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Introduction 

Some constructs of a programming language are meaningful only if the expressions in them 
yield suitable results. For example E1 + E2 (where E± and E2 arc expressions) does not usually make 
sense if Ei is a boolean expression and E2 is an integer expression. All the values that are suitable 
for every context in which a given value is suitable are usually said to have a common type. The set 
of types allowed varies considerably from language to language; however, a common characteristic 
of programming languages is the provision of a set of primitive types (integers, booleans, etc.) 
with primitive operations, and of mechanisms for constructing more complex types out of primitive 
or existing ones. Examples of such mechanisms are records in PASCAL, structures in ALGOL68, 
forms in ALPHARD and so on. 

In strongly typed (or statically typed) languages each expression in a program is assigned a type 
that can be determined by analyzing the syntactic structure of the context in which the expression 
appears, and programs are well typed with respect to the type restriction of the language. Types 
provide a basic syntactic verification of correctness of programs, comparable to the checking of 
dimensional equations in Physics, which insures that the result of a calculation is "dimcnsionally" 
correct (even though the numerical result itself may be wrong). 

The advantages of strongly typed languages for improving program reliability and programming 
style are widely recognized; however, the limitations imposed by the type structure are sometimes 
too restrictive. A frequently quoted example is the impossibility of writing a function in ALGOL68 
or PASCAL that, given an array A, of elements of some type, and a total order relation C on such 
a type, returns A sorted w.r.t. the given order. The declaration of such a function for a fixed type, 
say integer, and N would look like: 

fun Sort(A: array[l..N]of Int.C: (Int X Int) -* Bool): array[l..N]of Int... 

and its type: 

((array[l..N]of Int) x {(Int x Int) -> Bool)) -> (array[l..N]of Int). 

However, there is no way of using the implicit independence of Sort from the type Int for writing 
a "polymorphic" sorting function, i.e., a function that can be applied to arrays regardless of the 
type of their elements. 

On the other hand the type structure of the programming language ELI, [42], which includes 
disjoint union types and a special type identifier, AJVY, that stands for any type, is not a viable 
solution in a strongly typed language. We can certainly write a polymorphic sorting function (just 
substitute ANY for Int in the declaration of Sort), but then we arc not able, when checking an 
application of Sort to some parameters, to enforce the constraint that the type of the elements of 
the array has to match the type of the parameters of the function C. Moreover it is not clear what 
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is the typo of the elements of the result array. So a program, which is type correct, could produce 
a run-time error or, if no run-time checking is performed, return incorrect answers. 

A simple solution to the problem is provided in the programming languages ML, [15], and 
HOPE, [3]. The observation there is that type constraints, like the ones a generic sorting function 
has to satisfy, can be expressed by the use of type variables. A polymorphic sorting function in 
such languages could be defined by 

fun GenSort{A: array[l..N]of t,C: [t x t) -> Bool): array[l..N]of t... 

and its type: 
{{array[l..N]of t) x ({t x i) -* Bool)) -> (array[l..N]of t), (1) 

where t is a type variable. The use of different instances of the same type variable expresses 
contextual dependences; in this example between the type of the elements of the arrays and the 
type of C. 

The type-checking process can be divided into two (mutually dependent) parts. On one hand, 
the type checker has to verify that all the occurrences of the parameters, A and C, in the body of 
GenSort are in contexts that do not make any restriction on the type of the elements of the arrays 
and the function. On the other, for an application of GenSort to some actual parameters, the type 
checker has to match the type operators, ( — x and array[l..N]of in GenSort) of the actual and 
formal parameters and instantiate type variables. Whenever an occurrence of a type variable is 
instantiated, all the other occurrences of the same variable have to be instantiated to the same 
type. We can think of GenSort as simply an abbreviation for the totality of the sorting functions 

fun GenSort(A: array[l..N]of r,C: (r x r) —• Bool): array[l..N]of r... 

where r is some type. (The type of the function is obtained by substituting r for t in (1).) Type 
checking an application of GenSort is essentially chosing one of such functions (if any) that can 
be correctly applied to the actual parameters. The choice determines the type of the result array. 
The nice point about this approach is that, once it has been established what type constraints 
the functions provided by the language have to satisfy, the type checker can deduce most-general 
(least-constrained) types for user-defined functions. Therefore, types can be omitted and programs 
are still sure not to produce run-time type errors. 

This simple approach to polymorphism, however, does not allow the polymorphic use of pa
rameters. Consider defining a function, / , one of whose parameters is a polymorphic function, say 
GenSort, with type defined as in (1). In each instance of / ail the occurrences of GenSort have 
the same type. So, even though the parameter is polymorphic, in the body of / there cannot be 
applications of GenSort to arrays (and functions) of different types. 

A different analysis of a language in which polymorphism and strong typing are combined, and 
polymorphic functions can be specified as parameters, is presented by Reynolds in [37]. Typos are 
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introduced as expressions of the language and can be passed as parameters to functions. Reynolds' 
language is an extension of the lamb da-calculus in which a special type binding operator "A" is 
introduced. "A" binds type variables to create functions from types to values, the polymorphic 
functions. Injecting Reynolds' "A" into the example above, we may define a truly polymorphic 
sorting function by 

fun PolSort = At.(A: array[l..N]of t,C: [t x t) -> Bool): array[l..N]of *...). 

The type of PolSort is 

\lt.((array[l..N)of t) x ((t x t ) - > Bool)) -+ (array [l..N]of t). 

Vt.r is the type of a function polymorphic in t (where i i s a type variable) which for type-argument 
t returns values of type r. A polymorphic function can be applied to a type expression to produce 
a value. Applying PolSort to the type Int (the type of integers) we obtain the Sort function given 
previously. 

The introduction of polymorphism via type parameters is common to several programming 
languages. The most notable examples are ALPHARD, [40], RUSSELL, [10], and CLU, [23]. 
However, these languages do not allow the full generality of Reynolds' language. In particular 
they identify types with sets of named operations so that a function can be polymorphic in the 
operations used. 

In this paper we analyze the two paradigms of polymorphism previously mentioned. We look at 
applicative languages and identify extensions of typed lambda-calculus as the core of such languages. 
We are mainly interested in the syntactic aspects of the language and particularly in the type-
checking and, for ML, type-deduction techniques. 

Section 1 surveys ML and HOPE. We give the type-deduction and type-checking algorithms 
for those languages and look at the specific problems that arise in such contexts. At the end of 
the section we mention some extensions of the basic type system that might be introduced in such 
languages. 

In Section 2 we present Reynolds' polymorphic lambda-calculus and its associated type system 
that includes type quantification. Type checking is quite a simple problem for this language. 
However, almost nothing is known about type deduction. We give some general results about the 
language and its type structure. Next the RUSSELL type system and its type-checking algorithm 
are explained. The choice of RUSSELL is motivated by its clean treatment of user-defined types, 
which was also the main motivation for Reynolds' polymorphic lambda-calculus. Some of the 
differences between the two type systems will be discussed. 

The main tool used in type checking and deduction for ML and HOPE is unification. In an 
Appendix we present some unification algorithms and discuss their complexity. 

A style of polymorphism which is not surveyed in this paper is the conjunctive discipline of [l], 
[5], and [6]). This discipline is theoretically very interesting as it allows one to characterize various 
classes of lambda-calculus terms. However, it is impractical from a programming language point 
of view as its type checking is unsolvable. 
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1. Type Checking and Type Deduction in Parametric Lambda-
Calculus 

In this section we present the results underlying ML type deduction and HOPE type check
ing. Both languages can be abstractly modelled using the parametrically typed lambda-calculus: a 
typed lambda-calculus whose syntax is augmented with type variables. Since types can be omitted 
from ML expressions, it may seem strange to consider typed lambda-calculus as the abstract model 
underlying ML. It is, however, the case that only expressions that can be successfully filled with 
types as to otain (parametrically) typed lambda-calculus expressions are ML type-correct expres
sions. Therefore, we can regard ML as a typed language, which type structure allows automatic 
recovering of the (possibly) missing type information. 

The syntactic structure of types, and its relation to the expressions of the language, provide 
the main tool for defining an algorithm for polymorphic type checking and for deducing types for 
untyped expressions. 

The first subsection introduces the language and a general treatment of the topics above. It 
starts by considering a simply typed lambda-calculus and defining what it means for expressions to 
be well typed in such a language. The only constraint is in applications, e(e'), where the expression 
e must have a functional type and its input type has to be equal to the type of e'. The basic idea in 
type deduction is that types do not have to be specified in expressions in order to verify that this 
constraint is satisfied. However, in general more than one type can be deduced for an expression. 
(Consider the identity function Xx.x). To express the type of such expressions type variables are 
introduced. The type assigned to Xx.x, t —+ t (where t is a type variable), is a schema from which 
it can be derived that Xx.x has type r —• r for every type r. Type deduction is introduced by a 
set of natural deduction rules, and an algorithm, is shown to be sound and complete for such 
deduction rules. 

In HOPE the situation is slightly different as types cannot be omitted from expressions. By 
allowing type variables, however, a similar effect can be achieved. Indeed the polymorphic type 
checker that we will present is similar to the type-deduction algorithm W. 

The second subsection analyzes ML and HOPE in greater detail and discusses the specific 
constructs of those languages. For ML the let construct is introduced and type deduction extended 
to allow typing of let expressions. The algorithm W, and the proof of its soundness and completenes 
are generalized to the new deduction system. 

HOPE's characteristic function definition, which relies on a very syntactic semantics of the 
data types, is then presented. We study the type-checking problem that arises from this style of 
definition, and present a result that establishes the decidability of the wcll-definedness predicate. 

At the end of the section some extensions to the basic type structure relevant to programming 

languages are mentioned. 
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Types 

We start by defining the types of the language and analyzing their syntactic structure. Let K 
range in K, where if is a set of constant types, and t range in V, where V is a set of type variables. 
(The constant types Integers, Int, and Booleans, Bool, will be used in the examples.) The types 
r E T of the language are defined by 

r ::= K | t | r x r' \ r —• r'. 

V(r) is the set of type variables contained in r. Types not containing type variables are called 
monotypes. In order to avoid confusion, we denote these by f, with subscripts and superscripts if 
necessary. 

A substitution S is a function from V to T which is the identity function almost everywhere. 
S can be extended to a function from T to T in the obvious way. For substitutions S and 5' , SS' 
denotes the composition of the two functions. Given the associativity of composition, in SS'S", 
parentheses can be omitted ((SS')S" = S(S'S,t)). We use the following notations: 

• S[ti ri, ...,tn »-> rn] for the substitution equal to S on all the type variables except that 
the ^-'s , for 1 < i < n, are mapped to rt- (the t{'$ are distinct variables). 

