
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Symbolic Manipulation of Computer Descriptions:
ISPL Compiler and Simulator

Mario R. Barbacci
Department of Computer Science

Carnegie-Mellon University
Pittsburgh Pa.

August 2, 1976

This p ro jec t is suppor ted in part by the Advanced Research Projects Agency (ARPA) of
the Department of Defense, under contract F44620-73-C-0074, monitored by the Air
Force Off ice of Scientific Research, and by the National Science Foundation, under
g ran t GJ 32758X.

ISPL Compi ler: User's Manual

T A B L E O F C O N T E N T S

SECTION PAGE

1 In t roduct ion 3

2 Declarations 6

2.1 Memories and Registers 6

2.2 Macros 7

2.3 Ident i f iers and Constants 8

2.4 Comments 9

3 Register Transfers 10

3.1 Structure Selectors 10

3.2 Transfers 12

3.3 Shift Operators 12

3.4 Arithmetic Expressions 14

3.5 Relational Expressions 15

4 Register Transfer Sequences 17

4.1 Blocks 17

4.2 Conditional Statements 17

4.3 Labelled Statements 19

4.4 The BAILOUT Operation 19

4.5 Statement-Lists 20

5 ISPL Programs 2 1

i

Compiler: User's Manual

The Compiler Output

6.1 Running the Compiler

6.2 Example I - Listing

6.3 Example I - Symbol Table

6.4 Example I - Cross Reference ,

6.5 Example I - Statement Table

References

Appendix I - The Minicomputer Listing

Appendix II - ISPL Reserved Keywords

Appendix I I I - The XTOP10.REQ File

Appendix IV - The Multiplier MACR010 Format

Appendix V - The SIMISP.REQ File

12.1 The Statement Table

12.2 The Symbol Table

12.3 Table Diagrams

ISPL Compiler: User's Manual

A User's Guide to the ISPL Compiler

Mario R. Barbacci

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa.

1

ISPL Compi ler: User's Manual

ABSTRACT

The compiler described in this manual will translate programs wr i t ten in a subset

of ISP [Bel l , 1971] into register transfer level instructions. The code thus generated

could be used for the implementation of wiring list generators, simulators, or o ther

Computer Aided Design applications. This manual describes the syntax and semantics of

the language (ISPL) accepted by the compiler.

ACKNOWLEDGEMENTS

The compiler described here is an improved version of an original system

implemented by S. Goldman and R. Scroggs. The syntax graph driving the compiler is

genera ted using a program (GRPGEN) wr i t ten by P. Karlton and R. Scroggs. This

ve rs ion of the manual ref lects the modifications and improvements suggested by the

users dur ing the preparat ion of the ISP description of the candidate architectures for

the A r m y / N a v y CFA project. Special thanks are due to H. Elovitz (NRL), R. Gordon

(NUSC), R. Howbr igg (NUSC), D. Siewiorek (CMU), and S. Zuckerman (NRL).

2

The Symbolic Manipulation of Computer Descriptions:
ISPL Compiler and Simulator

The Department of Computer Science at Carnegie-Mellon University is cur ren t ly

engaged in a research project exploring the uses of computer descript ion languages in

the automatic design of both software and hardware systems. This document describes

a language, ISPL, based on the Instruction Set Processor notation of Bell&Newell

[Be l l .1971] . The language was designed as a tool for the description of instruct ion sets

i.e. the archi tecture of a computer, and has been used extensively in a design

automat ion pro ject at CMU [Siewiorek,1976] and in the Army/Navy Computer Family

A rch i tec tu re Project.

Tradi t ional computer description languages have been designed pr imari ly fo r

human communication and/or simulation. The SMCD [Barbacci,1974] project has the

more ambit ious goal of developing design automation tools which would permit the

genera t ion of machine-relative software, documentation, hardware modular design,

p rog ram ver i f icat ion, simulation, and generation of microcode. As in any evolut ionary

p ro jec t , pre l iminary results are necessarily short of the ultimate goal; thus at thi$ point

w e can present two concrete systems: a compiler and a simulator. A machine-relat ive

compi ler -compi ler is being investigated by a group under W. Wulf. An automatic

genera to r of hardware modular specifications is being developed by a group under D.

S iewiorek and A. Parker. Further studies of computer descriptive languages are being

ca r r i ed out by this author and others.

As indicated above, the systems described in this report have been used as par t

of the A rmy /Navy CFA project, sponsored by the Army Electronics Command and the

Naval Research Laboratory. Part of the project involved the descript ion, in ISPL, of

t h ree commercial architectures: The DEC PDP-11, the IBM /360,370, and the Interdata

1

8 / 3 2 . These descript ions were used to collect statistics on the execution of a set of

benchmark programs under the ISPL simulator. Although the simulator is not

par t i cu la r ly fast, its interactive facilities allow very extrict control and detai led analysis

of the regis ter transfer operations being performed during the fetch/decode/execute

cyc le of the machines. The simulator was not meant to be used as a sof tware

development tool (although in fact, some CFA benchmarks for the Interdata 8 / 3 2 were

debugged under the simulator, it being more accessible at CMU than the real machine),

it is ra ther an Architectural Design tool that allows the user to explore al ternat ive

ins t ruc t ion sets and to collect statistics on the performance of the architectures.

Mario R. Barbacci
August 2, 1976

[Barbacc i ,1974] Barbacci, M.R. and D.P. Siewiorek: "Some Aspects of the Symbolic
Manipulation of Computer Descriptions", Department of Computer
Science, Carnegie-Mellon University, July, 1974.

[Be l l , 1971] Bell, C.G. and A. Newell: "Computer Structures: Readings and
Examples", McGraw-Hill Book Company, New York, 1971.

[S iew io rek ,1976] Siewiorek, D.P., and M.R. Barbacci: "The CMU RT-CAD System: An
Innovative Approach to Computer Aided Design", National
Computer Conference, NCC76, New York, June 1976.

2

ISPL Compiler: User's Manual

3

1. Introduction

The ISP (for Instruct ion Set Processor) notation was developed for a text [Bel l ,

1 9 7 1] to precisely describe the programming level of a computer in terms of i ts

memory , instruct ion format, data types, data operations, and a set of in terpre ta t ion

ru les .

The behavior of a processor is determined by the nature and sequence of its

opera t ions . This sequence is given by a set of bits in primary memory (a program) and

a set of in terpre ta t ion rules (usually in the central processor). Thus if we specify the

na ture of the operat ions and the rules of interpretat ion, the actual behavior of the

processor depends on the initial conditions and a particular program.

Al though the above format is commonly used to describe a digital computer, ISPL

is not intended to force the user into a given description style; ISPL can be used to

descr ibe regis ter transfer systems in general (digital computers are a subset of such

sys tems, namely those systems that interpret an instruction set).

The subset of ISP implemented by the compiler under discussion contains a

number of features that allow the user to describe a wide variety of digital systems:

Pseudo reg is ter declarations, macros, and compound statements. For eff iciency reasons,

ce r ta in o ther features described in [Bell, 1971] are not implemented. Among these are:

mult idimensional memory arrays, parameterized procedures, multiple word access, and

sca t te red bit access. However byte access is implemented.

An ISPL program consists of a description of the memory components (memories

and reg is ters) and a descript ion of the behavior of the system. Memory components

are def ined in ISPL by a name and a description of their structure using brackets to

ISPL Compiler: User's Manual

4

g r o u p the subcomponents along a given dimension. In the current implemention the

on ly subcomponents allowed are memory words and bits (as subcomponents of memory

w o r d s and registers). The behavior of the system is given by a set of reg is ter

t rans fe r statements. These statements can be performed in sequence or concurrent ly .

In ISPL, concurrency of actions is the rule rather than the exception, and it is re f lec ted

in the use of as a delimiter for lists of concurrent actions. Sequencing is expressed

b y using the term "next" as a delimiter for lists of sequential actions. Complex

concur ren t and sequential activities can be described in terms of simpler act ivi t ies

using "next" , ";", " (" , and ") " in an Algol-like block structure.

The ISPL compiler produce.? code for an idealized Register Transfer Machine.

There are two types of instructions in the RTM: Data and Control instructions. Control

ins t ruct ions are used to sequence the operation of the machine. They contain

ins t ruct ions to START, STOP, BRANCH, DIVERGE into concurrent execution paths, etc.

The Data instruct ions are used to define the Arithmetic and Logical operat ions among

the reg is ters of the machine. They are described in terms of a 3-address format:

destination «- source 1 operation source2

The RTM code produced by the compiler is presented in two formats. The f i rs t

fo rmat is simply a tabular listing intended primarily for human use. The second format

is in tended pr imari ly for machine consumption. The human intended tabular

rep resen ta t ion could be digested by suitable string manipulating programs and s tored

in to a more convenient machine format. Several reasons argued against this approach:

depending on the language used, wr i t t ing these interface programs might involve a non

t r i v ia l amount of work. Worse yet, any format modification intended to help human

readers wi l l render these programs obsolete. The solution adopted was to produce

ISPL Compi ler: User's Manual

5

another copy of the RTM code directly into a machine understandable format. Thus the

ve rs ion of the RTM code intended for machine use is created as a "program" using

MACRO-10 as the intermediate language. The format of these programs is descr ibed in

the appendices.

ISPL Compiler: User's Manual

2. Declarations

There are two types of declarations in ISPL: Memory Declarations (explained in

th is sect ion) are used to describe the structure of the registers and memories in a

machine; Procedure Declarations (explained in later sections) are used to describe the

behavior of the functional units in a machine.

2 . 1 . Memories and Registers

Memory components are defined in ISPL by a name and a descript ion of thei r

s t ruc tu re . The number of subcomponents at each level of decomposition is given by a

b racke ted list of constants, much like an array declaration in Algol.

declaration-part ::=
declaration-list ::=

declaration ::=

procedure-declaration ::=
memory-declaration
structure-declaration

word-list ::=
bit-list ::=
name-list

DECLARE declaration-list ERALCED
declaration \
declaration-list ; declaration
memory-declaration |
memory-declaration \~ memory-declaration \
procedure-declaration
identifier := (statement-list)
identifier structure-declaration
[word-list] < bit-list > |
[word-list] < > |
< bit-list > 1
< >
name-list
name-list
clement-range J
name-list , element-range
number \ number : number clement-range

The declarations are given by a list of individual component declaration using ";"

as del imiter. There are two types of memory declarations: 1) A definit ion of a physical

component (physical declaration), and 2) A definition of a logical component (logical

dec larat ion) in terms of a previously declared (physical or logical) component. A logical

dec lara t ion uses the " :=" operator to make an equivalence between two components.

6

ISPL Compiler: User's Manual

Examples

A<15:0> Declares A as the name of a register 16 bits wide,
named 15,... 0 (from left to right). The ":" or
range operator is used to denote an abreviated
list of subcomponent names.

M p [0 : 4 0 9 5] < 0 : l l > Square brackets are used to specify those
dimensions where the accessing is done through
some "addressing" (switching) schema. The
memory, Mp, consists of 4096 words, each of 12
bits, named (from left to right) 0 , l , . . . l l .

R<15,13,11,9:10> In general, the list of subcomponents along any
dimension is given by a list of "names" for the
individual subcomponents. Numbers used to name
individual elements do not indicate re lat ive
position.

Mw[32767:0]<15 :0> ;

Mb[65535:0]<7:0>:=Mw[32767:0]<15:0>; Now the designer can use either Mw (the

"word" memory) or Mb (the "by te " memory).

The only concession to the use of numbers as both names and posit ion

indicators is by using the range (":") operator, whereby the abreviated list consists of

the bounds and all integers in between, wi th the implication that these consecutive

numbers also name consecutive (from left to right) elements. The use of an empty b i t -

l ist (<>) indicates a single, unnamed b i t

Undeclared variables or multiple declarations of a variable are, usually, non-fata l

e r r o r s . The compiler wil l warn the user it this situation arises. The compiler compares

the lengths (Nwords*Nbits) of the left and right hand sides of a logical declarat ion; if

the lengths do not match a warning is issued.

2.2. Macros

A d i f fe rent type of declaration, the MACRO declaration, allows the designer to

7

ISPL Compiler: User's Manual

8

abrev ia te the descr ipt ion by naming often used strings of characters. The macro name

can then be used instead of the full str ing. The format of a macro declaration is the

fo l l ow ing :

MACRO identifier := any-str ing-of-characters-not-containing-a-$-sign $

Macros are handled in its ent i rety by the lexical phase, thus the parser never

"sees" a macro expansion. Macros can, therefore, be declared at any point in the

descr ip t ion , not necessarily in the declaration part, and remain in effect unti l the end

of the descr ip t ion.

Examples

MACRO SIGNBIT := ACC<0> 8 The use of SIGNBIT some time later in the
description is equivalent to using ACC<0>. Macros
are str ict ly in-line string substitutions.

A macro can be defined in terms of other macros and the user should be careful

to avoid a recursive definit ion which would create a non-terminating s t r ing

replacement loop.

There are implementation dependent limits on the size of a macro s t r ing. If a

macro declarat ion exceeds this limit (1000 characters at present) a warning wi l l be

issued. Results might be unpredictible if this situation occurs.

2.3. Ident i f iers and Constants

An ident i f ier in ISPL is a string of letter, digits, and V"s , beginning w i th a le t ter ;

the "." is included as an identif ier character for readability purposes. In the cur rent

implementat ion only the f irst 6 characters of an identifier are kept by the compiler.

