
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Time-Sensitive Dirichlet Process Mixture Models

Xiaojin Zhu Zoubin Ghahramani John Lafferty
May 2005

CMU-CALD-05-104^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We introduce Time-Sensitive Dirichlet Process Mixture models for clustering. The
models allow infinite mixture components just like standard Dirichlet process mixture
models. However they also have the ability to model time correlations between in
stances.

Research supported in part by NSF grants NSF-CCR 0122481, NSF-IIS 0312814, and NSF-
IIS 0427206. Zoubin Ghahramani was supported at CMU by DARPA under the CALO project.

Carnegie Mellon Universit;
Pittsburgh, PA 15213-3S9C

Keywords: 1.2.6 [Artificial Intelligence] :Learning; 1.5.1 [Pattern Recognition] :Models-
Statistical, 1.5.2 [Pattern Recognition]:Design Methodology-Classifier design and eval
uation; General Terms: Algorithms; Additional Key Words: Dirichlet process mixture
models, MCMC, time

1 Introduction
Traditional clustering algorithms make two assumptions that are often false in practice:
1. that the number of clusters is known; 2. that the data points are independent. We
propose a model that allows infinite number of clusters, and cluster members may have
certain dependency in time.

Consider emails received by a user over a period of time. Suppose we want to
cluster the emails by topic thread. There are several ways to do this:

• We can sort emails by the 'subject' line. However it is unreliable and we want a
more flexible probabilistic model based on email content.

• We can model each thread with a multinomial distribution over the vocabulary,
and treat each email as a 'bag of words'. The whole email collection can be
modeled as a mixture of multinomial. The problem is that we do not know the
number of threads (mixing components). Fixing the number, which is a common
practice, seems arbitrary.

• We can model the collection as a Dirichlet process mixture model (DPM) [1].
DPMs allow potentially infinite number of components. Nonetheless DPMs are
exchangeable. When applied to emails, this means that old threads never die
down. This is undesirable because we want the emails from years ago to have
less influence than those from this morning in predicting the next email.

We therefore would like to introduce the concept of time into DPMs, while keeping
the ability to model unlimited number of clusters. This is achieved with the proposed
Time-Sensitive Dirichlet Process Mixture (tDPM) models.

2 The tDPM Framework

Consider a sequence of input d with time stamp t: (d i , * i) , . . . , (dn,tn), where the time
monotonically increases. For concreteness let us assume the <f s are email documents,
each represented as a bag-of-word vector. Let Si € { 1 , 2 , . . . } be the true cluster
membership (email thread) of dit Notice we do not set the number of clusters a priori.
There could potentially be an unlimited number of clusters as the number of documents
n grows.

Without loss of generality we assume that each cluster j is represented by a multi
nomial distribution Oj over the vocabulary. The probability for cluster j to generate
document d{ is then

vevocabulary

Since past email threads can influence the current email, we want s» to depend on
the history si,..., s^i. We also want such dependency to vary with time: older emails
should have less influence. We introduce a weight function w(t,j) which summarizes

1

Figure 1: (a) The time kernel with A = 0.5. (b) The weight functions with data from
two clusters, marked as star or circle respectively.

the history at time t. It gives the weight (or 'influence') of cluster j at time ty given the
history so far s\,..., Si : U < t,

w(tj)= Yl *(*-**) (2)

{i\U<t,Si=j}

Note the weight function is the sum of some time kernel k. In the email example we
can use a kernel like k(t) = exp(-At) if t > 0, and k(t) = 0 if t < 0. This kernel
stipulates that an email will boost the probability of the same thread in later emails, but
the boost decreases exponentially as specified by the parameter A. Figure 1(a) shows
an example time kernel with A — 0.5, while (b) shows two weight functions built upon
the kernel. In the example there are documents from cluster 1 at time 0,2,6, and from
cluster 2 at time 3,4. Other forms of the time kernel are possible too.

We define the prior probability of assigning cluster j to , given the history s\,..., i,
to be

P(*i=j\8l,...,8i-i) (3)

= P(Si=j\w(tir)) (4)

= (Z ^ J W i f i is in history

where a is a concentration parameter. We call this a time-sensitive Dirichlet process
mixture (tDPM) model. Intuitively if there has been many recent emails from cluster
j , the new email will have a large probability also from j . In addition, there is always
a possibility that the new email is from a new cluster not seen so far.

tDPM is very similar to the standard Dirichlet process mixture (DPM) models.
In fact, it can be shown that if the time kernel A; is a step function, then we recover

2

w w w
O - O - O

d « am dm

0 0

Figure 2: The graphical model for Time-sensitive Dirichlet Process Mixture models, d
is the feature (e.g. words of an email), t is the time stamp, s is the cluster label, and w
is the sufficient statistic that summarizes the history. Shaded nodes are observed.

the standard DPMs. It is the decaying of k over time that allows us to include time
information in to the process. The graphical model representation of tDPM is given in
Figure 2.

