Using Bit-Vector Decision Procedures for
Analysis of Protein Folding Pathways

Christopher James Langmead’? and Sumit Kumar Jha'

1 School of Computer Science, Carnegie Mellon University
{c¢jl,jha}@cs.cmu.edu
2 Department of Biological Sciences, Carnegie Mellon University

Abstract. We explore the use of bit-vector decision procedures for the
analysis of protein folding pathways. We argue that the protein fold-
ing problem is not identical to the classical probabilistic model checking
problem in verification. Motivated by the different nature of the protein
folding problem, we present a translation of the protein folding pathways
analysis problem into a bounded model checking framework with bit vec-
tor decision procedures. We also present initial results of our experiments
using the UCLID bit-vector decision procedure.

1 Introduction

Protein folding is a phenomenon of fundamental interest that appeals to both
experimental and computational biologists alike. Physically, folding corresponds
to the process by which a given protein spontaneously moves from an unfolded
(aka denatured) three-dimensional structure to its folded (or native) structure.
The study of protein folding is important for a number of reasons. First, it is
important to basic research because there is much that remains unknown about
how proteins fold. In particular, it is not possible at the present time to accu-
rately predict a protein’s native structure in a reliable fashion. Second, a number
of diseases, including Alzheimer’s and bovine spongiform encephalopathy (aka
“mad cow disease”), are associated with misfolded proteins. That is, proteins
that end up in some configuration other than their native structure. Under-
standing how and why certain proteins misfold is essential to the prevention and
the treatment of these diseases. Finally, folding is just one type of large-scale con-
formational change exhibited by proteins. Many enzymes, for example, change
structure upon binding specific molecules. These structural changes are often
the mechanism by which the enzymatic reaction is catalyzed. Insights revealed
in the process of studying protein folding are immediately applicable to studying
other kinds of conformational changes and, consequently, to applications such as
drug design and protein engineering.

While there are many experimental measurements that are relevant to study-
ing the process of folding (e.g., circular dichroism), none of these reveal a detailed
picture of the folding processes from start to finish. For this reason, computa-
tional simulations of the folding process are generally used to elucidate the spe-
cific pathways between the unfolded and folded structures. Motion Planning [10]

has been widely applied to perform simulation based analysis of protein folding
pathways [13]. Recently, Langmead and Jha [12] have proposed the use of tem-
poral logic for the symbolic state space analysis of protein folding pathways with
some success. This paper studies the use of decision procedure based verification
methods for studying the protein folding process. We also present initial results
on applying a decision procedure based algorithm for analyzing protein folding
pathways.

2 Background: Protein Folding and Probabilistic State
Transition Systems

As is widely known, DNA is the repository that stores the blueprint of life.
The process of transcription reads a linear sequence of nucleotides and pro-
duces a linear chain of amino acids called proteins. Proteins use their complex
three-dimensional and dynamic structure to satisfy a wide range of functional
requirements. The process by which a linear sequence of amino acids acquires its
three dimensional structural configuration is called protein folding. An unfolded
protein is a protein where no residues have formed bonds with non-neighboring
residues. A folded protein is a structure where the free energy of the protein has
been minimized - the energy obtained by the formation of long range weak bonds
between residues has offset the entropy loss due to conformance to a particular
structure.

The configuration of a partially folded protein can be described by the frac-
tion of residues that have already folded. Thus, the configuration of a protein
can be represented by a bit-vector byb; ...b,_1, where each bit represents the
folded or unfolded state of a residue. Each configuration ¢; = boby ...b,—1 of
the state space represents a partially folded protein of n residues; if b; is true,
the i*" residue is folded otherwise the residue is unfolded. An energy function
E : 2" — R maps each protein configuration (¢; =) bpby...b,—1 to its free
energy F(c¢;).

The partially folded configurations of the proteins naturally define a state
transition system. Each probabilistic transition in the state space of protein
configurations is associated with the folding or unfolding of a residue in the pro-
tein. The probability of transition from the configuration ¢ to the configuration
' is a function of the energy difference of the configurations E(¢') — E(c). A pro-
tein can move directly from a configuration ¢ to another configuration ¢’ only
if the two configurations are not too structurally different. In our state space
model, a configuration ¢ is connected to another configuration ¢’ by a transition
if and only if the configurations differ in less than H bits, where H is a small
number 3. So, these state space models are Bounded Hamming Distance Kripke
structures (BHDKS) [9].