Ident i f ie rs must, therefore, differ in the first 6 characters for the compiler to

d is t inguish them. The lexical phase accepts upper and lower case ASCII characters but

ISPL Compi ler: User's Manual

9

t hey are conver ted and stored internally as upper case characters. This is another

l imi tat ion of the implementation.

For readabi l i ty purposes, identifiers can be followed by a larger and more

descr ip t i ve vers ion of the identif ier. This secondary identifier is t reated like an inline

comment by the lexical phase. The syntax for this extended identif ier use is:

short . ident if ier \ th is . is. a. long, identifier

An extended identif ier can be appended to a short identif ier using the " \ "

character . Such compound identif iers are valid wherever an identif ier is valid. Notice

that this is not the same thing as an "alias", as described in the full language [Bel l ,

1971] . The secondary name is str ipped by the lexical phase and the designer must

use the pr imary name for identification purposes.

Constants are str ings of digits, interpreted as a number in some base. The

defaul t base is 10 (i.e., constants are decimal numbers unless otherwise specif ied).

Constants in base 8 (octal numbers) must be tagged with the character #, as in #100

(decimal 64). Constants in base 2 (binary numbers) must be tagged wi th the character

', as in '100 (decimal 4). Constants in base 16 (hexadecimal numbers) must be tagged

w i t h the character ", as in " A l (decimal 161). The length of a constant is the minimum

number of bi ts needed to represent it (i.e. leading 0*s are stripped). The constant 0 is

1 bit long. The current implementation of the compiler limits constants to a maximum

size of 35 bits.

2.4. Comments

Comments can be inserted in a description by preceeding the comment st r ing

w i t h the character T . All characters following the T until the end of the line are

ignored.

ISPL Compiler: User's Manual

3. Register Transfers

Register Transfers are used to describe the data operations on the memories

and reg is ters (the data components) of the system. The syntax of a t ransfer fo l lows

v e r y closely that of most programming languages. The main difference is the use of

some special operators and the use of a non-standard operator precedence to

accomodate these new operators.

The operators act upon the components of the system by taking the data s to red

in some components (the inputs), operating (i.e., transforming) on the data, and stor ing

the resul t ing data in some component (the output).

The data used by the operators is defined in terms of the components that

conta in it. Since the memories and registers are declared as st ructured components

made out of words and bits, a structure selector is needed in order to access or s tore

data.

3 . 1 . S t ruc ture Selectors

structure-selector term | term < selector-range >
term ::= number \ memory-access | (expression)
memory-access ::- identifier \

identifier [arithmetic-expression]
identifier [element-name]

element-name ;:= number
selector-range ::= bit \ bit : bit
bit number

The terms are the building blocks used in a register transfer expression. A term

can be a constant, a memory-access (to select data stored in a memory or register) , or

an expression in parenthesis (thus allowing large and complex register t ransfer

expressions) .

10

ISPL Compiler: User's Manual

11

A structure-selector is used to select parts of a term (i.e. to select bits of a

reg is te r , a constant, or an expression). The nature of the register t ransfer operators

requ i res that the operands be of homogeneous type (i.e., register- l ike) and length.

Thus mul t iword memories must b6 accessed using an arithmetic-expression (the

address calculation) enclosed in and "] " to select one and only one word of the

a r ray .

The compiler compares the maximum value that the result of an address

computa t ion can have wi th the number of words declared for a memory. If the former

exceeds the lat ter, a warning is issued.

When a selector-range is applied to a memory or register access term it must

use the bit names used in the declaration. When it is applied to other types of te rm,

whose s t ruc tu re has not been declared (i.e., constants and expressions), the bits of the

t e rm are implici t ly named n, n - 1 , , 1, 0 (from left to right).

Examples

ACC Select the entire ACC register

Mp [Pc] Select the word whose address is contained in

register Pc

ACC<5> Select bit 5 of register ACC

Mp[R[INDEX]+DISPLACEMENT]<0> Select bit 0 of the word whose address is g iven
by the effective address calculation expression

(A<7:0>+B<7:0>)<5:4> Select the 5th and 6th bits (from the r ight) of the

result of the addition

At tempt ing to access undeclared bits of a register or memory word wil l result in

a warn ing message. The compiler will then default the erroneous bit name to the

lef tmost bit of the declaration. When the selector range of a register or memory w o r d

a t tempts to switch the relative position of two bits, the compiler wil l switch the

ISPL Compiler: User's Manual

shift ;;=

shift-op :=

concatenation ::=

12

se lector range boundaries and issue a warning message. For instance, if X is declared

as X<0:5>, bo th X<2:3> and X<3:2> are equivalent terms but in the second case a

warn ing is issued.

3.2. Transfers

Register t ransfers are used to modify the contents of the registers and

memories. The syntax of a transfer is the following:

transfer memory-access <- arithmetic-expression |
memory-access <selector-range> «- arithmetic-expression

The use of a selector-range on the left hand side of the V " specifies a part ia l

reg is te r (or memory word) modification; the non-selected bits are not d isturbed. If the

r igh t hand side is shorter than the left hand side, the result is stored r ight jus t i f ied

and O's are concatenated to its left to clear the high order bits of the left hand side. If

the r ight hand side is larger than the left hand side truncation of the high order bi ts

w i l l occur (the compiler wil l issue a warning if this situation occurs).

The r ight hand side of a transfer is always an arithmetic-expression. The

d i f fe rence between an arithmetic-expression and an expression proper ly is in the use

of re lat ional operators , which are not allowed in the former. We wil l give more detai ls

in the subsect ion dealing w i th expressions.

3.3. Shift Operators

structure-selector |
structure-selector shift-op structure-selector
TSL | TSR | TSLO | TSRO | TSL1 | t S R l | TRL | TRR |
concatenation
@

ISPL Compi ler: User's Manual

A shift is the f i rst step in the hierarchy of register transfer operat ions, shif t

ope ra to rs have the highest binding power (precedence). A shift always takes the

fo l l ow ing fo rm:

le f t .operand shift-op r ight.operand

The meaning of the operators (all of them have the same precedence) is the

fo l l ow ing :

OPERATOR MEANING

TSL Shift left the left.operand, one position, and insert the (rightmost bit of the)
r ight.operand into the vacant position, dropping the leftmost bit of the
left .operand. The length of the result is the same as the length of the
left .operand. The result can be stored in a register or used as an operand
when building complex expressions. The operator does not modify the
lef t .operand, only the transfer operator (V M) can perform side effects.

TSR Shift r ight the left.operand, one position, and insert the (r ightmost bit of
the) r ight.operand into the vacant position, dropping the rightmost bit of
the left.operand. The length of the result is the same as the length of the
lef t .operand.

TSLO Shift left the left.operand the number of positions indicated by the value of
the r ight.operand inserting O's in the vacant positions and dropping the
righmost bits of the left.operand. The right.operand is t reated as an
unsigned integer. The result has the same length as the left.operand..

TSRO Similar to TSLO but shifting right.

TSL1 Similar to TSLO but inserting l 's into the vacant positions.

TSR1 Similar to TSL1 but shifting right.

TRR Rotate towards the right the left.operand by the number of posit ions
indicated by the value of the right.operand. The length of the result is the
same as the length of the left.operand.

TRL Similar to TRR but rotating left.

Concatenate the left.operand with the right.operand. This operator is
included among the shift operators for symmetry reasons. The length of
the result is the sum of the lengths of the operands.

13

ISPL Compiler: User's Manual

3.4. Ar i thmet ic Expressions

complement ;:=
conjunction

shift | NOT shift
complement |
conjunction AND complement |
COM junction EQV complement
conjunction |
disjunction OR conjunction \
disjunction XOR conjunction
disjunction \
- disjunction \
MINUS disjunction \
+ disjunction
negation \
factor t negation |
factor I negation
factor |
sum - factor \
sum MINUS /actor |
sum + factor

disjunction ::=

negation ::=»

factor

sum

arithmetic-expression :: mm

All logical operators (NOT, AND, EQV, OR, and XOR) operate on a bit by bit basis.

If the operands have unequal lengths the shortest operand is expanded (on the lef t)

w i t h O's.

The arithmetic operators, with the exception of MINUS, operate on unsigned

(pure magnitude) operands, the MINUS operator assumes a Two's Complement

rep resen t ion w i th a sign bit in the leftmost position. The main dif ference is in the

padding used to match the length of their operands. The MINUS operator extends the

s ign of the shortest operand, the other operators use 0 as the padding character.

The length of the result of the infix operators V , and "MINUS" is one bit

la rger that the largest operand. The length of the result of the V operator is the sum

of the lengths of the operands. The length of the result of the 7 " operator is the same

as the length of the left operand (the dividend).

1SPL Compi ler: User's Manual

Relational operators perform a test between their left and right operands. The

resu l t for all these operators, wi th the exception of TST, is a boolean value (TRUE or

FALSE) which can be tested by one of the control operations defined in the fo l lowing

sect ion. All relational operators treat the operands as unsigned integers. A 2's

complement representat ion of a negative number will therefore look greater than a

pos i t i ve number of the same length.

The TST operator performs a logical subtraction of its operands and produces a

resu l t of 0, 1, or 2, indicating that the left operand is less than, equal to, or greater

than the r ig th operand, respectively.

Beware that relational operators have less precedence than logical and

ar i thmet ic operators , thus, the expression: A LSS B AND C GEQ D is parsed as:

A LSS (B AND C) GEQ D which is syntactically incorrect. The proper way of w r i t t i ng

the express ion is: (A LSS B) AND (C GEQ D)

It was indicated before that the right hand side of a register t ransfer operat ion

relation ::=

relop
expression relation

15

3.5. Relational Expressions

In order to describe non-tr ivial systems, ISPL provides certain facil i t ies to

con t ro l the execution of the transfers. Thus certain transfers may or may not be

execu ted depending on the result of some previous operation. These condit ional

act iv i t ies are descr ibed in more detail in the following section. Here we are concerned

w i t h the basic data operators of the language, among which we include the relat ional

ope ra to rs used to build conditional expressions.

ISPL Compiler: User's Manual

16

(*-) must be an arithmetic expression. This does not allow the use of relat ional

ope ra to rs . In order to use them on the right hand side of a transfer, the (relat ional)

express ion must be enclosed in parenthesis. This in effect transforms the (relat ional)

expression into a termt a valid arithmetic-ex pression} e.g.:

FLAG<-(A NEQ B); ! Yields 0 or 1

TVAL<-1+(D TST E); ! Yields 1,2, or 3

ISPL Compiler: User's Manual

4. Register Transfer Sequences

The behavior of a digital system is described in ISPL by a list of statements.

These statements can be build up from register transfers by using two special

de l imi ters to indicate sequential or concurrent execution. Statement lists can be nested

using parenthesis to build more complex statement lists. The syntax of the register

t rans fe r sequences is as fol lows:

statement-list ::=

parallel-statement-list ::=

labelled-statement ::=

statement .*:=

conditional-execute ::=
conditional-decode ::=
block ::=

parallel-statement-list \
BAILOUT identifier \
statement-list NEXT parallel-statement-list
labelled-statement \
parallel-statement-list ; labelled-statement
statement |
identifier := statement
conditional-execute \
conditional-decode |
block |
transfer \
identifier
(IF expression => statement-list)
(DECODE expression => parallel-statement-list)
(statement-list)

4 . 1 . Blocks

Blocks are the simplest building tools to define complicated statements. A block

is a statement-list enclosed in parenthesis:

(A«-0 NEXT A<-A OR B[X]<7:0> ; C«-C+l)

4.2. Condit ional Statements

There are two ways of specifying conditional activities. These are the

conditional-decode and the conditional-execute statements:

(condi t ion => statement(s)),

17

ISPL Compiler: User's Manual

18

where the conditions and their interpretation are as fol lows:

CONDITION INTERPRETATION

DECODE expression The value of the expression is interpreted as an integer and used to
select one out of n possible statements, given as a list of al ternat ives.
These alternatives are separated by ";", but in this case they are not
considered to be concurrent activities; only one of them wil l be executed.
The statements in the list are numbered 0 through n - 1 , f rom left to r ight .
The i th statement is executed if the value of the expression is equal to i.

IF expression This is a special case of the conditional-decode statement. The
statement- l ist fol lowing the => operator is initiated if the logical value of
the expression is TRUE, otherwise it is bypassed.

For simplici ty, the expressions used in the conditional-execute statement do not

have to be relational-expressions, yielding a TRUE or FALSE value. An arithmetic-

expression can be used, wi th the implication that the result of the expression is tested

against 0. The statement-list is executed if the expression is not equal to 0, it is

bypassed otherwise. In other words, the expression is interpreted as (expression NEQ

0). For similar reasons, the conditional-decode statement accepts a relation as the

condi t ional expression, w i th the implication that the logical values FALSE and TRUE are

i n t e r p r e t e d as the numbers 0 and 1, respectively.

The language does not provide an IF ... THEN ... ELSE type of condit ional

s tatement . They are tr iv ial ly described using a 2-way DECODE statement. The user

should be careful to wr i te the alternative statements in the proper order: the Oth case

(logical FALSE) f i rs t and the 1st case (logical TRUE) second. Thus the statements are

r eve rsed f rom the normal Algol-l ike order.

Do not forget the " f s after each alternative, except the last one, of a DECODE

statement . A missing V in this context is a fatal error that is sometimes detected

severa l lines after the offending alternative. The compiler wil l complain about a

"missing action list".

