
NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

TIME SHARED COMPUTERS

by

C. Gordon Bell

Associate Professor of Computer Science
and Electrical Engineering, Carnegie
Institute of Technology. Formerly manager
of Computer Design, Digital Equipment
Corporation, Maynard, Massachusetts.

Carnegie Institute of Technology
Pi 11sburgh, Penns ylvania

May 15, 1967

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146)
and is maintained by the Air Force Office of Scientific
Research.

HINT LIBRARY
CARNE6IE-MELL&M UMIYEKHY

ABSTRACT

Time-sharing is discussed generally to include any application of a

computer system which has simultaneous users. The discussion empha

sizes the general purpose time-sharing, since special purpose time-sharing,

"real time11, and "on line11 systems are a subset. "Graceful Creation", or

the "boot strapping" of a system, is described in which newly created individ

ual user procedures are immediately available to the whole community of users

and the system expands in an open-ended fashion because many users contribute

to the formation.

Although the discussion is separated into hardware, operating system

software, and user components, a sharp delineation does not exist in reality.

After the basic system is specified, it is the philosophy of the author that

the system should be formed in a time-shared environment (including the con

struction of the Operating System Software). Few restrictive features or

functions should be "built-in", but instead, be optionally available through

the library or common files.

The underlying design criteria should be: flexibility, modularity,

simplicity of module intercommunication, and open endedness.

The basic objectives of time-sharing are to increase both user and over

all computer system productivity. The present general computational systems

are an extension of special, shared, multiprogrammed systems centered around

special applications (e.g., process control, command and control, information

inquiry, etc.). As such, Time Sharing is another technique which makes the

computer a more general tool.

All future computers will have at least some basic hardware for a form

of time-shared usage. These system forms will run the gamut from dedicated

systems with a permanent user set, through general systems with varying

number of users, to a network of shared computers.

The paper only discusses the basic structure of the system, with emphasis

on the hardware,because of space limitations. For example, the issue of

scheduling jobs is discussed only superficially by listing the system

variables on which scheduling depends, together with a common scheduling

algorithm.

TABLE OF CONTENTS

Title Page i

Abstract ii

Table of Contents iv

List of Tables and Illustrations vi

I. Introduction 1

Time-Sharing Components 1

Time-Sharing Criteria 2

Special Purpose and General Purpose

Time-Sharing 5

II. Hardware 7

Computer Structure 7

Primary Memory Component 9

Processors 11

Peripherals 14

Control Units 19

Switches ...20
Multi-Programming and Memory Allocation
Hardware 21

Program Intercommunication 22

Hardware Which Facilitates General Purpose
Time-Sharing 24

III. Operating System Software 27

Operating System Data Base 28

Resource Allocation Control and Management 29

System-Provided Procedures and Processes 33

III. Operating System Software, cont'd.

Miscellaneous System Functions.. 34

Time-Sharing System for the IBM 360/67
(Example) 34

Example of Time-Sharing System for the

DEC POP-6 35

IV. User Components 3 7

Terminals 37

Terminal Communication with the Operating

System • 42

Files 43

User Process 44
Conventional Versus Conversational Language
Processing 45

V. Conclusions 47

Present Problems ..47

Future Systems 49

Acknowledgment ••••• 51

Tables and Figures 53-72
Appendix 1: Proposed Advantages for the Time-

Sharing of Computers 73

Bibliography 77

LIST OF ILLUSTRATIONS

Table 1. Capacity Requirements for Time-Sharing Applications ..53

Table 2. Memory Allocation Methods... 54-55

Table 3. Terminal Input Requests to System Software 56-58

Figure 1. Logical Organization of Time-Shared Computer Components...59

Figure 2. User's Apparent System 60

Figure 3. General Structure of Present Computers in Terms of

Computer Components 61

Figure 4. Structure of a Simplex Computer System 62

Figure 5. Computer Component Switch or Selection Configurations 63

Figure 6. Hardware Structure of Multiplexed Computer 64

Figure 7. Memory Allocation Using Boundary or Relocation and

Protection Register 65

Figure 8. Memory Allocation Using Page Allocation Map 65

Figure 9. Memory Allocation Using Pages and Segments 66

Figure 10.IBM System/360 Model 67 Time-Sharing Overview 67

Figure 11.PDP-6 Multiprogramming System Diagram 68

Figure 12.General Structure of Common User Service Program-CUSP

for PDP-6. 69

Figure 13.PDP-6 User Job Area Storage 70

Figure 14.PDP-6 Multiprogramming System Storage 7l

Figure 15.Heirarchy of Executives Within a General Purpose
Time-Sharing System 72

I. INTRODUCTION

Time-Sharing is the simultaneous shared use of a computer system by

independent users expecting short or appropriate (or apparently instantaneous)

responses, within the limits of the request and system, to computational

demand stimuli.

Time sharing provides a level of service to a user who could only pre

viously have had the service by owning his own computer. The sharing is

based on the principle that there is enough capacity in a computer for

multiple users, assuming: the proper ordering of requests; the user consoles

are active only a small fraction of the time; and a console is being used

for input or output, in which case, another user can be processed on an

overlapping basis during the input or output.

TIME-SHARING SYSTEM COMPONENTS

The system components (see Figure 1) include the operating system soft

ware, the hardware, and the user.

The Operating System Software

The Operating System Software is responsible for the allocation of re

sources among users and the efficient management of the resources. In addi

tion, it manages all common software procedures (or program library), such as

translators, management of files or data bases, editing programs, etc. The

system provides logical abilities, such as message switching among user termi

nals.

The Hardware

The hardware enacts the procedures required by either the user or the

operating system, and provides the physical components \diich make a logical

and physical implementation possible. The hardware components are: processors,

primary memories, peripherals(terminals arid file memories),control and switches.

The User's Apparent System

The User's Apparent System includes the terminals, files, and a process

as shown in Figure 2.

^ e terminals provide a node for a communication link between the system

and user for the control of the user process and transmission of data. Termi

nals are at the computer's periphery and include devices like typewriters,

printers, cathode ray tube displays, audio output response units, etc.

The files or data, base retain the user's information while in the system.

This information includes both his dormant processes or programs, or, in gen

eral, all the data he wishes the system to retain.

The user process or user procedure or program directs the system for his

file, terminal, and processing activity.

TIME-SHARING CRITERIA

Time-shared computers' basic criteria are: being shared among multiple

users; providing independence among the users; and providing nearly "instanta

neous" service to its simultaneous users (within the limits of their requests).

Independence Criteria

For each system component the relationship among users may vary over a

range from dependence (the simultaneous attempt of a group to solve a single

problem) to independence (no user affects another user). A completely inde

pendent system would require the system to perform as though each user were

the sole user.

file:///diich

File independence, for example, is controlled by associating information

with the file concerning the file's users, and uses to which the file may

be put. Such file directory data provides system capability to cover a wide

range of applications concerning private and public data bases. In fact,

systems could be categorized by the organization of their data bases. Table 1

presents some special purpose systems which is ordered approximately in terms

of'the filing demands. For example, a file containing a teaching program

may be universally available, while a program for monitoring the teaching

program or for grading the users may not.

Process or program independence (and dependence) is the most expensive

aspect of user independence. One program cannot affect nor destroy another;

on the other hand, a mechanism for making procedures available to the community's

members is necessary.

Instantaneous Criteria

The instantaneous nature of a time-sharing system includes both direct

terminals for the users and rapid response to user demands. That is, users

are "on line" and served in "real time". An on line computer is one which

provides terminals which allow users to directly communicate with it by a

single, simple action (e.g., like pressing a typewriter key or looking at a

display). The system is never farther away than the nearest terminal. A

conversational program is an on line program which allows a user to directly

communicate or "converse" with it in terms of requests and acknowledgement

dialogues at an appropriately rapid rate.

A r e a l time system is one which has the ability to execute a required

process or program in an "acceptable" period of time. All systems are real

time if they are acceptably fast: e.g., overnight for payroll calculation

might be acceptable.'

Normally, we associate "real time" with a mechanical process in which

a computer is constrained by a mechanism, e. g., a "real time" computer

for air traffic control must be able to process all the inputs from the

radar system such that aircraft positional information is not lost.

The response time or total time for the system to respond to a demand

stimulus is the sum of the reaction time (the time until a program is acti

vated from the request time) plus the processing time (the time to process

the request).

Response times for human users should vary in accordance with their re

quested demands. The response time for a computational demand, although

known and determined by the system, can only be judged for acceptability by

its users. In summary, "real time" to a mechanical process means keeping

up with the process (not losing information, etc.). "Real time" for a human

process is giving an appropriate response in accordance with requests.

Shared Criteria

The sharing of a system by multiple users represents an economic justifi

cation by ordering or optimizing random resource requests. The allocation

of resources is a major system function and includes: processor scheduling,

or the allocation of processing capacity for process or program execution;

file allocation provides for the user assigned space from the available file

space; primary or memory allocation is the allotment of memory space for

the execution of processes; and terminal allocation or the assignment of

terminals to users.

General Purpose Time-Sharing Criteria

All of the above criteria must be met for a time-sharing system. In

addition, one other criteria, generality, or open endedness, separates

special purpose and general purpose systems. A general purpose time-shar

ing system must provide for the open-ended creation of new processes or pro

cedures during system operation time. This ability, or graceful creation of

an improved or ever-expanding system with increasing abilities defines an

open-ended general system. In the limit, users concerned with the develop

ment of the operating system software may, for example, operate and test a

complete, new time-sharing system program to replace the existing system

within the framework of the old system. As new processes, languages, proce

dures, etc., are added to the operating system software or placed in the gen

eral user's public domain, the line delineating the operating system process

and the user process becomes less sharp.

The method (or language) of procedure creation, testing, and execution

is the measure of generality. In summary, a simple test for generality can

be made by determining whether a new language can be added to the system

from a normal terminal or console. The user should have freedom inherent in

the hardware (or at least in the processor), including the ability to program

in machine language.

SPECIAL PURPOSE AND GENERAL PURPOSE TIME-SHARING

In most new systems, basic time sharing hardware can be easily provided

in the design at low cost. The general organization of all computers provides

the inherent ability to form a time-sharing system. Indeed, time-sharing

systems have been implemented on machines covering a wide range of problem

applications. In general, the systems formed, using computers which have

little or no supplementary hardware, are restricted to a single application.

The ease with which a total system may be implemented on a configuration is

determined for the most part by the configuration and the inherent hardware

facilities that aid the configuration sharing. The features which assist

resource allocation must be included for implementing general purpose systems.

The hardware can limit the general purposeness in a fashion similar to the

operating system software. The additional hardware to provide some form of

resource sharing can be quite small.

Although the ability to implement a general purpose system on a specific

hardware configuration may be a desirable design criteria for the hardware,

a special purpose or dedicated system may be more desirable. A configuration

dedicated to a particular use may be designed to provide a much more efficient

utilization of the resources than one which attempts to serve all users solv

ing all problems.

It may be more advantageous to form communities of users who share the

same system and are only interested in solving specific classes of problems

on single systems. Systems which already are limited by a single resource

might stand alone. For example, present hardware file capacity and file access

capabilities appear to limit desired library systems. (Thus, a general system

cannot supply the necessary resources, nor can the resources be supplied even

if a dedicated system were built.) Table 1 gives a list of dedicated computers

applications.

A network of dedicated computers which only solve specific problems,

supply special resources, or "understand" specific languages may be a better

solution to efficient usage of our machines than the large, general purpose

systems.

II. HARDWARE

COMPUTER STRUCTURE

Although hardware can be considered at various description levels from

memories or processors down through "AND" gates, on to circuits, the levels

of interest for this discussion is the computer and its components. The gen-

eral structure of the computer is shown in Figure 3. The computer's compon

ents are: primary memories, processors, controls, peripherals (terminals

and memory files), and switches. The communication between any pair of

components is via switches which provide both "data and control" information

paths.

A single computer has any number of components (memories, processors,

controls, peripherals) but every processor in the computer must access some

of the common primary memory of the system.

A multi-processor computer has more than one processor. Multi-processing

is the simultaneous processing of one or more computational programs or process

es by multiple processors. Multi-processing methods can vary from non-anonymous

job assignment, in vflilch particular processors or types of processors are assigned

to specific roles, to anonymous processors being assigned to any job in the system.

It is difficult to have complete anonymity because particular processors

in the system can only handle a limited class of jobs (especially Input/Output

Processors).

All computer structures are special cases of that shown in Figure 3. Most systems

have heirarchial or tree-like structures like that of Figure 4. Each switch

is, in fact, more closely associated with a particular component, and takes

on the special properties necessary for switching or selection among particular

components. Thus, a particular tape control unit may communicate with up to

eight tape units and the particular kind of information exchanged between the

two units is a function of the kind of units. The tree-like structure exists

not only because of the number and type of units and the way they inter-com

municate, but also because the computer is a simplex structure. That is,

assuming that it is necessary for communication to be carried out from bottom

to top (a terminal or file to primary memory), there is only one path for the

communication flow. Figure 5 presents the structural forms the switches take.

Figure 6 gives a computer with multiple paths between a primary memory

module and a given peripheral element. Since there is some redundancy among

components, it can be shown that there is a higher probability that the computer

will be in an operational fltate, as measured by some large fraction of memories,

processors, terminals, and files being operational. Such an operational state

would undoubtedly be at reduced performance. The probability of a system being

operational is a function of the computer structure (the number of components

and their interconnection), and: each component's probability of failure.

For systems requiring a large fraction of availability or a high uptime,

it is necessary to at least duplicate each component of the system. Such

systems can be designed so that all units are constantly in service (including

the duplicates), and when a system failure occurs, the faulty unit is removed

or the system re-partitioned for maintenance. Such a design philosophy, called

graceful degradation or fail soft, provides continuous usage even though the

capacity may be degraded. Fail soft design imposes the constraint on the

hardware that there be a duplicate of each unit and communication path in the

system. It is possible to have similar functional duplicates to avoid complete

duplication, i.e.* a drum can be replaced by a disk. In such cases, the system

will continue to function, but at very much reduced capacity. These computers

also must have ability to detect first fault occurrence at a computer compon

ent so that errors will not propagate through the entire system, making fault

location difficult. Once a faulty unit is detected, the system must be able

to be dynamically reconfigured.