3 Inference

Given d and t, we would like to infer s. We use a Markov Chain Monte Carlo method.
Notice w is a deterministic function of 5 and t and does not need to be sampled. As
shown later if we used conjugate priors, we do not need to actually sample 0 but can
analytically integrate it out. Therefore we only need to sample s.

In Gibbs sampling, we need to sample Si from the distribution

P(8i=j\8-i,dU:..,dn) OC P(s ; = j\S-i)P{di\d-i:s_i=j) (6)

where d _ i : s _ i = J is the set of documents in cluster Si = j , excluding d i t

The prior P(s{ = in (6) involves all nodes before and after s»:

P(8i=j\8-i)

« [nP(Sm\si,...,Sm-i)\P(si=j\s1,...iSi-.1)l Y[^ (S m | s i , . . . , S m - l)
\ m = l / \ m = i + l

OC P(Si = j | 5 i , . . . ,3 i _ 1) I Yl ^ (* m | * l , . . . , * m - l) J (
\ m = t + l /

Substituting in the definition (5), it is easy to show that the denominators are the same
for different values of j , and the only difference is in the numerator.

3

The likelihood term p(di\d-i:a_i==j) in (6) is domain-specific. For the email task,
a Dirichlet-multinomial [2] is the natural choice:

p(di\d.i:3_i=j) = J p(di |9)p(f l |d- i : . . i = i)c» (8)

where p(0\d-i:8_i=j) is a posterior Dirichlet distribution. The posterior is derived
from a prior (base) Dirichlet distribution G 0 , and the observed data d^i:a_i=j. Let the
Dirichlet prior Go be parameterized by /?ra, where m is a vector over the vocabulary
and m sums to 1, and /? is the strength of the prior:

p W m) - n » n e - - - ' »

Treating the document collection d-i:s_i=j as a single, large document, the Dirichlet
posterior after observing counts /„ for word v in d^i:s_i=zj is

P(0\d-i:s.i=j)=P{e\f,pm)=n

r(S"/itf\n^'+/?ro'"1 (1 0)

llv r{fv + Pmv) J-x
And the Dirichlet-multinomial is

P{di\d.t..._i=J) = jp(di\e)P(9\d.i:s_i=j)de (ii)

r(£„ fv+0) T\vnMv) + fv+Prnv)

Uv r(/« + Pmv) r(E„ di(v) + £ v /„ 4- /3)
Putting everything together for (6), we can fix all other s and sample for S i . A single

Gibbs sampling iteration consists of looping through i = 1 . . . n and sample 5* in turn.
The algorithm is given in Figure 3. The time complexity is 0 (n 2) for each iteration
of the Gibbs sampler. If k has limited support, the complexity reduces 0(n) but we
lose the ability to model long range correlations. Finally we run the Gibbs sampler for
many iterations to get the marginals on s.

Some readers may be disturbed by the apparent 'double counting' in Figure 3 when
we assign u{c) = a to not only the brand new state c n ew. but also to states not in
but in {s>i}. We assure the readers that it is merely an artifact of numbering. If we
were to renumber the states at each iteration, we can recover (5) exactly.

(12)

4 Parameter Learning

The parameters of the model include the base Dirichlet distribution <30, the concentra
tion parameter a, and the time kernel parameter A. We fix the base Dirichlet Go. For
the time being let us assume that all clusters share the same kernel parameter A. The
free parameters are 0 = {a, A}.