ISPL Compiler: User's Manual

4.3. Label led Statements

The statements described above can be identified with a label. This label is used

to designate the start ing point of the statement. The label of a statement can be used

w h e r e v e r a statement is valid. The interpretation given to the use of a label in the

middle of a statement-list is the following:

1) If the label is associated with a procedure definit ion, it is in terpre ted
as a call (invocation) of the procedure, unless the invocation occurs
inside the definit ion of the procedure, in which case the invocation is
in te rpre ted as a jump to the starting point of the sequence (i.e. there
are no recursive calls in ISP).

2) Other invocations are treated as jumps to the starting point of the
sequence. In the current implementation, labels (and their
sequences) need not be declared before they are used. Thus we can
jump fo rward in the description.

A reserved label, STOP, is predeclared in the compiler. It can be used to

indicate a jump to the end of the description.

4.4. The BAILOUT Operation

The BAILOUT operat ion provides a way to describe the handling of exceptional

condi t ions that might occur during the fetching, decoding, and execution of instruct ions.

This opera t ion is in effect a super RETURN from a procedure when an exceptional

cond i t ion arises. The BAILOUT operator is used together wi th the label of the

p rocedure whose context we want to leave, i.e., BAILOUT returns accross mult iple

levels of (dynamically) nested procedures. For instance:

Examples

p i := (...NEXT (IF x => yf-z NEXT BAILOUT p2) NEXT ...)

p2 := (...NEXT p i NEXT ...)

Main := (...NEXT p2 NEXT)

19

ISPL Compi ler: User's Manual

20

In the above example, procedure MAIN invokes procedure P2 which star ts

execut ion of procedure P I . At some point, P I decides that some error has occurred

(IF X => ...) and that only MAIN can handle the situation. The effect of "BAILOUT P2"

is to terminate the execution of P I and P2 and return to procedure MAIN, at the point

w e r e it invoked P2.

4.5. Statement-Lists

Statements, labelled or otherwise, can be used to describe a list of concurrent

act iv i t ies, a parallcl-statement-listt using the ";" as delimiter. Parallel-statement-list*

can be used to build sequences of activities or statement-listsf using the "next "

ope ra to r as delimiter. Notice that the V when used to indicate concurrency has a

h igher precedence than the "next" used to indicate sequentiality. For instance, in the

fo l low ing statement- l is t : A<-B ; C*-D NEXT E<-F the transfers A«-B and C<-D are executed

concur ren t l y , and only when they are both completed will the locus of control pass to

t he next statement, the transfer E*-F.

One detai l to keep in mind is that TSPL is a statement language, not an

express ion language (in the BLISS sense). In particular, there is no such thing as an

e m p t y or null sequence, thus sequences like: (A«-B;) or A*-B; NEXT C«-D are invalid (the

V must be fo l lowed by a statement). In some cases the compiler is capable of

de tec t ing the ext ra ";" and wil l eliminate it after warning the user.

ISPL Compi ler: User's Manual

5. ISPL Programs

As mentioned in the Introduction, an ISPL description consists of a set of

component declarations, together with a description of the behavior of the (main)

sys tem:

ispl-program ;:= identifier := (declaration-part statement-list)

The above syntax indicates that ISPL programs look like labelled blocks, w i th a

dec la ra t ion-par t , local to the body of the block.

EXAMPLE

I1ULT: =
(DECLARE
f1PO<15:0>;
P < 1 5 : 8 > ;
C<15 :8> ;
STEP := (DECODE P<8> => P*P tSR 0; P«-(P+MPD><15:8> tSR 8)

ERRLCEO
1 8 : = (

C-8 NEXT
L i : = (

STEP NEXT
C.-(C-1><15:8> NEXT
(I F C NEQ 8 => L I)
)

)
)

The f i rs t example presents the ISPL description of a simple 8-bi t multiplier using

the sh i f t -and-add algorithm. The multiplicand resides in the leftmost 8 bits of the MPD

reg is te r . The multiplier resides in the rightmost 8 bits of the P register. The part ia l

p roduct is developed using all 16 bits of the P register. Additional details about the

a lgor i thm can be found in [Bell, 1972].

The descr ipt ion begins with the specification of the label for the program

(MULTIPLIER). Labels are used in ISPL to identify activities so that they can be

branched to, or used as subroutines.

21

ISPL Compiler: User's Manual

22

The program itself is enclosed in parenthesis, and consists of two par ts . The

declarat ions and the specification of the behavior. The former are specif ied as a list of

indiv idual component declarations (multiplicand, mult ipl ier/product, and step counter) ,

and one procedure (STEP) which performs the basic multiplication operat ion, using the

r e s e r v e d ident i f iers DECLARE and ERALCED as brackets. The specif ication of the

act iv i t ies of the system is given as a list of two sequential steps. The f i rst step (C«-8)

ini t ial ises the counter and the second is given by a labelled (L I) block of activi t ies, this

consists of a sequence of three steps. The f irst one performs the basic mult ipl icat ion

ope ra t i on by calling the procedure; the second step decrements the counter; the th i rd

s tep tests the counter to see if the operation has been completed. If the value of the

counter has not reached 0 then a jump to the label is indicated by using the label (L I)

as an act iv i ty . If the counter is 0 then control flows out of the labelled statement and

reaches the end of the program.

The basic multiplication operation is described using the DECODE contro l

ope ra t i on . It implements a 2-way branch depending on the value of the expression

P<0>. The al ternat ive paths selected by this operation are given as a list using the ";M

as del imiter. The f i rst path (P«-P TSR 0) is selected if the value of the control l ing

express ion (P<0>) is 0; the second path (P«-(P+MPD) TSR 0) is selected if the value is 1.

The opera to r TSR 0 represents a shift right inserting zero in the vacant posit ion.

ISPL Compi ler: User's Manual

EXAMPLE
MINI:=(DECLARE !MEMORY AND REGISTERS

M [8 : * 3 7 7] < i l : 8 > ; 'MAIN MEMORY
Z < 7 : 8 > ; {EFFECTIVE ADDRESS REGISTER
CACC<12:8>; ! 13 BIT ACCUMULATOR UITH CARRY POSITION

CARRY.BITo := CACC<12>;
S I G N . B I T o := CACC<11>;
ACC<11:8> := CACC<11:8>;

I R < 1 1 : 8 > ; !INSTRUCTION REGISTER
0P<11:9> := IR<11:9>;
I . B I T o := IR<8>;
ADDRESS<7:8> := IR<7:0>;
I 0 . B I T S < 7 : 8 > := IR<7:9>;
UCLASSo := IR<7>;

L < 7 : 8 > ; IRETURN REGISTER
PC<7:8>; !PROGRAM COUNTER
I0 .REG<7:8> ; ! INPUT-OUTPUT REGISTER
R U N o ; 'RUN MODE

! PROCEDURE TO INCREMENT PROGRAM COUNTER
INCRPC: = (PC^(PC + 1)<7 :8>) ! NOTE THAT PC WILL WRAP

ERRLCED
START:= (DECODE RUN =>

STOP; ! I f run=8
(IR.-MCPC) NEXT INCRPC NEXT

(DECODE I . B I T => Z-ADORESS ; Z*M [RD0RESS1<7:8>) NEXT
(DECODE OP => (INSTRUCTION DECODING

ACC-ACC AND MCZ1; !AN0
CACC-ACC • M I Z I ; !TAD (SETS CARRY BIT)
<mZl..<niZ]+l><ll:8> NEXT (IF MCZJ EQL 8 => INCRPC)) ; I I S Z
(MtZKACC NEXT ACC«-8); !DCA
(L-PC NEXT PC-Z) ; !JSR
PC-Z; IJUMP
IO.REG-IO.BITS; HOT
(DECODE UCLASS =>

((IF IR<6> => INCRPC) NEXT
(IF IR<5> *> ACC- NOT ACC) NEXT
(IF IR<4> => ACC-8) NEXT
(IF IR<3> => CACC-ACC+1) NEXT ! (SETS CARRY BIT)
(IF IR<2> => CACC.-ACC-1) NEXT ! (SETS CARRY BIT IF BORROW)
(IF IR<i> => ACC«- ACC tSR8 1) NEXT
(IF IR<8> => ACC.- ACC tSL8 1)) ; !END OF UCLASS«8

((IF IR<6> => INCRPC) NEXT
(IF IR<5> => PC-L) NEXT
(IF IR<4> => PC-CACC<7:8>) NEXT
(IF IR<3> => RUN-0) NEXT
(IF (IR<2> AND SIGN.BIT) OR

(IR<1> AND (ACC EQL 8)) OR
(IR<0> AND (NOT SIGN.BIT)) => INCRPC)

)

) !END OF UCLASS DECODING
) !END OF INSTRUCTION DECODING

) !ENO OF RUN=1 MODE
) NEXT IEND OF INSTRUCTION CYCLE

START

23

ISPL Compiler: User's Manual

6. The Compiler Output

The compiler produces a listing file (with extension LST) and an "object code"

f i le (w i th extension RTM). The latter extension stands for Register Transfer Machine.

In o ther words , the compiler produces code for some idealized machine which executes

reg is te r t ransfer operations.

6 . 1 . Running the Compiler

The fo l lowing example shows a typical execution. The actual calling procedure

may change f rom installation to installation. When the compiler starts executing i t

p rompts the user for the ISP source file name. If there are any error messages they

are p r in ted on the user's terminal as well as in the listing fi le. When the compilation is

done (the compiler types messages indicating the current phase it is executing) it

automat ical ly calls the MACR010 assembler and passes to it the name of the RTM f i le.

A t the end of the assembly the user should have the following files (assume the ISP

source is called X.ISP): X.LST, X.RTM, X.REL, as well as the X.ISP fi le, of course.

r u isp
I n p u t F i l e : mu11. i sp

ISP COMPILER Thursday 29 Jul 76 23 :42 :13 MULT. ISPCN655MB25J PAGE 1

P a r s e Completed.
O p t i m i z a t i o n Completed.
Semant ic Check and Output Fol lows
ISP:NO ERRORS OETECTED
2 3 : 4 3 : 5 7
MACRO: .MAIN

E X I T

24

ISPL Compiler: User's Manual

6.2. Example I - Listing

The l ist ing file reproduces the ISPL source program together wi th any warning

and e r r o r messages. The listing file is organized in 4 parts: 1) The listing proper, 2) A

c ross - re fe rence listing indicating the places in the RTM object code were the registers,

memories, and labels are being used, 3) A symbol table listing containing all the user

and system declared entit ies, together with their attr ibutes, and 4) A statement table

l is t ing containing a readable version of the RTM object code.

[0813 MULT:=
C8813 (DECLARE
C082] MPD<15:8>;
[0 0 2] P < 1 5 : 8 > ;
[0023 C<15 :8> ;
[0021 STEP : = (DECODE P<8> => P-P tSR 8; P-(P+HP0)<15:8> tSR 8)
[003] ERALCED
[003] L 8 : = (
[003] C-8 NEXT
[004] L i : = (
[004] STEP NEXT
[005] C - (C - 1) < 1 5 : 8 > NEXT
[005] (I F C NEQ 8 => L I)
[005])
[005])
[005])
[0 0 5]

6.3. Example I - Symbol Table

The compiler produced symbol table for the multiplier example is shown below.

There is an en t r y (1 line) for each user or compiler declared component. These include

memory components, labels, and constants. The INDEX column indicates the posit ion in

the symbol table of the ent i ty. This index is used to represent the variables in the

s tatement table.

ISP COMPILER Thursday 29 Jul 76 22:89:14 TEMP.TMP [N655MB253 PAGE 2

0 0 10000008 8

CO

CO

CO

CO
 ' e >

1 2 10000000 0 8 8 28 1 'C , < 8 (1 7) : 1 7 (0) >
2 4 18888188 8 8 16 8

CO
 'L8

3 4 10000100 8 8 21 8 8 ' L I >

25

ISPL Compiler: User's Manual

4
5
6
7

18
11
12
13
14
15
16
17
28
2 1

2 18888888
4 10008100
2 10000000
4 10001100
4 10000101
3 10000001
5 10000001
3 10000001
3 10000001
5 10000001

18 10000001
7 10000001
7 10000001
7 10000001

0
0
0
0
0
0
0
0
0
0
0
0
0
8

0
8
0
8
0
8
0
8
0
8
0
8
0
8

0 28
0

28
0
8

1 'flPD
8 ' M I T
1 'P

< 0 (1 7) : 1 7 (8) >

8
3

35
8
8
8
8
8
8
8
8
8

< 8 (1 7 > : 1 7 (0) >
8 'STEP
8 'STOP

21
28

4
28

8 8
8 8 , , 8
8 1
8 18
8 1 7 , , 8
8 'S^TRAR'
8 '%TRRRR*
8 'STRRRB'
8 >%TRRRC

The TYPE column describes the type of "variable" stored in a given en t ry of the

symbol table. The valid types are: Memory Array (TYPE=1), Register (2), Constant (3),

Label (4), Mask (5), Flag (6), Temporary register (7), and Temporary flag (10). The last

t w o are used for compiler declared variables (for instance, temporary registers are

dec lared in order to store partial results when evaluating expressions).

The FLAGS field contains information used by the compiler. It is displayed as

par t of the output mainly for debugging purposses (i.e. they show the status of the

symbol table ent ry) .

The DEF f ield is used to store a pointer to an associated symbol table en t ry . It

is used when a memory component, say a register, is defined in terms of a prev iously

dec lared memory component. For instance, we can declare:

INSTRUCTION.REGISTER<15:0>;

OP.CODE<3:0> := INSTRUCTI0N.REGISTER<15:12>;

In the symbol table l isting, the DEF field for OP.CODE wil l point to a pseudo

reg is te r declarat ion ent ry , corresponding to INSTRUCTI0N.REGISTER<15:12>. The DEF

f ie ld for the lat ter wi l l point to the main declaration of INSTRUCTI0N.REGISTER<15:0>.