Multiple paths can also provide a means of achieving better overall

system performance.

PRIMARY MEMORY COMPONENT

The primary memories retain the active portions of both user and operating

system processes. These processes are either being enacted by a processor or

are waiting for a processor. The primary memory may also contain memory maps

and status information regarding the system's users.

The primary memory is the medium of logical intercommunication between

the hardware and software components.

The arrangement of the memory subsystem, as shown in Figures 4 and 6, is

such that from the processor's viewpoint, a number of access points, or ports,

are provided with which the processors connect. The physical form that a

memory subsystem (the memories and the switch to which the processors connect)

takes is described by:

1. The number of independent memory modules.

2. The properties of each memory module.

a. The data width (in bits) of information accessed at one time.

b. The quantity of information stored (in bits).

c. The access time is that time the module requires to obtain

data, given that the module is free, from the time an access request

has been made.

d. The cycle time is that time the module requires to completely

acknowledge a request, and become free for the next request.

e. Memory failure probability (detected failures and undetected failures).

3. The method used to assign physical addresses (which the processor

uses to physical memory modules and memory words.

4. The switching network which connects with the processors. See

Figure 5 for possible switches. These range from 1,2,P (where P

is the number of processors), to M (or the number of memory modules)

as possible simultaneous conversation among processors and memories.

All primary memories are functionally similar because they store programs

while they are being interpreted by a processor; data for programs; and other

state information required by the processors. The memories can be separated

according to their specific functions on the basis of their cost, size, and

speed.

Principal Primary Memory (Core or Thin Film Technology)

This memory is the principal storage for programs while they are run. In

most computers, the assumption is made to provide a certain match between pro

cessor capacity (in bits/sec.) and the available primary memory cycles (in

bits/sec). In small computers this is the only Primary Memory in the computer.

Bulk Memory or Large Capacity Storage

These memories have the following characteristics relative to primary

memory: — cheaper ($.02-.D4/bit versus $.10-.20/bit); larger (0.5-1) million

words versus 32,000-256,000 words; and slower (8 p,sec/word versus .8 p,sec/word).

The assumptions about use are:

1. Problems involving large data structures in \rtiich data is randomly

accessed.

file:///rtiich

2. As program base for seldom executed user and system programs.

3. As data base for seldom accessed data.

4. As a secondary storage device to hold programs.and data (types 2

and 3 above) which is brought into primary memory for execution.

Operated as a fast, but ideal, drum-like device for program swapping.

Scratch-Pad Memories

These memories have the following characteristics relative to primary

memory - - faster (by a factor of 5); more expensive (by a factor of 10-100);

and smaller (20-1000 words). Such memories contain:

1. Short loops for high-speed program execution

2. Control information which may be referenced by i/o processors

3. Either the processor state or copies of the processor state (arithmetic,

index registers, status information, etc.).

PROCESSORS

Processors connect with primary memory and enact user computational (arith

metic, symbolic, logical, etc.) processes. Large systems require several types

of processors to efficiently handle the different tasks, to provide redundancy,

and to match the capacity of the memory system.

Processors can be specified at the computer system level by the following

parameters:

1. Instruction Set Ability

a. Distribution of processing time required for the given algorithm

being processed.

b. Distribution of memory space for the algorithm.

Whether a program is moved from Bulk Memory to Principal Memory is a function
of movement overhead, and the expected activity.

2. The number of programs which are recognized as independent processes.

(This number is roughly equivalent to the number of interruptor trap

channels.)

3. Program switching time or the time to save a process state, and to re

set a processor to a new process state.

4. The number of bits (or words) associated with a process which resides

in the processor and must be swapped when a new process is selected.

Computation Processors, Central Processing Units, Arithmetic Processors, or

General Purpose Processors

These interpret memory-provided processes, and most generally perform

arithmetic, symbolic, and logical functions. This conventional processor

handles user and operating system processes. In small systems, it is the only

processor, and as such interprets input-output commands for peripheral devices.

Special Purpose Processors or Algorithm Processors

These (arithmetic/logical) processors interpret a limited corimaand set for

special languages or algorithms and augment a general purpose processor. This

type of processor has so far only been used experimentally (e.g., to process

IPL V statements or evaluate polynomials).

Peripheral Processors, Input-Output Processor, Input-Output Control Units, or

Data Channels or Channels

These interpret a limited set of commands or instructions which handle

controlling the transmission of data between peripheral control unit peripherals

and primary memory

Peripheral processor programs exist in primary memory, and are usually

created by arithmetic processors. Though they do not usually have the arith-

me tic, logical or symbolic, capability, they do possess enough logic to do algorithm

decoding. When necessary, arithmetic processors augment the peripheral processors.

The instructions interpreted by peripheral processors include:

1. Terminal initialization commands.

a. Selection of data transmission path by selecting both the control

unit and peripheral device.

b. Device function specification commands. These include

commands for - reading, writing, unit speed, and directions

selection, data transmission formats, etc.

c Location of information within the peripheral. If the

device is organized in such a fashion to regard its data

as being addressable or accessible by a number, the location

must be specified.

2.Peripheral status query commands. At various times, the processor

queries the state of the control unit-peripheral device and places

the status in primary memory.

3. Peripheral program execution (in addition to initialization and

status query commands). These instructions include:

a. Branching.

b. Setting up of commands for block data transmission.

c. Intercommunication with other processors, by issuing commands to

the processors. Also, a peripheral processor trapping may transfer

job completion information into a queue.

4. Supervision of actual data transmitted between peripheral-control and

primary memory.

Block Data Transfer Processors

These processors are a special case of the peripheral processors, and

are used to execute the special instruction to transfer an array or WW LIBRARY
y iARNEGlE-MELLBN UNIVERSITY

block of data in primary memory to another location in primary memory.

Display Processors

These processors are specialized peripheral processors which interpret

display procedures. That is, a display processor program in memory, when

interpreted by a display processor, yields a picture.

PERIPHERALS

The peripheral devices are at the physical and logical periphery of

the computer as can be seen by the tree-like structure of Figure 4. The

communication to peripherals is controlled from programs in primary memory

which transfer information with the periphery from memory to processor to

control unit to peripheral.

Two types pf peripheral devices will be discussed: Terminals and

Peripheral or File Memory.

The property which separates a file from a terminal is whether informa

tion can be both written into and read from the file. That is, the device

is capable of both storing and retrieving information. The information

stored on the file memory can be utilized in various ways according to

other properties of the file.

The terminal serves a different function; that of providing the computer

with a path with which to communicate with people, or other machines. A

file and terminal may be considered almost identical from a program viewpoint.

The terminal is restricted in that information can only be — 1) written

(reading occurs by some media outside the computer), or 2) read (writing

occurs outside the computer), or 3) read or written (e.g., a typewriter can

be both read or written by a computer, since the computer cannot read what

it has written).

Terminals

Terminals are used to communicate with anything outside the computer

and may further be subdivided according to with whom they communicate. The

characteristics of the terminals are: information transmission time and

form (charactor or blocks); information format or coding; transmission direc

tions (In, Out, In or Out); and selection or addressing of terminal data,

e.g. random, linear or sequential, etc.

Direct Terminals. Direct Terminals Provide the human user with a node for

direct communication with the computer. These terminals include: typewriters,

scopes for display of text or graphical information, audio output devices,

telephone input dialing units, and specialized terminals, such as bank teller

window consoles, airlines reservations consoles or stock quotation terminals.

Indirect Terminals. Indirect terminals provide a communication path

between the human user and the computer, but only via a path which requires

off line transformation of information. Information is available at the in

direct terminal in only a machine readable form (e.g., holes in a card or

tape, or magnetization of an area of tape). A separate, mechanical translation

process is required to convert from machine readable to "people readable" form.

Indirect terminals include card or paper tape readers and punches, film or

photograph readers, specialized format document readers, (e.g., magnetic ink

or typewritten), TV cameras, photographic output devices, magnetic tape units, etc

Machine Terminals. Machine terminals are those which link other computers,

or electrical form devices (such as temperature or pressure transducers, etc.)

to the computer. Such a linkage may include the Dataphone, which is a channel

or link for transmitting information outside the computer's periphery via

telephone channels. Other forms include: analog-digital conversion, and

discrete event, time duration, data encoding methods.

Peripheral or File Memories "~|

These memories lie at the same structural position as terminals. A

file's sole function is the storage of information for use by the process

(or programs). The parameters which control how a device is to be used in
l
I

a system are: wj

1. Cost.

2. Size of memory.

3. Access time and information quantity characteristics. Information

selection or access time may be expressed in terms of the follow-

ing operators: _

a. Random - Data selection is a constant and is independent w

of the address (e.g., core address, drumhead selection - H

generally electronic or optical).
—)

b. Linear (uni-directional) - Data selection time varies

proportionately with the address (e.g., tape) required.
! I

c. Linear - same as linear except that either direction of -J

information address searching is permitted (e.g., disk ~

selection or track arm).

d. Cyclic Linear (or constant rotational) - Data selection

time varies proportionally with the address. Addresses

are being changed automatically, and take on cyclic values wJ

at some rate (e.g., drum). ~1
i

4. Addressability of information. Some cases include:

a. Files with no explicit hardware addresses. ^

b. Files with addresses specified by embedded data.

c. Files with explicit hardware address information associated ~*
with access mechanism.

5. Replaceability of information. Information space can be recovered

by exactly re-writing over existing information, to replace a

single part of a file without the need to re-write the whole file.

6. Removeability or portability of information from the computer,

i.e., transferability of information off-line among computers.

This property provides for information to be removed from the

system and stored off line.

The use to which a particular file is put in the system is a function

of the above parameters of all storage devices. The present systems have

the requirements for the hierarchy: bits, words, word groups (<100-1000

words), program size word blocks (1000-100,000 words), files, and multiple

files. The secondary memory functions in the computer can be broken into

the following different tasks for which different kinds of file memory can

be used.

Program Swapping Memory. Program swapping memory is used for the

retention of programs to be placed in primary memory for direct execution

by a processor. "Program swapping memoryand"secondary memory"are considered

to be synonomous.

Program swapping, the underlying principle of many time-sharing systems,

is the act of keeping programs in secondary, or file memory, until they

are ready to be run, and then exchanging them with programs in primary

memory so that they may be executed by the processor and primary memory. The

secondary memory may also be used to provide the user with the appearance

of a large, homogeneous, one-level primary memory, if sufficient memory

allocation hardware is provided (see memory allocation, below).

The transfer of data between the two levels of memory should be as

near the primary memory speed as possible (still allowing some arithmetic

processing). The single characteristic of time to exchange users between

primary memory and program swapping memory affects the maximum number of

users and their response time for swapping systems.

Fixed head drums or discs are most commonly used for swapping, since

only a rotational or cyclic linear access is encountered to select data.

A program swapping device may not be necessary unless the system

serves a large number of users. It is also possible to use some slower

storage components, (e.g., program file memory), as swap data media. The

substitution of one file type for another allows a system to be built with

out complete component redundancies and still satisfy uptime constraints.

Program File Memory. Program file memory is storage used for user

data base and user programs which are not usually in a state to be run.

The requirements for file memory necessitate the use of large, relatively

fast, addressable storage in which data items can be replaced. The units

which are used for this purpose include fixed or moving head drums or

discs, magnetic card readers, and magnetic tape (whose data can be both

addressed and replaced).

Backup File Memory. Backup file memory is storage which can be removed

from the computer, and includes magnetic cards and tape, etc This memory

is used to retain a snapshot or state of the system at fixed intervals so

that the state of the system can be re-established in the event of a failure.

This hardware file does not require explicit addressing, or the ability to

replace data.

Archival Memory. Archival memory is used to store user files which

are removed from the computer. These files exist principally for cost

reasons, and the act of retrieving a file from the archives is one of

manual selection from a library for which the computer does not have direct

access. Magnetic tapes are used for this purpose, since acceptable retrieval

time may range from l/4 hours to one day. The files are roughly equivalent

to backup storage files.

CONTROL UNITS

The control units have little logical significance in the computer.

The controls exist principally because of the cost ratios of control

electronics to peripheral devices, and of control electronics to total

system costs. It is desirable that all peripherals include controls so

that the simultaneous transmission of data from all peripherals is possible.

The functions which the controls perform are:

1. Electrical logic signal conversion. Lines from peripheral devices,

e.g., typewriters must have the same electrical characteristics as

the computer logic.

2. Time information transformation (Information coding and decoding).

The coding of information is an idiosyncrasy of each device, and

as such information must be put in a computer compatible form of in

formation.

3. Buffering or assembly of information. Since each device may

inherently transfer bit strings which are a sub-multiple of a

computer's word, a complete word may have to be formed prior to

memory transmission. Very high speed bit rates for the peripheral

j

data can be reduced to acceptable character or word data rates for ^

transmission to memory by parallel data transmission path and buffering. - J

4. Selection of a specific peripheral from the set which connects

with the control. The control retains the switch position in- ^

formation which selects the peripheral. —

5. Selection of information within the peripheral. For devices

which have information organized in addressable form, the control

contains the value of address for the information to be accessed. .-J.

SWITCHES

A switch provides a communication path between two different component

types. Figure 5 lists the switch forms. The specific choice of which

switch to use is a function of the allowable switch cost, the time allowed J

to transmit information through the switch, the number of simultaneous con- ~~j
I

versations, the number of units among which switching is to occur, and the
—

expected reliability of the switch relative to the components from which it

is constructed (together with requirements for partioning parts of the
i

switch which have failed). -J

The implication of the switch diagrams is that the switch is set to H

a particular value, and that information then flows along the switching

paths, between the components (or rather between registers of the components).

A large part of the switch consists of decision hardware for setting the

switch positions. In particular, along a path for which information is to

be switched, there exists a dialogue between the transmitting unit, the

switch, and the receiving unit. The dialogue is: transmitter broadcasts

a request for a dialogue to either one or all switch units; the appropriate

switch setting or selection or closure is made; the information is sent

from transmitter to receiver, i.e., the information dialogue takes place

between the two units while the switch is in a given position; and finally,

after the dialogue, the switch is opened. In some cases, the dialogue

first consists of additional selection information. For example, in a

multiple memory module system: a processor first makes a request for a

particular memory module; the particular switch is closed which allows the

processor-memory module dialogue to take place (the processor transmits a

particular memory address to the memory so that a memory word is selected;

the data transmission takes place between memory and processor); and, finally,

the switch is opened, or the dialogue is terminated.