Given a set of initial states in the probabilistic state space, it is of interest to
find if a particular configuration in the state space is reachable with at least a

3 In this paper, we use H =1

certain probability value along some path. If a particular configuration is reach-
able with a high probability, then this configuration will play an important role
in determining the functional properties of the protein. Moreover, if there are
two or more high-probability configurations, such a protein may be subject to
misfolding which, as previously mentioned, is relevant to a variety of diseases. In
principle, it may be possible to design a drug that targets pathways to misfolded
configurations and in that way, prevents certain classes of disease.

3 Motivation for Application of SMTs to Protein Folding

The experiences of Langmead et al [12] clearly indicate that existing symbolic
probabilistic model checkers do not scale well to state spaces of size with more
than 220 states. On the other hand, discrete state model checking has been
applied to more than 260 states [5]. Recently, efficient decision procedures [2,
3,7,11] for reasoning over bit-vectors and real arithmetic have been developed
and applied to problems in areas as diverse as software security [6] and hybrid
systems [8].

Several aspects of the protein folding problem make it more amenable to a
decision procedure based approach. Unlike traditional probabilistic verification
problems, the values of the probability obtained during the analysis of protein
dynamics need not be precise - it is really not interesting to know if a state is
reachable with probability 0.0011 or 0.0012. In traditional verification questions,
some states are unreachable. Hence, it is required to know if the probability
value is precisely zero or close to zero. However, for protein folding, all states are
actually reachable and the interesting queries would like to know if a particular
state is reachable with high enough probability.

In traditional probabilistic model checking, the probability values originate
from prior chosen constants of probabilistic protocols and algorithms. In pro-
tein folding, the probability values are an involved function of the bit pattern
of the source and the destination state of the transition system. These proba-
bility values are naturally given as a function of the bit pattern of the source
and the destination states. Thus, bit-vector expressions are a compact way of
representing the transition probabilities.

While traditional verification questions often want to know if a state is ever
reachable, in the context of the present model of protein folding, every state is
reachable. What is relevant are those pathways from the unfolded to the folded
state that are highly probable and thus biologically significant. The probability
of a given pathway is related to the magnitude of the energies of the configura-
tions along the path; low-energy pathways are more probable than high-energy
pathways. Thus, bit-vector bounded model checking tools like UCLID are the
natural choice for analyzing protein folding pathways.

4 Translating Protein Folding Pathways into SMT

The probability of reaching a state through a given path is given by the product
of the transition probabilities. Also, the probability of a transition is exponen-
tially proportional to the difference in the energy of the states before and after
the transition. SMT solvers [4] for linear bit-vector arithmetic are much more
efficient than those for nonlinear arithmetic. We, hence, take the logarithm of
the probability values and use linear arithmetic to compute the logarithm of the
probability values of the paths. We note that « is a normalization factor while
[is derived from the gas constant and the ambient temperature.

Pip1 = P; - ae?B-E)
& log Pip1 =log P+ log(a) + 6 (E — E')

Given a bit vector bgby bn—1 corresponding to a state configuration
¢ of the protein, there is an energy function which computes the energy of the
configuration. Let E(bo, b .. .b,—_1) be the energy function. Then the probability
of moving from the configuration ¢ := bybj bl,_; to the configuration ¢’ :=
bgby ... b’ _, is given by:

Transition (¢, ¢) = log (Pi41) := log (P;) + log (o) + 5 (E()—E("))

The energy function for a protein configuration is a function of the bit pattern
of the configuration. In particular, we have used an energy function involving
pairwise contact potentials (¢; ;) and entropy values (¢;) in our experiments.

E(b07 bl e -bnfl) = EOSi,an—l (bi,j ' bz : bj + EOSign—l 1/}1 ' bz

Though the energy potential of each configuration is nonlinear in the bits
involved in the configuration, the transitions in our probabilistic state space only
depend on the change in the energy F(c') — E(c¢), which is a linear function in
the bits of the configurations. Assuming the bit by is flipped from 1 to 0,

E(bg,b1...bg...by_1) — E(bo, by ...7bg...bp—1) = Zk,j Ok, - bj + Ui
Similarly, if the bit b is flipped from 0 to 1,

E(bo,by ... bg .. .by—1) = E(bo,by ... = .bu1) = — Y bnj by —

5 Refinement based Analysis of Protein Folding Pathways

The transition system of the protein folding problem is defined naturally by the
configurations of the protein and the transitions among them. Given a protein
with n residues, the associated Kripke structure K = (S, T, Sy, AP, L, Prob),
where

- S5={0,1} x {0,1} x --- x {0, 1}.