• S =H S', where R C V, for: St = S(t for all t G R. 

An instance of a type r is a type r1 such that r' = ST for some substitution S. 

Polytypes are types containing type variables; intuitively they stand for the set of types that 
can be obtained by substituting monotypes for their type variables. This syntactic interpretation 
of polytypes induces a preorder on the set T: 

r < r1 if and only if Monolnst^r1) C MonoInst(r), (2) 

where MonoInst(r) is the set of monotypes that are instances of r. Note that, for monotypes f 
and f', f < ff if and only if f = ?'. If r < r1 we say that r is more general than r'. The preorder 
can be made a partial order by introducing an equivalence relation (denoted by =) between r and 
r' whenever r < r' and r' < r. The set of all variables V is the minimum element of 

The preorder in (2) is equivalent to: 

r < T1 if and only if r' = ST for some substitution 5. (3) 

It is obvious that (3) implies (2). The other implication can be proved by structural induction on 
T' and case analysis on r. The only difficult case is when, for some r[ and T!2, rf is equal to T[ —• 
(or T[ x 7-2), and r £ V. By (2). for some Ti and r 2, r = Ty —• 72 . Applying the inductive hypothesis 
to T[ and ri we derive that r{ = and T'2 — . S ^ . for some substitutions S\ and So. To prove 
the result we have to show that. S\ =v'(rl)-v(r2) ^ 2 - (Therefore Si and So can be combined to get 
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the desired substitution.) Let t G V(TI) n V(r2). By (2), SSit = SS 2* for all S such that SStf and 
S6V are monotypes. This fact can be proved to imply that Sit = S2£. 

Given the definition of < of (3) we derive that r = r' if and only if r is equal to r' up to 
renaming of variables. 

A unifier for r and r' is a substitution U such that UT = UT'. The important property of the 
partial order on TW is that if r and r' are compatible (that is, there is r" such that r < r" and 
T1 < r") then r and r' have a least upper bound w.r.t. this order. Moreover, to a least upper 
bound of two compatible types there corresponds a unifier U such that: for any unifier U' of r and 
r1 there is a substitution 5 and U' = SU. Such an unifier is called a most-general unifier. (See the 
Appendix for details about some unification algorithms and a discussion of their complexity.) 

Remark. The set of types T is a special case of the class of first-order term languages. The 
existence of a most-general unifier (if any) for such class of languages was first shown in Herbrand's 
thesis. It was, however, explicitly stated as the Unification Lemma in Robinson [39]. Huet in [20] 
chapter 5 gives a detailed presentation of the properties of the partial order on and its relation 
to the unification problem. 

Expressions 

Next we define the simply typed lambda-expressions. The expressions of the language Ef are 
typed lambda-calculus terms e G Ef defined by 

e ::= Ax : f.e | e(e') | x \ cf 

where f is a monotype, x G X a set of variables, and cf G C a set of typed constants. (The 
subscript f of c indicates its type). We assume that the set C contains, for all types f and f', the 
following typed selectors and constructors for products: 

fst{fxf)->f 
snd(fxfi^fi 
(•r)f-.f'->(fxf') 

In the following examples, type subscripts are omitted and (e, e1) stands for (•, •)(e)(e'). (However, 
in the definition of well typed expressions we assume they are typed.) The axioms that the previous 
constants satisfy are: 

fst{{e,e'))=e 
snd((e, e1)) = e' 

(fst(e), snd(e)) = e. 

Examples. We use the notations: let x : r = e in e1 for (Ax : r.e')(c), and lettype I = r in e for 
the syntactic substitution of r for J in e. 
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The let notation should not be confused with the ML let construct, which will be discussed 
later. Lettype allows us to denote a type by an identifier / , and is only for convenience in the 
example. 

1. The product of two rational numbers, represented as pairs of integers, is computed by the 
following expression. 

lettype rat = Int X Int in 
Xx : rat.Xy : rat.(fst(x) • fst(y), snd(x) • snd(y)) 

2. The following expression is equivalent to the identity function on rationals (represented as 
pairs of integers). 

lettype rat = Int x Int in 
let swap : rat —• rat = Xx : rat.(snd(x),fst(x)) in 

Xy : rat.swap(3wap(y)) 

Well-Typed Expressions and Type Checking 

The syntax of Ef allows expressions that do not respect the intuitive type restrictions imposed 
by the use of types. For example, fst(n), where n is a constant of type Int, and fat is the selector of 
the first component of a pair, does not always make sense. To express formally such type constraints 
we introduce a definition of meaningful or well-typed expressions. In this functional language the 
only limitation imposed on the expressions is the matching of the types of the actual and the formal 
parameters in a function application. Such matching, in the simple case of monotypes, means that 
the two types are equal. (We think of constant types as denoting disjoint sets of values.) 

A context A on T is a partial function (with finite domain) from variables X to types in T. A 
can be represented as a finite set of pairs {(xi, f») | 0 < i < n}, where X{ ^ Xj for i ^ j . 0 denotes 
the empty context, and Ax the context {(x',f) 6 A \ x ^ x'}. 
Definition 1: Let A be a context on !T, e an expression in Ef, and f a monotype. The relation 
A D e : f (e has type f in A) is the smallest relation satisfying: 

1. A D cf : f for all Cf; 

2. if A(x) = f, then A D x : f; 
3. if Ax U {(x, f)} D e: f', then A D (Xx : f.e) : f -> f\ 
4. if A D e : f —> f' and A D e1 : f, then A D e(e') : f'. 

We say that e is well typed w.r.t. A if there is a f such that A D e : f. • 

By structural induction on e we can prove that: 
1. for any A, if A D e.: f and A D e : f1 then f = f' (the same expression cannot have more 

than one type for any given context); 
2. the type of a closed expression does not depend on the context; 
3. if an expression e is well typed w.r.t. A, then every subexpression of e is well typed w.r.t. 

some context A1. 
Let e G ET and let A be a context defined for all the free variables of e. The definition of the 
relation gives a linear algorithm for finding (if any) a type f such that A D e : f. 
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Type Deduction 

Strong typing is a sound principle that eliminates the run-time cost of type checking (if the 
language is typed) and permits some degree of mechanical verification of the program. However, 
for a functional language, like the one considered in this section, the required typing information is 
frequently redundant. Consider the second example given at page 1. The types explicitly assigned 
to x and y can be derived by the type assigned to swap. 

Having a definition of the well-typed expressions of the language, we can ask how much type 
information is needed in order verify that, indeed, expressions are well typed. It turns out that 
the relation between types and expressions in this language (and in many extensions of both the 
language and the type system) is such that we do not need any type information (types of lambda 
variables) at all. 

To formally introduce type deduction we define the language E obtained by Ef erasing types 
from lambda-abstractions, i.e., e G E is defined by 

e ::= Xx.e | e(e') | x \ cT 

In c r , r is a most-general or principal type for c, i.e., for all cT> G C, r' is an instance of r. The 
choice of the principal type for constants, as we will see from the deduction rides, is irrelevant. The 
constructors and selectors for product could be defined as follows. 

sndtxt'-*tr 
(• , ' ) t - f t ' - » ( t X t ' ) 

Expressions of Ef are mapped in expression of E by the function bare defined as follows: 

bare(Xx : f.e) = Xx.bare(e) 
bare(e(e')) = bare (e) (bare (e1)) 

bare(x) = x 
bare(cf) — cT 

where r, in the last clause, is a principal type for c. For instance (omitting the principal types for 
the product functions) applying bare to the second example page 6 we get the following expression. 

let swap ~ Xx.(snd(x),fst(x)) in Xy.swap(swap(y)) (4) 

The type constraints that expressions of E have to satisfy arc expressed by inference rules. 

Definition 2: Let A be a context on T and e G E, 

Ah e : r 
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if e : T can be derived from A using the following rules: 

TAUT: AXU{{X,T)}\~X:T 

A h Xx.e : r —• r 

A h e : r -> r' A h e1 : r 
A h e(e') : r' 

CONST: A h c r : r' for r' < r • 

The type deduced for (4) can be easily seen to be: 

(t x * ) - • (* x *) 

which is more general than the type of the original expression. 

Let A be a context on T. 

• V(A)*= \J(X,R)eA^(T) *s ^ e s e t °* ^ P e variables of A, and 

• SA = {(x, ST) I (x, r) G A}, the result of the application of the substitution 5 to A. 
The relation between type checking of expressions in Ef and deduction of types for expressions 

in E is expressed by the following proposition. 
Proposition 3: 1. Let A be contexts on T, e G Ef, and f 6 T. If A D e : f, then, for some 

T ET, A \ ~ bare(e) : r and f < r. 

2. Let A be a context on T, e € E, and r G T. If A h e : r, then, for some substitution S and 
e G E such that 6are(e) = e, 5A D e : ST. (All the types in 5A and Sr are monotypes.) 

Proof. The proposition can be easily derived by structural induction on expressions. • 

In a derivation of e : T from A there is a one-to-one correspondence between the structure of the 
expression e and the structure of the deduction. Therefore for each occurrence of a subexpression 
e' of e there is exactly one e1 : r1 for some r' that is the conclusion of one of the rules. Therefore, 
we can easily prove that: if 

A h e[e'fx) : r. 

This is the subject-reduction theorem (see [8] p. 313) for lambda-calculus that asserts that types 
are preserved by /3-rcductions. 

The type-deduction system does not provide an easy way to compute the type of an expression; 
in fact it does not even ensure that the problem is decidable. To show that the problem of deducing 
types for expressions in E is solvable we prove the following theorem. 

A h (Ax.e)(e;) : r 

then 
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Theorem 4: Let A be a context on T and e G E. There is an algorithm, W, which takes as input 
e and A and 

1. either fails, or returns a substitution S and a type r such that 

SA h e : r. 

This asserts the soundness of W. 
2. Moreover, 

SA h e : r, for some r G T and 5, implies e) = (S', r '), 

and, for some S, S =vr(i4) and r = Sr'. This means that W is complete for K 

Proo/. Let W be defined by 

W{A, e) 
case e of 

Ax.e' then (S,r) := W{AX U {(x, *)},*') 
retarn(S, St —• r) 

c i ( 6 2 ) then ( 5 ! , ^ ) : = ^ ( A , ^ ) ; 
(5 2 , r 2 ) := W(SiA,e 2); 
£7 = Unify(Svn,T2 -> t)5 
re*urn(£/S2Si,17*) 

x then return(I, A(x)) 
cT then rctttrn(J,r[t'1/ti,...,*J l/tn]) 

(£ is a new variable) 

(i is a new variable) 

(/ is the identity substitution) 
-.-j^n} = V(T), t'^s are new variables) 

The function Unify (r, r') either fails (if r and r' are not compatible) or returns a most-general 
unifier for r and r'. If Unify fails then W fails. 