MULTI-PROGRAMMING AND MEMORY ALLOCATION HARDWARE

Multi-programmirg is the simultaneous existence of multiple, independent

programs within primary memory being processed sequentially or in parallel

by one or more processors. Time-Slicing describes the division of a proces

sor's time among multiple programs prior to the completion of the programs.

Having multiple programs in primary memory may require special hard

ware for the protection of programs against each other and memory space

allocation. Allocation or relocation provides a user address space which

is independent of the computer's actual address space .

In general, the goal is to effectively provide each user or user's

program with a large, continuous memory space as though he were the sole

user. A further goal is to provide a method such that any two identical

blocks in primary memory would not have to be duplicated. This ability

has significance in implementing pure procedures.

A P u* e procedure is the constant or pure or read-only part of a program

which has been separate from the variable or data part. Operating systems

software (including compilers, assemblers, loaders, editors) is generally

written as a set of pure procedures for primary memory conservation.

Unless allocation hardware exists, software may have to carry out

this function, in which case, not only is the ability of the system limited,

but time is consumed in relocating programs.
6 12

Usually primary memory is broken into pages of 2 to 2 words for

hardware allocation. A number of solutions are possible, and Table 2 gives

a list of some current schemes. The methods, boundary registers, memory

page mapping, and memory page mapping/segmentation mapping are elaborated

in Figures 7, 8, and 9.

The memory map is part of the userfs status information and is generally

held in primary memory. The map contains information to transform user's

or virtual addresses into physical addresses in primary memory. It may also

contain access control information, including whether a page may be read,

read as data, written, or read as program.

PROGRAM INTERCOMMUNICATION

Although intercommunication among the various hardware elements occurs

physically along the lines of the hierarchy, the primary memory provides

the main communication path between programs. Communication could be

via common files. Normally, two programs only communicate occasionally,

and hardware must be used to signal when communication is to occur.

Hardware Interrupts or Traps

Hardware interrupts or traps are intra- and inter-processor state

conditions which command the processor to begin the execution of another

program or process; The number of conditions which can cause independent

program starts is a measure of a processor's capabilities, since state change

occurs frequently. Intra-processor traps occur for the following reasons:

1. Processor malfunction. The self-checking part of the processor

has detected an error. (E.g., a memory access has resulted in

an error.)

2. Program or process malfunctions. A program has:

a. Made an arithmetic error (e.g., divide by zero) which, if

continued, will yield meaningless results.

b. Made reference to part of a program or data which does not

exist or is not available to the program.

3. A timer associated with the processor has signaled that it may

be time to do something else.

Intra-Processor Traps for Executive Calls. Hardware instructions are

required for efficient intercommunication between the user process and the

operating system. The commands for file and terminal activity, and the

calling of executive or operating system defined functions is via these

special instructions. When they are executed by a user, a trap or interrupt

may occur (with a change in status to another mode or process) so that the

operating system can carry them out. The limits of requirements of these

instructions include: decreasing the time between request and action;

increasing the number of permissible command types; allowing flexibility

in the call type (e.g., subroutine calling with parameters, provisions for

data storage on behalf of a user, and the ability of commands to call other

commands or nested calls).

Inter-Processor Traps. Inter-processor communication between both

arithmetic-arithmetic, and arithmetic-peripheral processors is also

accomplished by trapping. Intercommunication among processors is required

using interrupts usually when a processor has completed an assigned task

or requires another processor's assistance. For example, peripheral

processors do not usually have the ability to decide the number of times

the reading of faulty records should be attempted before giving up, or

what to do after a set of peripheral processes had been carried out.

HARDWARE WHICH FACILITATES GENERAL PURPOSE TIME-SHARING

Special Modes

Privileged instruction set or executive mode denotes a state when the

operating system is running and a privileged set of instructions is being

executed by the processor for the operating system software. These instruc

tions would not be allowed by a user irtien running in user mode state. The

two distinct states, user mode-executive mode, represent a minimum require

ment to allow allocation and control of resources.

Executive mode allows the operating software system the freedom to

activate any terminal, modify any data location, and, in general, do any

thing \rtiich is within the limits of the hardware. User mode implies a

restricted set of abilities for the user: no ability to control a peripheral

device; access to only a limited data set; etc. This implies that requests

for terminal and file activity are via the operating system software. Other

modes may be provided which allow the system to reference a user's data,

as though the system were a specific user which facilitates data transmis

sion between user and system. For example, users interested in specific

terminals might directly control them with no system intervention or over-

file:///rtiich

head. In some cases, a user must directly control a device to effectively

utilize it. Additional levels of hardware resource allocation also allow

peripherals to be added, and program testing to occur concurrently within

normal system use.

Time Measurement Hardware

The switching of processors to processes is done by the scheduling

part of the operating system. The software requires a clock or interval

timer hardware to measure elapsed time. A processor interrupt accompanies

the time interval's termination.

Inter-Processor Interlocks and Communication for Multi-Processing

When multiple arithmetic processors execute the same process or dif

ferent processes which modifies a common data base (e.g., occurs in schedul

ing or core allocation procedures), it is necessary to provide hardware

interlocks. The interlock prevents the simultaneous multi-processor execu

tion by providing a single processor instruction which simultaneously tests

and conditionally modifies a primary memory cell by setting into an inter

lock state. In this way, the first processor enters and locks the process

by testing and modifying prior to another processor's use. The second

processor must wait for the unlocking to occur before entering.

Inter-processor communication to handle faults and share jobs can

take place by normal inter-processor traps or interruptions among proces

sors.

User Status Preservation Hardware

The active user's processor hardware registers and status must be pre

served as a processor is switched to a new user on the operating system.

Hardware or special instructions which quickly save and restore a user's

status and set up another state are desirable to minimize job switching

overhead time. They also may simplify the construction of the software and

reduce the number of possible errors.

III. OPERATING SYSTEM SOFTWARE

Operating system, monitor, supervisor, or executive are names given

to those processes which supervise and control the operation of the system

for all users.

Unlike conventional operating systems which are static, a Time Sharing

Operating system is growing and dynamic. New procedures are added continu

ously.

The additional languages and facilities have a structure which may

have a rather complex operating system as a major part of the language.

For example, consider the administration of a teaching program. The program

would undoubtedly schedule its users (pupils), and the hierarchy of the

whole system would be: the operating system for the entire computer manag

ing a central teaching program to manage all courses managing a course

teaching program which would manage all individual users taking the particular

course.

The objectives of the system software are:

1. Provide many user functions or facilities with easy-to-use processes.

2. Effective or efficient hardware utilization. Perhaps allow users

to directly utilize the hardware. Provide special user services

which utilize special hardware.

The criteria for the design might:

1. Meet the requirements for Time-Sharing (computer time and memory space)

per user.

2. Provide for flexibility in the operating system using modular

construction. Individual components can be independently designed,

tested, and modified (or improved). If possible, the system

components should be written as user processes.

In general, all systems are constrained by cost considerations. A

special system may concentrate on a single objective, while a general

system is forced to find a balance between many objectives.

The system software contains:

1. System data base, or information necessary for system management,

and management procedures.

2. Resource allocation, control, and management procedures.

3. Common procedures or processes for the users, the library.

4. Miscellaneous: System initialization and shut-down; error

recovery; file backup; creation of new system; and system

debugging.

OPERATING SYSTEM DATA BASE

The operating system requires a large data base which is retained in

primary memory and in files. Backup files (copies of files) must be

regularly written so that the system can be restarted in a correct state in

the event of system failure.

The data for a user include: his memory map or process location,

generally found in primary memory while running or active; the processor

status (the location counter, processor flags, accumulators, index regis

ters, etc.); identity information (name, number, project numbers, etc.);

the time used, allotted, last run, etc.; the run state (e.g., presently

running, waiting to run, requiring special service, waiting for file trans

action, terminal action, additional memory, etc.); permanent user data to

allow the assignment of terminals and file space; accounting information;

system temporary storage to enact user requested procedures; and terminal

and file buffering storage.

In addition to the data base associated with each user there are inher

ent data associated with system components and resources. These include:

hardware status and availability information; terminal names; file direct

ories including descriptors of abilities, modes, etc.; primary memory free

space; and file memory free space.

Historical, statistical, and accounting information are also kept,

and historical or activity data provide tools for system improvement. They

especially aid scheduling and memory allocation as well as indicate the

system balance and load.

RESOURCE ALLOCATION, CONTROL AND MANAGEMENT

This responsibility includes: processor time or scheduling; process

space (primary memory allocation) and assignment of a process to secondary

memory or files; file space; and terminal/process/user allocation and as

signment.

The two extreme philosophies which determine the number of users a

system can have are "denied access" and "degraded service". "Denied access"

provides for a fixed number of users, each of which will obtain a known or

worse case response. "Degraded service" provides for more users and the

service is at least inversely proportional to the number of active users.

Scheduling

The assignment of processors to processes is scheduling. The schedul

ing algorithms which compute the time a process is to run usually use the

following input parameters: previous time used; memory space occupied;

status of terminal or file data transmission; expected response time for

the user; user information; and number of users.

The priority information available includes the user, his urgency,

and willingness to pay. As economically realistic systems which change

for their actual uses come into existence, users will be able to get a

broader range of service.

The round robin algorithm runs each user, in turn, for a fixed quanta

of time, and when all users have been served, the process is repeated. If

any user cannot run because he is waiting for input or output, or halted,

he misses a turn. On completion of input or output the user is put at the

head of the queue and run (subject to his allotted time).

The scheduling algorithm is a most subjective system component, and,

therefore, might be written in a form which can be easily modified. How,

when, and which components call the scheduler is important

Memory Allocation

Primary/secondary memory allocation occurs as users make demands for

more space the system activates user processes. The hardware memory alloca

tion scheme of Table 2 constrains the user map organization, and the process

organization. This hardware constrains the user procedure with restrictions

ranging from writing in interpretive languages; writing at particular addresses

or use a convention determined index register as a base register; writing

with no restrictions (over the basic machine); and finally providing a two-

dimensional addressing space.

The memory paging-memory segmentation hardware will drastically influence

future program structure and design. With two-dimensional addressing, the

user is not required to manage primary memory, and is free to address

data by two logical numbers rather than by physical numbers.

File Allocation and Control

File allocation and control are generally subject to extra-system

constraints on the basis of user-size-restriction tables.

File allocation cannot easily be separated from detailed file management. The

management includes the service of detailed user requests for data, while alloca

tion is ,concerned with broader control of all file space.

Hardware's View of Files. The hardware parameters which affect file

organization are: the hardware access time for words or sectors of the

file; the word or record transfer time; the size of the records transferred;

the total file size; and the file failure rate.

Operating System's View of Files. The apparent file parameters are:

the size of files; the number of users and number of files per user; the

access time to segments of a file; the nature of addressing the file informa

tion (sequential or random accessing); the file index; and the file data

buffering.

File activities can be divided into operations: naming, or declarations,

inter-rfile manipulation, intra-file utilization, and file closing.

User's View of Files. Parameters associated with the directory or

index of files for users provide a means of controlling a file's activity,

flexibility, general usage, name, users, record of its activity, and actual

location of the file components. File accessibility control for the user

is on the basis of the originator (owner), group, and public. The modes of

file activity include read/write, read only, execute only (a procedure),

and denied access. Other information about file access includes creation

date, number of times used, last time used, times modified, etc. The

user requests of functions for utilization include: reading, writing,

naming, re-naming, deleting, appending, inserting, providing access restric-

tions, obtaining statistical lnformation5cr in general, any operation that

can be done with the data in or about a file.

Terminal Allocation

Terminal allocation in general systems is either on a first-come-first-

served basis or on a completely reserved basis. Requests for terminal re

servations are via a control terminal, and as a job is initiated, the term

inals required for job completion are requested. The terminal is the means

by which a process is initiated and requests for additional terminals, primary

memory, time, e t c , are made through it. It is the medium for job control.

Resource management deals with servicing user demands after resource

allocation has occurred. It is imperative to provide users with a system

which requires little or no knowledge of particular device or terminal idio

syncrasies. Even though terminals have differing characteristics it is

desireable for the system to provide users with a single basic set of character

istics. More flexible terminals would, of course, leave abilities in access

of the common characterististics which could be utilized. On the other hand,

it is important to allow users the freedom to directly control special terminal

activity. This is particularly necessary in mixed experimental-production

systems involving terminals which differ widely. For example, in flight

simulation systems, the usage may range from program debugging, new terminal

hardware-software debugging, and simulation.

The terminal characteristics are: speed or data rate of the terminal;

amount of primary memory used for buffering and the location of the buffers;

system overhead time for data requests, including processing time required

for the data; and device data acquisition modes, and terminal data usage.

Detailed terminal management includes the process which buffers data from

the terminal and synchronizes user demands with terminal performance.

SYSTEM-PROVIDED PROCEDURES AND PROCESSES

In addition to providing the software framework within which users

operate the hardware, the system also supplies many of the processes for a

user. That is, the system includes a library of procedures for arithmetic

function evaluation, special and procedure oriented language translations,

computer aided instruction, file data conversion, text editing, program

debugging, fact retrieval, simulation, etc. In fact, the difference between

a user and a system process is that a user process can be altered.

The method of calling these procedures (or job setup) and the ability

to have a hierarchy of procedure calls is important. A system-supplied

procedure can be considered an extension of the system and called with the

same mechanism with which a user would request file or terminal activity.

In fact, the hardware instructions which provide communication between the

system and the user should also be used for procedure calls. In this

fashion, the system can conserve memory space by not providing duplicate

copies of routines which are in use by multiple users. The data or tempor

ary storage required by the system while enacting a procedure on behalf of

a user is part of the user's memory. This structure conserves space both

for users of small subroutines (e.g., arithmetic, data conversion, etc.)

and large programs (translators, text editors, etc.).

A set of commands might include programmed floating point arith

metic (for a small system), common arithmetic functions, complex arithmetic,

string processing, data conversion and operating libraries for the language

translators, translators, editors, loaders, etc. Also desirable is the

facility for a user to define and call his own functions in the same hier

archy and framework.