T =5 xS . In order to prevent proteins from jumping across structural
energy barriers, we only allow transitions to occur among structurally similar
configurations. Hence, (s,s’) € T iff s and s’ have no more than one residue
folded in a different configuration.

So ={0,0,0...,0}. While we could start from any state or set of states, our
experiments are based on starting from the unfolded configuration and then
studying the folding process.

AP ={Ry, R1,..., Ry} is the set of atomic propositions labeling the state.
R; indicates whether the i*" residue is folded or unfolded in the given state.
L: S — 24P We label each state with the folded or unfolded status of each
residue in the unique configuration corresponding to the state. Hence,in state
s, R; = true iff the i'" residue is folded in state s i.e. iff s(i) = 1.

Prob: T — [0, 1]. Each transition (s, s’) is labeled with a probability which
indicates the probability of going from state s to state s’.

(Probabilistic Transition

System: K:=(S, T, Sy,
AP, L, Prob)

Probabilistic Property:
Prob-Prop := Prob>P (s)

Depth Bound: N

v

[Kz=Unroll (K, n)

}

(Decision-Procedure (Ko,

Prob-Prop)

Build-Witness (K2, Prob-
Prop)

Return
Return TRUE FALSE y

Fig. 1. The Bounded Analysis Algorithm

Our analysis of protein folding pathways is based on bounded model checking
using a finite bit vector to represent probabilities. Our reachability queries are
simple i.e. whether it is possible to reach a state ¢ with probability at least p.

As shown in Fig. 1, we first unroll the state transition system K for n steps
and ask if it is possible to reach the state s with probability at least P along any
path of length at most n. If the decision procedure actually finds such a path,
the result of the decision procedure can be used to build a more explicit witness.
The witness can then be presented as a protein folding pathway satisfying the
given probabilistic property to the end-user (even visually, like the movie of a
folding protein). If the decision procedure does not find such a path in n steps,
then a formula is constructed for n + 1 steps unless the value of n exceeds a
given threshold NV on the length of the pathway.

However, bit vector Decision Procedures are very sensitive to the number of
bits that are involved in the computation. Our analysis needs us to compute the
values of the logarithm of the probability. If we use k bits to represent the value
of the logarithm of the probability, the error obtained due to rounding is given
by

log P’ -log P < 27k

= pP/p<22”

= p <22'p

=P -P<(2"-1P

In order to estimate the value of the error P’ — P, we present the numerical
values of the bound in Table 1.

Number of Bits Error Bound

10 0.000677130693

20 6.61036882 x 1077
30 6.45543619 x 10710
40 6.30384633 x 10713
50 4.88498131 x 1071°

Table 1. Upper bound on the estimated value of the error

Suppose we want to ask a question Prob(s) < P, i.e. whether the probability
of a reachability property in n steps of the bounded model checking algorithm

is less than P. We first pick a small bit-width for the value of log P and try to
ask the question if Prob(s) < P — ne. Here, the error term epsilon is derived
from the bit-width of the value of log P used and the number of steps n used for
the bounded model checking. If we succeed, we have shown that Prob(s) < P.
Otherwise, we ask the question if Prob(s) > P + ne. If we succeed, we have

Initialize k

[Call Decision

Procedure with k bits Increment k
r
Is Proby(s) > R Is Prob(s) <

P+n.g ? P-n.g?
l YES YES
[Report Prob(s) > P] [Report Prob(s) < P]

Fig. 2. Iterative probability approximation using abstraction-refinement.

If both our attempts fail, then we increment the size of the bit vector repre-
senting the logarithm of the probability term and repeat the above steps again.
Our approach is based on the abstract refinement paradigm which is an effective
technique to perform a lazy analysis of a given instance of a verification prob-
lem. It makes analysis only as expensive as is needed for analyzing the particular
problem instance. The algorithm is illustrated in Fig. 2.

6 Experimental Results

We implemented our bounded model checking algorithm using the UCLID bit-
vector decision procedure. We modeled the first m (m=10,20,30,50) residues of

a protein called 1fkb and used the following probability function:
P=q. el (BE-E)

Number of Bits Time Taken Result
(| log P| > 47)
10 9.2s No
20 26.44s Yes
30 55.94s Yes
50 218.18s Yes

Table 2. Result for probability value with accuracy of 10 bits - is |log P| > 4 for a
state where the first 5 bits are folded (BMC steps = 5) ?

