control: Aims and activates aircraft

weapons.
e Display: Updates information on the pilot’s screen.

e Tracking: Updates target position. Data from this
system is used to aim the weapons.

e Data Bus: Provides communication between pro-
cessor and external devices.

Timing constraints for each subsystem are derived
from factors such as required accuracy, human response
characteristics and hardware requirements. Table 2
presents the subsystems being modelled, as well as their
major timing requirements. In order to enforce the
different timing constraints of the processes, priority
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Table 1  Aircraft controller.
System Subsystem Per. | Exec | %cpu | Pri
Display | status update 200 3 1.50 | 12
keyset 200 1 0.50 | 16
hook update 80 2 2.50 | 36
graph. displ. 80 9 11.25 | 40
store update 200 1 0.50 | 20
RWR contact mgmt 25 5 20.00 | 72
Radar target update 50 5 10.00 | 60
track filter 25 2 8.00 | 84
NAV nav update 50 8 16.00 | 56
steer cmds. 200 3 1.50 | 24
Track target update 100 5 5.00 | 32
Weapon | weapon prot. 200* 1 0.50 | 28
weapon aim 50 3 6.00 | 64
weapon rel. 200+ 3 1.50 | 98
Dat Bus poll device 40 1 2.50 | 68

* Weapon protocol is an aperiodic process with a deadline of
200 ms.

* % Weapon release has a period of 200 ms, but its deadline is
5 ms.

Table 2 Experimental results.

Execution Times

Subsystem dead preempt no preempt
line | min | max | min | max

Weapon release 5 3 3 3 9
Radar track filter 25 2 5 2 10
Contact mgmt. 25 7 10 7 15
Data bus poll 40 1 11 1 14
Weapon aim 50 10 14 2 18
Radar target upd 50 12 19 12 19
NAYV update 50 20 34 20 27
Display graphic 80 10 44 10 43

Display hook upd 80 14 46 14 47
Track target upd 100 26 51 26 51
Weapon protocol 200 1 21 3 46
NAYV steer cmds. 200 35 85 36 74
Display store upd 200 36 95 37 97
Display keyset 200 37 96 38 98
Display status upd 200 40 99 41 101

scheduling is used. The priority assignment has been
done according to the RMS theory [9],[10].
Concurrent processes are used to implement each
subsystem. With the exception of the weapon system,
all other systems contain only periodic processes. The
weapon system contains a mixture of periodic and ape-
riodic processes. It is activated when the display keyset
subsystem identifies that the pilot has pressed the firing
button. This event causes the weapon protocol subsys-
tem to be activated. It then signals the weapon aim
subsystem that has been previously blocked. Weapon
aim is then scheduled to be executed every 50ms. It
aims the aircraft weapons based on the current position
of the target. It also decides when to fire and then starts
the weapon release subsystem. The firing sequence can
be aborted until weapon release is scheduled, but not
after this point. Weapon release then executes periodi-
cally and fires the weapons 5 times, once per second.
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5. Verification of the Aircraft Control System

We have implemented this control system in the SMV
language[12]. The SMV model checker has been used
to verify its functional correctness, while its timing cor-
rectness has been checked using the quantitative algo-
rithms described in this paper. In order to optimize
response time, we have implemented a preemptive sched-
uler. However, preemptability is a feature that may not
always be available. Non-preemptive schedulers are eas-
ier to implement, and allow for simpler programs but
usually increase response time for higher priority pro-
cesses. To assess the effect of preemption in our system
we have also implemented a non-preemptive scheduler.

Using the model described above, we were able to
compute the schedulability of the system. This is one
of the most important properties of a real-time system.
It states that no process will miss its deadline. In this
example the deadlines are the same as the periods (ex-
cept for the weapon release subsystem). We determine
schedulability by computing the minimum and maxi-
mum execution times for each process and checking if
they always finish before their deadline. The RMS the-
ory checks for schedulability by computing the CPU
utilization of the process set. It may not provide any
schedulability information if the utilization exceeds a
certain threshold. Our method however, is always able
to determine schedulability. Moreover, it only requires
that processes be modelled as state graphs, while RMS
imposes restrictions on their behavior.