If INSTRUCTION.REGISTER had been mapped on top of another register or memory

26

ISPL Compi ler : User's Manual

27

dec lara t ion, the DEF fields will chain these definitions. (DEF defines a chain of

def in i t ions , the last en t ry of which is always the main declaration).

The LBL (LaBeL) f ield associates with every user declared label, an integer used

b y the compiler. This integer constitutes an internal label.

The BCNT and WCNT (Bit CouNT and Word CouNT, respectively) indicate the

number of bi ts and words for each memory and constant. (The count is given as an

octal number).

The PNAME (Print NAME) contains an identifier for each ent ry . For user

dec la red var iables and labels it contains the identifier used in the program (t runcated

t o six characters). Constants are identified by their numeric value (octal). Masks are

rep resen ted as a pair of octal numbers. These indicate the left and rightmost bit

posi t ions of the mask wi th respect to the right edge of the word (for instance, a b inary

mask l ike 00011000 wil l appear as 4„3). System declared registers and flags are

g i ven compiler generated names.

The last f ield of the symbol table, WORDSjBITS, contains the list of

subcomponents for each user declared memory or register. The list contains the bit

(w o r d) names given in the declaration as well as the internal bit (word) names

genera ted and used for the compiler. The compiler generates a posit ion dependent

in te rna l bit (word) name which can be used to generate the proper subcomponent

accessing code. These position identif iers are indicated in parenthesis, next to the

user speci f ied bit (or word) names.

ISPL Compiler: User's Manual

6.4. Example I - Cross Reference

INDEX VAR STATEMENTS

1

2

3

4

5

6

7

18
11

12

13
14

15

16

17

28

2 1

•C
28

•L8
33

• L I
38

•MPD
11

•MULT
34

•P
5

•STEP
15

•STOP
8

7
6 , , 8

5
1

18
28

1 7 , , 8
12

• S ^ R R R '
26

•%TRRRR'
11

•%TRRRB'
12

' XTRRAC '
5

24

32

25 26

7

23

13

25

27

12

13

6

11

26

24

13

25

ISPL Compi ler: User's Manual

6.5. Example I - Statement Table

INDEX LABEL FLAG

•MULT •
(5)

'STEP
7)

e
1

2
3

4

5

6

7

18
11

12

13

14
15

16 >L8
(

17
28

21 ' L i
(

22
23

24

25

26

27

38

3 1
32

33

34

35 'STOP '
(18)

2)

3)

8
8

8

8

'%TRAAC"P ' 8 , , 8
(21) (6) (12)

'%TRAAC
(21)

>p ftp » Q

(6) (6) (11)

'%TRAAA"P "HPO '
(m 17) (6) (4)
•%TRAAB*'%TRAAA' 1 7 , , 8

2 8) (1 7) (
"%TRAAB'

6) (28) (

'STEP '
(7)

15)
8

11)

I X
18

14)

'STEP '
(7)

'%TRAAA"C '
(17) (1)
'C "%TRAAA' 1 7 , , 8
(I X 17) (15)
'%TFAAA"C '

16) (1) (
'%TFAAA'
(16)
' L I '
< 3)

' L I

8
I D

'L8

>

3)
t

(2)
'flULT '
(5)

14 7 , 1 1

14

OPCODE DEST SOURCE1 S0URCE2 MERGE PATHS

'START ' 16
•SMERGE

' I S P
'SMERGE

' I S P
'RBYTE

'BRANCH

'RSHFT

'JOIN
'ADD

'RBYTE

•RSHFT

'SMERGE
•RETURN

'SMERGE

• ISP
'MOVE

•SMERGE

• ISP
•CALL

•DECR

•RBYTE

•NEQ

• I F

•JOIN

•SMERGE
•NOOP

•NOOP

•NOOP

•STOP

31 3 1 , 3 8

21

16

1

29

1

ISPL Compi ler: User's Manual

30

The LABEL f ield is used to identify the individual statements.

The FLAGS f ield, as in the symbol table, is used internally by the compiler. In

th is part icular example, the only flag shown indicates whether the label associated w i th

the ins t ruct ion was declared by the user (1) or by the compiler(O).

The OPR field contains the operation name. The meaning of most operat ions

should be obvious from their names. Data operations are described as a 3-address

assembly- l ike instruct ion. The source operands and the destination operand are

indicated by their index into the symbol table (columns SRC1, SRC2, and DEST). The

RBYTE opera t ion is used to extract a byte from a register. The interpretat ion of the

ope ra t i on is the fol lowing: DESTINATIONS-SOURCE 1<S0URCE2> where destinat ion and

source 1 are of t ype register and source2 is a mask. Other non-obvious data

opera t ions (not shown in the example) are:

WBYTE (DESTINATI0N<S0URCE1>«-S0URCE2),

READ (DESTINATIONS-SOURCE 1[S0URCE2]), and

WRITE (DESTINATI0N[S0URCE1]<-S0URCE2).

The RTM code uses at most three operands, thus an ISP statement l ike:

A«-B[C]<1> compiles into two RTM operations. The first is a READ operat ion that loads

a (compiler generated) temporary register wi th B[C]. The second operat ion is a RBYTE

that ex t rac ts bit 1 of this temporary (the position of this bit is deduced f rom the

dec larat ion of B) and stores it into A. Control operations are slightly more complex.

Ser ial Merge (SMERGEOP) operations are used as merging points for non-concurrent

sequences. Parallel merge (PMERGEOP) operations are used as merging points for

concur ren t sequences. Branch (BRANCHOP) operators select one out of many

a l te rna t ive sequences. These sequences are identified by a list of the labels of thei r

ISPL Compi ler : User's Manual

31

e n t r y points, g iven in the same order as the conditional statement in the original ISP.

D iverge (DIVERGEOP) operations are used to initiate simultaneous, concurrent paths.

These paths are, as in the branch operations, indicated by a list of labels.

Branch and Diverge operations also specify the label of the statement fo l lowing

the a l ternat ive or concurrent paths. That statement is the "merge" point for the

d i f f e ren t paths.

The jo in (JOIN) operator is used as an unconditional jump statement. It general ly

appears as the last statement of a path, and jumps to the appropriate merging point (a

ser ia l or paral lel merge). The NOOP operation is used as a control operat ion. It is

gene ra ted by the compiler to indicate the end of a block. The statement points to the

e n t r y point of the block.

ISPL Compiler: User's Manual

7. References

[Barbacc i , 1973] Barbacci, M. R. and D. P. Siewiorek: "The Automated Explorat ion of
the Design Space for Register Transfer (RT) Systems". First
Annual Symposium on Computer Architecture, University of Florida,
Gainesville, Florida, December 1973.

[Be l l , 1971] Bell, C. G. and A. Newell: "Computer Structures: Readings and
Examples". McGraw Hill Book Company, New York, 1971 .

[Be l l , 1972] Bell, C. G., J. Grason, and A. Newell: "Designing Computers and
Digital Systems". Digital Press, Digital Equipment Corporat ion,
1972.

32

ISPL Compiler: User's Manual

8. Appendix I - The Minicomputer Listing

[001]
[0023
[002]
[002]
[002]
[002]
[002]
[002]
[0023
[002]
[0023
[002]
[0023
[002]
[0023
[0023
[0023
[0023
[0823
[0033
[0033
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0843
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043
[0043

[0043

[0043
[0043
[0043)

M I N I : = (DECLARE !MEMORY AND REGISTERS
M [0 : # 3 7 7 3 < 1 1 : 0 > ; 'MAIN MEMORY
2 < 7 : 0 > ; 'EFFECTIVE ADDRESS REGISTER
CACC<12:0>; ! 13 BIT ACCUMULATOR WITH CARRY POSITION

CARRY.BITo : r CACC<12>;
S I G N . B I T o : = CACC<11>;
ACC<11:0> := CACC<11:0>;

I R < l l ! 0 > ; 'INSTRUCTION REGISTER
0P<11:9> := I R < i i : 9 > ;
I . B I T o := IR<8>;
ADDRESS<7:0> : = IR<7:0>?
IO .B ITS<7:0> := IR<7:0>;
UCLASSo := IR<7>;

L < 7 : 0 > ; 'RETURN REGISTER
PC<7:0>; !PROGRAM COUNTER
IO.REG<7:0>; 'INPUT-OUTPUT REGISTER
R U N o ; !RUN MODE

! PROCEDURE TO INCREMENT PROGRAM COUNTER
INCRPC:=< PC-(PC+1)<7:0>) " ! NOTE THAT PC UILL URAP

ERALCED
START:= (DECODE RUN =>

STOP; ! I f run=0
(IR-MIPC3 NEXT INCRPC NEXT

(DECODE I . B I T => Z-ADORESS ; Z-M[ADDRESS3<7:0>) NEXT
(DECODE OP => !INSTRUCTION DECODING

ACC-ACC AND MIZ3; IAND
CACC-ACC + M[Z3; !TA0 (SETS CARRY BIT)
(M[Z3- (M[Z3+1)<11:0> NEXT (I F M[Z3 EQL 0 «> INCRPC)) ; I I S Z
(M[ZJ«-ACC NEXT ACC-0); !DCA
(L-PC NEXT PC-Z) ; !JSR
PC-Z; !JUMP
IO.REG-IO.BITS; HOT
(DECODE UCLASS =>

((IF IR<6> => INCRPC) NEXT
(I F IR<5> => ACC- NOT ACC) NEXT
(I F IR<4> => ACC-0) NEXT
(I F IR<3> => CACC-ACC+1) NEXT
(I F IR<2> => CACC-ACC-i) NEXT
(I F IR<1> => ACC- ACC tSR0 1) NEXT
(IF IR<0> => ACC- ACC TSL0 1)) ; !EN0 OF UCLASS*B

((I F IR<6> r> INCRPC) NEXT
(I F IR<5> => PC-L) NEXT
(I F IR<4> => PC-CACC<7:0>) NEXT
(I F IR<3> => RUN-0) NEXT
(IF (IR<2> AND SIGN.BIT) OR

(IR<1> AND (ACC EQL 0)) OR
(IR<0> AND (NOT SIGN.BIT)) * > INCRPC)

(SETS CARRY BIT)
! (SETS CARRY BIT IF BORROW)

)
)

)
•END OF UCLASS DECODING

•END OF INSTRUCTION DECODING
) !END OF RUN=1 MOOE
) NEXT !END OF INSTRUCTION CYCLE

START

33

ISPL Compiler: User's Manual

INDEX TYPE FLAGS DEF BLK LBL BCNT

CD
 0 10000000

CD
 9 CO

9

1 2 10010000 4

CO

CD
 14

CM
 2 10019000 16 CD

 CO
 19

3 2 10100000 5

CD
 9 1

4 2 10100000 5 CO

9 14

5 2 10000080

CD
 C

O

9 15

CD
 2 10100000 5 9 9 1

7 2 10010000

CD
 9

CD
 1

18 2 10010000 15 9 9 1

11 4 10001100

CD
 CO

CO

0

12 2 10010000 29

CD

CD
 18

13 2 10000000

CD
 9 CO

18

14 2 10100000 17

CO

CD
 3

15 2 10100000 17 9 9 1

16 2 10100000 17 9 9 18

17 2 10000000

CD
 CO

 CD
 14

28 2 10100008 17 9 CD

18

21 2 18188080 17 CO

9 1

22 2 18880000 C
O

CD

18

23 1 10000000 9 CD

9 14

24 4 10088188
CD

 9 1 8

25 2 18818888 14

CD
 9 „3

26 2 18000000 0 CO

9 19

27 2 10000000 0 9 9 1

38 2 10010000 3

CD
 CO

1

31 4 10000100 CD

9 19 9

32 4 10000101

CD

CD
 161 9

33 2 10010008 21 9 9 1

34 2 10000000 CO
 CD

C
D

 19

35 5 10000001 0 9 CO

1

36 3 100OO0O1 9 9 9 1

37 3 1000O001 0 9 9 1

49 5 10000001 9 9 CO

1

4 1 5 10000001 0

CO

CD
 1

42 5 1000O001 0 CD

9 1

43 5 10000801 0 9

CD
 1

44 5 10000001

CD

CD
 9 1

45 5 10000001 CO

9 9 1

46 5 10800001

CD
 9

CD
 19

47 5 10000001 0 9

CD
 14

59 10 10000001 0

CO
 9 1

5 1 7 10000001 0 9 9 14

52 7 10000001

CD

CD
 9 15

53 7 10000001

CD
 9 9 14

54 7 100O0001

CD
 CD

 CD
 1

55 7 10000001 0 9 CO

1

56 7 10000001 9 CD

9 1

57 7 19999991 0 9 9 11

69 7 19999991 9 9 9 1

MCNT PNAME UORDSjBITS.NRflE(POSITION)

CD
 e-

1 ACC < 8 (1 3) : 1 3 (8) >
1 ADORES < 8 (7) : 7 (8) >
1 CACC '<13(9>>
1 CACC » < 8 (1 3) . 1 3 (9) >
1 'CACC ' < 9 (1 4) : 1 4 < 9) >
1 'CACC ' < 1 4 (8) >
1 'CARRY. t

1 ' I . B I T
C
D

 »INCRPC t

1 M 0 . B I T ' < 8 (7 > : 7 < 8) >
1 M0.REG »<8<7) :7 (8)>
1 MR » < 1 1 (2) : 1 3 (8) >
1 MR ' < 1 9 (8) >
1 MR ' < 8 (7 > : 7 (8) >
1 MR ' < 8 (1 3) : 1 3 (9) >
1 MR » < 8 (7) : 7 (8) >
1 MR '<7(8>>
1 'L ' < 8 (7) : 7 (9) >

499 'M '1377(377) : 8 (9)] < 9 < 1 3) J 1 3 < 9) >

CO
 'MINI >

1 »0P ' < 1 1 (2) . 1 3 (9) >
1 •PC ' < 8 (7) : 7 < 8) >
1 'RUN t

1 •SIGN.B'

CO

'START >

9 'STOP »

1 'UCLRSS'
1 •2 • < 8 (7) : 7 (8) >

CO

e „ 9
9 8
9 1
9 1

C
O

 2 M 2
9 CO

3
9 4

C
O

 s , , 5
8 CO

 CD

CD
 7 , , 8

8 1 3 , , 8
8 '%TFAAA'
9 *%TRAAA'
8 'nRAAB'
9 '%TRAAC
9 '%TRAA0'
9 '%TRAAE *
9 >%TRAAF'
9 '%TRAAG'
0 '%TRAAH?