MISCELLANEOUS SYSTEM FUNCTIONS

These processes include record keeping, the periodic recording of the

system state for backup, error detection, error recovery, error handling

for a device, and communication with the user terminals for system requests.

The system clock is a part of the operating system which provides the

actual time base and is used by the scheduler and the accountant, for example.

System start-up and shut-down procedures are necessary for initializa

tion of system and the recording of history. Parts of the system can be

written as pseudo users. This allows functions like data gathering and

system analysis to go on by watching the system rather than being embedded

in it.

A debugging system for the operating system might have the following

features: ability to examine or alter; ability to dump or save the complete

system in the event of a "crash11; the ability to control the substitution

of a "new" system for the present one, etc These features are extensions

of a normal on line debugging program.

TIME SHARING SYSTEM FOR THE IBM 360/67 (EXAMPLE)

Figure 10 gives a functional layout of the system, together with the

logical paths used for intercommunication. The boxes represent either

hardware or software (being part of the system memory). .

The l/o hardware is managed in detail by an i/o process or Device

Control residing in main memory and carried out by the l/o devices and l/o

Processor (IBM's Channels). When l/o activities (at a low level) are ready

to interact with the main program, this is carried out by the Interrupt

Stacker, Queue Scanner, Dispatcher, e t c , up to the scheduler or Task

Monitor. This mechanism is responsible for the detailed handling of terminal

and file data.

The macro level of file and terminal management is done by the Data

Management. This function includes access control for users, file naming,

etc

All the common user programs or library (e.g., Fortran, etc.) are run

as user processes. The detailed management of how the user programs are

to be run is done by the Command Language Interpreter which communicates

user requests (from his terminal) to the program being run.

EXAMPLE OF TIME SHARING SYSTEM FOR THE DEC PDP-6

Figure 11 first presents a simplified view of the system in terms of

the memory map of the user and operating system, together with terminals

and files.

A job for a user can be viewed as an area of memory which it occupies

while running and l/o equipment assigned to the job, including the user's

files and terminals. The operating system software has three main modules:

the system files (or library); input-output or terminal and file control;

and the main body of the executive.

Figure 12 gives a more detailed view of what a user program looks like.

The user program (e.g., a library program such as a Fortran Compiler) has

its own executive system0 which communicates with the operating system. The

user executive translates user commands from a console into operating system

commands for file and terminal activity, while the actual Fortran compiler

only accepts input data and produces output data. The user executive is

responsible for making it possible for the compiler to read and write files.

Figure 13 is a memory map of a user's program. The space can grow (and

contract) as the program is running, since a user program may make requests

to the operating system for space. The first main area, that reserved for

operating system parameters) is 140g long and is available to both the user

and the operating system, although special commands must be given to the

operating system to change it. The other areas are a function of what

programs are being run.

Figure 14 presents a memory map of the operating system which shows

the kinds of program modules in it, together with a few of the communication

paths.

IV. USER COMPONENTS

TERMINALS

The communication among the terminal, system software, and user process

is very important because of process time, memory space, ease of use, and

design modularity considerations. Hie lfhuman engineering" design aspects

include those which affect a user's apparent or actual response.

Although there are many aspects of terminals and their design, the follow

ing terminal unit groups will be used:

1. Typewriters.

2. Text - Keyboard Displays. (Text cathode ray tube displays with

keyboard inputs)

3. General Graphic Displays or Consoles.

4. Direct Terminals.

5. Indirect Terminals.

6. Specialized Terminals.

7. Machine Links.

8. Peripheral Computers.

9. Other time-sharing systems or computer network.

The parameters viiich are common to all terminals and which present the

user with certain apparent characteristics have been discussed in the hard

ware section. The physical data transmission modes, character sets, speed,

etc., and general appearance differ among terminals, but the "apparent"

characteristics to a user program can be nearly constant, so that user programs

be written independent of their environment or terminals they use. The operat

ing system software is responsible for translating basic user requests into

common commands which operate the hardware.

The typical commands or instructions that a user program gives which

deal with a terminal include:

1. Assignment of terminal to a process (including the ability to

change the name of a terminal, so that programs do not have to

address terminals in an absolute sense).

2. Initialization of the terminal to begin transmission, including

the declaration of data buffering (number and size), specification

of transmission modes, etc.

3. Actual transmission of data (a character, word, buffer, etc., at

a time).

4. Termination of transmission, and relinquishing terminal.

Typewriters

Typewriters include both typewriters and Teletypes. The typewriter

is the most important because people have been trained to use them. Although

harder to use, Teletypes are a common system terminal because they can be

used remotely (low bandwidth communication lines), hard copy oriented, low

cost, and are available.

Although they are inherently character oriented, it is sometimes desirable

to buffer terminal data on a page text line at a time basis or until a special

data delimiting key has been struck by the user. (This requires less over

head time from the system to process the characters, since processing is

done for each separate line of text rather than for each character of the

text.)
It is necessary to allow some form of simultaneous input and output in

order that a user can communicate with the system while it is printing, so

that a user can stop or change the process. Full duplex Teletypes easily

provide this; half duplex Teletypes can accomplish this by a form of "echo

checking" during output. Most typewriter consoles must be supplied with

special switches or keys to "break" the information output flow so that the

user can stop runaway programs, for example.

Keyboard-Text Displays

These devices are similar to the typewriter in principle. The keyboard-

text display does not have the hard copy provided by the typewriter (unless

the terminal or console also has a printer), but it does provide the view

ing of almost a full page of text, together with the ability to "point" any

where on the page. These displays also require a higher output data rate

from a computer in the form of "page turning" requests. This is the principal

terminal for systems requiring simple graphical results or rapid scanning of

text.

A small cursor, which is controlled by the terminal allows the user

to "point" to any character on the page. The data associated with a single

page of text is associated with the display.

The control of text displays requires more information processing than

other terminals, since data can be randomly addressed by blocks both for

input and output, rather than on a strictly sequential basis.

General Graphical Displays

These displays are similar to the text display, but have the added

ability to display data by points, characters, lines, circles, etc., and in

general have better resolution and are faster.

The information forming the picture may exist in primary memory (as

a process or as data for a process) or within the display's own storage.

The human eye requires a complete refresh or regenerate cycle about every

30 milliseconds, in which the data forming the picture must be sent to the

display. This may impose a high data transmission rate on the memory

system, interfering with processing, unless the display has an independent

data memory to hold the picture.

For graphical iriput, a light pen is used to "point" to displayed in

formation. The light pen can be used to "draw" on the scope face. The

control and data structure problems of the text display are present to a

much higher degree in general graphical displays.

The RAND Tablet is a very simple graphical input device. It allows

one to draw on a 10" x 10" tablet with a stylus, and it can allow free hand

drawing, printed character input, or curve tracing (through paper). It

may be used independently or in conjunction with a graphical display. The

resolution or number of electronically independent points over the 10" x 10"

area corresponds to 1024 x 1024 points.

Direct Terminals

The above terminals were special cases of the direct terminals, but in

them most of the problems of terminal hardware and software design can be

seen. Namely, problems of providing continuous two-way dialogue, response

time, and the other human engineering problems.

Indirect Terminals

These terminals include most terminals used by other systems, i.e.,

peripheral card readers and line printers. The interface from a user's

viewpoint can be identical to the above terminals. The logical difference,

for example, between a line printer and a typewriter printer may just be

the number of allowable characters on a line; thus, a page output on a

line printer would appear identical to that of a typewriter (but not vice

versa).

Specialized Terminals

These terminals are used for special time-sharing systems such as

airlines reservations, etc. They include: banking teller windows, airline

reservation stations, stock quotation inquiry keyboards, production line

data acquisition terminals, etc. They provide the best possible coupling

between the user and his system and are designed to minimize the number of

errors and the time required as data is entered and extracted from the

terminal by restricting the format and by encoding the information.

Inter-Machine Links

The link to specialized "non-human user" devices imposes the highest

performance requirements on the design because the data transmission rate

is high and is determined by the device characteristics, rather than the

system. That is, these devices have to be served in real time, at the

demands of the device. Devices of this type include those used in process

control applications, simulation equipment (aircraft or aerospace cockpits),

film reading devices or scanners, hybrid linkages, etc.

By providing for this equipment in a system, hardware protection may

also be required. A very complete interrupt or trap system may also be

necessary in the hardware so that a job can be rescheduled rapidly to serve

the device.

Peripheral Computers

These form a most necessary class of terminals by distributing terminal

data transmission or loading to the system periphery. The peripheral comput

er provides the ability to lower the data rate for a larger system by pro

viding local storage and processing capability. For example, display comput

ers with the ability to detect light pen position and track the pen, and

perform some coordinate transformations on the display data may be desirable.

In process control applications data sampling, limit checking, and

data logging can be done by peripheral computers, on a more economical basis,

since they do not require the generality of a large machine. Also, since

the overhead time to switch to another program may be high, the high data

rates associated with these processes would degrade the large machine.

External Time-Sharing Systems

These terminals form the link with other time-sharing systems. This

form of intercommunication is new, but may be significant in total problem

solving systems by allowing programs in one system to call on other systems.

Message switching centers with some local file storage might form the

immediate link with users. As users require more advanced services, the

switching centers would likely call either large, general systems or systems

specializing in a particular service. Because of our geographical time

zones, Inter-system load sharing is possible in a fashion similar to that

in which utilities share electrical generation capacity.

TERMINAL COMMUNICATION WITH THE OPERATING SYSTEM

In addition to the terminal connection with the process, a terminal

must connect with the operating system software for the control of the job.

All of the programs (translators, editors, loaders, etc.) which form the

system also require control words or statements. Table 3 lists the informa

tion required from the user to specify tasks for the system.

Communication Dialogue

The format used for control information is an important design consider

ation, and it is important to have a "forgiving system11, or one which does

not too adversely affect a user when a wrong command is given.

It may be important that the user react (type in, observe output, etc.)

as little as possible to specify a given situation. Abbreviated commands

might be permitted in place of longer words (e.g., LOGIN = LI), although the

longer commands would also work. For example, two interesting possibilities

are: a user types a command which has enough information to make the command

unambiguous, and, the user types enough information to make the command un

ambiguous, followed by the system typing the rest of the command in a "ghost

like" fashion. When commands are given which irrecoverably affect files,

the system might require some sort of verification that the command specified

is actually desired.

User defined macro commands compose the most general method to provide

users with the commands they want, and what they call the commands, because

users define, name, and write them in terms of standard set of system commands.

FIDSS

It is desirable to consider the file and terminal structure in a

similar fashion from both a user and system software viewpoint; that is,

the access, method of transmitting data, and data formats may be nearly

identical for both files and terminals.

The file characteristics have been previously discussed as part of the

operating system software in terms of what the hardware is, what the operating

system provides, and what the file looks like to a user.

USER PROCESS

The user process or procedure includes: a memory map locating the

process, the actual process, and user status information (terminal and

file assignments).

Occasionally,.a guaranteed service must be made available to a user

both for specialized devices, and processing. For example, a user may have

a particular terminal which requires service at regular intervals. A pro

tected, assignable command subset to control the particular device may be

required. Alternatively, control can sometimes be provided by incorporating

the device in the normal system peripheral or input-output service programs.

Scheduling of users now becomes more complex, since the device anomallies

constrain the scheduling algorithm.

Guaranteed processing capabilities are provided by treating the total

processing capacity as a resource. Thus, a guaranteed capacity at a guar

anteed time can be scheduled according to request. Users of systems may

get degraded service rather than be denied access because of poor service.

With a supply of unattended jobs to process in a batch queue, or compute-

bound problems to run as background, a combination denied/degraded service

may be provided which balances the system's capacity.

The methods of communication with the system through a hierarchy of

higher level operating systems pose the questions: "What is the user

process?" and "What is the system?". A user's procedure may be appended to

the system and become a system function or common user service procedure.

This ever expanding set of program segments which form the system present

the problems of segment naming, file location within, the system, and protec

tion while they are being run. Nevertheless, the ability to run normally

while creating and testing other parts of a system, or to have a portion

of the system removed and another one substituted gives rise to very power

ful tools in the graceful creation of the system. As a minimum, a new

system should be able to be created on a general purpose system, with the

substitution for the existing system occurring at a time when the system

is inoperative. We can look forward to complete systems which allow sub

systems which do their own scheduling of time, e t c , and allocate some re

sources. Thus, a completely general purpose system might allow complete

freedom to incorporate any of the systems described in Table 1 in an efficient

manner.

CONVENTIONAL VERSUS CONVERSATIONAL LANGUAGE PROCESSING

Conventional processing or translation of a language occurs in the

sequence:

1. Creation of a text format source file (cards or system file)

which describes the process.

2. Translation of source files into object files with linkage, reloca

tion, subroutine, listing, and error information.

3. Loading the object file together with library files to form the

process.

4. Process execution.

In contrast, conversational language processing provides nearly simultaneous

creation and execution of procedures. The input language is checked at the

time of entry at the terminal and is translated, being immediately available

for execution.

The data may be transformed! into an interpretive form with all sub>-

routines, linkages, etc.,, occurring directly on input with no intermediate

files. The insertion of additional statements or program steps is done

directly, and debugging is through the rum time diagnostics,, and user

abilities to directly examine variables and conditionally execute statements.

The conversational system may require a slightly longer execution time, bull

i& most effective because of its combined editor,, translator,, loader, library

and debugging system. Clearly^ for problems involving little computation,

the turn-around; time iis very short for solving problems in this fashion..

The main structure of programs is such that this interactive approach may

be the common method in a few years..

Batch Processing

This is one of the most efficient methods of controlling, the execution

of a large number of programs, since jobs are always run to completion. In

a time-sharing system which is principally serving on-line users, the batch

process can be used as a background job or to absorb spare capacity. A

fixed or guaranteed amount of processing can be allocated to batch processing.

The batch must be able to be loaded by either external users with card decks

or users who defer jobs which can be done anytime (or at batch convenience).

The handling of a batch need not be Incorporated within the system,

but rather a batch process can be regarded as a special user. Thus, a common

service program (the batch manager) would permit any user to "batch process".

V. CONCLUSIONS

PRESENT PROBLEMS

Before widespread time-sharing systems and system networks can be

formed, the standardization of data and file format descriptions will have

to occur. Simple conventions must be established to control the actual

format of the bits transmitted between computers. This will enable the

transmission of problems, data, and procedures between systems. Present

intersystem communication experiments should provide a framework for the

standardization of information interchange formats, and detailed data repre

sentation.