We learn the parameters by evidence maximization. Since our model is conditioned
on time, the evidence is defined as

P(D\T, 0) = £ P(D\S)P(S\T, 0) (13)
s

4

for position i = 1 to n
/* C is the candidate states for s», */
/* where {«_»} is the set of current states at positions other than i, */
/* and cnew £ is a new state, represented by an arbitrary new number. */
C = { 5 _ i } u { c n e w }

/* Compute the unnormalizedprobability p(s{ = c|s_i) for all candidate c */
for c G C

/* evaluate candidate S{ = c V
Si <— c
/* Prior: the history part. {s<i} is the set of states before position i */
if c € {s<i} then u(c) = wc(ti)

else u(c) = a
/* Prior: the future part. */
for j = i + 1 to n

if Sj- G {s<j } then u(c) = u(c) * iu 5 i

else w(c) = u(c) * a
end
/* Likelihood. */
U(c) = u(c) * P(dt|d-i:5_i=:c)

/*pick the state Si with probability proportional to uQ */
Si ~ u(C)

end

Figure 3: A single Gibbs sampling iteration for tDPM

5

where D is the set of all documents, T is the corresponding set of time stamps, and S
is the set of cluster assignments. We want to find the best parameters 9 * that maximize
the evidence:

G* = argmaxP(Z>|T,G) (14)

= a r g m a x £ P (L > | S) P (5 | T , G) (15)
s

We find the parameters with a stochastic EM algorithm. The cluster labels S are
hidden variables. Let Go be the current parameters. We can sample . . . from
the posterior distribution P(S\D, T, Go), as detailed in section 3. In generalized EM
algorithm, we seek a new parameter G which increases the expected log likelihood of
the complete data

Q(G 0 ,G) = E P (5 , D j T , e 0) [l o g P (5 , Z) | R , G)] (16)

= EP{s\D,T,e0) pogP(D|5) + log P(S\T, &)} (17)

Notice log P(D\S) does not depend on a, A. We approximate the expectation by sam
ple average

1 M

Const(G) + — ^ log P(5<™) |T, G) (19)
m=l

Q(G 0 ,G) = Const(G) + EP (5|D,T,e 0)[logP(5|T,G)] (18)

M

And we find the gradients w.r.t. G for parameter update

§ * ^EWm)\T,e) (20)
m=l

1 M N A

= I E E ^ ^ V - T O E) (2D
m=l i=l

where P(s t H | s (

x

m) . . . T, 8) is defined in (5). The gradients are:

AIO G P(S i k l . . . s < _ 1 > T,E) = (: r ^ B P * * I N H I S T O I * (2 2)

^ i o g P (« < | « 1 . . . « 4 . I > R , E)

~ g C c) + « rf^i >n history

6

where

w(t,c) = *(*-*«) = $>-*<*-**> (2 4)

i:ti<t,Si=c

^w(t,c) = 2 - (t - t ,)e-*<*-«.> (25)
i : t t < t , 5 » = c

We then take a gradient step in the M-step of the generalized EM algorithm to improve
the log likelihood.

5 Experiments

We create synthetic datasets which have explicit time dependency between instances,
and use them to illustrate the time sensitivity of tDPM models.

All synthetic datasets have n = 100 instances. We first create the time stamps of
each instances by sampling from a Poisson process. In particular, the interval between
two consecutive time stamps has an exponential distribution with mean 1 / 7 = 1 :

^ i + i - * i) = 7 e - 7 (t i + 1 - t i) (26)

For the instance di at time tit its state s» is sampled from the conditional distribution
(5). We use an exponential function as the kernel fc,

k(t) = e-05t,t>0 (27)

and the concentration parameter a is set to 0.2. This emulates the situation where new
clusters are created from time to time, and a cluster stays alive better if many preceding
instances are from the cluster.

If a new cluster c is created, we sample its multinomial distribution 0C from the
base distribution Go- The base distribution Go is a flat Dirichlet on a vocabulary of
size three: Go ~ Dir(ly 1,1), so that all multinomials are equally likely. Finally docu
ments are sampled from their corresponding multinomial 0, where all documents have
the same length \d\. We create two datasets with document length \d\ equals 20 and
50 respectively, with everything else being the same. Given that the vocabulary size is
3, they correspond to somewhat hard (less words) and easy (more words) datasets re
spectively. Figure 4 shows time vs. cluster plots of the two datasets. Notice documents
from the same cluster tend to group together in time, which fits our intuition on real
world problems like emails.

During evaluation, the input to various algorithms are the documents di and their
time stamps £», and the goal is to infer the clustering s». Notice the true number of
clusters is not given to the algorithms.