1. The proof of soundness is by structural induction on e. The base cases x and c are obvious. 

For abstraction: if W(A, Ax.e') succeeds, then VV(A2 U {(x, t)},e') = (5,7-) for some S and r. 
By inductive hypothesis, 

SAX U {(x, St)} = S(A X U {(x, t)}) H e ' : r . 

For an application ei(e 2) assume PV(A, ei(e 2)) succeeds. ThenW(A, ei) = (Si, ri) and W(SiA, e2) 
(S 2 , r 2 ) for some Si, S 2 , ri and r 2 (both calls succeed). By inductive hypothesis, 

SiA h ei : ri (5) 

and 
S 2SiA h e 2 : r 2. (6) 
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Applying the substitution 5 2 to all the types in the derivation of ( 5 ) we get: 

S2SiA I- ei : S 2 n . (7) 

Moreover, since W(A,e,i(e2)) succeeds we know that US2T1 = US2(r2 —• £) = {UT2) —* [Ut). Ap
plying the substitution U to both (7) and (6), we get: 

US2SiAr-e1:(UT2)-+{Ut) and US2SiA h e2 : *7r2, 

which is the premises of the rule —+EL. Therefore 

C/5 2 5iAhei(e 2 ) :C/ i . 

This completes the proof of soundness. 

2. Let N be the set of new variables generated by W(A,e). To prove completeness, we prove 2 
where S = v - N SS' replaces 5 = v ( A ) As iV Pi V(j4) = 0, this statement implies completeness. 
The stronger result is needed in the inductive step. The proof is again by structural induction on 
e. 

For variables is immediate. (Just take S = S.) 

Let e be cr. SA h cT : r ' where r ' = S'r for some 5'. Let 5 be S[t[ h-> S'h, ...,t'n »-> S'tn], 

where the t'^s are the new variables in W(A,cr). 5 verifies the required conditions. 

Let e be Xx.t1 and assume that SA h e : r . From —• JJV, 

5 A I U { ( x , r 1 ) } h e , : r 2 

for some ri and r 2 such that r = ri —• r 2 . Let Si be rj], where £ is the new variable chosen 
in W(A,e) (t£V{A)), 

Si(Axu{{x,t)})\-t' :T2. 

From the inductive hypothesis, W{AX U {(x,t)},e') = (S',r ') , and, for some 5", ri — S"T', and 

Si =V-N S"S'. (8) 

N is the set of new variables generated in W(Axl){(x. £)}, e'j, and t £ N. Hence, from the definition 
of W, 

W{A,\x.ef) = {S',S't->T'). 

To complete the proof wc have to show that S =v~(jvu{t}) SS' and r = S ( S ' £ —> r'), for some 5. 
Let 5 be 5", the first equality derives from the fact that S and 5 j are equal on all the type variables 
but t and (8). Again by (8), SS't = S\t = rv Hence 5(5'* - + r ' ) is equal to rx -> r 2 . 
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Lot e bo ei(c2) and assume that SA h e : r . From -+EL, for some r', 

SAl-ei-.T1 -+T 

and 
h 6 2 : r'. 

By the inductive hypothesis applied to ei, W(A, ei) = (Si,ri), and, for some Si, S = v - i \ T i S i Si 
and T' —> T = Si ri. (JVi are the new variables of W(A, ei)). Since V(A) f l iVi = 0, 

Si Si A h e 2 : r'. 

By inductive hypothesis applied to e 2, W(SiA, e 2) = (S2,r 2), and Si =v-N2 S2S2 
and rf = S 2r 2 , for some S 2 (iV2 are the new variables of W(SiA, e 2), hence NiH N2 = 0) . Let S' 
be S2[£ r], where t is the new variable chosen in the algorithm: 

• t & V(r 2) implies S'(r2 —» )̂ = r' ~> r, and 

• t g ri and ^(r!) PI iV2 = 0 imply S'S 2ri = S 2 S 2 r i = Sm = T' ->r. 

Hence Unifyfa —> ^ S 2ri) succeeds and returns a U such that, for some S , / , S' = S"U. The result 
of IVfA, e) is then (f/S 2Si, Ut). Let JV = iVi U No U {t}. From the previous statements, it is easy 
to prove that S =V-N S'tUS2S1 and r = S"Ut. • 

Remark. The original proof of 4.2 is due to Hindley, [17] theorem 1. Hindley's proof, formulated 
for combinatory logic, does not mention explicitly an algorithm for deducing types. However, an 
algorithm similar to W can be extracted from the proof. A more complex version of the algorithm 
W, which will be presented hi the following subsection as WL, is due to Damas and Milner, see 
[30] and [9]. Soundness of this algorithm is proved in [30] and the statement of completeness is 
presented in [9]. In [4], the author describes a relatively efficient implementation of the extended 
algorithm. 

Polymorphic Type Checking 

In HOPE, [3], function declarations have to mention explicitly the type of parameters and 
result. The types that can be specified may contain type variables, which specify contextual 
dependences between types. Type checking has to use the constraints given by the explicit typing, 
and the ones given by the syntactic structure of the expressions. 

The language can be abstractly defined as follows. The set of types of the language is T. The 
expressions e E EH are defined by 

e ::= Xx : r.e-> | c(c') j x \ cT 
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The expression Ax : r.eTt is the normal function definition of programming languages in which 
both the type of the parameter x, r, and the type of the result, r', are specified. Expressions with 
(without) occurrences of type variables in the type of their subexpressions Ax : r.eT> and cT are 
called polymorphic (monomorphic) expressions. 

The definition of well typed for monomorphic expressions of EH is obtained by replacing con
dition 3 of definition 1 by 

3'. if Ax U {(x, f)} D e : f', then A D (Ax : r.ef>) :f-*?'. 
The application of a substitution 5 to an expression e G EH, Se, is the expression resulting from 

applying S to all the types of e, i.e., 

' Se'{Se") ife = e'(e") 
ge { ^x ST.Se'ST, if e = Ax : r.ef

Tt 
~~ J CST if e = cr 

, x if e = x 

We extend the definition of well typed for monomorphic expressions to polymorphic expressions as 
follows. 

Definition 5: Given A and e we say that e is well typed w.r.t. A if, for some S such that SA is a 
context on f and Se is a monomorphic expression, Se is well typed w.r.t. SA. So a polymorphic 
expression is well typed if we can make sense of some of its monomorphic instances. • 

Let e be the expression 

Xyit^t. (Ax : Int X t.{y{snd{x)))T{(3, 4)))f[e2) » v / 

where extra parentheses are added for readability. Consider first the subexpression e\. Let A be 
{{y>t ^ e substitution S = I[t i-> Int,t' H-> Int] is such that Sei is well typed w.r.t. SA 
and SA D Sei : Int. Moreover, any substitution 5' such that S'ei is well typed w.r.t. S'A, has to 
be such that S't = S't' — Int. Assume e 2 is a closed expression, for e to be well typed, there has 
to be a substitution S" such that S"t = S"? = Int, and 0 D S"e2 : Int. 

The types specified in an expression (e.g., y : t —> t in e) impose additional constraints on 
the type of the expression and type checking verifies that there is an interpretation (assignment of 
types to type variables) that satisfies them and is consistent with the structure of the expression. 

A simple modification of Milncr's W algorithm provides a polymorphic type checker for this 
language. (I believe that this is similar to the type checker for HOPE, but unfortunately [3] does 
not say anything about it.) 

The input to the algorithm is a context A on T and an expression e G EH . The algorithm, 
which we call WJJ, either fails (if Unify fails), or returns a substitution S and a type r whose 
properties are given by the following Proposition. 
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Proposition 6: Lot A bo a context on T and let e € EH-

1. If Wu(A, e) = (5, r) then e is well typed w.r.t. A and for all S' such that S'Se is a monomor-
phic expression (S'r is a monotype) and S'SA is a context on f 

S'SA D S'Se : S'r. 

2. Let V^e) be the set of type variables of e. If, for some S', S'A D S'e : r', then, for some S 
and r, Wfo(A, e) = (S, r). Moreover, for some S, S' =v^(A)uvr(c) SS and r' = SSr. • 

The algorithm WH is defined as follows. 

WH(A,e) 
case e of 

x 

then (Si,ri) := WH(Ax U {(x, r)},e'); 

return{US,{USr) -> (C/N)) 

then (5i,ri) := W5y(A,ei); 
( S 2 , r 2 ) ~ R ' H ( S i A , S e 2 ) ; 
C / = Unify(S2TUT2-+ty, 
reiurn{US2SuUt) 

then return(I,r) 
then return(I, A(x)) 

(t is a new variable) 

(J is the identity substitution) 

Proposition 6 asserts soundness and completeness of Ŵ f w.r.t. the definition of well typed 
given in 5. The proposition can be proved by structural induction on e following the lines of the 
proof of theorem 4. 

1 . 1 . M L AND H O P E 

The ML Constructs let and letrec 

The only binding mechanism of the typed lambda-calculus, introduced in the previous sections, 
is the lambda-binding Ax.e. By the correspondence between the structure of expressions and the 
structure of a derivation all the instances of x in a derivation have the same type (possibly a 
poly type). So if we were to consider a definition f = e in e1 in a program, as usual, as a short-hand 
for: 

(A/.e')(e) (9) 

even though e (and then / ) can be assigned a polytype, all the instances of / in e' must have the 
same type. Consider the example of / = Xx.x and cf = (f(n).f(true)) where n is a constant of 
type Int and true is a constant of type Bool. The type assigned to / is t —• t (where t is arbitrary), 
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however, the expression Xf.(f[n),f{true)) (that is A/.e') is not well typed and so the application 
is not well typed. The point is that, as remarked in Milncr, [30], there are applications of A/.e' to 
functions (for instance the identity on integers) that are not well typed. When the definition of / 
is given, however, the information about its typing can be used to ensure that the application is 
correct. 

hi ML, to allow the use of polymorphic expressions the construct: 

let f = e in c' (10) 

is introduced. (10) is an abbreviation for: 

e'[e/f] 

that by the /?-axiom of lambda-calculus, is equivalent to (9). However, since the expression e 
replaces / in e', different instances of its type may be used in deriving a type for e'. Therefore, 
the fact that (10) is typable, whereas (9) is not, should not be a surprise. Types reflect structural 
properties of the expressions and such properties change in reductions1. For instance if / is not 
free in e' (10) can be typable even when e is not. 