Once a data representation for higher speed lines is established, it

will be possible to remove the terminals we presently associate with the

computer outside the computer's periphery. This will enable the cross-use

of terminals among computers. It will also allow software to be written

which is more independent of the peripheral and computer.

Current data transmission costs for the remote typewriter user (with

an average input rate of ten bits per second) do not reflect the true cost-

capacity (2400 bits per second for a voice grade line) or use of the line.

Although good, low cost computers (processor, memory, and minimum

peripheral equipment) are available, the higher costs associated with file

storage for smaller systems do not permit the design of low cost time-shared

computers.

Present time-sharing structures for computers are extension organizations

of the basic computer. Present systems were not initially designed for time

sharing, but were modified slightly to accommodate potential users. Hence,

these systems create almost as many problems as they solve. A more reason

able approach for a system's design is an initial specification which in

cludes Time-Sharing as a goal. A solution might take on the form of a

network. For example, the very large computing machines that are

built by computer manufacturers have: taken a long time to build (and

technology has changed, invalidating industry's extrapolations before the

computers were operational); required longer than expected to become opera

tional; failed to meet initial design goals, have been uneconomical from

a production standpoint; and only a few systems have been built. The current

large, very general systems also suffer from the same kind of design thinking.

Each component of a general purpose time sharing system is constrained

to supply such general service that the system as a whole may be so ineffici

ent (and expensive) as to make the system impractical. The issue is similar

to an organization consisting of either highly trained specialists or gen-

eralists. An organization of generalists is very flexible; but, on the

other hand, it may not be economical to have people who are capable of being

the president doing all the tasks within an organization. The general purpose

systems which are just now becoming operational are constructed in such a

flexible fashion as to probably be uneconomical. Each system component is

so general (for example, the filing system) that although it can perform

any task (given enough time), the act of doing very trivial operations re

quires a great deal of time. Perhaps a better approach is to divide the

systems's resources by allowing several independent operating systems to

care for them (e.g., editing, assemblying, filing, translating, and running).

FUTURE SYSTEMS

Ffeture computers will be equipped with hardware to allow some form of

time-sharing. For smaller computers, the additional hardware greatly en

hances a system's utility, especially when being used in process control

and in research requiring the direct links with other machines or to experi

mental equipment.

The form of Time-Sharing Computers will be:

1. The system with a single general user or batch process, plus one

fixed job or a fixed multi-terminal community of special users

(1+1; or 1+n special users). Process control and on-line

special business data processing systems take this form.

2. Dedicated special systems which service a particular user com

munity. These provide little or no communication with other

systems. (E.g., library, airlines reservations, etc.)

3. Dedicated systems with switching ability so that a problem which

requires other aids can be referred to other systems. More

general systems may refer problems to them.

4. Message switching for other systems. These may have file

processing, editing, and limited calculation capability, or

message buffering; such a system would communicate with other

systems for most demands from users.

5. Peripheral computers which service special terminals and control

small local processes. Processing capacity for general purpose

problem solving, file storage, program translation, and diagnostics

for the peripheral system would be derived from a higher level

system.

6. The totally general system with a large community of users.

The general system would undoubtedly communicate with other

systems.

Although the author has attempted to be objective, it is felt that

the technique of computer Time-Sharing is a significant advance toward an

effective use of computers. Time-Sharing removes one more restriction in

computer usage - that of allowing only a single use of a machine. As such,

the additional generality creates opportunities, as well as countless

problems. Hopefully, new machines will provide generality.

ACKNOWLEDGMENT

The author is indebted to Carnegie Institute of Technology and Digital

Equipment Corporation for making this work possible. The helpful criticism

of Allen Newell (Institute Professor at Carnegie). David Parnas (Carnegie),

K. H. Olsen (D.E.C.), Mel Pirtle (University of California - Berkeley),

R. F. Clippinger (Honeywell), and C Baker (The Rand Corporation) has been

appreciated.

1 1 1 1 1 1 1 1 1 1 1) 1 1 1 1 1

Table 1. Capacity Requirements for Time-Sharing System Applications

Specialized System
Service, or Application

Primary Memory
for Process
(in bits)

Primary Memory
for User Data
(in bits)

Processing File Organi-
Capacity/ zation and
User (in ^ Size
operations / (10 6 - 10 9bits)
interaction)

Direct Terminals

Desk calculator

Stock quotation

Airline reservations

On line banking

General conversational
computational languages
(JOSS, CULLER-FRIED
System)

Specialized computer
aided design, engineer
ing, problem solving
languages (C0G0,etc.)

Process control

Text editing (Admini
strative Terminal
Service)

On line information
retrieval of periodi
cal headings, biblio
graphies, keywords,
abstracts

very small

small

medium

medium

medium

medium-large

medium-large

medium

medium-large

very small
«103)

sma 11 « 1 0 4)

small (>10)

small (>10)

sma 11-very
large (10 -
1 0 5)

sma 11-very
large (1 0 3 -
1 0 5)

medium O^O)

small (>1(T)

medium O 1 0)

very small
O104)

very small
O 1 0 4)

small O 1 0 5)

small Ol<T)

small-large
unbounded
(1 0 4 - > 1 0 8)

none

small-ver
large (10
> 1 0 8)

I

small-very
large (10 -
> 1 0 8)

small (1 0 4 -
105)

medium (10
10?)

one (small-
medium)

typewriter, input keyboard, strip
printer, scopes, audio output, or
special console.

see above, stock ticker tape or
transactions input, telephone.

approx. 6 special consoles, typewriters,
(medium-large) scopes.

approx. 10 see above, special bank teller
(medium-large) consoles.

multiple files typewriter, printer, scope,
per user, with plotter. (Culler-Fried consists
few file types of scope, keyboard,
(medium-large) and tablet.)

see above see above

few (small) physical quantity transducers,
general user terminals.

multiple
single
purpose files/
user, (medium)

one (very
large)

typewriter, printer, scope.

see above,
audio out)

telephone (dial in,

* assumes a fairly sophisticated processor and instruction set
* maximum interaction intervals for user requests are ~ 10 sec.

Table 2. Memory Allocation Methods

Hardware Designation Method of Memory Allocation
Among Multiple Users

Limits of Particular
Method

Conventional computer - no memory
allocation hardware

1 + 1 users. Protection for each
memory cell

1 + 1 users. Protection bit for
each memory page.

Page locked memory

One set of protection and relocation
registers (base address and limit
registers). Bounds register.

Two sets of protection and reloca
tion registers, 2 pairs of bounds
register.

Memory page mapping

No special hardware,
pretive programing .

Completely done by inter-

A protection bit is added to each memory c e H A

The bit specifies whether the cell can be
written or accessed*

A protection bit is added for each page,
(See above scheme.)

Each block of memory has a user number which
must coincide with the currently active user
number.

All programs written as though their origin
were location 0. The relocation register
specifies the actual location of the user,
and the protection register specifies the
number of words allowed. (See Fig. 7 .)

Similar to above. Two discontiguous physical
areas of memory can be mapped into a homo
geneous virtual memory.

For each page (2 6-2 1 2 words) in a user's
virtual memory, corresponding information is
kept concerning the actual physical location
in primary or secondary memory. If the map
is in primary memory, it may be desirable to
have "associative registers" at the proces-

Completely interpretive programming
required. (Very high cost in time is
paid for generality.)

Only 1 special user + 1 other user is
allowed. User programs must be written
at special locations or with special
conventions* or loaded or assembled
into place. The time to change bits
if a user job is changed makes the
method nearly useless. No memory alloca
tion by hardware..

No memory allocation by hardware.

Not general. Expensive. Memory reloca
tion must be done by conventions or by
relocation software. A fixed, small
number of users are permitted by the
hardware. No memory allocation by
hardware,

As users enter and leave, primary memory
holes form requiring the moving of users.
Pure procedures can only be implemented
by moving impure part adjacent to pure
part.

Similar to above. Simple, pure pro
cedures with one data array area can be
implemented.

Relatively expensive. Not as general
as following method for implementing
pure procedures.

J L_J I J L-J ! J L J L J I) I L „ J L.-J L..J L J l_J

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2. Memory Allocation Methods - cont'd.

Hardware Designation Method of Memory Allocation
Among Multiple Users

Limits of Particular
Method

Memory page mapping (cont'd.)

Memory page/segmentation mapping

sor-memory interface to remember previous refer
ence to virtual pages, and their actual locations.
Alternatively, a hardware map may be placed be
tween the processor and memory to transform pro
cessor virtual addresses into physical addresses.
(See Fig. 8.)

Additional address space is provided beyond a
virtual memory above by providing a segment
number. This segment number addresses or
selects the page tables. This allows a user
an almost unlimited set of addresses. Both
segmentation and page map lookup is provided
in hardware. (See Fig. 9 .) May be thought of
as two dimensional addressing.

Expensive. No experience to
judge effectiveness.

J

J

Table 3. Terminal Input Requests to System Software

Messages to the Operating System:

1. Log in and log out. (Includes presentation of name, number, pass

word, data, etc.)

2. Resource requests (assignment of terminals, primary memory, file space). —

3. Setup of the job, or process.

4. Start, stop, and continuation of a process. «J

5. Examination and modification of elements of the primary memory process.

(Presentation of a storage or memory map.)

6. Information requests: -~

a. Run time, time of day ~1

b. Files used or space available

c. Facts about system use. I

7. Communication with other users or human operators. ~J

8. Saving and restoring the complete state of a process.

i
9. Transmission of a job to a queue for batch processing. ~*

i
Messages to Editors:

1. File name declarations including specification of access restrictions,

formats, etc.

J
2. Transmission of data among files and/or terminals.

"1

3. General file editing including creating, appending, inserting, mod- J

ifying, deleting, etc.

Messages to Translators:

1. File specifications including:

a. Control statements.

b. Source language inputs.

c. Object output.

d. Object listing.

e. Object linkage information (if separated from output).

f. Errors and diagnostics.

2. Control switches (e.g., what to do in case of errors).

Messages for Program Debugging:

Command messages to system debugging routines are similar to the system

commands, except that they are in terms of the source language program. They

include:

1. Start, stop, and continuation of the process.

2. Examination and modification of the process in terms of the source

language. Insertion of program patches. Display of data in any

format.

3. Data set searching.

4. Program tracing.

5. Conditional tracing via breakpoints which are executed only if

program reaches a specific state.

Messages to System Operators (Human) and Management (Human)

1. Equipment availability or status information.

2. Configuration specification.

3. Accounting and system status requests.

4. Appending user availability, cost, facility, priority lists.

5. Message broadcasts.

6. Manual instructions for tape mounting, card removal, etc

7. System diagnostic reports.

8. Control of back-up or archival storage.

Messages to Conversational Languages

1. Language or Text Edit commands. Creation, modification, and

deletion of programs is provided.

2. Direct Statement Commands Execution. For languages which allow

arithmetic statements to be written, the ability to have a

statement executed immediately (e.g., 2 + 2 = ?) is provided.

3. Commands for Control of the Programs.

4. Data entry and data output from the program.

T

User

Operating
System
Software

Logical links or requests for:
File space (data and programs),
terminal activity, and proces
sing (primary memory-processor
activity).

User
and
System
Files

Terminals

Primary
Memory

Logical links

Physical links

Processors

Physical Hardware

Figure 1.
Logical Organization of Time-Shared Computer Components

Operating System Software

T
I

Ac dial process-file, procd^s-termiiial'^at^ol.

1
Human User

V\|.

User rs
Hardware
.Terminal,

1?, Control of process
(originate process,
stop process, etc,)

2, Data for process
(e.g., text for Editor)

User
Program

or
Process \

User's
Files;

J

i

T- Data
2- New processes
3. Library Information

J

Apparent information or control flow
Actual control

J

Figure 2.
User's Apparent System

Figure 3.
General Structure of Present Computers in Terms of Computer Components

Media for communi
cations to other
computers (e.g.,
tapes)

m
(Periphery) Computer boundary

Electro-optical-
mechanical trans
lation device.

U U
External machines (e.g., computer,
analog equipment, etc.

where components are:
S - Switch or Selector

Primary Memory
Processors
Control units
File Memory or Non-Primary Memory devices
File device for holding internal computer data
File device for holding data which may be removed from the system
Terminal devices
Direct Terminals - e.g., Typewriter

M -
P -
C -
F -
F. -i
F -

T. l

m
U

Indirect Terminals - e.g., Card reader
Machine Terminals - e.g., Analog-digital converter
Human User

• X (See Figure 1. for symbols)

(e.g.,
where:
M^S
P -P

C2" T2
C3-T3

V T 4

V F 2

IBM - 7090)

- Memory (32,768 words - by 36 bits) and Memory Multiplexor
- Data channels
- Central Processor Unit
- Tape System^
- Real Time Connector with 2 typewriters
- Card Reader
- Tape Systen^
- Disks
- Drum

Figure 4.
Structure of a Simplex Computer System

B

a. Null (1 conversation from A to B) b. Simplex (1 conversation from
A to any of n B fs)

Duplex (2 conversations from
A.j and A^ to two of n B's)

d. Time-Shared Multiplex (1 con
versation from any of m-A fs
to any of n-B's)

n

Multiplex (Min(m,n) simultaneous
conversation from any of m-A's
to any of n-B's)

Figure 5.
Computer Component Switch or Selection Configurations

Simplex path
to F. A
failure in
P V C will
cause F to fail.

\>te: 4 paths from memory switch ? paths from memory system to T.
to T. A failure in P 2V A failure in C 6 will disable T.
or 2 failures in C^v C^v C 5

can be tolerated.