34

ISPL Compiler: User's Manual

INDEX VAR STATEMENTS

1 'ACC '
27 32 46 47 67 73 77 103

107 113 140
2 'ADDRES'

20 2 2
5 'CACC 9

32 7 7 103 130
7 'CARRY.'

10 * I . B I T '
17

11 * INCRPC

7 16 43 63 120 151
12 ' I D . B I T '

56
13 ' 10 .REG'

56
17 MR

15 61 65 71 75 101 105 111
116 122 126 132 136 141 145

22 'L '
5 1 124

23 'M

15 22 26 31 34 37 40 46
24 ' M I N I '

160
25 'OP

25
26 'PC '

5 6 15 51 52 54 124 138
27 'RUN

12 134
30 ' S I G N . B '

137 144
3 1 'START '

156 157
32 'STOP '

13
33 'UCLASS'

68
34 ' 2

20 23 26 31 34 37 40 46
52 54

35 0 , , 0
111 145

36 0
41 140

37 1
107 113

40 1 , , 1

35

ISPL Compiler: User's Manual

185 141
41 2 , , 2

101 136
42 3 , , 3

75 132
43 4 , , 4

71 126
44 5 , , 5

65 122
45 6 , , 6

61 116
46 7 , , 0

6 23 138
47 1 3 , , 0

36
50 '%TFRRA'

41 42 140 142

51 '/TRRAR'
22 23 26 27 31 32 34 35

48 41
52 ' 7 T R R R B '

35 36
53 ' 7JRRRC'

36 37
54 ,%TRPRD>

61 62 65 66 71 72 75 76

101 182 105 106 111 112 116 117

122 123 126 127 132 133 136 137

143 147 150

55 '%TRRRE'
141 142 143

56 ' 7 T R R R F '
144 146

57 'ZTRRAG'
5 6

60 ' n R R A H '
145 146 147

36

ISPL Compiler: User's Manual

INDEX LABEL FLAG OPCODE DEST

1 ' M I N I '
(24)

2
3 ' I N C R P C

(I D
4

5

6

7

19 'START '
(31)

11
12

13

14

15

16

17

28

21
22

23

24
25

26

27

30
31

32

33
34

35

36

0
1

0
1

0
0

0

0

1

0
0

0
0

0

0

0

0
0

60

0

0

0
0

0
0

0

0

' START '
'SMERGE'

' ISP '
'SMERGE'

' ISP '
'INCR "%TRAAG"PC

SOURCE1 S0URCE2 MERGE PATHS

10

(
'RBYTE " P C

(
'RETURN*

'SMERGE'

' ISP '
'BRANCH'

'JOIN '

5 7) (26)
"ZTRAAC

26) (5 7) (
' INCRPC
(11)

'RUN '
(27)
'STOP '
(32)

46)

'JOIN '
'READ " I R

(
'CALL '

" M " P C
17) (2 3) (26)

' INCRPC
(11)

'BRANCH' ' I . B I T '
(10)

'MOVE " Z "ADORES'
(3 4) (2)

'JOIN '
'READ "%TRAAA"M "ADORES'

(51) (23) (2)
'RBYTE " 2 "%TRAAA' 7 , , 0

(34) (51) (46)
'SMERGE'
'BRANCH' 'OP

'READ

'AND

'JOIN
' READ

(25)
" H R A A A " M " 2 '

(51) (2 3) (34)
'ACC "ACC "%TRAAA f

(1) (1) (51)

"%TRAAA"M " 2 '
(51) (23) (34)

'ADD "CACC "ACC "%TRAAA'
(5) (I X 51)

•JOIN '
'READ "%TRAAA"M " 2

(51) (23) (34)
'INCR "%TRAAB"%TRAAA'

(5 2) (51)
•RBYTE "%TRAAC"%TRAAB' 1 3 , , 0

155 13,15

161

155

24 20 ,22

24

154 2 6 , 3 1 , 3 4 , 4 6 , 5 1 , 5 4 , 5 6 ,

154

154

37

ISPL Compiler: User's Manual

37

48

4 1

52

53
54

55
56

57
68

61

62

63

67

72

154

154

(5 3) (5 2) (47)
8 'WRITE " M " Z "%TRAAC

(23) (34) (53)
8 'READ ' '%TRAAA' 'M " Z '

(51) (23) (34)
8 'EQL "%TFAAA"%TRAAA' 8

(50) (5 1) (36)
42 0 ' I F '%TFAAA' 44 44 ,43

(50)
43 0 'CALL ' ' INCRPC 3

(11)
44 0 'SHERGE'
45 0 'JOIN ' 154
46 0 'URITE " f l " Z "ACC '

(23)< 34) (1)
47 0 'CLEAR "ACC '

(1)

50 0 'JOIN '
5 1 0 'MOVE " L " P C '

(22) (26)
0 'MOVE " P C " Z '

(2 6) (34)
53 0 'JOIN '

0 'HOVE " P C " Z '
(26) (34)

0 'JOIN ' 154
56 0 'MOVE " I O . R E C ' I O . B I T '

(1 3) (12)
57 0 'JOIN ' 154

0 'BRANCH' 'UCLASS' 153 61 ,116
(33)

0 'RBYTE "%TRAAD"IR ' 6 , , 6
(5 4) (1 7) (45)

0 ' I F ' '%TRAAD' 64 64 ,63
(54)

0 'CALL ' ' INCRPC 3
(11)

64 0 'SMERGE'
65 0 'RBYTE "%TRAAD"IR ' 5 , , 5

< 5 4) (1 7) (44)
66 0 ' I F ' '%TRAAD' 70 70 ,67

(54)
0 'NOT "ACC "ACC '

(1) (1)

70 0 'SMERGE'
71 0 'RBYTE "%TRAAO"IR ' 4 , , 4

(54) (1 7) (43)
0 ' I F ' 'XTRAAD' 74 74 ,73

(54)
7 3 0 'CLEAR "ACC '

(1)
7 4 0 'SMERGE'
7 5 0 'RBYTE "%TRAAD"IR 9 3 , , 3

(5 4) (1 7) (42)

38

ISPL Compiler: User's Manual

INDEX LRBEL FLAG OPCODE DEST S0URCE1 S0URCE2 MERGE PATHS

76 8 ' I F '%TRAAD' 100 100,77
(54)

77 0 ' INCR "CACC "ACC '
(5) (1)

100 0 'SMERGE*
101 0 'RBYTE "%TRAAD"IR ' 2 , , 2

(5 4) (1 7) (41)
182 8 ' I F ' '%TRAAD' 104 104,103

(54)
103 0 'DECR "CACC "ACC '

(5) (1)
184 0 'SMERGE'
105 8 'RBYTE "%TRAAD"IR ' 1 , , 1

(54) (1 7) (48)
106 0 ' I F ' '2TRAA0' 110 110,107

(54)
107 0 'RSHFT8"ACC "ACC ' 1

(1) (1) (37)
110 0 * SMERGE'
111 0 'RBYTE " H R A A D ' M R ' 0 , , 0

(.. 54) (17) (35)
112 0 ' I F ' 'HRAAD' 114 114,113

(54)
113 0 'LSHFT0"ACC "ACC ' 1

(1) (1) (37)
114 0 'SMERGE'
115 0 'JOIN ' 153
116 0 'RBYTE "%TRAAD"IR ' 6 , , 6

(5 4) (17) (45)
117 0 ' I F ' '%TRAAD' 121 121,120

(54)
120 0 ' CALL ' ' INCRPC 3

(11)
121 0 'SMERGE'
122 0 'RBYTE "%TRAAD"IR ' 5 , , 5

(5 4) (17) (44)
123 0 ' I F ' '%TRAAD' 125 125,124

(54)
124 0 ' MOVE " P C " L '

(2 6) (22)
125 0 'SMERGE'
126 0 'RBYTE "%TRAAD"IR ' 4 , , 4

(5 4) (17) (43)
127 0 ' I F ' 'XTRAAD' 131 131,130

(54)
130 0 'RBYTE " P C "CACC ' 7 , , 0

(26) (5) (46)
131 0 'SMERGE'
132 8 'RBYTE "%TRAAD"IR ' 3 , , 3

(54) (17) (42)
133 0 ' I F ' *%TRAAD' 135 1 5 5 , 1 3 4

< 54)
134 & 'CLEAR "RUN

(27)

39

ISPL Compiler: User's Manual

INDEX LABEL FLAG OPCODE DEST S0URCE1 S0URCE2 MERGE PATHS

135
136

137

148

141

142

143

144

145

146

147

158

151

152
153
154
155
156

157

168

161 'STOP
(

8 'SMERGE'
8 'RBYTE "%TRAAD"IR ' 2 , , 2

(54) (1 7) (41)
8 'AND "%TRAAD"%TRAAD"SIGN.B'

(54) (5 4) (38)
8 'EQL "%TFAAA"ACC ' 8

(58) (1) (36)
8 'RBYTE "%TRAAE"IR ' 1 , , 1

(55) (1 7) (48)
8 'AND ''%TRAAE''%TRAAE''%TFAAA'

(55) (5 5) (58)
8 'OR ''%TRAAD''%TRAAD''%TRAAE'

(54) (5 4) (55)
8 'NOT "%TRAAF"SIGN.B'

(56) (38)
8 'RBYTE "%TRAAH"IR ' 8 , , 8

(6 8) (17)< 35)
8 'AND ''%TRAAH''%TRAAH''%TRAAF'

(6 8) (6 8) (56)
8 'OR ''ZTRAAD''%TRAAD''%TRAAH'

(. 5 4) (54) (68)
8 ' I F ' '%TRAAD'

(54)
8 'CALL ' ' INCRPC

(11)
8 'SMERGE'
0 'SMERGE'
0 'SMERGE'
0 'SMERGE'
0 'NOOP '

0 'JOIN '

0 'NOOP '

1 'STOP '

'START '
(31)
'START '
(31)
'MINI '
(24)

152 152,151

3

10

18

1

32)

40

Compiler: User's Manual

9. Appendix 11 - ISPL Reserved Keywords

The fo l lowing keywords and identifiers are reserved in the language:

AND
BAILOUT
DECLARE
DECODE
DELAY (not described in this manual)
EQL
EQV
ERALCED
GEQ
GTR
IF
LSS
LEQ
MACRO
MINUS
NEQ
NEXT
NOT
OR
STOP
TST
WAIT (not described in this manual)
XOR

41

ISPL Compiler: User's Manual

10. Appendix II I - The XTOP10.REQ File

XTTESTOP=*200,
XTEQLQP=#20i,
XTNEQQP=#202,
XTLSSOP=*203,
XTLEQOP=*204,
XTGEQQP=*205,
XTGTROP=#206,
XTf1QVEOP=*210,
XTCLERR0P=*2 i l ,
XTN00P=#212,
XTUBYTE0P=*213,
XTRBYTE0P=#214,
XTRERD0P=*22B,
XTURITE0P=#221,
XTLR0T0P=#226,
XTRR0TQP=#227,
XTNOTOP=#230,
X T I N C R 0 P * * 2 3 1 ,
XTDECR0P=#232,
XTLSHFT0P=^233,
XTRSHFT0P=#234,
XTAND0P**235,
XT0R0P* *236 ,
XTX0R0P* *241 ,
XTEQV0P=*242,
XTRD00Pr#243,
XTSUB0P**244,
XTLSHFT10P=#245,
XTRSHFT10P=#246,
XTLSHFT0OP=*247,
XTRSHFT0OP=*250,
XTC0NC0P=#251,
XTNEG0P S *252 ,
XTSUBTW0OP=#253, I T M O ' S Complement Subtract
X"MULTOP=#300,
X T D I V O P = * 3 0 i ,
XTIFOP=#350,
XTRETURN0P=#351,
XTISP0P=#352,
XTPJ0IN0P=#353,
XTBRIL0UT0P=#361,
XTCRLL0P=*363,
XTJ0INQP=*36S,
XTBRRNCH0P=*371,
XT0IVERGE0P=#372,
XTSJ1ERGE0P=#373,
XTPf1ERGEQP=#374,
XTSTART0P=#376,
XTST0P0P«#377,

42

ISPL Compi ler: User's Manual

11 . Appendix IV - The Multiplier MACR010 Format

Another vers ion of the RTM code intended for machine consumption consists of a

MACR010 program in which all the information in the symbol and statement tables is

encoded as MACR010 statements (all of which are in fact, data definit ion statements).