Our experiments were aimed at discovering whether the analysis of protein
folding using SMT solvers proposed in this paper can be effectively deployed in
practice. We chose aw = 1,8 = 1/kT for our experiments. This does not provide
a probabilistic interpretation to our model. A truly probabilistic model would
require normalizing the values of a and making a suitable choice for the value

of 3.

Depth of BMC Time Taken Result
(| log P| > 47)
5 9.2s No
10 18.331s No
20 37.599s No
40 75.358s No

Table 3. Result for P value with accuracy of 10 bits - is | log P| > 4 for a state where
the first 5 bits are folded (state space = 2'0) ?

7 Conclusion

Bit-vector decision procedures are efficient at bounded analysis of protein folding
pathways with huge state spaces. They perform better than symbolic probabilis-
tic model checking approaches when the entire state space is actually reachable.

8 Future Work

This work used an off-the-shelf decision procedure. The formula generated for the
energy term is ugly and unnecessarily complex, and makes the problem harder
for the decision procedure. A decision procedure in which the energy function
has been implemented as a bit-vector function is bound to outperform these
experiments.

The error term involved in fixed width representations of probability P using
k bits is (22% — 1) x P. While we have used a fixed number of bits for the
representation, the error term is actually a function of the probability itself. It
is, hence, desirable to use more bits in the first few transitions of the bounded
model checking algorithm and then use fewer bits. A decision procedure imple-
menting such adaptive encoding can scale to larger state spaces without any loss
of precision.

While analyzing a single protein is interesting, protein dynamics of a cluster of
molecules is much more interesting for drug design. Decision procedures naturally
allow one to quantify over positions of a pair of molecules and hence study their
possible interactions.

This study clearly identifies a need and usefulness of a decision procedure for
analyzing protein folding pathways and protein dynamics.

References

1. Rajeev Alur and Doron Peled, editors. Computer Aided Verification, 16th Interna-
tional Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings,
volume 3114 of Lecture Notes in Computer Science. Springer, 2004.

2. Clark W. Barrett and Sergey Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Alur and Peled [1], pages 515-518.

3. Sergey Berezin, Clark Barrett, Igor Shikanian, Marsha Chechik, Arie Gurfinkel,
and David L. Dill. A practical approach to partial functions in CVC Lite.

4. Randal E. Bryant, Daniel Kroening, Joel Ouaknine, Sanjit A. Seshia, Ofer Strich-
man, and Bryan Brady. Deciding bit-vector arithmetic with abstraction. In Pro-
ceedings of TACAS 2007, volume 4424 of Lecture Notes in Computer Science, pages
358-372. Springer, 2007.

5. Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 10?° states and beyond. Inf. Comput.,
98(2):142-170, 1992.

6. Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.
Bryant. Semantics-aware malware detection. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy (Oakland 2005), pages 32-46, Oakland, CA,
USA, May 2005. ACM Press.

7. Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays.
In Werner Damm and Holger Hermanns, editors, CAV, Lecture Notes in Computer
Science. Springer, 2007.

8. Susmit Jha, Bryan Brady, and Sanjit Seshia. Symbolic reachability analysis of
lazy linear hybrid automata. In Proceedings of FORMATS 2007, Lecture Notes in
Computer Science. Springer, in press.

9. Susmit Jha and R. K. Shyamasundar. Adapting biochemical Kripke structures for
Distributed Model Checking. In Corrado Priami, Anna Ingolfsdottir, Bud Mishra,
and Hanne Riis Nielson, editors, Transactions on Computational Systems Biology,
pages 107-122, 2006.

10. Lydia Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces. Tech-
nical Report CS-TR-94-1519, 1994.

11.

12.

13.

Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure. In Alur
and Peled [1], pages 475—478.

C.J. Langmead and S. K. Jha. Predicting protein folding kinetics via model check-
ing. In Proceedings of Workshop on Algorithms in Bioinformatics (WABI) 2007,
Lecture Notes in Bioinformatics. Springer, in press.

Guang Song and Nancy M. Amato. Using motion planning to study protein folding
pathways. In RECOMB °01: Proceedings of the fifth annual international confer-
ence on Computational biology, pages 287—296, New York, NY, USA, 2001. ACM
Press.