0 X | (See Figure 1. for
symbols)

Figure 6.
Hardware Structure of Multiplexed Computer

Relocation

Protection

Hardware re
when user
running

User

User
Addresses in
(lOOO's of

words)

Relocation
Register

Protection
Register

1 0 < 2 0 2
2 0 < 3 3 3

3 0 < 2 2 2
4 0 < T 6 1

Table of user location information
Jfuser-memory" addresses in 1000fs of words

absolute memory" addresses in lOOO's of words

Figure 7.
Memory Allocation Using Boundary or Relocation and Protection Register

Figure 8.
Memory Allocation Using Page Allocation Map

Logical or virtual memory address request from processor
for user's (two dimensional addfrP.flalng)

Segment
Number

= cJfTe"
dimension

Page Number
Within Segment

one
dimension

Word or Cell
Number Within

Pflgf Processor Component

1

]

j
User Segment Table Register
Segment
Table Origin of Table
Length

Origin of Table

I I , t l

- 4

M R

Segment Table for * Users

Segment
table
length

rage cable
length

Origin of
page table

Pace TahlpJT

1

Page Table

i t i i i

3 1
page
table
length

Pag
Control

SL gin ot
—

User Memory Maps (Page and Segment Tables)and Transformation
(Located in either Primary Memory or Auxiliary Map Memory)

J
"I"
j&n additions
operation

access and
activity -i
informatiorj
(read, write,
read only,Qj:c
unused, etc |)

located in
primary ~\
memory dur-Jg
program
execution —%

Primary Memory Component

physical word of cell "5
page within page

v • ^ J

physical primary memory
Figure y. address

Memory Allocation Using Pages and Segments
J

Figure 10.
IBM'SYSTEM/360 MODEL 67

TIME SHARING SYSTEM OVERVIEW
(courtesy of IBM)

User

COMMAND LANGUAGE
System

Operator

Command Language Interpreter

PROGRAMS
Fortran
Assembler
Link Editor
Other
Library Processes
Service
Routine

User-
Written

Language Program Data Task Batch System Operator
Processor Check Out Management Management Monitor Commands Control
Control System Commands Commands

DATA MANAGEMENT

Dynamic
Loader—

Access
Methods

Sequential,
Terminal,
Virtual,
Graphical

Task Monitor

Cataloging
and

General
Services
Device
Control

4 -

Interrupts

RESIDENT
SUPERVISOR

- i r
SVC PROG.
J* * _

" i —
EXT.

Interrupt Stacker

MACH

Wait / ^Other
\ / r c . p.u.

Queue Scanner

W . W i T
^ Dispatcher

Supervisor Services
(Processors)

r i r i rn i f j l i r s n r n r " i m r ^ i n r n m n

IA> COMMAND,
INTERRUPTS, DATA

CONSOLES

SYSTEM COMMANDS, ERROR
RETURNS,COMMON USER
SERVICE PROGRAMS (CUSP)
CONTROL (FORTRAN, PIP,
EDITOR, MACRO,ETC.) USER
PROGRAMS CONTROL.

DATA
COMMUNICATION

SYSTEM
EQUIPMENT

SYSTEM
COMMANDS"

USERS MEMORY AREA j ^
(PROTECTED AND I ffi

RELOCATED) <g

1 w

s

JOB N

ADDITIONAL
USERS
AREAS

EXEC
AREA

PERIPHERAL
I/O

EQUIPMENT

*DATA

JOB OR
USER
AREAS

I / O DATA FILES

SYSTEM FILES
(INPUT FILES)

1 CUSPS

2 LIBRARY ROUTINES
3 DEBUGGING ROUTINES
4 EXECUTIVES

(MEMORY)
PDP-6 M U L T I P R O G R A M M I N G S Y S T E M D I A G R A M

COURTESY OF DIGITAL EQUIPMENT PROGRAM

FIG, I I

1 1 1 1 1 1 1 1 1 1 1 1 1 1

INPUT DATA
(STRING OF
FILES)

TRANSLATOR
LOADER,

EDITOR, ETC.

CONTROL

CUSP
EXECUTIVE

DATA TO CORE (LOADING,SYMBOL TABLE)
OUTPUT DATA FILE * -
LISTING F I L E *
ERROR FILE

CONSOLE
COMMANDS,
FILE CONTROLS ERROR

* I /O DEVICE CHANNELS

GENERAL STRUCTURE OF COMMON USER
SERVICE PROGRAM-CUSP

FOR PDP-6

(COURTESY OF DIGITAL EQUIPMENT PROGRAM)

FIG. 12

°8 r

S Y S T E M
P A R A M E T E R S .
FOR J O B S *

140, 8
SPACE
RECOVERED -
A F T E R LOAD
MAY R E M A I N

N O T E :

S - S Y S T E M U S E O N L Y
J - J O B U S E
P - P R O T E C T E D

A C STORAGE S , P 20
A C STORAGE S , P 20
U U O P R O C E S S I N G J 2
P C F L A G S S T O R A G E CO 1
P U S H DOWN P O I N T E R S , P 1
R E L O C . A D D R E S S (L H « U N U S E D) S , P 1
T E M P . U U O S , P 1
U U O L E V E L s 1
T E M P . F O R U U O S , P 1
T E M R S T O R A G E FOR S Y S T E M s 3
J O B N U M B E R s 1
I / O D E V I C E A S S I G N M E N T S , P 20
S T A R T I N G A D D R E S S D D T , N O . S Y M B S . J 1

CO

I / O D E V I C E T R A P L O C A T I O N S J 20
S Y M B O L T A B L E P O I N T E R J 1
U N D E F I N E D S Y M B O L J 1
S T A R T I N G A D D R E S S O F P R O G R A M J 1
F I R S T F R E E L O C A T I O N J 1
L O A D E R J

F O R T R A N C O M M O N J

P R O G R A M W I T H A R R A Y S J

(DEBUGGING PROGRAM) J

P R O G R A M J

S Y S T E M P U S H D O W N J 30

I/O B U F F E R S (V A R I A B L E) J

F R E E S T O R A G E J

S Y M B O L T A B L E
(B U I L D S F R O M L A S T A D D R E S S ,
T O W A R D S 0)

J

PDP-6 USER
JOB AREA STORAGE

(COURTESY OF DIGITAL EQUIP. CORP.)

FIG. 13

SYSTEM
(EXEC MODE)

USER AREAS
(USER M O D E ,
RELOCATE,
AND PROTECT)

10
COMMANDS

I / O DEVICE SERVICE ROUTINES
(1 M O D U L E / D E V I C E) P + D

PROGRAMMED OPERATOR DISPATCHER
COMMAND DECODER (LOGIN ,GET , SAVE,ETC.) P

SCHEDULER

CORE ALLOCATION - CORE P + P

R U N CONTROL - R U N C S S

10 COMMON ROUTINES - I O C S S

10 I N I T I A L I Z E - I O C I N I

SYSTEM I N I T I A L I Z A T I O N - S Y S I N I

CLOCK, CLOCK QUEUE DATA P + D

"CALL" STORAGE T A B L E

ERROR H A N D L I N G - E R R C O N

SYSTEM MAKER - SYSMAK

SYSTEM COMMON S U B S - S Y S C S

SYSTEM (DEBUGGING PROGRAM) O + P
JOB T A B L E S - J B S T S

10 CONTROL -10 CONT.

M U L T I PROGRAM EXECUTIVE

JOB AREA 1 P + D

JOB AREA J P + D

JOB AREA N

S Y S T E M S Y M B O L S (DEBUG ONLY) P + D

•x , DEV ICE CALLS
\ FROM J O B ,

DEVICE ASSIGNMENT
COMMON CONTROL

I / O DEVICE
'DATA TRANSMISSION
W I T H JOB AREA

CALLS

S Y S T E M , DEVICE
CALLS

D - DATA
P - PROGRAM

PDP-6
MULTIPROGRAMMING SYSTEM STORAGE

(COURTESY OF DIGITAL EQUIP. CORP.)

FIG, 14

Figure 15.

Heirarchy of Executives Within a General Purpose Time-Sharing System

"1
J

APPENDIX 1.

PROPOSED ADVANTAGES FOR THE TIME-SHARING OF COMPUTERS

In the following discussion, only the positive aspects of Time-Sharing

are given. In emerging new systems, there have been just enough positive

results to provide us with the ability to imagine how great Time-Sharing

can be. Rather than point out how an on line system allows men to be con

trolled by computer, or how poorly the present machines, which have been

adapted for Time-Sharing, perform, I will list the proposed advantages and

suggest them as design aspirations.

In general, Time-Sharing replaces an existing form of processing because

it offers to provide a better service or cost less, sometimes it offers to

do a job that is difficult using another system. It also opens up new avenues

of approach which enable a new class of problems to be attacked fruitfully.

It is already changing the structure of programs; maybe because of the system

structure, but also because of new hardware which might not have been avail

able without Time-Sharing, (i.e., memory segmentation or two dimensional addresses).

ON LINE ADVANTAGES

The direct terminal (by providing a link between computers and man) form

a symbiotic problem solving system. The symbiotic system offers to provide

a more complete problem solving system because of the tight coupling between

the two components, and power in each processor's domain. For example, in

computer aided design the human user synthesizes while the computer analyzes

and optimizes. A circuit designer would suggest circuits while the computer

would "breadboard" or analyze them. With configuration determined, the

computer would optimize the parameter values. Thus, the reactive nature of

the on line or direct terminal provides the user with a very responsive tool

with which to probe the problem solution space.

A complete tool is available, including all files which hold a user's

d^ta base and his procedures are within the system. The problem in trans

porting physical data is eliminated. Thus, the necessity and inconvenience

of relying on other human systems for the preparation of programs and handling

of data is unnecessary. When there is need to create, modify, or destroy a

file, the commands are executed quickly.

The total time to make a modification and have another attempt at problem

solution, or the problem turn around time can be short or appropriate with

the task size.

Direct terminal interaction with the system to create and edit files

provides a constant monitoring and check on a user's input so that a wide

variety of errors can be detected at all levels during the problem solving.9

That is, data format and validity checking, including the detection of mis

spelled words occurs at the earliest possible time and lowest level. Clerical

functions, including program preparation, drawings, and report generation

are part of the system.

Data may be presented in more useful forms to on line users without

the need to transfer entire output files to paper. A user may specify only

the part of the file or process of interest. More useful forms of data pre

sentation, such as graphs, charts, and diagrams may be presented on displays

and plotter.

USER COMMUNITY ADVANTAGES

A general purpose system provides an ever increasing set of procedures

for problem solutions, created by its users. Procedures may enter the public

domain more rapidly, the author need issue only a notice to the system

(which informs other users). Procedures in the public domain become use

ful more quickly because a large community of users has immediate access

to them and incidentally simultaneously check them. Common or shared data

bases (e.g., census data) need only be gathered once and appear in one file.

Routine inter-user administrative tasks such as updating the library,

administrative message sending, and availability lists occur at time of

origin and are automatically part of the system.

The accounting of resources is by the system with controls imposed by

overall human administration. Not only is there better accuracy, but users

can be monitored rather than being required to administer their own time.

This, in turn, provides better information about the total utility of the

system and its users.

A higher level of standardization is possible and can be achieved among

users and hence the ease of using the system should improve. Trivial functions

which tend to be rewritten (e.g., error handling of messages, lesser used

arithmetic functions, the manipulation of characters to form words, etc.)

are more likely to be shared because of the ease of sharing.

The possibility for improving the documentation associated with procedures

should improve through the ease of documentation and perhaps pressure of the

community to share procedures. The overall documentation (text, diagrams,

etc.) which describes a process or problem solution may improve.

FLEXIBLE TERMINAL LOCATION

Most direct terminals may be located where they can most efficiently

serve the users; in fact, they may even be portable. No longer will it be

necessary for the user to preschedule time, but he can now use the computer

as his tool when and where he best is able to work. For some, this may be

in an office, for others a laboratory, and still others, their home. Ulti

mately, consoles will be in all homes. For example, ccmsider the salesman

who has a terminal in his home (or a portable one in his car) such that he

can help the computer determine a list of the best calls for that day.

ECONOMICAL ADVANTAGES

In general, a community is provided with a much larger system than

any single member could afford. For on line or real time systems, the hard

ware and software overhead associated with this additional ability can be

associated with a larger number of users.

A large number of facilities (coordination of all file activity, trans

mission of data to terminals, standard error handling, etc.) which are over

head functions are implemented within a system framework rather than repeat

edly by each user as he attempts to form his own system. Parallel requests

for resources rather than serial processing provide the system with more

information to improve scheduling.

Since the system provides the users with the ability to "watch" the

execution of a process, the likelihood of using large amounts of processing

capability yielding erroneous results is lessened.

If the community of users is sufficiently large, there should be more

than one hardware unit of each type, and in the event of hardware failure,

the system can be repartitioned to maintain a working system although of

lesser performance.

BIBLIOGRAPHY

1. Adams, E. N., "Reflections on the Design of a CAI Operating System,"
AFIPS Conference Proceedings, Spring Joint Computer Conference Vol. 30,
419-424 (1967).

2. Allan, Pryor T. and R. Warner Homer, "Time Sharing in Biomedical Research,"
Datamation Vol. 12 (4) (April 1966).

3. Amdahl, G. M., "New Concepts in Computing Systems Design," Proc. IRE Vol. 50
(5), 1073-1077 (Memory Protection) (May 1962).

4. American Management Association, "Advances in EDP and Information Systems,"
AMA Report No. 62.

5. Anderson, J. P., S. A. Hoffman, J. Shifman, and R. J. Williams, "D-825 -
A Multiple Computer System for Command and Control," Proc. Fall Joint
Computer Conference Vol. 25, 86-96 (December 1962). See also D-825
Manual - Burroughs Corporation.

6. Arden, B. W., et al, "Program and Addressing Structure in A Time-Sharing
Environment," (submitted for publication).

7. Aschenbrenner, R. A., M. Flynn, G. A. Robinson, "Intrinsic Multiprocessing,"
AFIPS Conference Proceedings, Spring Joint Computer Conference Vol. 30,
81-86 (1967).

8. Avakian, Emik A. and F. Walter Jenison, Jr., "Voice Response and Visual
Display Techniques for On-Line Information Handling Systems," The Bunker-
Ramo Corporation, Stamford, Connecticut.

9. Bachman, C. W. and S. B. Williams, "A General Purpose Progranming System
for Random Access Memories," Proc. Fall Joint Computer Conference Vol. 26,
411-422 (1964).

10. Baldwin, F. R., W. B. Gibson, and C. B. Poland, "A Multiprocessing Approach
to a Large Computer System," IBM Systems Journal Vol. 1, p. 61 (Sept. 1962).

11. Bauer, Walter F., "Why Multi-Computers?," Datamation Vol. 8 (9) (Sept. 1962).

12. Beckman, F. S., F. P. Brooks, Jr., and W. J. Lawless, Jr., "Developments
in the Logical Organization of Computer Arithmetic and Control Units,"
Proc. IRE Vol. 49 (1), 53-66 (January 1961).