In o rder to understand the RTM file (the ISP and listing files associated w i th this

example were described previously, in the section describing the compiler output) , the

reader should have a working knowledge of BLISS 10, enough to understand the

SIMISP.REQ file describing the structure of the MACR010 statements. The SIMISP.REQ

f i le is g iven after the example.

; ARF ISP COMPILER - JUNE 1976
TWOSEG
INTERN SYTRBL,STTRBL,SYTOP,STTOP,ISPTIT
INTERN ISPFNM,ISPEXT,ISPDRT,ISPTIM,ISPPPN,ISPVER
RELOC 408800

7B0005:
7B0003:
2 B 0 0 0 1 :
$ 0 0 0 2 5 :
$ 0 0 0 0 6 :

SYTRBL:

STTRBL:

EXP
EXP
EXP
EXP
EXP
RELOC

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE

0 , 1 7 , 1 7 , 0 , - 1
0 , 1 7 , 1 7 , 0 , - 1
0 , 1 7 , 1 7 , 0 , - 1
2 7 , 2 6
7 , 1 1
0

(9) 0 , 2 0 0 (
(9) 2 , 2 0 0 (
(9) 4 , 2 0 4 (
(9) 2 , 2 0 0 (
(9) 4 , 2 0 4 (
(9) 2 , 2 0 0 (
(9) 4 , 2 1 4 (
(9) 4 , 2 0 5 (
(9) 5 , 2 0 K
(9) 3 , 2 0 K
(9) 3 , 2 0 K
(9) 3 , 2 0 K
(9) 5 , 2 0 K
(9) 1 0 , 2 0 1
(9) 7 , 2 0 K
(9) 7 , 2 0 K
(9) 7 , 2 0 K

1 8) 8 , 8 , 0 , 0 , 0 (3 6) ' * ' , 0
1 8) 0 , 0 , 2 0 , 0 , ? B 0 0 0 K 3 6) ' C ' , 1
1 8) 0 , 1 7 , 0 , 0 , 0 (3 6) ' L 1 ' , 0
18)0 ,0 ,20,0 ,KB0003<36) 'MPD ' , 1
1 8) 0 , 1 , 0 , 0 , 0 (3 6) ' M U L T ' , 0
18)0 ,0 ,20 ,0 ,7~B0005(36) 'P ' , 1
1 8) 0 , 3 , 0 , 0 , 0 (3 6) ' S T E P ' , 0
1 8) 0 , 3 2 , 0 , 0 , 0 (3 6) ' S T O P ' , 0
1 8) 0 , 0 , 1 , 0 , 8 (3 6) 0 ,0
1 8) 0 , 0 , 1 , 0 , 8 (3 6) 0 ,0
1 8) 0 , 0 , 1 , 0 , 0 (3 6) 1,0
1 8) 0 , 0 , 4 , 0 , 0 (3 6) 10,0
1 8) 0 , 0 , 2 0 , 0 , 0 (3 6) 1 7 0 0 0 0 0 0 , 0
(1 8) 0 , 0 , 1 , 0 , 0 (3 6) ' % T F R R R ' , 0
1 8) 0 , 0 , 2 1 , 0 , 0 (3 6) ' Z T R R R f l , , 0
1 8) 0 , 0 , 2 0 , 0 , 0 (3 6) ' X T R R A B \ 0
1 8) 0 , 0 , 1 , 0 , 0 (3 6) ' % T R R R C ' , 0

(9) 0 , 3 7 6 (1 8) 2 3 6 1 (1 2) 0 , 0 , 0 (1 8) 0 , 1 6 , 8 , 0
(9) 1 , 3 7 3 (1 8) 5 2 6 1 (1 2) 0 , 0 , 0 (1 8) 0 , 0 , 0 , 4
(9) 0 , 3 5 2 (1 8) 4 3 0 1 (1 2) 0 , 0 , 0 (1 8) 0 , 2 , 0 , 0
(9) 1 , 3 7 3 (1 8) 5 2 6 1 (1 2) 0 , 0 , 0 (1 8) 0 , 0 , 0 , 6
(9) 0 , 3 5 2 (1 8) 4 3 0 1 (1 2) 0 , 0 , 0 (1 8) 0 , 3 , 0 , 0

43

ISPL Compiler: User's Manual

BYTE (9) 8 , 2 1 4 (1 8) 1 1 2 2 1 (1 2) 2 9 , 5 , 1 0 (1 8) 8 , 8 , 0 , 8
BYTE (9) 8 , 3 7 1 (1 8) 1 3 4 6 1 (1 2) 8 , 2 0 , 8 (1 8) 2 , 1 4 , $88886,8
BYTE (9) 8 , 2 3 4 (1 8) 7 8 7 8 (1 2) 5 , 5 , 1 1 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 3 6 5 (1 8) 2 3 4 1 (1 2) 8 , 8 , 8 (1 8) 8 , 1 4 , 8 , 8
BYTE (9) 8 , 2 4 3 (1 8) 7 1 2 1 (1 2) 1 6 , 5 , 3 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 2 1 4 (1 8) 1 1 2 2 1 (1 2) 1 7 , 1 6 , 1 4 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 2 3 4 (1 8) 7 8 7 8 (1 2) 5 , 1 7 , 1 1 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 3 7 3 (1 8) 5 2 6 1 (1 2) 8 , 8 , 8 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 3 5 1 (1 8) 1 4 2 1 (1 2) 8 , 6 , 8 (1 8) 8 , 3 , 8 , 8
BYTE (9) 8 , 2 1 8 (1 8) 1 8 8 2 1 (1 2) 1 , 1 3 , 8 (1 8) 8 , 8 , 8 , 9
BYTE (9) 1 , 3 7 3 (1 8) 5 2 6 1 (1 2) 8 , 8 , 8 (1 8) 8 , 8 , 8 , 2
BYTE (9) 8 , 3 5 2 (1 8) 4 3 8 1 (1 2) 8 , 8 , 8 (1 8) 8 , 4 , 8 , 8
BYTE (9) 8 , 3 6 3 (1 8) 2 4 8 1 (1 2) 8 , 6 , 8 (1 8) 8 , 3 , 8 , 8
BYTE (9) 8 , 2 3 2 (1 8) 1 8 8 2 4 (1 2) 1 6 , 1 , 8 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 2 1 4 (1 8) 1 1 2 2 1 (1 2) 1 , 1 6 , 1 4 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 2 8 2 (1 8) 7 8 4 2 (1 2) 1 5 , 1 , 1 1 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 3 5 8 (1 8) 6 2 4 1 (1 2) 8 , 1 5 , 8 (1 8) 2 , 2 7 , $ 8 8 8 2 5 , 0
BYTE (9) 4 , 3 6 5 (1 8) 2 3 4 1 (1 2) 8 , 2 , 8 (1 8) 8 , 1 7 , 8 , 8
BYTE (9) 8 , 3 7 3 (1 8) 5 2 6 1 (1 2) 8 , 8 , 8 (1 8) 8 , 8 , 8 , 8
BYTE (9) 8 , 2 1 2 (1 8) 2 1 2 (1 2) 8 , 2 , 8 (1 8) 8 , 1 7 , 8 , 9
BYTE (9) 8 , 2 1 2 (1 8) 2 1 2 (1 2) 8 , 4 , 8 (1 8) 8 , 1 , 8 , 8
BYTE (9) 1 , 3 7 7 (1 8) 1 4 4 1 (1 2) 8 , 9 , 9 (1 8) 9 , 0 , 9 , 7

SYTOP: EXP 28
STTOP: EXP 32
I S P T I T : RSCIZ • F r i d a y 23 Jul 76 19122:58 TEST.ISP[N655HB25I•
ISPFNM: S IXBIT •TEST '
ISPEXT; S IXBIT • ISP •
ISPDRT: RSCIZ •23 Jul 76^
I S P T I f l : RSCIZ ' 1 9 : 2 2 : 5 8 >

ISPPPN: EXP 32548,334165
ISPVER. EXP 9 , 9 , 9 , 9

END

The MACROIO program starts by declaring certain symbols to be accessible to

separa te ly compiled modules. This is done wi th the INTERN MACROIO operator . The

symbols in quest ion are the base address for the symbol and statement tables and the

number of entr ies in each table (actually the index of the last ent ry , the f i rs t en t ry has

index 0). The user therefore can access the symbol table entr ies be tween

SYTABL[0,<fieldname>] and SYTABL[@SYTOP,<fieldname>] and the statement table

en t r ies be tween STTABL[0,<fieldname>] and STTABL[@STTOP,<fieldname>].

The MACROIO program is divided in two segments, the high segment contains

the b i t and w o r d lists of the symbol table, as well as the label lists of the statement

tab le . The low segment contains the symbol and statement tables proper ly .

44

ISPL Compi ler : User's Manual

45

The bit and word lists are declared as a list of expressions, using the EXP

MACROIO operat ion, each element of the list takes a full word on the PDP-10. Each bit

and w o r d list is identi f ied by a label of the form: ^Bnnnn for bit lists and 7,Wnnnn for

w o r d lists were nnnn is the index of the symbol table associated with the b i t / w o r d list.

Every element of a b i t /wo rd list appears as a pair of consecutive elements in the EXP

statement . The f i rst (odd) element is the b i t /word name. The second (even) element is

the b i t / w o r d posit ion. The b i t /word list ends with a -1 as a b i t /word name element.

The statement table label lists appear as lists of expressions, again using the

EXP operat ion . These lists are identified by a label of the form flnnnnn were nnnnn is

the index of the statement table associated with the label list. There is no need for a

special list terminator, the statement table entry contains a count or vector length for

i ts label l ist, if any.

ISPL Compi ler: User's Manual

12. Appendix V - The SIMISP.REQ File

1 2 . 1 . The Statement Tablg

MACRO
STFLAGS=8,27,9$,
ST0PERATI0N=8,18,9$,
STARF0P=8,8,18$,
STDESTINATI0N=1,24,12$,
STS0URCEi= l ,12 ,12$,
STS0URCE2=1,8,12$,
STSC0UNT=2,18,18$,
STLABEL=3,8,18$,
STMERGELABEL=2,8,18$,

STSLISTr:3 ,18 ,18$j

!ASSORTED FLAGS FOR THE STATEMENT
!OPERATION CODE. SEE XTOP.REQ
! ARF OPERATION CODE
•DESTINATION VARIABLE SYMBOL TABLE INDEX
ISOURCEi VARIABLE SYMBOL TABLE INDEX
ISOURCE2 " w

•NUMBER OF ELEMENTS IN STSLIST.
•SYMBOL TABLE INDEX OR 8.
!LABEL OF THE ASSOC. MERGE STATEMENT FOR
•XTDIVERGE ,XTBRANCH AND XTCALL OPS.
ILABEL OF ASSOC. STATEMENT FOR XTCALLOP.
•POINTER TO VECTOR OF SUCCESSOR STATEMENTS.
ISTSUCSTRUCT IS MAPPEO ONTO THE VECTOR

BINO ITHE STTABLE FLAGS
STUSERLAB=1T8,
STBREAK=1T1,

STTRACE«1T2,

STRECORD=iT3,
STIGNORED=lt4,

ST0PAQUE*it5,
STETCETC«8j

•STATEMENT LABEL WAS DECLAREO BY USER
!BREAK FLAG. SIMULATOR BREAKS AFTER FLAGGED
{STATEMENTS ARE EXECUTED
•TRACE FLAG. SIMULATOR WILL PRINT VARIABLES
! AFTER EXECUTION.
!RECORD THE SIMULATED TIME OF EACH EXECUTION
IFLAGS DIVERGE,PMERGE AND ASSOC. JOINS AS
(DELETED STATEMENTS!!
! DISABLES READ/WRITE/ACCESS TALLY
!AOO ANY OTHER FLAGS YOU LIKE

BIND
STENTRYSIZE*4j 14 WORDS/ENTRY

STRUCTURE STSTRUCTURE(INDEX,WORD,P,S3»(.STSTRUCTURE*. INDEX*STENTRYSIZE*.WORD)<•P,

EXTERNAL STSTRUCTURE STTABLE; ITHE STATEMENT TABLE
EXTERNAL STTOP; ITHE INDEX OF THE LAST STTABLE ENTRY (STARTING FROM «)

MACRO
STSUCLABEL«18,18$,
STSUCINDEX=8,18$;

ITHE SUCCESSOR LABEL
ITHE SUCCESSOR INDEX

STRUCTURE STSUCSTRUCT [WORD, P, S I « (. STSUCSTRUCT+. WORtt) <. P , .S> j

46

ISPL Compiler: User's Manual

12.2 .