For the tDPM model, we assume we know the true base distribution Go ~ Dir{\, 1,1),
concentration parameter a = 0.2, and the kernel k(t) = e~°- 5 t . We run the Gibbs sam
pler with initial states sx = . . . = s n = 1. Each MCMC iteration updates * i , . . . , sn

once, and thus consists of n Gibbs steps. We ignore the bum-in period of the first 100
MCMC iterations, and then take out a sample of si,..., sn every 11 iterations. In this

7

experiment we take out 109 samples altogether. We evaluate the performance of tDPM
by three measures:

1. Number of clusters discovered. Notice each sample si,..., sn is a clustering of
the data, and different samples may have different number of clusters. In fact
Figure 5(a,b) shows the distribution of number of clusters in the 109 samples,
on the hard (\d\ = 20) and easy (\d\ = 50) synthetic datasets respectively. The
modes are at 12 and 15, very close to the true values of 12 and 14 respectively.

2. Confusion matrix. One way to combine the samples with possibly different num
ber of clusters is to compute the n x n confusion matrix M, where Mij is the
probability that i, j are in same cluster. This can be easily estimated from the
109 samples by the frequency of i, j in the same cluster. Ideally M should be
similar to the 'true confusion matrix' M*, defined by M£ = 1 if the true cluster
has label = Sj, and 0 otherwise. In Figure 5(c,d) we plot the true confusion
matrices M*. Notice we sort the instances by their true cluster for better visu
alization. In Figure 5(e,f) we plot the tDPM confusion matrices, using the same
order. They are reasonably similar.

3. Variation of Information. We compute the variation of information measure [3]
between the true clustering and each sample clustering. We list the mean and
standard deviation for the two synthetic datasets: (hard) 0.9272 ± 0.1718, (easy)
0.1245 ±0.0911.

We compare tDPM to a standard DPM model, by using a step function as the ker
nel k. Again we assume we know the true base distribution Go ~ D»r(l, 1,1), and
concentration parameter a = 0.2. The Gibbs sampling is done exactly the same as in
tDPM. We find that

1. Number of clusters discovered. Figure 6(a,b) shows the distribution of number
of clusters with DPM. DPM discovers fewer clusters than tDPM. The modes are
at 6(or 7) and 9 respectively, and the true values are 12 and 14.

2. Confusion matrix. In Figure 6(c,d) we plot the DPM confusion matrices. Notice
they are much less similar to the true matrices.

3. Variation of Information. With DPM we have (hard) 1.8627 ± 0.1753, (easy)
0.6630 ± 0.1144. This means the sample clusterings are significantly farther
away from the true clustering, compared to tDPM.

To summarize, tDPM is better than the standard DPM model, when the instances
have a time dependency.

6 Discussions

The tDPM model is a way to take time into consideration. Notice it is different than
simply adding time as a new feature for cluster.

8

The tDPM is not time reversible nor exchangeable in general. This is different from
the standard DPM. It is both a blessing and curse. It allows for the modeling of time,
but at the expense of computation.

There are many ways one can extend the tDPM model proposed here:

• The time kernel k can have different forms. For example, different clusters can
have different decay rate A. More interestingly, k can even be periodic to model
repetitive emails like weekly meeting announcements.

• Currentiy the models for each cluster are stationary and do not evolve over time.
This can potentially be relaxed.

• One can have a generative model on time dependencies. For example one can as
sume a Poisson process on cluster, and then a non-homogeneous Poisson process
on the documents within the cluster.

References
[1] Radford M. Neal. Markov chain sampling methods for dirichlet process mixture models.

Technical Report Technical Report No. 9815, Dept. of Statistics, University of Toronto,
1998.

[2] D. J. C. MacKay and L. Peto. A hierarchical Dirichlet language model. Natural Language
Engineering, 1(3): 1-19,1994.

[3] Marina Meila. Comparing clusterings. In COLT, 2003.

9

Figure 4: Two synthetic datasets with \d\ = 20 (left) and |d| = 50 (right) respectively.
Top row: Tune stamps U vs. cluster ID S i ; Middle row: the cluster multinomials 0C;
Bottom row: word counts for each document dt.

10

Figure 5: tDPM results on the hard (|d| = 20, left) and easy = 50, right) synthetic
datasets. (a, b) Number of clusters discovered in MCMC samples; (c, d) Confusion
matrix with true cluster labels; (e, f) Confusion matrix from tDPM MCMC samples.

11

Figure 6: Standard DPM results on the hard = 20, left) and easy = 50, right)
synthetic datasets. (a, b) Number of clusters discovered in MCMC samples; (c, d)
Confusion matrix from DPM MCMC samples.

12