13. Bell, G. and M. W. Pirtle, "Time-Sharing Bibliography," Proc. IEEE Vol. 54
(12),1764-1765 (December 1966).

14. Belluardo,R.,R. Gocht,G. Paquette, "A Time Shared Hybrid Simulation
Faculty," UAC, East Hartford, Conn., AFIPS Vol. 28 (966).

15. Bitzer, P. L., and H. G. Slottow, "The Plasma Display Panel - A Digitally
Addressable Display with Inherent Memory," AFIPS Conference Proceedings,
Fall Joint Computer Conference Vol. 29 (7-10) ,541-548 (1966).

16. Boilen, S., "User's Manual for the BBN Time-Sharing System," Bolt, ^
Bernaek, and Newman, 50 Moulton St., Cambridge, Mass.

17. Bolt, Richard H., "Man-Machine Partnership in Intellectual Pursuits:
A Look Ahead," Publication No. 1191, Printing and Publishing Office,
National Academy of Sciences. "1

18. Brillouin, Leon, "Science and Information Theory,"Second Edition,
Academic Press, Inc. (1962). —

19. Brooks, F. P., Jr., "A Program Controlled Program Interrupt System," " J

Proc. Eastern Joint Computer Conference, 128-132 (December 1957). ^

20. Buchholz, W. (Editor), "Planning a Computer System - Project Stretch,"
McGraw-Hill Book Company, Inc., New York (1962). (See also IBM 7030
(Stretch) Manual). ~"~]

21. Burks, A. W., H. H. Goldstine and J. von Neumann, "Preliminary Discus
sion of the Logical Design of an Electronic Computing Instrument,"
(reprinted) Datamation, 24-31 (September 1962). J

22. Burroughs Corporation, "The Descriptor," Burroughs Corporation (1961).

23. Burton, A. J. and R. G. Mills, "Electronic Computers and Their Business ~J
Applications," London, E. Benn (i960).

24. Bush, Vannevar, "As We May Think," Atlantic Monthly Vol. 176, 101 I
(July 1945). ~"

25. Calingaert, P., "System Performance Evaluation; Survey and Appraisal,"
Comm. ACM 10 (1), 12-18 (January 1967). ' ^

26. Carnegie, "Carnegie Institute of Technology Computation Center Users T
Manual." U

27. Castle, C. T., "Planning the 3600," Proc. Eastern Joint Computer ~i
Conference, 73 (December 1964). See also CBC-3600, Datamation, 37-40 J
(May 1964).

—*

28. Clippinger, Richard F., "Programming Implications of Hardware Trends,"
IFIP Congress, New York Vol. 1, 207-212 (1965). ^

29. Codd, E. F., "Multiprogramming Scheduling," Comm. ACM Vol. 3 (6) (June I960). "1
_J

30. Codd, E. F., "Multiprogramming Stretch: A Report on Trials," Proc. IFIP
Congress, Munich, 574, North Holland Publishing Co., Amsterdam (Aug. 27 n
to Sept. 1, 1962). J

31. Coffman, E. G., "A General Flow Chart Description of the Time-Sharing
System," SDC lM-1639/000/00 (Dec 12, 1963).

32. Comfort, W. T., "A Computing System Design for User Service," Proc. ^
Fall Joint Computer Conference, Las Vegas, Nevada, Vol. 27 (Nov. 30, 1965). J

"1
J

33. Computer Research Corporation, "Time Sharing System Scorecard, No. 1,"
Computer Research Corporation, 747 Pleasant St., Belmont, Mass.

34. Conway, M. E., "A Multiprocessor System Design," Fall Joint Computer
Conference Vol. 24, 139-146 (1963).

35. Cook, P. A. C , "Real-Time Monitoring of Laboratory Instruments,"
AFIPS Conference Proceedings, Spring Joint Computer Conference Vol. 30,
779-782 (1967).

36. Coons, S. A., "An Outline of the Requirements for a Computer Aided
Design System," 1963 Spring Joint Computer Conference, 229-304.

37. Corbato, F. J., et al, "The Compatible Time-Sharing System: A
Programmer's Guide," M.I.T. Press, Cambridge, Mass. (1963).

38. Corbato, Fernando J., M. Merwin-Daggett, and R. C. Daley, "An Experi
mental Time-Sharing System," AFIPS Conference Proceedings Vol. 21,
335-344 (Spring 1962).

39. Corbato, F. J., V. A. Vyssotsky, "Introduction and Overview of the
Multics System," Proc. Fall Joint Computer Conference, Las Vegas, Nevada
(Nov. 30, 1965).

40. Crisman, P. A., Editor, "The Compatible Time-Sharing System," A Program
mer's Guide, 2nd edition, M.I.T. Press, Cambridge, Mass. (1965).

41. Critchlow, A. J., "Generalized Multiprocessing and Multiprogramming
Systems," AFIPS Conference Proceedings, Fall Joint Computer Conference
Vol. 24, 107-126 (1963).

42. Culler, G. J. and B. D. Fried, "The TRW Two-Station, On-Line Scientific
Computer: General Description," Computer Augmentation of Human Reasoning,
Washington, D. C , June 1964, Spartan Books, Washington, D. C. (1965).

43. Daley, R. C. and P. G. Neumann, "A General Purpose File System for
Secondary Storage," Proc. Fall Joint Computer Conference, Las Vegas,
Nevada Vol. 27 (Nov. 30, 1965).

44. Dartmouth, "The Dartmouth Timesharing System," Computation Center,
Dartmouth College (Oct. 19, 1964).

45. Datamation, "A Survey of Airline Reservation Systems," p. 53 (June 1962).

46. David, E. E., Jr. and R. M. Fano, "Some Thoughts About the Social Impli
cations of Accessible Computing," Proc. Fall Joint Computer Conference,
Las Vegas, Nevada Vol. 27 (Nov. 30, 1965).

47. Dearden, John, "Can Management Information Be Automated," Harvard
Business Review (March-April, 1964).

48. Denning, P. J., "Effects of Scheduling on File Memory Operations," AFIPS
Conference Proceedings, Spring Joint Computer Conference Vol. 30, 9-22
(1967). :

49. Dennis, J. B., "A Multiuser Computation Facility for Education and
Research," Communications of the Acm Vol. 7, 521-529 (Sept. 1964).

50. Dennis, J. B., "Segmentation and Design of Multiprogrammed Computer
Systems," IEEE International Convention Record, Institute of Electrical
and Electronic Engineers, New York, Vol. 13 (3), 214-225 (1965); and
JACM Vol.12 (4), 589-602 (Oct. 1965).

51. Dennis, J. B. and E. L. Glaser, "The Structure of On-Line Information
Processing Systems," Proceedings of the Second Congress on Information
Systems Sciences, 1-11, Spartan Books, Washington, D.C. (1965).

52. Dertouzos, M. I. and H. L. Graham, "A Parametric Graphical Display
Technique for On-Line Use," AFIPS Conference Proceedings, Fall Joint
Computer Conference Vol. 29 (7-10), 210-210 (1966).

53. Desmonde, William H., "Computers and Their Uses," Englewood Cliff,
New Jersey, Prentice Hall (1964); "Real Time Data Processing System -
Introductory Concepts," Englewood Cliff, New Jersey, Prentic Hall (1965),

54. Digital Equipment Corporation, Maynard, Mass., "Multiprogramming
System Manual for PDP-6," DEC-6-EX-SYS-UM-IP-PREOO.

55. Dudas, J. F., "Concurrent Processing of Teletype Message Switching and
Order Entry at Westinghouse Tele-Computer Center," Westinghouse Electric
Corporation.

56. Duffy, G. F. and W. D. Timberlake, "A Business-Oriented Time-Sharing
System," IBM, SDD Poughkeepsie, AFIPS, Spring Joint Computer Conference,
Vol. 28, 265-275 (1966).

57. Dunn, T. M. and J. H. Morrissey, "Remote Computing - An Experimental
System, Part 1: External Specifications," - J. M. Keller, E. C. Strum,
and G. H. Yang, Part 2, Proc. Spring Joint Computer Conference Vol. 25,
413-443 (1964).

58. Eckert, J. P., J. C. Chu, A. B. Tonik, and W. F. Schmitt, "Design of
UNIVAC - LARC System I," Proc Eastern Joint Computer Conference (16),
59-65 (1959).

59. Edwards, J. D., "An Automatic Data Acquisition and Inquiry System
Using Disk Files," (Lockheed Missiles and Space Co.,), Disk File
Symposium, March 6-7, 1963 (Informatics, Inc. Culver City, Calif.)

60. Evans, D. C and Leclerc, J. Y., "Address Mapping and the Control of
Access in an Interactive Computer," AFIPS Conference Proceedings,
Spring Joint Computer Conference Vol. 30, 23-32 (1967).

61. Fano, Robert M., "The MAC System: The Computer Utility Approach,"
IEEE Spectrum Vol. 2, 56-64 (January 1965).

62. Fine, G. H., C. W. Jackson and P. V. Mclsaac, "Dynamic Program Behavior
Under Paging," Proc. ACM 21st Conference, 223-228.

63. Flynn, Michael J., "Very High-Speed Computing Systems," Proc. IEEE
Vol. 54 (12), 1901-1909 (December 1966).

64. Forgie, R. W., "A Time-and Memory-Sharing Executive Program for Quick
Response On-Line Applications," Proc. Fall Joint Computer Conference,
Las Vegas, Nevada Vol. 27 (Nov. 30, 1965).

65. Fotheringham, J., "Dynamic Storage Allocation in the Atlas Computer,"
Comm. ACM Vol.4 (10), 435-436 (Oct. 1961).

66. Frankovich, J. M. and H. P. Peterson, "A Functional Description of
the Lincoln TX-2 Computer," Western Computer Proceedings, 146 (1957).

67. Fredkin, Edward, "The Time-Sharing of Computers," Computers and
Automation Vol. 12 (11) (Nov. 1963).

68. Gallagher, James D., "Management Information Systems and the Computer,"
AMA Research Study: No. 51 (1961).

69. Gallenson, L., "On-Line l/o Processor for the Command Research Laboratory,"
The PDP-1-C-30, SDC TM-1653 (Dec. 23, 1963).

70. Gallup, G., "The Miracle Ahead," Harper and Row, New York (1964).

71. Gass, S. I., Marilyn B. Scott, R. Hoffman, W. K. Green, A. Peckar,
R. D. Peavey and J. E. Hamlin, "Project Mercury Real-Time Computational
and Data Flow System," Proc. Eastern Joint Computer Conference Vol. 20,
33-78 (Dec. 1961).

72. Ginzberg, M. G., "Notes on Testing Real-Time Systems Programs," IBM
System Journal 4 (1), 58-72 (1965).

73. Glaser, E. L., "The Structure of On-Line Information Processing Systems,"
Proc Second Congress on Information Sciences, Homestead, Va., 1-11
(Nov. 1965).

74. Glaser, E. L. and F. G. Corbato, "Introduction to Time-Sharing,"
Datamation Vol. 10 (11) (Nov. 1964).

75. Glaser, E. L., J. F. Couleur and G. A. Oliver, "System Design of a
Computer for Time-Sharing Applications," Proc. Fall Joint Computer
Conference, Las Vegas, Nevada. Vol. 27 (Nov. 30, 1965).

76. Greenberger, Martin, "The Computers of Tomorrow," Atlantic Monthly,
63-67 (May 1964).

77. Greenberger, Martin, "Management and the Computer of the Future,"
The M.I.T. Press and John Wiley and Sons, Inc., (1962).

78. Gruenbeyer, Fred, "Are Small Free-Standing Computers Here to Stay?,"
Datamation Vol. 12 (4) (April 1966).

79. Harris, R. P., "The PDP-6," Datamation Vol. 10 (11) (Nov. 1964).

80. Hastings, Thomas N., "Real-Time Computing with Time-Sharing,"
Computers and Automation Vol. 14 (10) (Oct. 1965).

81. Hittel, L. A., "Some Problems in Data Communications Between the
User and the Computer," AFIPS Conference Proceedings, Fall Joint
Computer Conference Vol. 29 (7-10), 395-402 (1966)7

82. Holland, J. H., "On Iterative Circuit Computers Constructed of Micro-
Electronic Components and Systems, Proc. Western Joint Computer
Conference, p. 259 (May I960).

83. Holt, A. W., "Program Organization and Record Keeping for Dynamic
Storage Allocation," Comm. ACM Vol. 4, 422-431 (Oct. 1961).

84. Hoover, E. S. and Eckhart, "Performance of a Monitor for a Real-Time
Control System," AFIPS Conference Proceedings, Fall Joint Computer
Conference Vol. 29 (7-10), 23-36 (1966).

85. IBM"1800 Time-Sharing Executive System Specifications," File 1800-36,
Form No. C26-5990-0.

86. Iliffe, J. K. and J. G, Jodeit, "A Dynamic Storage Allocation Scheme,"
Computer J. Vol. 5, 200-209 (Oct. 1962).

87. Johnson, T. E., "Sketchpad III: A Computer Program for Drawing in
Three Dimensions," Proc. Spring Joint Computer Conference, p. 347
Detroit, Michigan (May 1963).

88. "The JOSS System, Time Sharing at Rand," Datamation Vol. 10 (11) (Nov. 1964).

89. Kemper, D. A., "Operation of CRL Teletype System," SDC TM 1488/000/00
(Sept. 18, 1963).

90. Kennedy, J. R., "A System for Time-Sharing Graphic Consoles," AFIPS
Conference Proceedings, Fall Joint Computer Conference Vol. 29 (7-10),
211-222 (1966).

91. Keydata, "Data Processing - On Line...In Real Time...The Keydata
System," Keydata Corporation, 575 Technology Square, Cambridge, Mass.

92. Kilburn, T., R. B. Payne and D. J. Howarth, "The Atlas Supervisor,"
Proc. Eastern Joint Computer Conference Vol. 20, 279-294 (1961).

93. Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, "One
Level Storage System," IRE Transactions on Electronic Computers
Vol. EC-11 (2), 223-235 (April 1962).