MACRO
SYTYPE=0,27,9$,

SYFLAGS=0,18,9$,
SYDEFINITION=8,0,18$,
SYLflBEL=l,18,18$,
SYBITCNT=1,0,18$,
SYURDPTR=2,18,18$,
SYBITPTR=2,0,18$,
SYPNAME=3,0,36$,

SYURDCNT=4,8,36$;

!THE ENTRY TYPE (1=MEM0RY,2«REGISTER,3=C0NSTANT,
!4=LRBEL, 5=MRSK, 6=fLRG, 7=TREGISTER, #10=TFLRG)

'ASSORTED FLRGS FOR THE ENTRY
!INDEX OF ASSOCIATED ENTRY. USED FOR REG-DEFINITIONS
'INTERNAL STATEMENT TABLE INDEX FOR ENTRIES OF TYPE«=4
'NUMBER OF BITS/UORD OR CONSTANT LENGTH
IPOINTER TO WORD LIST (ONLY FOR TYPE=1)
IPOINTER TO BIT LIST (ONLY FOR TYPE=1 OR 2)
! SIXBIT STRING FOR VARIABLES, VALUE FOR
•CONSTANTS AND MASKS (LEFTBIT, ,RIGHTBIT)
!NUMBER OF UORDS (ONLY FOR TYPE=1>

BIND
SYENTRYSIZE=5,
SYSYSTEMVAR=1T8,
SYBREAK=1T1,
SYTRACE=112,
SYPRIMARY=iT4,
SYSEC0NDARY=1T5,
SYBITRDDRESS=lt6,
TYPEMEMORY=1,
TYPEREGISTER=2,
TYPECONSTANT=3,
TYPELRBEL=4,
TYPEMASK=5,
TYPEFLAG=6,
TYPETREGISTER=7,
TYPETFLAG=8;

5 UORDS/ENTRY
SYSTEM DECLARED VAR. (TYPE=3,5,7,#10)
BREAK FLAG. USED ONLY FOR LABELS.
TRACE FLAG. SIMULATOR TELLS AFTER VARIABLE IS WRITTEN INTO.
INDICATES VAR. IS LEFT HALF OF REG-DEFINITION
INDICATES VAR. IS RIGHT HALF OF REG-DEFINITION
INDICATES STORAGE IS BIT ADDRESABLE
FOR SYTYPE ABOVE

STRUCTURE SYSTRUCTURE [INDEX,WORD,P,S3 = (.SYSTRUCTURE*. INDEX*SYENTRYSIZE+.WORD)<• P , . S > ;

EXTERNAL SYSTRUCTURE SYTABLE; !THE SYMBOL TABLE
EXTERNAL SYTOP; ! THE NUMBER OF ENTRIES -1 (I . E . MAX INDEX)

STRUCTURE I VECTOR [NDXJ = (U (. . I VECTOR*. NDX) <0,36>;

EXTERNAL I S P T I T , ISPFNAM, ISPEXT, ISPPPN, ISPDAT, ISPTIM, ISPVER;

47

ISPL Compiler: User's Manual

1 2 . 3 . Tib I* Diagrams

I STFLAGS I STOPERRTION I STARFOP I

I STDESTINATION I STSOURCEi I STS0URCE2 I

I STSCOUNT I STflERGELABEL I

I STSLIST I STLABEL I

1 STSUCINDEX 1 STSUCLABEL 1 1ST SUCCESSOR

1 1

1 STSUCINDEX 1 STSUCLABEL 1 "STSCOUNFTH SUCCESSOR

1 -1 1 -

1 SYTYPE 1 SYFLAGS 1 SYDEFINITION 1

1 SYLABEL I SYBITCNT 1

1 SYWROPTR 1 SYBITPTR 1

I SYPNAHE 1

1 SYWRDCNT 1

I FIRST WORD/BIT NAME

I FIRST WORD/BIT POSITION

I

I LAST WORD/BIT NAME

I LAST WORD/BIT POSITION

I -1

48

ISPL Simulator: User's Manual

A User's Guide to the ISPL Simulator

Mario R. Barbacci
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa.

1

ISPL Simulator: User's Manual

T A B L E O F C O N T E N T ?

SECTION PAGE

Int roduct ion 3

From ISPL to RTM and Beyond 4

The Command Language 6

3.1 START and CONTinue 7

3.2 EXIT 7

3.3 READ and DUMP 7

3.4 ECHO and DECHO 8

3.5 RADIX 8

3.6 CTR, SETCTR, and OUTCTR 8

3.7 OPAQUE and DOPAQUe 9

3.8 VALUE and SETVALue 9

3.9 TRACE, UTRACE, DTRACE, and TELLTRace 10

3.10 BREAK, DBREAK, and TELLBReak 10

3.11 SBREAK, DSBREAK, and TELLSBreak 10

3.12 ICONNEct and OCONNEct 10

3.13 HELP 11

Storage Mapping . 12

4.1 Allowable Types of Mapping 14

Examples
15

i

ISPL Simulator: User's Manual

5.1 Linking the Compiler Output wi th the Simulator 15

5.2 Running the Simulator 16

5.3 Executing Selected Procedures 18

5.4 Reading Command Files 19

ii

ISPL Simulator: User's Manual

Acknowledgements

The ISP simulator is a much improved version of a primitive system developed

by S. Rodkey at CMU during the spring of 1975. The system was modified and

expanded by Greg Lloyd of the Naval Research Laboratory during the Fall of 1975. The

sys tem was fur ther enhanced by the author during the Winter and Spring of 1976.

Many commands and features were added to the system as part of the Army/Navy CFA

p ro jec t . Special thanks are due to the users of the system for their comments and

suggest ions, among them: H. Elovitz (NRL), R. Gordon (NUSC), R. Howbrigg (NUSC), D.

S iewiorek (CMU), and S. Zuckerman (NRL).

2

Abstract

The simulator described in this manual will interpret the output of the ISPL

compi ler , the RTM code, thus allowing the users a generalized computer archi tecture

s imulat ion faci l i ty. This manual describes the commands available to the users.

t

I
L

ISPL Simulator: User's Manual

1. Introduction

The ISPL compiler translates Computer Architecture (Instruct ion Set)

Descr ipt ions wr i t t en in a subset of ISP [Bell71] into instructions for an idealized

Register Transfer Machine (RTM) which can perform the primit ive Register Transfer

Operat ions needed to fetch, decode, and execute instructions. The ISP simulator is in

e f fec t an implementation of the Register Transfer Machine.

Some e f fo r t has been put into isolating the user from the low level detail of the

RTM code. Under normal circumstances, the user will interact wi th the simulator using

the names of registers, memories, procedures, etc, as declared in the ISPL descr ipt ion.

The simulator follows the convention of the ISPL compiler with regard to number

rep resen ta t ion , it uses an unsigned (pure magnitude) representation. Internal ly, the

s imulator uses multiple precision operations on the PDP-10 to execute the data

opera t ions and transfers. A current implementation limitation sets a limit of 140 bi ts

fo r the length of the variables used in the register transfer operations (beware that

the ISPL compiler wil l allow the user to declare registers and memories of a rb i t ra ry

leng th - the simulator wil l warn the user if any attempt is made to operate on

var iab les larger than 140 bits).

A l though concurrency is easily described in ISPL, the simulator makes no attempt

to p rov ide this faci l i ty. It wil l execute concurrent operations in sequence and the user

should avoid wr i t t i ng order-dependent parallel ISP statements.

3

ISPL Simulator: User's Manual

2. From ISPL to RTM and Bevond

The process of obtaining a running simulator given a syntactically correct ISP

description is rather simple. The ISPL compiler, in the abscence of serious errors, will

produce a MACROIO program containing the RTM object code. This program should be

assembled in order to produce a relocatable PDP-10 binary file. This process is also

handled by the ISPL compiler (i.e. it will generate the RTM file and then invoke the

MACROIO assembler). At the end of the compilation the user has the following files

(assume that the original ISP files was X.ISP):

X.ISP (The source J\\e)
X.LST (The listing file, described in the ISPL compiler manual)
X.RTM (The object file, described in the ISPL compiler manual)
X.REL (The relocatable binary version of the X.RTM file)

At this point you can get rid of the X.LST and X.RTM files, as far as the simulator

is concerned, they are not needed at all. Hold onto the X.REL file for dear life, unless

cycles are cheap at your installation and can afford to run the ISPL compiler as often

as you please....

The simulator consists of a group of (currently 7) binary files that must be

linked, using one of the standard PDP-10 CUSPs, with the X.REL file. Once this is done,

you can save the core image and you are all set to go. The exact procedure might

change from installation to installation, depending on whether you use LOAD or LINK10.

A typical procedure might look like:

EXECUTE X.REL,@ISPSIM.CMD

<or alternative, if you have the LINK-10 loader in your system:>

R LINK
•x.REL
*@ISPS1M.CMD
*<any switches you want>
• /SSAVEx

ISPL Simulator: User's Manual

* /GO

The above sequence will produce two files: X.SHR and X.LOW. These are your

ISPL descr ip t ion compiled, linked, saved, and ready to run:

RU x < and off you go!, good luck!>

5

ISPL Simulator: User's Manual

6

3. The Command Language

The simulator accepts a small number of commands, using a fixed format:

<keyword> <parameter> <parameter>

Only one command is accepted per line. Commands might be typed, in upper or

lower case, directly from the user's terminal or can be retrieved from command files

(the latter can be done recursively, up to 16 levels of nested command files).

Comments can be inserted in the command stream by typing a T followed by any

arbitrary string. The command scaner will ignore anything between the T and the end

of the line. Most parameters represent ISPL variable names or numeric values. The

latter can be typed in several modes (Binary, Octal, Decimal, and Hexadecimal) and

there are facilities to set up a proper default value of the type-in type-put radix.

All variables, labels, and constants defined in the ISP source program have

activity counters associated with them. This allows the user to collect statistical data

when running benchmark programs under the simulator. There are commands to clear,

preset, and interrogate the value of these counters.

The command language include a group of commands to trace variables, start,

break, and continue a simulation run, as well as commands to set and interrogate the

values of the register and memories of the target, machine.

When the simulator is running and the user suspects an infinite loop of

instructions, typing a $ (Altmode) will break the execution, Actually, any type ahead

will produce an interruption. I is the preferred mode.

3 . 1 . START and CONTinue

ISPL Simulator: User's Manual

7

START <label> is the command used to begin the simulation of an ISP procedure

o r main program. <label> is the name of a procedure declared in the ISP descr ipt ion.

The START command is valid only at the top level of simulation. Thus, after a

b reakpo in t in the simulation the user must use the command CONT to proceed.

3.2. EXIT

EXIT is the command used to finish a simulation run. It allows an order ly re tu rn

to the PDP-10 monitor. EXIT closes the files that might have been created w i th the

OCONNECT command. Typing TC will return to the monitor but CONNECTed files wi l l be

lost.

3.3. READ and DUMP

READ <dev:fi lename.ext[ppn]> allows the user to specify a fi le containing

s imulat ion commands. Essentially, READ substitutes the user terminal wi th the fi le and

proceeds to read and execute commands until the end of the file is found, at which

point the user terminal is again the command input device. Defaults are DSK (device),

SIM (extension) and current user's PPN. Command files can contain comments. A

comment is anything between a ! and the end of a line.

DUMP is used to save the status of a simulation run. DUMP creates a f i le

conta in ing the values of each variable (if non-zero), t race/break flags, read /wr i t e

coun te rs , etc. The file created by DUMP can be read by the READ command, thus

a l lowing a simple way of reinitializing a simulation at the point the DUMP command was

issued.

ISPL Simulator: User's Manual

8

3.4. ECHO and DECHQ

ECHO and DECHO are commands used to set an internal flag that controls the

ECHOing of the commands being read from a command file onto the user terminal.

After the ECHO command is issued, the execution of a READ command will type onto

the user"s terminal the command lines as they appear in the command file. DECHO

disables this type-out. ECHO and DECHO can be issued from inside the command file

thus allowing a selective type-out.

3.5. RADIX

RADIX <base> is used to set the numeric base to be used for typing in and out.

<base> is one of the following strings: BINARY, OCTAL, DECIMAL, or HEX. If base is

ommited the command simply types the name of the current base without altering it.

The current base setting might be bypassed on input by prefixing the constant with

one of the following: * (binary), * (octal) or " (hex). Regardless of the current radix,

HEX constants which begin with a letter MUST be prefixed with " (this is a requirement

that will be lifted in a future release).

3.6. CTR. SETCTR. and OUTCTR

CTR <name> displays the value of the counter(s) associated with <name>. These

counters are tagged with R, W, or L to indicate whether they are the Read, Write, or

Label count respectively. SETCTR <name> <readcounter> <writecounter> allows the

user to specify the setting of these counters. If <name> is a label, then the

<readcounter> plays the role of label count. If the <..xounter> values are ommitted

they default to 0. Instead of <name> the user may specify ALL and the command is

ISPL Simulator: User's Manual

9

app l ied to all the variables and labels. All read/wr i te counts are expressed in terms of

8 -b i t by tes . Thus, reading a 16 bit register increments the R counter by 2. The

reg is te r lengths are rounded up to the next multiple of 8 before incrementing the

coun te r : A 19 bit register counts as 3.

OUTCTR <filename.ext[ppn]> is a subset of the DUMP command. It creates a f i le

(defaul t extension CTR) wi th the values of of all non-zero counters.

3.7. OPAQUE and DOPAQUe

OPAQUE <label-l ist> and DOPAQUE <label-list> are used to inhibit or enable the

var iab le and label act ivi ty counters. The parameters to these two commands are labels

or p rocedure names. If a procedure is OPAQUEd then no activity counts are

incremented dur ing its execution. The DOPAQUE command re-enables the act iv i ty

count ing . These two commands affect only those procedures named in the parameter

l ist. Procedures called by OPAQUEd or DOPAQUEd procedures are not affected.

3.8. VALUE and SETVALue

VALUE and SETVALue are the commands used to set and interrogate the

contents of the ISP variables. The valid formats are:

VALUE <regname> (displays the value of a single register)

VALUE <memname> [<fromword> {: <toword>}] (displays the values s tored in a

memory).

SETVAL <regname> = <value> (stores <value> into the register)

SETVAL <memname> [<fromword>] = <value-list> (stores into the memory. If more
than one value is specified, they are stored in succesive
memory positions, starting at <fromword>).