Let EL be the language defined by 

e ::= Xx.e | e(e') | x \ cT | let x = e in e' 

A rule for deducing types for expressions in EL is presented in [9]. The idea is to introduce a new 
set of types TL defined by: 

a := V*.<x | r (11) 

where r G T. Let A be a context on TL. Let V(A) be the set of free variables of A. In the following 
we assume that the bound variables of A are all distinct and disjoint from V(A). (If such conditions 
are not satisfied we can rename bound variables). The rules for deducing types for let expressions 
are the following: 

V / " : A^eYila ( ^ ^ ) ) 

irftoWn (r free for * in a) 

LET A h e:a Ax U {(x,cr)} he1:? 
Ah let x = e in e : r 

*It is ri wt ' l l known fact, set? [8] that Curry functionality throry (ML type deduction system is modelled on this) is 
riot closed under /?-conversion. 
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(The definition of r free for t in a is the usual one for predicate calculus.) Note that in —> IN 
the assumption on x, (x,r), is not quantified. Therefore, also for this extension of language, in 
a deduction of a type for Xx.e, none of the variables free in r changes. (The variables cannot be 
quantified and then instantiated.) 

Definition 7: Let 2£ be the set of types defined in (11), A a context on TL, and e G E^. We say 
that 

A h-£ e : a 

if there is a deduction of e : a from assumptions A using the rules: TAUT, CONST, -+IN, -+EL, 
VIN , VEL and LET. • 

For a = V*i...tn.r define a > a1 if a1 = V ^ . - . ^ ^ r f r i / ^ , r n / t n ] ) where the t['s are not free in 
a. Let S be a substitution Sa is the result of the substitution 5 applied to the free variables of a. 
In such an application quantified variables may be renamed to avoid clashes with variables of S. 
(Therefore a > a* implies Sa > Sa1.) 

Let A be a context on TL and let r ET. V^.r stands for Vti...tn.r where t{ are the free variables 
of r which are not free in A. 

Fact 8: The following facts are used in the proof of theorem 9. 

1. If a > a1 and a' > a", then a > a". 

2. If a > r and the variables t\,...,tn arc not free in a, then a > Vti...tn.r. 

3. {(x,a)} hi x : a1, for some a and a1, implies a > a1. (By standard normalization techniques 
of proof theory, see [36], any proof of {{x,a)} x : a1 can be transformed in a proof of 
the same statement in which all the applications of the ViJL rule precede the applications of 
VJiV.) 

4. If a proof of A hj, e : r is followed by any number of applications of ViTV and VEL rules in any 
order, then the result is a proof for A e : a where V^.r > a. (By a similar normalization 
technique.) • 

The type deduction algorithm, WL, that follows is an extension of W. (This is actually the 
original W presented in [9].) 

WL(A,e) 
case e of 

Xx.e1 , e i ( e 2 ) and cT as for W (with calls to W replaced by calls to WL) 

x then return(I, r[t\lt\,t'n/tn}) 
where A(x) = V t i . . i n . r and the t['s are new variables 

let x = ei in e2 then (Si ,^) := Wi(A,ei); 
( 5 2 , r 2 ) : = W t ( 5 i A x U { ( x , V 5 l ^ i ) } , C 2 ) ; 
returniSiSi, r2) 



17 

The clause for x combined with the one for let gives the desired effect of allowing multiple 
instantiations of the type of x in e'. For instance, let e be let f = Xx.x in f{f). Wi(0,e) first calls 
WL(%,Xx.x). which result is (I,* -> t). and then W L (A,/( / )) , where A is {(f.yt.t -+ t)}. The two 
successive calls of Wi(A,/), since / has a quantified type, result in (J, t' —• tl) and (J, t" -> £") 
respectively. Therefore, unification succeeds and Wi(0,e) = t" —• Note that, 1^(0, A/./(/)) 
fails. Hence applied to the expression (Xf.f(f))(Xx.x), which is equivalent to e also fails. 

Soundness and completeness of WL w.r.t. are stated by the following theorem. 

Theorem 9: Let A be a context on TL and e G 
1. WL applied to A and e either fails, or returns a substitution S and a type r G T such that 

SA h L e : r . 

That is, WL is sound. 

2. Moreover, if, for some a G TL and 5, 

S A r - L e : < T , then WL(A, e) = (S', r), 

where, for some 5, 5 =v(A) SS1 and SVs'A-T > 

This asserts the completeness of WL. 

Proof. The proof of both statements is by structural induction on e. 

1. Follows easily, by structural induction, using 3. and 4. of fact 8. 

2. As for theorem 4 we prove the statement of completeness with =v(A) replaced by =v-;v, where 
N are the new variables generated by WL{A, e). 

For constants the result is immediate. For variables derives directly from 8.3. 

Let e be let x~e\ine<i. If SA (-£, e : a then, for some r, 

SA\-Le:r 

and, by 8.4, Vs^.r > a. Therefore, for some cri, 

SAhL€i :<ri, (12) 

and 
5 A 2 U { ( x , ^ ) } h L e 2 : r . (13) 

By the inductive hypothesis applied to (12), WL(A, ei) = (Si,ri) and, for some Si, 
5 =v-Ni SiSi and SiisiA-Tl > °i- Ni a r e the n e w variables generates by WL(A,ei), hence 
Nx f)V(A) = 0. By 8.3 and SA = SxSiA applied to (13) 

Si{SxAx U {(a;, V 5 l A . r i )}) h L e 2 : r 
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By the inductive hypothesis on e2, WL(SIAX U {(X, V^^.ri)}, e2) succeeds and returns («?2,T2) such 
that, for some 52, Si =V-N2 S2S2 and 

Stfs^A-^ > r, (14) 

where N2 are the new variables generated in the call. Observe that, by the previous equality 
between substitutions, and Ni fl N2 = 0. S2S2SiA = SA. Therefore none of the variables free in 
r and not free in SA can be free in S2Vs2SIA'T2' From 8.2 and 3 applied to (14), it follows that 
S2VS2S1A-T2 > o. Let N = N\ U N2. From the previous equalities 5 =v-iv S2S2S\. Therefore S2 

satisfies the conditions required for 5. 

Let e be e\(e2). If SA ei(e2) : o then, for some r and r', 

SA h L ei : r' -> r 

and 
SA\-L e2:r' 

and VSA-T > By the inductive hypothesis on ei, Wi(A, ei) = (Si,ri), and, for some Si, 
5 =v~iv1 Si Si and SiVs^.ri > r' —* r. iVi is the set of new variables generated in Wi(A, e{). 
Therefore, SA = S1S1A and 

Si Si A t-L e 2 : r'. 

By the inductive hypothesis on e 2, Wi,(SiA, e2) = (S2,r2) , and, for some S2, Si =v-N2 S2S2 and 
Sfls-ISIA-^ > r1. N2 is the set of new variables generated in the call. Let N = N\ U N2. As 
Ni fl N2 = 0, 

Si Si =V-N S =V-N S2S2Si 

By the properties of the new variables, 

S1S1A = SA = S2S2SXA. (15) 

Let t be the new variable chosen in the algorithm. We want to show that r2 —> t and S2Ti are 
unifiable. Let "isXA^i = V^i'...^.ri, where 

7 " = { t J ) . . . , 0 = K ( r 1 ) - 7 ( 5 1 A ) ! 

and V 5 j 5 l / 4 . r 2 = V<i...<'m.r2, where 

V' = {t\,...,t'm} = V{r2) - V{S*SiA) 

Without loss of generality we make the following assumptions about V" and V". 

(a) V n V" = 0, 

(b) V" fl V(r 2) = 0 and V D Vfa) = 0, 
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(c) ( V u V " ) n { { ? ! S2T' # T'} u { f | s 2 * ' # * ' } ) = 0, 

(d) T G V ' U V " . 

From the inductive hypotheses and the definition of application of a substitution to a type, for 

some r{',..., r '̂, 

and, for some r j , . . . , ^ , 
r' = ( 5 2 [ < ' 1 ^ r { , . . . , C - r J ) 7 > | . (16) 

Let 

Q = [i ^ r, ~ T f , £ - > <, t\ ~ T[, t'm - > T'J. 

(Note that Q is not a substitution; we just use it as an abbreviation for its right hand side.) From 

assumptions (a), (b) and (d), and (16), 

{§2Q){T2 - * t ) = r» -»r. 

By definition of V and V " , (15), (a), (b) and (d), {§iQ)N = {SISi)Qri. From assumption (c), 
{S2S2Q)T1 = {S2Q)S2N. Therefore 

{S2Q)S2N = r> - r, 

and r2 —• t and S2T\ are unifiable. Let U be their most-general unifier. S2Q = S'U, for some 5' , 
and Ut' = for all *' 0 7 ( r 2 -» t) U V(S 2ri) (see the Appendix). Let 

5 = S% ~ t\,...,t'm ~ t'J. 

By the assumptions on V' and V', and the property of [/, SU = S2[£ ^ r]. We then derive that 
S U S 2 S 1 =V-N S. By the same argument used at the end of the proof for the let construct we can 

show that SVSA{Ut) > cr. 

We omit the proof for abstraction, which is similar to the proof for the let construct. • 

As a corollary of 9 we can derive that: given an expression e it is decidable whether there is a 
context A and a type a such that A \~L e : a. (Apply WL to e and the context A in which the free 
variables of e are assigned distinct type variables.) 

If we were to use our simple polymorphic language (without constants) as a programming 
language there would be little we could do. As shown in [13] each expression of the language is 
strongly normalizable (any reduction sequence terminates). We therefore would not be able to 
encode possibly nonterminating computations. That in itself would not be a loss. However, the 
same paper gives a bound on the length of the reduction sequence of expressions. Such a bound 
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implies that we cannot compute the Ackermann function, although, we certainly want to be able 

to express arbitrarily complex functions. In particular, the untyped fixed point operator 

(Xf.(Xx.f(x(x)))(Xx.f(x(x)))) 

cannot be assigned any type. In ML, to express recursion, the construct 

letrec x = e in e1 

is introduced. This is a short-hand for: 

let x = Y(Xx.e) in e1 (17) 

where Y is a family of fixed point operators of type (r —• r) —• r for all r. No new rule is needed 

for the construct letrec. In a derivation of a type for (17) the occurrences of x in e are then typed 

following the rule of lambda-bound variables (different instances must have the same type) and 

in e' following the rule of let bound variables (different instances of x may be assigned different 

types). The result, especially when we consider mutually recursive functions, is not always what is 

expected, as the following example shows. Consider the following definition: 

letrec map = A/, /.if null(l)then / else cons(f(hd(/)), map(f, tl(l))) 
and squarelist = \l.map(\x.x2,l) 

The list manipulation functions are the standard ones provided by the abstract data type list 

The resulting typing would be: 

• map : (Int -+ Int) X Int(list) -» Int(list), 

• squarelist : Int(list) —• Int(list), 

whereas for the semantically equivalent program in which only map is recursively defined we 

would get the intuitive typing: 

• map : (t —> t') x t(list) -* t'(list), 

• squarelist : Int (list) —* Int (list). 
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Function Definition by Patterns in HOPE 

Usually in programming languages n-ary functions are defined by giving their behavior on 
n-tuples of variables of the corresponding domains. A distinctive characteristic of HOPE is its 
treatment of user defined (possibly recursive) data types. Types denote sets of terms on construc
tors. Functions on types can then be defined by sets of equations, each equation specifying the 
function on a subset of the data type denoted by a pattern. Then case analysis can be made 
explicit in the definition of the function and recursion implicitly packaged. This implicit definition 
of functions introduces a new kind of type checking problem: is the function really well defined? 