94. King, Gilbert W. et al., "Automation and the Library of Congress,"
Washington, D. C : Library of Congress (1963).

95. Kinslow, H. A., "The Time-Sharing Monitor System," Fall Joint Computer
Conference, Vol. 26, Part 1, 443-454,(1964).

96. Kolsky, "Centralization vs. Decentralization," Tenth Annual Symposium
on Computers and Data Processing (June 26-27, 1963).

97. Lampson, Butler W., "Time Sharing System Refernce Manual," Working
Document, University of California, Document No. 30.1030; issued
Sept. 30, 1965; revised Dec. 30, 1965.

98. Lampson, B. W,, W. W. Lichtenberger, M.W. Pirtle, "A User Machine
in a Time-Sharing System," Proc. IEEE Vol. 54 (12), 1766-1774 (Dec. 1966).

99. Landis, N., A. Manos, and L. R. Turner, "Initial Experience with An
Operating Multiprogramming System," Comm. ACM, Vol. 5 (5) (May 1962).

100. Lawless, W. J., "Developments in Computer Logical Organization,"
Advances in Electronics and Electron Physics Vol. 100, Academic Press,
Inc., New York (1959).

101. Lehman, M., "A Survey of Problems and Preliminary Results Concerning
Parallel Processing and Parallel Processors," Proc. IEEE Vol. 54 (12),
1889-1901 (Dec.1966).

102. Leiner, A. L., W. A. Notz, J. L. Smith and W. W. Youden, "PILOT
Multiple Computer System (Manual)," National Bureau of Standards Report
6688. See also Journal of ACM Vol. 6 (3) (July 1959).

103. Lehrer, N. H. and Ketchpel, R. D., "Recent Progress in a High-Resolution,
Meshless, Direct-View Storage Tube", AFIPS Conference Proceedings, Fall
Joint Computer Conference Vol; 29 (7-10), 531-540 (1966).

104. Levine, S. et al, "A Fast Response Data Communications System for Air
line Reservations," Communication and Electronics (Nov. 1961).

105. Lichtenberger, W. W. and M. W. Pirtle, "A Facility for Experimentation
in Man-Machine Interaction," Proc. Fall Joint Computer Conference,
Las Vegas, Nevada Vol. 27 (Nov. 30, 1965).

106. Licklider, J. C. R., "Man Computer Symbiosis," IRE Transactions on
Human Factors in Electronics Vol. HFE-1, 4-11 (March 1960).

107. Licklider, J. C. R. and W. E. Clark, "On-Line Man-Computer Communication,"
Proc. Spring Joint Computer Conference, 113-128 (1962).

108. Lonergan, L. and P. King, "Design of the B5000 System," Datamation
Vol. 7 (5) (May 1961).

109. McCarthy, J., "Time Sharing Computer Systems," Management and the
Computer of the Future (M. Greenberger, Editor), M.I.T. Press, Cambridge,
221-236 (1962).

110. McCarthy, J., S. Boilen, E. Fredkin, and J. C. R. Licklider, "A
Time-Sharing Debugging System for a Small Computer," Proc. Spring
Joint Computer Conference Vol. 23, 355-363 (1963).

113. Malcom, Donald G. and Alan J. Rowe, "Management Control Systems,"
John Wiley and Sons, Inc.

118. Nebel, B. E., "A Multiprogrammed Teleprocessing System for Computer
Typesetting," AFIPS Conference Proceedings, Fall Joint Computer
Conference Vol. 29 (7-10), 115-124 (1966).

119. Nelson, T. H., "A File Structure for the Complex, the Changing and
the Indeterminate," ACM National Conference (Aug. 1965).

120. Nisenoff, N., "Hardware for Information Processing Systems: Today
and in the Future," Proc. IEEE Vol. 54 (12), 1820-1835 (Dec. 1966).

123. Penny, J. D. and T. Pearcey, "Use of Multiprogramming in the Design
of a Low Cost Digital Computer," Comm.ACM Vol. 5 (9), p.473 (Sept. 1962),

124. Perils, A. J., "A Disk File Oriented Time Sharing System," Disk File
Symposium, March 1963 (sponsored by Informatics, Inc., Culver City,
Calif.).

wJ

]

J
111. McClung, L. W., "A Disc-Oriented IBM 7094 System," Paper #3, Disk

File Symposium, March 6-7, 1963, Hollywood, California (Sponsored by 1
Informatics, Inc.)

112. Maher, R. J., "Principles of Storage Allocation in a Multiprocessor ~i
Multiprogrammed System," Comm. of ACM Vol. 4, 421-422 (Oct. 1961).

J
114. Marcotty, M. J., F. M. Longstaff, and Audrey P. M. Williams, "Time-

Sharing on the Ferranti Packard FP6000 Computer System," Proc. Spring H
Joint Computer Conference Vol. 23, 29-40 (1963). J

115. Marill, T. and Roberts, L. G., "A Proposed Communications Network —i
to Tie Together Existing Computers," AFIPS Conference Proceedings,
Fall Joint Computer Conference Vol. 29 (7-10), 425-433 (1966). ^

116. Mendelson, M. J. and A. W. England, "The SDS SIGMA 7: A Real-Time ~]
Time-Sharing Computer," AFIPS Conference Proceedings, Fall Joint -i
Computer Conference Vol. 29 (7-10), 51-64.0.966).

1
117. M.I.T. Digital Computer Lab., "Comprehensive System Manual - A _J

System of Automation Codes for the Whirlwind Corporation," Memo
M-2539-2 (Dec. 1953). n

J 121. Ochsner, B. P., "Controlling a Multiprocessor System," Bell Telephones
Lab. Record,(Feb. 1966), H

122. Ossanna, J. F., L. E. Mikus, and S. D. Dunten, "Communications and Jl
Input/Output Switching in a Multiplex Computing System," Proc. Fall
Joint Computer Conference. Las Vegas, Nevada Vol. 27 (Nov. 30, 1965).

J

125. Peters, B., "Security Consideration in Multi-Programmed Computer
System," AFIPS Conference Proceedings, Spring Joint Computer
Conference Vol. 30, 283-286 (1967).

126. Proctor, .James W., Jr., "The Voice Response System," Datamation Vol. 12,
43-44 (Aug. 1966).

127. Ramamoorthy, C. A., "The Analytic Design of a Dynamic Lookahead and
Program Segment — System for Multiprogramned Computers," Proc. ACM
21st Conference, 229-239.

128. Ramsay, Karl and J. C. Strauss, "A Real Time Priority Scheduler,"
Proc. ACM 21st National Conference, 161-166.

129. Reiter, A.., "A Resource Allocation Scheme for Multi-User On-Line
Operation of a Small Computer," AFIPS Conference Proceedings, Spring
Joint Computer Conference Vol. 30, 1-8 (1967).

130. Roberts, L. G., "The Lincoln Wand", AFIPS Conference Proceedings,
Fall Joint Computer Conference Vol. 29 (7-10), 223-228 (1966).

131. Rosenberg, A. M. (Editor), "Command Research Laboratories Users
Guide," SDC TM-1354 (Nov. 19, 1965).

132. Ross, D. T. and J. E. Rodriguez, "Theoretical Foundations for the
Computer-Aided Design System," Computer Aided Design, Spring Joint
Computer Conference, p. 305 (1963).

133. Samuel, A. L., "Time Sharing on a Computer," New Scientist Vol. 26,
583-587 (May 27, 1965).

134. Scherr, Alan L., "Time Sharing Measurement," Datamation Vol. 12 (4)
(April 1966).

135. Schwartz, E. S., "Automatic Sequencing Procedure with Application
to Parallel Programming," Journal of ACM Vol. 8, 513-537 (Oct. 1961).

136. Schwartz, J. I., E. G. Coffman, and C. Weissman, "A General Purpose
Time-Sharing System," Spring Joint Computer Conference Vol. 25,
397-411 (1964).

137. Schwartz, J. I., "Observations on Time-Shared Systems," ACM Proceedings
of the 20th National Conference, p. 525 (1965).

138. Schwartz, Jules I., "The SDC Time-Sharing System Part 1," Datamation
Vol. 10 (1), Part 2, (Nov. 1964); Datamation Vol. 10 (12) (Dec. 1964).

139. Scott, M. B. and R. Hoffman, "The Mercury Programming System," Proc.
Eastern Joint Computer Conference Vol. 20, 47-53 (Dec. 1961).

140. Sprague, Richard E., "On Line-Real Time Systems - 1964," Management
Services (May-June 1964).

143. Strachey, C , "Time Sharing in Large Fast Computers," Proc. of the
International Conference on Information Processing, Paris, UNESCO,
336-341 (1960).

145. Sutherland, I. E., "Sketchpad: A Man-Machine Graphical Communication
System," Lincoln Lab Technical Report No. 296, M.I.T., January 30,
1963, Computer Aided Design, Spring Joint Computer Conference, 329-346
(1963).

146. Teleregister, "200 Display System," The Bunker-Ramo Corporation,
Stamford, Conn.

147. Teleregister, "On-Line Data Processing for Hotels," The Bunker-Ramo
Corporation, Stamford, Conn.

148. Vyssotsky, V. A., F. J. Corbato, and R. M. Graham, "Structure of the
Multics Supervisor," Proc. Fall Joint Computer Conference, Las Vegas,
Nevada, Vol. 27 (Nov. 30, 1965).

149. Weil, J. W., "A Heuristic for Page Turning in a Multiprogrammed
Computer," Comm. ACM Vol. 5 (9), p. 480 (Sept. 1962).

150. Weil, J. W., "The Impact of Time-Sharing on Data Processing Manage
ment," DPMA Quarterly 2, 2, 2-16 (Jan. 1966).

151. Wilkes, M. V., "A Programmer's Utility Filing System," Computer Journal
7, 180-184 (Oct. 1964).

152. Yates, John E., "A Time-Sharing System for the PDP-1 Computer,"
M.I.T. Press (1962).

]
144. Summer, F. H. and E. C. Y. Chen, "The Central Control Unit of the

ATLAS Computer," Proc. of IFIP Congress, p. 657 (1962). -i
J

J

I
J

J
141. Stanga, D. C , "Unlvac 1108 Multiprocessor System", AFIPS Conference

Proceedings, Spring Joint Computer Conference Vol. 30, 67-74 (1967). "]
\

142. Stotz, R., "Man-Machine Console Facilities for Computer-Aided Design,".
Computer Aided Design, Spring Joing Computer Conference, p. 323 (1963). j

S e c u r i t y C l a s s i f i c a t i o n

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1 . O R I G I N A T I N G A C T I V I T Y (Corporate author)

Carnegie Institute of Technology
Department of Computer Science
Pittsburgh, Pennsylvania (15213)

2m. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

UNCL
2 b . G R O U P

3. R E P O R T T I T L E

TIME SHARED COMPUTERS

4 . d e s c r i p t i v e n o t e s (Type of report and inclusive dates)

5- A U T H O R (S) (First name, middle initial, last name)

C. Gordon Bell

6 . R E P O R T D A T E

M&y /96>7
la. T O T A L N O . O F P A G E S

92
7 6 . N O . O F R E F S

152
8 a . C O N T R A C T O R G R A N T N O . -

SD-146 (ARPA)
b. P R O J E C T N O . 9718

C154501R
r .

681304
rl.

9a. O R I G I N A T O R ' S R E P O R T N U M B E R (S) 8 a . C O N T R A C T O R G R A N T N O . -

SD-146 (ARPA)
b. P R O J E C T N O . 9718

C154501R
r .

681304
rl.

9 b . O T H E R R E P O R T N O (S | (Any other numbers that may be assigned
this report)

H D I S T R I B U T I O N S T A T E M E N T

Distribution of this document is unlimited
Defense Contractors from: DDC, Cameron Station, Alexandria, Va. 22314

1 1 . S U P P L E M E N T A R Y N O T E S 1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

Air Force Office of Scientific Research
1400 Wilson Boulevard (SIR)

i:i A « T n A r T

Arlington, Virginia 22209

Time-sharing is discussed generally to include any application of a computer
system which has simultaneous users. The discussion emphasizes the general pur
pose time-sharing, since special purpose time-sharing, "real time11, and "on line"
systems are a subset. "Graceful Creation", or the "boot strapping" of a system,
is described in which newly created individual user procedures are immediately
available to the whole community of users, and the system expands in an open-
ended fashion because many users contribute to the formation.

Although the discussion is separated into hardware, operating system soft
ware, and user components, a sharp delineation does not exist in reality. After
the basic system is specified, it is the philosophy of the author that the system
should be formed in a time-shared environment (including the construction of the
Operating System Software). Few restrictive features or functions should be
"built-in", but instead, be optionally available through the library or common files.

The underlying design criteria should be: flexibility, modularity, simplicity
of module intercommunication, and open endedness.

The basic objectives of time-sharing are to increase both user and over-all
computer system productivity. The present general computational systems are an
extension of special, shared, multi-programmed systems centered around special
applications (e.g., process control, command and control, information inquiry, etc.).

D D ,FrU473 "

Security C l a s s i f i c a t i o n

DOCUMENT CONTROL DATA - R & D
(Security classification ot title, body of abstract and indexing annotation must be entered when the overall report Is classified)

l . ORIGINATING ACTIVITY (Corporate author)
2 a . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

2b. G R O U P

3. REPORT TITLE

4 . DESCRIPTIVE NOTES (Type of report and Inclusive dates)

5 AUTHOR(S) (First name, middle initial, last name)

REPORT DATE 7 a . T O T A L N O . O F P A G E S 7 b . N O . O F R E F S

8a. CONTRACT OR GRANT NO.
b. PROJEC T NO.

9 a . O R I G I N A T O R ' S R E P O R T N U M B E R (S)

9b. O T H E R R E P O R T N O (S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES 1 2 . SPONSORING M I L I T A R Y A C T I V I T Y

13. ABSTRACT
As such, Time Sharing is another technique which makes the computer a more
general tool.

All future computers will have at least some basic hardware for a form of
time-shared usage. These system forms will run the gamut from dedicated systems
with a permanent user set, through general systems with varying numbers of users,
to a network of shared computers.

The paper only discusses the basic structure of the system, with emphasis
on the hardware, because of space limitations. For example, the issue of
scheduling jobs is discussed only superficially by listing the system variables
on which scheduling depends, together with a common scheduling algorithm.

DD ,FN°OR:U473