ISPL Simulator: User's Manual

10

3.9. TRACE, UTRACE, DTRACE. and TELLTRace

{TRACE | UTRACE | DTRACE} <variable-list> are the commands used to enable or

d isable the tracing of variables during the simulation. If the identif ier ALL is speci f ied

instead of a variable list, the command applies to all variables. TRACE and UTRACE

d i f f e r in that the former applies to all variables (including compiler declared temporary

reg is te rs and flags) while the latter only applies to user declared variables (registers

and memories). DTRACE is used to disable the tracing.

TELLTRace wil l type on the user's terminal the list of variables cur rent ly being

t raced .

3.10. BREAK, DBREAK, and TELLBReak

{BREAK | DBREAK} <label-list> are the commands used to enable or disable the

se t t ing of breakpoints during the simulation. The parameters are either ISP procedure

names or labels. TELLBR displays on the user's terminal the list of breakpoint names.

3 . 1 1 . SBREAK, DSBREAK, and TELLSBreak

These commands are similar to BREAK, DBREAK, and TELLBReak but instead of

using ISP labels as parameters they take RTM statement numbers. Thus al lowing a

f i ne r degree of control on the placement of the breakpoints. These commands are not

par t i cu la r l y useful for the normal user, who should not be concerned w i th the RTM

code.

3 .12. ICONNEct and OCONNEct

ICONNEct <identifier>,<channel~number>,<variable-name>

OCONNEct <identifier>,<channel-number>,<variable-name>

ISPL Simulator: User's Manual

11

These commands are used to "connect" ISP variables to PDP-10 ASCII f i les

wh ich wi l l act as potential ly infinite sources/sinks for variable values. When a var iable

is connected to an input fi le, each time the variable is accessed, the value wi l l be

ob ta ined f rom the file instead of the simulated storage allocated to the var iable.

Simi lar ly, w r i t t i ng into a variable that has been connected to an output fi le results in

the value being wr i t ten into the file (as well as into the storage allocated to the

var iab le) . The format for both input and output files is the same: one number/ l ine.

The fi le names are created by the simulator and consist of the f i rst parameter to

the command (the <identif ier>) as the file name, with extension ICn (ICONNEct) or OCn

(OCONNEct), where n is the user specified channel number. The current implementation

on ly al lows up to three input and three output channels open simultaneoulsy. Thus the

on ly val id channel numbers are 1, 2 and 3.

3.13. HELP

HELP tells the user about the command names and their format. HELP

<commandname> tells the user about a specific command.

ISPL Simulator: User's Manual

12

4. Storage Mapping

The simulator allocates space for the registers and memories declared in the

RTM symbol table using contiguous storage on the memory of the PDP-10, The fact

that the PDP-10 is a 36 bits/word, 2's complement machine is completely transparent

to the user. All RTM operations are interpreted rather than compiled into PDP-10

instructions. Moreover, the simulator does not impose any limitations derived from the

word length; ISPL registers and memories are allocated contiguous bit strings on the

PDP-10.

The use of logical register/memory declarations in the ISPL description presents

the following problem: The ISPL compiler allows the user to define arbitrary mappings

between bits of the left and right hand sides of the logical declaration, the only check

made at that point is that the number of bits is the same. From the simulator point of

view, it could be posible to implement arbitrary bit mappings at a tremendous

degradation in performance (accessing a bit of a register or memory word that is

mapped onto some other component implies searching a table of bit name/position

equivalences; having to follow this procedure bit by bit, even for full register/word

accesses could be hard to justify). The simulator makes a compromise between

convenience to the ISPL writer and efficiency of simulation. The solution adopted is to

restrict the types of mappings that the simulator can handle: aH the bits of the right

hand side of a logical declaration must be contiguous. Continuity is defined in terms of

the word/bit naming convention used in the main declaration of the register/memory

used on the right hand side of the logical declaration. There are no limitations as to

what can appear on the left hand side of the logical declaration, these bits are b^

definition contiguous.

ISPL Simulator: User's Manual

Specif ical ly, the fol lowing are the valid types of mappings allowed by the

s imulator :

1) If the right hand side of a mapping was declared as a register, the
s t ruc ture of the right hand side must specify a contiguous str ing of
bit names as specified in the main declaration. The number of bits
may range from 1 to the entire register length and, for proper
subsets of the main declaration, may be located anywhere in the
register.

2) If the right hand side of a mapping consists of a single memory word ,
the valid mappings are those defined as above.

3) If the right hand side of a mapping consists of a set of memory
words, the structure of the right hand side must specify a contiguous
st r ing of full words as specified in the main declaration. The number
of words may range from 1 to the entire memory range and, for
proper subsets of the main declaration, may be located anywhere in
the memory.

13

ISPL Simulator: User's Manual

4 . 1 . A l lowable Types of Mapping

The fo l lowing list of memory maps gives a good coverage of the allowable cases

n 10777777: #770888 ,07777 :83 <7 :8> ;
HBC#7777:83<7:8>
flBIO [#777777 : #7700003 <7:0> i-
MM[#3777:83 <15 :8>
MWIO[#377777: #3788883 <15:0>

A 0 N 0 N [0 : 2 5 5 3 < 0 : 1 5 > ;
A 0 N N 0 [0 : 2 5 5 3 < 1 5 : 8 > ;
AN00N[255 :03<0 :15> j
A N 0 N 0 [2 5 5 : 8 3 < 1 5 : 0 > }

R8N<8:15>:
RN0<15:8> ;

ITHE ADDRESSING SPACE
I1[#7777:83<7:0>;
n[#777777: #7700003<7:0>,
»1 [07777:03 <7:0>;
N10777777x#7700003<7:0>,

MAP11[0 :151<8 :15>
t1AP12[0:153<0:15>
H A P 1 3 [8 : 1 5 3 < 8 : 1 5 >
MAP14 I0 :153<0 :15>
H A P 1 5 [0 : 2 3 < 0 : 2 >
MAP16[8 :23<8 :2>

(1AP21[0:153<15:0>
MAP22(0 :153<15:0>
MAP23[0 :153<15 :0>
MAP24[8 :153<15:8>
I1AP25[0 :23<2:0>
MAP26(0 :23<2 :0>

n A P 3 i [1 5 : 0 3 < 0 : 1 5 >
f1AP32[15:8J<8:15>
(1AP33[15J03<0:15>
!1AP34 t l5 :83<8 :15>
MRP35[2 :83<8 :2>
MAP36[2:83 <0 :2>

f1RP41[15:83<15:8>
I1RP42[15:83<15:8>
f1AP43[15:03<15:0>
f 1 R P 4 4 U 5 : 8 3 < 1 5 : 8 >
HRP45[2:83 < 2 : 8 >
H A P 4 6 [2 : 8 3 < 2 : 0 >

A8N8N[188:1153 <0:15>;
A8NN8[188:U53<15:0>;
AN00N[115:1001<0:15>;
AN0N0[115:1003<15:0>;
R0N<5:13>;
RN0<13:5>;

A0N0N[100:1153<8:15>;
A0NN0[100:1153<15:0>;
AN00N[115:1003<0:15>;
AN0N0[115:1803<15:0>j
R0N<5:13>;
RN0<13:5>;

A0N0N[100:1153<0:15>;
A0NN0[100:1153<15:0>$
AN00N[115s1003<8:15>j
AN0N0[115:1803<15:8>;
R0N<5:13>|
RN0<13:5>;

A0N0N[100:1153<0:15>j
A0NN0[100:1153<15:0>;
AN00N[115:1003<0:15>;
AN0N0[115:1803<15:0>;
R0N<5:13>|
RN0<13:5>;

MAP51<0:5> :R
nAP52<8:5> :=
f1RP53<5:0> %m
MRP54<5:8>

A0N0NU003 <4:9>;
A0NN0[1003<9:4>;
R8N<5:18>;
RN0<10:5>;

14

ISPL Simulator: User's Manual

15

5. Examples

This section contains the transcript of several actual runs. The f i rst example is

based on the small ISPL example described in the ISPL manual. The transcript for the

compi lat ion phase of the multiplier example appears in the ISPL compiler manual. We

s ta r t f rom the point right after the MACROIO assembler has generated the *.REL f i le.

5 . 1 . Linking the Compiler Output with the Simulator

r I ink
*mu 11
*e i sps i m
•/ssave muIt
*/go

E X I T

MULT.REL is the name of the file created by the ISPL compiler. ISPSIM.CMD is

the name of the command file containing the list of files that make up the simulator. It

also contains commands to load the BLISS10 run time l ibrary. The use of the SSAVE

sw i tch instead of the SAVE switch creates a shareable version of the program. Thus

the resul t of the LINK10 execution will be named MULT.SHR+MULT.LOW.

ISPL Simulator: User's Manual

5.2. Running the Simulator

Here we run the program that was created in the previous transcript. The

example makes use of a few simple commands that set initial values in the variables,

selects some variables for tracing and then starts the execution at the main entry

point of the description. The example is simple and self explanatory.

r u muI t
ISP SIMULATOR V3 - NRL ARF STAGE 2
Thursday 29 Ju l 76 2 3 : 4 2 : 1 3 MULT. ISPCN655MB25)
SERIALIZATION COMPLETED
SPACE ALLOCATED
TYPE HELP FOR HELP
TYPE <ESC> TO INTERRUPT SIMULATION LOOPS

> r a d i x o c t a l
> s e t v a l p*-2
> s e t v a l mpd«-3888 I #6 on I t f t h a l f of mod
> t r a c e mpd,p,c
> i t a r t 19

e L8 +#2 C =#19
a STEP •#4 P =#1
e L i +#4 C *#7
e STEP +#18 P =#1488
e L i +#4 C =#6
e STEP +#4 P =#688
6 L l +#4 C «#5
• STEP +#4 P *#388
t L l 4*4 C =#4
6 STEP 4#4 P *#148
• L l +#4 C a#3
e STEP +#4 P «#68
e L l +#4 C =#2
e STEP +#4 P =#30
e L l +14 C «#1
e STEP +#4 P =#14
a L l +#4 C «#0
SIMULATION COMPLETEO

RUN T IME(10 usee un i ts>«45259
RTM OPS EXECUTED.136

> v a l u e p
P «#14
> v a l u e topd
MPD =#3088
> e x l t
E X I T

16

ISPL Simulator: User's Manual

17

When the simulator starts it performs two preliminary operat ions: 1) It

t rans fo rms the RTM statement table eliminating the DIVERGE/PMERGE operat ions that

def ine concurrent operat ions, and 2) It allocates space for the registers and memories

dec lared in the RTM symbol table. The simulator then types two messages advising

the user of the existance of the HELP command and of the use of the <ESC> (AltMode)

to break the execution of the simulator from the user's terminal.

The tracing of variables indicates the place in the ISPL program where an

assignment to the variable has occurred. The location is identif ied by pr int ing the

nearest ISPL label together with a displacement (in RTM operations) from this label.

The name of the variable affected by the transfer is printed, together w i th the new

value. The run time pr inted at the end of the simulation is obtained from a fast lOus.

clock available at CMU. Some installations might now have this feature.

In the above example we initialize the multiplier (P) to 2 and the multipl icand

(MPD) to 6. According to the algorithm, the multiplicand is stored in the left half of the

MPD regis ter . In the current implementation of the simulator we can not specify part ial

reg is te r ini t ial izat ion, thus, we have to load the right half of MPD wi th a suitable value

(in i t ia l izat ion of variables in the command language implies full register modif ication,

w i t h zeroes on the left of the value). At the end of the run, the contents of the P

reg is te r contains the result of the multiplication (6*2=12 or #14 given that we set the

t y p e out radix to OCTAL).

ISPL Simulator: User's Manual

5.3. Executing Selected Procedures

In the following example we show a few more commands and features of the

simulator:

r u mu I t
ISP SIMULATOR V3 - NRL ARF STAGE 2
Thursday 29 Ju l 76 23:42s 13 MULT. ISP[N655MB25J
SERIALIZATION COMPLETED
SPACE ALLOCATED
TYPE HELP FOR HELP

TYPE <ESC> TO INTERRUPT SIMULATION LOOPS

> m d i x o c t a l

> s a t v a l p«-3

>tt tv * l mpd«-400 I M u l t i p l i c a n d * !

> u t r a c t a l l

> s t a r t s t a p

t STEP +#18 P «#281
RUN T IME(16 usac u n i t t) « 3 O 0 1
RTM OPS EXECUTED.9

The above sequence shows how the simulator can be used to execute selected

procedures from the ISPL description. In fact, the simulator treats ALL labels and

procedure names as potential entry points. It does not assign any special meaning to

the label of the main body of the ISPL description.

18

ISPL Simulator: User's Manual

5.4. Reading Command Files

The fo l lowing example shows the use of the READ command. In this part icular

case we are not only initializing the variables and setting trace flags, but we are also

s ta r t i ng the simulation automaticaly from the command file. The number of "> "

character used to prompt the input stream (a user or a command fi le) indicates the

level of nest ing of the command stream. One M >" is the mark of the top level.

> d t r a c e a I I

> r e a d m l . s i m

> > ! t h i s is a command f i l e

» s e t v a l p+2

> > s e t v a ! mpd*-2888

» ! mu11 ipIicand=4

> > t r a c e p

» s t a r t 19

6 STEP +#4 P =#1
e STEP +#19 P =#1889
6 STEP +#4 P =#488
e STEP +#4 P =#288
6 STEP +#4 P =#188
e STEP +#4 P =#48
6 STEP +#4 P =#28
e STEP +#4 P =#18
SIMULATION COMPLETEO

RUN T IME(18 usee u n i t s) = 3 2 1 2 8
RTM OPS EXECUTED«136

> > ! e n d of command f i l e

» 7 LINES READ

> e x i t

E X I T

19