To illustrate the idea we give an example. Consider 

num = = 0 + S(num) 

to be the definition of natural numbers. The set corresponding to num is {0, S ( 0 ) , S ( . . . S ( 0 ) ) , . . } . 
The constructors 0 and S in the definition of num are not interpreted (they are considered syntac
tically as terms) whereas the -F operator is interpreted as the union of the the two sets of terms. 
A more complex example is given by the definition of trees of numbers 

numtree = = empty -F tip (num) 4- node(numtree X numtree) 

Here the data type numtree is defined from the data type num. The operator X is interpreted as 
the product of the two sets of terms. (It allows the definition of n-ary constructors.) Both -F and 
x are assumed to be associative. 

In general a data type dt is defined from a set of constructors C each one with an associated 
arity and a specification of the data types of its arguments. For c E C , p(c) is the arity of c and 
cr(c) = (dti, • • • , ^P(C)) the n-tuple of the data types of its arguments (we assume that the result 
is dt)2. 

And now we get to function definition on data types. Patterns on terms of a given data type dt 
are terms of dt possibly containing (non-repeated) variables. A pattern denotes the set of terms of a 
dt obtained by instantiating its variables with terms of the right data type. For instance Fibonacci 
numbers are defined by 

/(0) = 1 
/(S(0)) = 1 

/(S(S((x))) = /(x) + /(S(x)) 
As mentioned at the beginning of the section we are interested in checking the conditions that 
make a function: 

/ : dtx x . . . x dtn dt (18) 

2 HOPE DATA TYPE DEFINITIONS ARE MORE ^ M T - J . ILOWVVER THIS RAPTURES THE OA*U IDEA AND ALLOWS THE FORMAL DEFINITION 
OF THE PROBLEM OF well definedries? FOR FUNCTION DEFINITION. 
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(the type of the result is not important) defined by a set of equations 

/ « P 1 , - , P ? » = e x 

i (19) 

well defined. The p^'s, for 1 < i < k are patterns on dt3. We may assume that for m ^ m! the set 
of variables of p m is disjoint from the set of variables p m / . 

Definition 10: Let / be defined as in (18) and (19). We say that / is well defined when, for all 
n-tuple of terms i = tn) such that, for 1 < i < n, t{ G dt{ 

1. there is a pattern sequence py — (p*, ...,Py) such that some instance of py is equal to t (py 
matches t), and 

2. the matching pattern sequence is unique. • 

The first condition of the definition says that the domain of / is dt\ x • • • x dtn. The function 
could be undefined on elements of the domain but it must be the case that it is applicable to each 
element of the domain. The second condition insures that the function behaves deterministically. 
The choice of which clause of the definition to use is unambiguous. The previous conditions do not 
directly give a way of deciding if a function / is well defined or not. 

A sufficient condition for 10.1 comes from a similar problem that arises in the literature on term 
rewriting systems, see [21]. The basic idea consists of checking that each column of the pattern 
matrix covers all the possible terms of the corresponding data type. 

Definition 11: A set of n-tuples of patterns P = {pi,...,Pfc} is complete for the data type dt\ X 
• • • x dtn if either n = 0 and P = {()} or: 

1. either the set of n — 1 tuples {(p?, | p\ is a variable} is complete for dt2 X • • • x dtn, 

2. or for all constructors in c E dt\, p(c) = m and a(c) = (dt'v • • •, dt'm) the set: 

{(Pi?...,Pm,P.?,...,P?) I Pi = c(pi,. . .pm)} U {(xu.^XmiPh-iPi) I Pi i s a variable} 

is complete for dt\ X • • • x dt'm X dt2 x • • • X dtn. • 

Consider the set of pairs of natural numbers, ordered lexicographically, whose first component is 
the number of constructors in P and the second the length of the tuples (number of data types). 
The previous definition is well founded w.r.t. this order, and therefore provide an algorithm for 
the corresponding test. 

From the assumption that, for i ^ j \ the set of variables of pt- i3 disjoint from the set of 
variables of py, 10.2 is equivalent to: for all i / j \ pi pj are not unifiable. We then know that the 
two patterns do not have any common instance. 

The result that provides a sufficcnt condition for the well-dcfinedness of a HOPE function is 
given by the following proposition. 
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Proposit ion 12: Lot / be defined as in (18) and (19), if 

1. the set of ra-tuples of patterns P = {pi, ...,pjt} is complete for the data type dti X • • • X dtn, 

and 

2. for all i ^ j , p t py are not unifiable, 

then / is well defined. • 

In the example of the Fibonacci numbers 12.2 is verified. To show the completeness of the set 
of patterns we start with {(0), (S(0)), (S(S(x)))}. 11.2 applies and for the constructor 0 we get a 
complete set. For S we have to prove the completeness of {(0), (S(x))} that follows by applying 
11.2 again and then 1 to {{x)}. 

1.2. Extens ions to the T y p e Sys t em 

Some extensions of the basic type system of 1 have been proposed. We briefly consider: type 
coercion ([33]) and circular types ([29]), both of which are relevant to programming languages. 

Automatic coercion is a feature of most languages providing numeric types. For instance, if 
reals and integers are provided, functions accepting real values can be given integer input and the 
compiler automatically inserts the coercion needed. This notion of coercion follows the basic model 
of set inclusion. We think of integers as a subset of reals and then the set of functions from reals 
to reals contains as a subset the set of functions from integers to reals. The notion can be defined 
precisely by considering a partial order on the set of constant types, the set of coercions allowed, 
and extending this order to functional types as well. Let's say r <c T1 if r can be coerced to r'. 
An intuitive rule for the deduction of types for an application e(e') is the following: 

Ar-eir-tr* A h e ' : r" T" <C T 
A h e ( e ' ) : r ' 

A complete set of rules and a deduction algorithm is given in [33]. The same paper also gives a 
semantic justification of the system by interpreting the language in an untyped lambda-calculus 
model and representing coercion as set inclusion in the model. 

Circular types arise in the context of data type specification. For instance polymorphic lists 
can be defined as: 

list = t + (tx list) 

Consider an application of eye1) if list —* r is the type deduced for e and t + (t x list) is the type 
deduced for e'. The ML type checker would produce a type error. (To allow functions on recursively 
defined types ML provides an ad hoc mechanism.) In [29] a type system is proposed that includes 
types as solutions of recursive equations such as list. With circular types the expression Xx.xx (as 
well as the fixed point operator) can be given type t = t —+ t (~ ftt.(t —• t) in the notation used 
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there). Moreover every expression not containing constants can be typed. To deduce circular types 
we add to the basic system given in the first subsection the rules: 

Ah e : a\at.a/t] 

Ah e :jit.a  
M e : Ah e : a[(it.a/t\ 

Here a ::= t \ k \ a —•> a1 \ a x a1 \ (it.a. The paper focuses on the semantics of such types and 
the existence of solutions for recursive type equations is proved. No result is given for the deduction 
system. However, it seems likely that an extension of unification, which does not perform the 
"occurrcncy check" (see Appendix) would make possible to define a deduction algorithm. 
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2. Polymorphic Lambda-Calculus and Type Quantification 

The following section introduces a formulation of lamb da-calculus with higher order polymor
phic type structure. The type-checking problem for polymorphic lambda-calculus is almost trivial, 
because polymorphism is not an artifact of the use of variables in type specifications but is explicitly 
represented by the use of abstraction over types. 

In the following we first introduce some motivations for going further in the research for poly
morphic type structures. The polymorphically typed lambda-calculus, developed by Reynolds [37], 
and its type structure that includes quantified types is presented. The type-deduction problem for 
the language is a notational variant of the same problem for the quantificational discipline intro
duced in [26]. Not much is known about its complexity (decidability). RUSSELL is, then, briefly 
introduced as an example of a language in which polymorphism is achieved by explicit abstraction 
over (data) types. RUSSELL is further from the polymorphic lambda-calculus than ML and HOPE 
are from the parametric. It is, however, a language in which user-defined types are introduced and 
treated uniformly with the primitive types of the language; that was Reynolds' original motivation 
for the introduction of polymorphic lambda-calculus. 

2.1 . W h y would w e need more than ML? 

Even though the approach to polymorphism taken in ML has been shown to be very successful 
there are still many questions that have to be answered about the right underlying type structure 
for polymorphic languages. 

As remarked in 1.1, in ML to allow the use of polymorphic expressions a special construct (let) 
is needed. Such construct introduces an unpleasant non uniformity in the treatment of declared 
(/e£-bound) and parameter (lambda-bound) variables. Let's explore the implications that a uniform 
treatment of declarations and parameters, which exploits as much as possible the polymorphism of 
expressions, would impose on the type structure of the language. 

Consider a declaration 
let x = ... in e 

as an abbreviation cf the semantically equivalent expression 

(Ax.e)(...). 

Assume that a type for e, say r', can be deduced from the assumption on x, (x,\/ti..t n.r). If 
different instantiations (on non unifiable types) of the type variables of x are required in such a 
deduction, the ML type-deduction algorithm would fail to assign a type to Ax.e. (For instance 
in ML to assign a type to {f(n),f(true)) in let f = ... in (f(n),f(true)) the type of / has to be 
instantiated to Int —> r and Bool r1 for some r and r'.) However, if we allow ourselves the use 
of a less restrictive set of types, the type of Ax.e can be expressed by (V£i...£ri.r) —» (Wt[...t'm.T'), 
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where the t'^s are the type variables introduced by instantiations of the type of x. Moreover, the 
type of Xx.e does not depend on any of the type variables free in the type of x and not free in the 
type of any other assumption. We can express this polymorphism by introducing an outermost 
quantification (on all such variables). The resulting type for Xx.e would then be 

V^... i».((W1...<n.r) - m...t'm.r')). 