Table 2 summarizes the execution times computed
by our algorithms for both the preemptive and non-
preemptive schedulers. Processes are shown in decreas-
ing order of priority. We can see from this table that
the process set is schedulable using preemptive schedul-
ing. An analysis of a similar process set using RMS
showed that only the first eight processes were guaran-
teed to meet their deadlines[11]. From our results we
can also identify many important parameters of the sys-
tem. For example, the response time is usually very low
for best-case computations, but it is also good for the
worst case. Most processes take less than half their re-
quired time to execute. This indicates that the system
is still not close to saturation, although the total CPU
utilization is high.

Notice also that preemption does not have a big
impact on response times. Except for the most criti-
cal process, all others maintain their schedulability if a
non-preemptive scheduler is used. Moreover, we can see
that non-preemption causes weapon release to miss its
deadline, but by a relatively small amount. If a preemp-
tive scheduler were expensive, reducing the CPU utiliza-
tion slightly might make the complete system schedu-
lable without changing the scheduler. By having such
information, the designer can easily assess the impact of
various alternatives to improve the performance, with-
out having to change the implementation. It should be



800

noted that an analysis of this type can’t be done using
methods like the RMS utilization test or reachability
computation.

The algorithms described can be used to analyze
the system in many different ways. For example, the
effect of preemption on execution time can be assessed
as follows. We have computed the maximum and mini-
mum execution times for processes after they have been
granted the CPU. If minimum and maximum are not
the same, the process can be preempted after starting
execution. For example, the display graphic subsystem
can finish in as little as 7ms and in as much as 14 ms
after it starts execution. In other words, preemption
overhead can be as high as 7 ms for this subsystem. The
NAV steering subsystem has a minimum of 1 ms and a
maximum of 44 ms. This means that other processes can
delay it for 43 ms. It is clear that NAV steering can be
preempted for a longer time than display graphic, since
it has lower priority. Our results, however, allow us to
determine how much longer it can be preempted. In a
similar fashion, we can compute the priority inversion
time for high priority processes. This can aid in identi-
fying the reasons why a system is not predictable, and
help correct its behavior.

We examine one more property of this particular
model. The weapon system is critical to the aircraft.
It is very important that it respond quickly to the pi-
lot’s command. However, when a pilot presses the fir-
ing button, many subsystems are involved in identify-
ing and responding to this event. By computing the
minimum and maximum times between pressing the fire
button and the execution of the weapon release process
we are able to determine if the weapon system responds
quickly enough to satisfy the aircraft requirements. In
our example, the minimum time is 120 ms and the max-
imum time is 167 ms, not accounting for the possibil-
ity that the firing sequence may be aborted. Again,
this type of analysis may be difficult to do with other
tools. The RMS schedulability test cannot give tight
bounds on specific response times for such properties,
since its only parameter is CPU utilization. Algorithms
that use reachability analysis are also inappropriate for
such analysis. Specific exceptions, with previously de-
fined time bounds, would have to be added to the model
to observe these characteristics.

The finite-state model was implemented in about
600 lines of SMV code. The final model has
about 105 states, and the transition relation uses ap-
proximately 4600 BDD nodes. To compute each prop-
erty described above took between 5 and 15 seconds
using an 1486 based workstation.

6. Conclusion
This paper proposes a general framework for comput-

ing quantitative characteristics of finite-state real-time
systems. We have devised algorithms that calculate ex-
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act numerical bounds on the delay between two specified
events, as well as on the frequency of the occurrence of
a condition within a given interval. Rather than just
determining the correctness of the model, the results
computed by our algorithms provide hints about its be-
havior that can be useful in improving the performance
of the system.

Our method can be easily integrated with model
checking techniques. In fact, the lower and upper bound
algorithms have been added to the most recent version
of the SMV model checking system. Using this imple-
mentation we demonstrate the practical importance of
our approach by analyzing a model of an aircraft con-
trol system. We have been able to obtain stronger re-
sults than those produced using traditional methods for
real-time system verification.

We have found this approach to be very flexible.
We have shown how quantitative characteristics can be
computed for state-transition graphs. In addition, we
have extended the algorithms to models in which tran-
sitions may take more than one time unit. We also
plan to investigate the application of these techniques
to other models of computation.

We believe that the quantitative information that
our method provides can be extremely useful to design-
ers during the development of real-time systems. We
are confident that these techniques will prove practical
in the verification of a variety of other realistic designs.
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