Now, as expressions of such types may be specified as parameters of functions, the complexity of 
the types required grows. In particular r and r' may be quantified types, as well. This leads to 
consider the full hierarchy of quantified types A, where 6 G A is defined as follows. 

6 ::= t | K | 6 -+ 61 \ Vt.6 (20) 

How useful such type structure would be is still an open problem. It is clear, from the let example 
that we do need some sort of quantification over types to be able to use the polymorphism intrinsic 
in certain expressions. However, it is not clear what we get from the use of the full hierarchy of 
quantified types. In the following we present a type deduction system (see [26] and [22]) for the 
previous type structure. 

The treatment of user defined types (abstract types) is another debatable point of the type 
system of ML. The elaboration of abstract data type definition: 

abstype (ti,tn)name = r with / i = e i , f n = e n 

creates let bindings for the functions defined ( / i , f n ) and introduces polymorphic type operators 
(in this case name). No type is ascribed to the compound definition. Consider the example of the 
data structure tree: 

abstype (t)tree = t -f (t)tree x (t)tree with... 

The main problem is that the representation of trees and the implementation of the abstract data 
type functions cannot be separated from their specifications. That precludes the possibility of 
using, in the same program, more than one representation and implementation of the functions for 
the generic data structure tree. (We remark that separation would preclude inference of types.) 
This sort of polymorphism is quite different from the polymorphism analyzed in this paper. Here 
we want to be able to write functions that h e w e , as explicit parameters, the functions associated 
with a given data type. We will see how a sort of representation independence of t h e kind previously 
stated can be achieved in languages in which types are part of the expression language and can be 
passed as parameters in a controlled way. 
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2.2. Po lymorphic Lambda-Calculus 

From the examples given in the previous section, the main problem of the parametric approach 
to polymorphism seems to be how to limit the scope of free type variables of expressions. 

A uniform approach to such problem is given by Reynolds' polymorphic lamb da-calculus. Here 
the idea is that polymorphic expressions are functions over types and explicit type application 
is needed to instantiate their types. Type abstraction and application are made explicit in the 
expression language, En, that is defined by the following clauses. 

e ::= x \ Xx : S.e \ e(ef) | c$ \ At.e \ e[S] 

where types 8 € A are defined in (20). Family of constants, like the selectors and constructors for 
products, can be specified by 

/ s*vt.vt'.((txt ,)-*0 
5 r *d V t .vt ' . ( ( txt 'H*') 

^Vi.vt ' .Ct-^ ' -^txt ' ) ) 

Definition 13: Let A be a context on A. e G ER and 8 E A. The relation A D e : S (e has type 8 
in A) is the smallest relation satisfying : 

1. A D cs : 8 for all c$; 

2. if A{x) = 8, then A D x : 5; 

3. if Ax U {{x,8)} D e : 6', then A D Xx : S.e : 6 -> 5'; 

4. if A D e : 6 ~> 81, A D e' : 8", and 8" is equal to 8 up to renaming of quantified variables, 
then A D e(e;) : 5'; 

5. if A D e : 8, and t is not free in the type of any variable free in e, then A D ht.e : Vt.8] 

6. if AD e: V«.5, and 5' is free for t in 8, then A D e[<5'] : 6[6'/t]. 
We say that e is wc// typed w.r.t. A if A D e : 8 for some 5. • 

The restriction on £ in 13.5 is meant to rule out expressions like 

Xx : t.(At.(Xy : t -* t.y(x))). (21) 

Such an expression is equivalent to Xx : t.(At'.(Xy : tf —+ t'.y(x))) which is not well typed. However, 
the subexpression y(x) of (21) is well typed w.r.t. A = {{y,t —• t). {x,t)}. Therefore, without the 
restriction in 13.5, (21) would be well typed. Similarly, consider the expression 

{At'.(Xx : (Vt.t -> t').x)[t]{At.\x : t.x) (22) 

which is equivalent to 

{At'.(Xx : {Vt".t" -> t').x)[t](At.\x : i.x). (23) 

Without the restriction 13.6, (22) i? well typed, whereas (23) is not. 
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The result of the explicit introduction of types in the expression language? is that (polymorphic) 
expressions are uniquely typed. As an example we can express our staple polymorphic identity func
tion by At.Xx : t.x. Here, explicit application to a type 6, is needed to obtain the identity function of 
type 6 —• 8. Self application, among other ways, can be expressed by Xx : (V£'.£').((:r[£ —• t])(x[t])). 
We can see that the instantiation of the type variable is made explicit in the expression by the use 
of type application. 

As shown in [13] the expressions of this language are strongly normalizable. However, the 
result does not depend on not allowing any form of self application as it does for the parametric 
case. 

The type-deduction problem for this system is obtained by erasing types and A's from ex
pressions and defining rules for assigning types and inserting type abstraction and application, if 
necessary, in the expression. (Consider for example Xx.xx). The problem is a notational variant of 
the one for the quantificational discipline considered below3. 

2.3. Type Quantification 

The idea of expressing polymorphism through type quantification (implicit in the let construct) 
is generalized to arbitrary types and extended to lambda-binding in the quantificational approach 
to polymorphism, sec [26]. 

The set of types the language is again A defined in (20). The expression of the language e £ EQ 
are defined by 

e ::= Xx : S.e | e(e') | x \ c$ 

No explicit construct is introduced in the expression language to delimit the scope of type variables. 
A definition of the well typed expressions can be obtained by 13 replacing condition 5 and 6 by 

5'. if A D e : 5, and t is not free in A, then A D e : V£.5; 

6' : if A D e : V*.<5, and 6' is free for t in <S, then A D e : 6[6'/t]. 
In this language, uniqueness of the type of an expression in a context is lost. Type quantification 
can be introduced on any type variable of the type of an expression which is not free in the context. 
An expression e having a type 6 has implicitly all the types that are an instance of Vti...tn.S where 
the ti's are type variables free in the context of e. In particular the type of a closed expression can 
be quantified over all its free type variables. The let construct is now superfluous as its semantic 
equivalent application (9) is equivalent also from the typing point of view. 

To introduce type deduction we erase types from lambda-bound variables obtaining, as in the 
previous section, an untyped lambda-calculus with constauts. (For constant we specify a principal 
type). The type constraints are expressed by the inference system h y . The rules of h y are: TAUT, 

3 A s s h o w n in [13] all t h e e x p r e s s i o n of t h i s l a n g u a g e a r e s t r o n g l y n o r m a l i z a b l e . 
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CONST, -+IN and —• EL of 1 (in which 8 replaces r) and the polymorphic type derivation and 
instantiation: 

VEL: AH v 6 rSl. free for t in 6) A hy e : old /£] 

The difficulty in this deduction problem is the almost complete absence of a syntax driven 
strategy. Compare this system with \~L for ML. There the only case in which type quantification 
is actually used is in the LET TV\G From the limitation to simple types, type quantification can be 
simulated, as the proof of completeness of WL shows, by substituting new type variables for the 
quantified ones and using standard first-order unification. However, if we assume that instantiation 
can be on any type 8 G A , then first-order unification cannot be directly used. On the other hand, 
considering the type structure as natural, a second-order language (see [20]) does not help as 
second-order unification is known to be an undecidable problem. 

The deduction system hv can be trivially modified to deduce polymorphic lambda-calculus 
expressions. (Just replace e by At.e and e[8f] in the consequence of V/iV and VEL rules respectively). 
Therefore, as for polymorphic lambda-calculus, all the expressions that can be assigned a type are 
strongly normalizable. The characterization of the set of expressions for which we can deduce a 
type and the decidability of the system are still unsolved problems. Attempts to solve different 
versions of the problem have been done in [2], [22], and [25]. None of the previous, however shows 
enough evidence of the result. 

Let uj be the expression \x.xx. From the strong normalization property of typable expressions 
we can derive that no type can be deduced for UJUJ (which is not normalizable). A direct proof of 
the statement gives some light on the kind of statement derivable in the system. Observe that, to 
derive a type for xx in some context A = { ( x , £ ) } . £ G A must be a non vacuously quantified type. 
Otherwise we could not derive types for the two occurrences of x that match the premises of —>EL. 
Let 8 = Vii...tN.5 ; /, for some £ l 5..., tn and 8" such that 6" is not externally quantified. Assume for 
the moment that 8" = 8 —• 8' for some 8 and 8\ i.e., 8" is not a variable. By the matching involved 
in the application xx it must be that, for some types <5t's, <5t-'s and variables t'^s not free in 8" 

W i , * » / ' » ] = V*'....C(S - WlAl,8'Jt n] (24) 

where = denotes equal up to renaming of bound variables. It is not difficult to show that (24) 
implies that the innermost leftmost subterm of 8 has to be an occurrence of one of the t^s. Therefore 
the type derived for w is the following 

Vtl..t"q.((Vt1...tn.6 -* 6') - > S>) 
(25) 

file:///x.xx
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for some 8' and t"'s. Consider now deriving a type for OJOJ. The types of both occurrences of UJ 

must satisfies similar restrictions. Let (25) be the type of rightf occurrence of u; and for some cr, a1 

and a1 E A and £t-'s let 
[Vti..Jq.a -+ a') -+ a1 

be the type of the left occurrence of w. By (24) the leftmost innermost subterm of a has to be 
one of the i^s. (Note that any application of VJJV or VEL after a -+IN and before -+EL can 
be eliminated, hence no quantification has to be added to such a type.) Now (25) has to match 
yiii..Jq.o —• a1 and then Vt\...tN.8 —• 8' has to match a. However, the leftmost innermost subterm 
of 8 —• 8' (that coincides with the one of 8) has to be one of the £t-'s, whereas the one of a must 
be (after renaming the variables) one of the t'J's. This is a contradiction and thus cannot be 
assigned any type. (Even though quite tedious the proof is as far as I know the only direct proof 
of non-existence of a typing for an expression in the quantificational type discipline.) 

2 . 4 - R U S S E L L 

The language RUSSELL ([10] and [11]) combines the type abstraction and application con
structs of polymorphic lambda-calculus with the algebraic approach to abstract data types. How
ever type abstraction and application means in this context data type abstraction and application. 
We remark the difference between polymorphic lambda-calculus types and RUSSELL data types. 
The first can be interpreted as some set of values (may be complex, due to type abstraction). The 
second are sets of operations that describe the possible transformations that can be performed 
on objects of the given data type. (Data types are nothing more than sets of expressions of the 
language.) This is the sense in which the algebraic approach to abstract data types comes into 
play. However, operations are not characterized by equations, but simply by their type information. 
The limitation comes on one hand from the requirement of static type checking, on the other from 
the computational nature of the language. It would be unclear what is meant by an expression 
returning or getting as an input a set of equations. The purely algebraic approach, indeed, is 
mainly found in specification languages where description, rather than computation, is the issue. 
RUSSELL's view of data types is shared by other languages. The most notable are ALPHARD 
and CLU. 

In the following we give an overview of an applicative subset of RUSSELL. We introduce -the 
definition of signature and expression and briefly describe the type-checking algorithm: signature 
calculus. Signatures have a role similar to types of polymorphic lambda-calculus. The relation 
between them will be analyzed after giving the details of the language. 

Signatures. The basic signatures of expressions of the language are: 

S ::= fun[A : Si,..., J n : Sn] : S' | type I[h : S x , . . . , In :Sn]\e 
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fun is the signature of functions. It specifies the signature of the parameters and that of the result. 
For i < j , I{ is bound to S{ in Sj and S1. type is the signature of a data type; it specifies the 
signature of the operations of the data type. Here the S's have to be either data type or function 
signatures. The identifier J is bound in all the S's so that recursive data types can be defined. 
Finally e is the signature of a value of a given data type, where e is any expression that has a type 
signature. In the examples the identifiers / 's when not significant will be omitted. 

Examples. A signature for the polymorphic identity function could be: 

fun[£ : type ...] : fun [a; : t] : t 

As we can see, type abstraction and normal abstraction have the same signature (fun). It is not so 
for the polymorphic lambda-calculus where the type of the identity would be Mt.t —• t. However, 
while in polymorphic lambda-calculus t —• Ms a type, fun [a; : t] : t is not a type in RUSSELL. 
Consider expressing self application g = Xx.xx. First the signature of x must be fun[7 : S] : S1 

where 5 has to be a fun signature as well in which / cannot occur. It is thus impossible to obtain 
a signature for g. We will see in the following how the introduction of a signature transformation 
operator makes possible the introduction of self application. 

Expressions. We introduce a subset of the expressions of RUSSELL. The constructs chosen 
capture the underlying philosophy of the language. The expression e of R are defined by the 
following syntax: 

e ::= fun f(Ix : Si,...In : Sn) : S{e} | c(ci,...,c„) | 
Int | Bool | record I(h : Si,..., In : S„) | e$J | 
let x : S = e in ef \ x 

The first line corresponds to function definition and application. The syntax is the standard one. 
The signature of the defined function is: fun[Ji : Si,...,In : Sn] : S. For an application e has to 
have a signature fun[/i : Si,...In : Sn] • S for some Ps and S's and if S[,...,Sn are the signatures 
of the arguments, the signature of the result is obtained by substituting S[,...,S^ for Ix,...,In in S. 
The type-checking problem is concerned with defining when such application is well typed. We will 
describe the rules later. 

Data types can be defined from the basic data types Bool and Int. The signature of such types 
specifies their basic operations defined. For instance for Bool we would ha^e the constants true 
and false of signature fun[] : Bool and all the logical operators. Similarly for Int. So an example 
of an expression of signature Bool is: 

and(true(),false{)). 

Nullary functions are the standard way of introducing constants. The construct record defines the 
cartesian product of the corresponding data types. The signature of the expressions describe the 
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operations provided by the resulting data type. In this case they are the selectors 7r t with signature 
fun[x : I] : /, and the constructor mkrec with signature fun[xi : t\,...,xn : tn] : I4. The construct 
e$7, where e is an expression of signature type /'(..., / : S....), selects the operation named J from 
the set of operations provided by its signature is obtained by substituting e for V m S. In this 
way different data types can have operation with the same name (in ML that is not possible). 

Finally 
let x : S = e in e1 

binds x to the expression e of signature S in e'. The expression is equivalent to: 

(fun f(x : S) : S'{e'})(e) 

where S' is the signature of e'. Here no problem arises as far as typing is concerned since the 
expressions are explicitly typed. 

Examples. As seen in the previous example self application is not expressible with the defined 
signatures. However. RUSSELL provides the construct image with signature 

fun[J : S] : type[m : fun[5] : J, out : fun[I] : S]. 

The application of image to a signature S returns a data type whose operations, tn, and out convert 
back and forth the signature in the data type. For example, the data type declaration (could be 
in a let construct): 

t : ... = image (fun [t] : t) 

defines the recursive data type t with the in and out functions previously described. The identity 
function, fun id(x : t) : t{x}, which signature i3 fun[t] : f, can be coerced to a value of type t by 

t%in(fun id(x : t) : t{x}). (26) 

Let's define / to be the expressions (26). The signature of / is t (f is a value of type t). Therefore 

(t$out(f))(f) 

is a correctly typed self application. The conversion of / from a function to a value of a certain 
data type to a function is explicitly done via t$out. 

Type checking. As said before type checking is specified by giving the rules for matching the 
signatures of formal and actual parameters in an application. The rules make clear the syntactic 
nature of signatures. Let fun[/i : S\, ...J n : 5„] : 5 be the signature of e in e ( e i , e n ) and S[,...,S'n 

ARUSSELL has a union constructor, as well. 
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be the signatures of ei,...,e n respectively. Consider the signature resulting from the substitution of 
the argument signatures for the / identifiers in S{: 

S? = Si[S[/Iu...,S'JIn] 

The signature of the defined function and the one of the arguments matches if for all i, S" and 5t-
are both either type or e (expressions) or fun and: 

• For fun signatures S" and 5t- are equal up to renaming of their identifiers. 

• For type signatures some of the components of S" may be eliminated and the remaining 
ones have to be equal up to permutation and renaming of their identifiers and to the 
components of S{. 

• For expression signatures e, S" and S[ have to be equal. This is necessary for static 
type checking. Remember that e could be a function application with result signature 
type. Admitting a less restrictive matching, for instance conditions on the value of the 
expression would cause the impossibility of static checking. 

Comparing RUSSELL type checking with type deduction/checking in ML we can see that RUSSELL 
treatment of data types (similar to ML abstract data types) satisfy the requirements of separation 
of implementation and specification. However, in RUSSELL no type deduction (for functions and 
data types) is possible. 

RUSSELL and its type structure has been analyzed in [1G] The language is translated into (and 
then given a semantics in) a polymorphic lambda-calculus enriched with sequence types needed 
to interpret the set of operations of data types. This shows the expressive power of polymorphic 
lambda-calculus as well as the versatility of its type structure as a basis for an uniform interpretation 
of a variety of polymorphic constructs. 
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Appendix: Unification Algorithms 

Let if be a set of constants, with an associated arity function p : K —> N, and let V be a set 
of variables. The first-order term language on K and V, T(if, V), is the smallest set containing V 
such that: 

if /cG if and r l 5 . . . , r p W eT(K,V), then # c ( n , r , ( i e ) ) G T(if, V). 

The set of types T introduced in the first section is one such language. The underlying set of 
constants of T is K U {—x}, where if, there, is the set of constants of arity zero (constant types). 

The metavariables t, /c, and r, with subscripts and superscripts if necessary, range in V, K, 
and T(K,V)) respectively. 

The size of a term r, a(r) is defined as follows: 

air) = { ° T G 7 

V(r) is the set of variables of r. 

Substitutions, instances, and the partial order < are a trivial generalization of the corre
sponding notions defined in the first section. For a substitution 5, D(S) = {t | St ^ t} and 
R(S) = Ute£>(S) V"(5^). We recall that a unifier U of the terms r and r' is a substitution such 
that UT = Ur*. A mos£ general unifier U is a unifier with the property that for all unifiers U1 of r 
and r', there is a substitution 5 such that U1 = SU. The first-order languages have the following 
property: 

Theorem 14: Let r, r1 G T(K, V), if r and r' are unifiable then they have a most general unifier 
U such that R{U) C 7 ( r ) U V(r'). • 

The definition of unifier can be generalized to sets of pairs of terms P = {(ri,r t') | 1 < i < n} 
by defining U to be a unifier of P if C/r, = Ur[ for all 1 < i < n. SP= {(5rt-, Sr/) | 1 < i < n} and 
V(P) = U o < t < n ^ ( r t ) U V(r t'). The algorithms given in the following sections solve the following 
generalized unification problem. 

Generalized Unification Problem: given a set of pairs of terms P, find (if any) a most general 
unifier U of P such that R(U) C V(P). 

2.5. Robinson's Unification Algori thm 

The first algorithm we present is Huet's version of Robinson's original algorithm, [20] and [39]. 
The algorithm consists of the iteration of a simplification step, Simpl(P), which reduces the the 
complexity of the set of pairs P preserving the set of unifiers of P. The description of Simpl is as 
follows. 



Simpl [P) 

1. P0 <- P and j <-0. 

2. If Pj = P' U { ( t . V ) I cr(r),cr(r/) > 0}, i.e., there is a pair neither of whose components is a 

variable, 
• then let r = / c ( n , r p ( / c ) ) and r' = K!(T[, ^ ( / c / ) ) . If « 7̂  «' then exit with failure, 

otherwise PyH i «- Pf U {(rt-, r/) | 1 < i < i <- J + 1 and go to step 2. 

• otherwise go to step 3. 
3. In Pj replace (TA) by (t,r) and delete the pairs {t,t). If there is a pair (t, r) such that 

t G V(r) then exit with P/i/L otherwise return the modified Pj. 

Let a(P) = Z)(r,r /)^F< T( r) + G{rl) ^ e t n e s ^ z e °f the s e t °f P a i r s -P- Termination of Simpl can 
be proved by observing that <r(Pt) > cr(P t + 1 ) . Strap/ has the following properties: 

• U is a unifier of P if and only if U is a unifier of Simpl (P), 

• V(Snnp/(P)) C and 

• if (r, r') G Sirnpl(P) then r G 7 . 

This can be established by induction on the number of iterations of step 2. It is interesting to note, 
for step 3, that if there is a pair \t, r) such that t G V(r) then there is no unifier for P since no 
substitution can unify t and r. Such a test is known as occurrency check. 

The unification algorithm Unify takes as input a set of pairs of terms P and terminates with 
either failure or success. The unifier of P produced by the algorithm will be defined below before 
the theorem stating the correctness of Unify. 

Unify (P) 

1. P 0 <- Simpl(P) and j «- 0. 

2. If P y - 0 

• then exit with success. 
• otherwise, let = I[t h-> r] for Pj = Pj U {(£, r)}. ((£, r) is one of the pairs in Py 

and Sj+i is the substitution that is the identity on all the variables except t, which 
is mapped to r.) 

Pj+i Simpl(Sj+iPj), j <— j + 1 and go to step 2. 

If any call of Simpl fails then Unify fails. Note that, in step 2, since the pair {Sj+\t, Sy+ir) 
is eliminated by Simpl, Simpl(Sy^iPy) = Simpl(Sj+\Pj). Termination of Unify can be proved 
by observing that, since t £ V(r), t V(Sj+\Pj). Therefore, as Simpl docs not introduce new 
variables, #K(Py) > # K ( P i + i ) . 
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lf the algorithm terminates in n steps (n - 1 iterations of step 2), define the following sequence 

of substitutions: 

• Un = / , where / is the identity substitution. (D(I) = R(I) = 0.) 

• Uj-i = UjSj, i.e., the substitution that coincides with Sj for all the variables but t (the 

one chosen at the j - th step) and on t is equal to UjT. 

The correctness of the algorithm can now be stated by the following theorem. 

Theorem 15: Let P be a set of pairs of terms. If there is a unifier U for P then the algorithm 

exits after n steps, UQ = S n S n - i • • • Si is a unifier of P and for some substitution S, U = SUQ. 

Proof. (Sketch) We first prove that for all 0 < j < n, Uj is a unifier for Pj. For j = n, Pj is 

empty and then the identity substitution is an unifier for P . For 0 < j < n, assume Uj is a unifier 

for Pj = SimpliSjP'^i); then = t/ySy is a unifier for Pl

j_1 and so of P ^ = {(t,r)} U P ^ j . 

Hence UQ is a unifier for PQ and, by the first property oiSimpl, of P . 

Let U be a unifier for P , the existence of 5 is proved by showing that for all 1 < j < n + 1 there 

is an Sj such that: 

= s ; s i - i . . - S i . 

The proof is by induction on j (starting for j = 1 with 5{ = 17). • 

One of the sources of inefficiency of the previous algorithm is the redundant copying of terms 

done in Simpl. For instance for the terms 

ri = a c ( M , .. . ,*) 
r 2 = /c(r, *',...,*') 

the first application of Simpl in Unify ({(T\, TZ)}) makes n copies of r (that could be a big term) 

and performs as many comparisons. On the other hand, even adopting a clever representation for 

the set of pairs that avoids repeating the same term several times, the previous algorithm is, in the 

worst case, exponential. The problem comes from the application of the substitution done in step 

2 of Unify. This substitution increases the size of the pairs in P. Consider the following terms: 

r 3 = K ( * 2 r * 3 , . . . > * n ) 

r 4 = K{K,(ti,ti),rJ(t2,t2)*...<K,{tn-\,tn-i)) 
Unify({(7"3,r4)}) produces, after the first application of Simpl, the set of pairs 
P 0 = {(*i+i,/c'(£t-,£j)) | 1 < i < n}. If the pairs are chosen in sequence the number of occurrences 

of ti in Pj grows exponentially (is equal to 2 J). 
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2.6. Linear Unif ication 

The algorithm we present in this section is due to Patcrson and Wegman, [35]. 

From the previous observations it is clear that the choice of the representation for both substitu
tions and terms is crucial for the efficiency of the algorithm. For example assume the representation 
for a substitution 5 to be a set of pairs {(t, r) \ St = r ^ t). In the previous example any most 
general unifier of the terms r$ and r± takes exponential space. The problem can be solved by 
keeping the substitution in sequential form, i.e., as a sequence of pairs that have to be applied to 
get the complete result. For instance a most general unifier for r$ and r± could be represented by 
the sequence 

(tn, # c ' ( t n _ i , t n _ i ) ) , ( t n - l , * , ( * n - 2 , * n - 2 ) > . <«2, * l ) > 

Terms are represented by directed acyclic graphs, dags. (The symbols u and v are used to refer 
to nodes of dags.) This representation is common in most term algorithms and has the advantage 
of sharing common subexpressions. The dag corresponding to a term has size linear in the size of 
the term and can be built in linear time. For example the term 

r = K{K'(y,x),z) 

has the following representation: ^ 

/v. 
For pairs of terms, e.g., (r, /c(x, K,(y, x))), subexpressions common to the two terms are shared 

as well producing the following dag: 

Nodes of the dag will be referred to as either function or variable nodes. For the description 

of the algorithm we need some properties of equivalence relations between nodes of a dag. 

Definition 16: We say that an equivalence relation = between nodes of a dag is valid, if the 

following three conditions are satisfied. 
1. All the function nodes in an equivalence class are labelled by the same function symbol. (= 

is coherent.) 
2. If two function nodes are equivalent then their corresponding sons are equivalent. (£= is 

simplifiable.) 
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3. The equivalence classes can be partially ordered by the partial order on the dag . That is: 
the relation < defined by [u]** < if there is an edge from u to u1\ is a strict partial order. 
(= is acyclic.) • 

The importance of the previous definition is shown by the following theorem. 

Theorem 17: The terms represented by two nodes of a dag, u and zx', are unifiable if and only 
if there is a valid equivalence relation = with u = u'. What's more in that case there is a unique 
minimal such relation (that corresponds to the most general unifier). • 

Let P be a coherent equivalence relation on nodes of a dag. S(P) = {{v,v')}, where v and v1 

are the fc-th sons of a pair of function nodes (u,u') G P for some k. If P U S(P) = P then P is 
simpliflable. 

Given a set of pairs of terms {(7V,rt') | 1 < i < n} which we want to unify, we first build the 
dag representation of the terms rt-, T[. Let P = {(ui,u\) | 1 < % < n) be the set of pairs of nodes 
representing the corresponding terms T{ and T[. The abstract description of the algorithm suggested 
by the previous theorem is as follows: 

1. Let = be the smallest equivalence relation on the nodes of the dag containing the pairs P. 
=o<-= and j <- 0. 

2. If =y is coherent and acyclic 

• then =y + i— [~3 US(^+i ) ) and j — j + 1. 

• otherwise exit with failure. 

3. If £ y + 1 = 3 y 

• then exit with success. 

• otherwise go to step 2. 

The termination of the algorithm is obvious as there are only a finite number of nodes in the 
dag and rryC= J + 1 . If the algorithm terminates with success in n steps, then = n is coherent, acyclic 
and simpliflable ( (= n U5(= n )) =~n) Moreover = n is the smallest simpliflable, coherent and acyclic 
relation containing P. The unifier of the two terms is represented by the equivalence classes of = n 

containing the variables of the two terms. 

The equivalence relation is represented by undirected edges between equivalent nodes of the 
dag. However, representing all the pairs entails a number of edges quadratic in the number of 
nodes. A node of the class is then chosen as the representative of the class and edges are drawn 
only from that node to the others. 

The minimal equivalence classes , w.r.t. <, of a valid equivalence relation, are called root 
classes. Such classes indeed contain only roots of the dag. Any non-empty valid relation clearly 
has at least one root class. 
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The following algorithm UnifyL implements the previous abstract algorithm. UnifyL uses 
Propagate whose inputs are: a dag ci, and a set of nodes N of d. Propagate checks if the nodes 
in N are pairwise coherent and if so modifies the dag d adding undirected edges representing the 
equivalence relation S({(u,uf) | u, v! G N}). Propagate also outputs pairs of the substitution if 
some of the nodes are variable nodes. 
Propagate(N, d) 
Let N = {^i, ...,un}. If one of the nodes is a function node, assume it is u\. 

1. If some Uj is a function node with an associated symbol different from the one of u\ then 

exit with failure. 

2. i <- 2. 

3. If i > n then exit with d. 

4. If Ui is a function node 

• then for fc from 1 to the outdegree of ui 
draw an undirected edge (in d) from v to v1, where v is the fc-th son of U{ and v1 is 
the fc-th son of u\. 

• otherwise let t be the variable labelling U{ and r the term corresponding to u\\ output 
the substitution pair (t, r). 

5. i <— i -f 1 and go to step 3. 

The inputs to the unification algorithm are a dag d and a set of pairs P of nodes of d that have 

to be unified. 

Unify L(P,d) 

1. Draw an undirected edge from u to it' (in d) for all (u,u') G P . 

2. If d is empty then exit with success. 

3. If the relation represented by the undirected edges in d has a root class 
R = {ui,...,!*„} 

• then 
(a) d <— Propagate(R,d). (this call may output, as a side effect, some substitution 

pair) 
(b) delete from d all the nodes in R and their outgoing nodes, 

(c) go to step 2. 

• otherwise exit with failure. 

The test in step 3 supplies a check for acyclicity of the equivalence relation represented by the 
undirected edges of the dag d. If there is a cycle one of the equivalence classes is such that some 
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of its nodes are not roots of the dag. Therefore, when no other root class can be selected, the 
algorithm fails. Moreover, as we know that all the nodes in a root class are roots of the dag, once 
the relation is propagated to the sons of such a class no further node can be added to that class 
and its nodes can be correctly deleted. 

The following facts provide a rough analysis of the algorithm that shows its linearity with the 
size of the input. 

1. The total time spent in the propagation of the equivalence relation (all calls of Propagate) 
is of the order of the number of directed edges plus nodes of the initial dag. That is, 
the total number of undirected edges created during the execution of UnifyL is, by the 
representation of the chosen equivalence relation, bounded by the number of directed edges 
of the graph. 

2. Assuming that each node maintains a list of pointers to its immediate predecessors, the 
selection of a root class can be done automatically. Starting from any node of the dag we 
climb up to a root. We choose that node as the representative of the equivalence class and 
from that propagate the equivalence in its class iterating the climbing if some of the nodes 
are not roots. If a node is visited more than once then the relation is cyclic, otherwise a 
root node is found and then after propagation its nodes are deleted. 

A more detailed and concrete version of the algorithm is presented in the original paper by 
Paterson and Wegman, [35]. 

Other almost linear unification algorithms have been described. In particular Huet in [20] 
gives a very similar algorithm whose running time is Q(nG(n)) where G is the inverse of the 
Ackermann function. Huet does not embed the test for cyclicity in the choice of the equivalence 
class to be propagated. The selection is simply sequential. The test is performed at the end of the 
cycle when the complete relation has been generated. (Note that the correctness of the previous 
linear algorithm depends on the acyclicity of the relation.) Finally Martclli and Montanari, [27], 
present an algorithm with the same running time as Huet's which differs basically by performing 
the propagation not only to the immediate successors of equivalent nodes but even deeper. Unlike 
the linear algorithm, in this case the selection of the class to propagate does not rule out the 
possibility of adding new elements to the class, later on. The same authors have given a linear 
algorithm that is very similar to the one presented here, but more complex in the data structures 
used in the implementation. 
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