
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-119

Using Type Information
to Enhance the Availability of Partitioned Data

Maurice Herlihy
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

8 April 1985

Abstract
A partition occurs when functioning sites in a distributed system are unable to communicate. This
paper introduces a new method for managing replicated data in the presence of partitions. A novel
aspect of this method is that it systematically exploits type-specific properties of the data to support
better availability and concurrency than comparable methods in which operations are classified only
as reads or writes. Each activity has an associated level, which governs how it is serialized with
respect to other activities. Activities at the same level are serialized dynamically, but higher-level
activities are serialized after lower-level activities. A replicated data item is a typed object that
provides a set of operations to its clients. A .quorum for an operation is any set of sites whose
co-operation suffices to execute that operation, and a quorum assignment associates a set of
quorums with each operation. Higher-level activities executing "in the future" may use different
quorum assignments than lower-level activities executing "in the past." Following a failure, an
activity, that is unable to make progress using one quorum assignment may switch to another by
restarting at a different level.

Copyright © 1985 Maurice Herlihy

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81 -K-1539.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

Table of Contents
1. Introduction
2. Related Work
3. Assumptions and Terminology

3.1. Atomic Objects
3.2. Replicated Objects

4. Layered Consensus Locking
4.1. Overview
4.2. Correctness Properties
4.3. A Replicated Account

5. Restoring Normal Quorums
5.1. Rebinding Quorum Assignments
5.2. An Example .

6. Remarks
6.1. Availability
6.2. Restoration
6.3. Concurrency

I. Formal Definitions and Proofs
1.1. The Layered Consensus Locking Automaton
1.2. Correctness Arguments
References

List of Figures
Figu re 4-1: Possible Quorum Assignments for a File
F igure 4 -2 : Possible Quorum Assignments for an Account
Figu re 4 -3 : Possible Quorum Assignments for a Directory

1

1. Introduction
A distributed system consists of multiple computers (called sites) that communicate through a

network. Distributed systems are typically subject to two kinds of faults: site crashes and

communication link failures. A crash renders a site's data temporarily or permanently inaccessible,

while a communication link failure causes messages to be lost. Garbled and out-of-order messages

can be detected (with high probability) and discarded. Transient communication failures may be

hidden by lower level protocols, but longer-lived failures can cause partitions, in which functioning

sites are unable to communicate. A failure is detected when a site that has sent a message fails to

receive a response after a certain duration. The absence of a response may indicate that the original

message was lost, that the reply was lost, that the recipient has crashed, or simply that the recipient is

slow to respond.

A distributed program is one whose modules reside and execute at multiple sites in a distributed

system. The data managed by a distributed program may be subject to availability requirements: the

data should be accessible with high probability. Availability in the presence of failures can be

enhanced by storing the data redundantly at multiple sites, a technique called replication. For

example, the availability of a bank account might be enhanced by keeping additional copies of the

records at multiple sites. If one set of records becqmes temporarily or permanently inaccessible,

activities might be able to progress using a different set. Care must be taken that the replicated

records are managed properly: enhanced availability may be of little use if activities erroneously

observe obsolete or inconsistent data. Consequently, replication is assumed to be transparent: its

only observable effect is to make the data more available.

This paper introduces layered consensus locking, a new method for managing replicated data in the

presence of crashes and communication link failures. A novel aspect of layered consensus locking is

that it systematically exploits type-specific properties of the data to achieve better availability and

concurrency than comparable methods based on the conventional read/write classification of

operations. Each activity is an atomic action (or transaction). Each action has an associated level,

which governs how it is serialized with respect to other actions. Actions at the same level are

serialized dynamically, but higher-level actions are serialized after lower-level actions. A replicated

data item is a typed object whose state can be altered and observed through a set of operations it

provides to its clients. A quorum for an operation is a set of sites whose co-operation suffices to

execute that operation, and a quorum assignment associates a set of quorums with each operation.

Layered consensus locking* exploits the observation that higher-level actions executing "in the

future" may use different quorum assignments than lower-level actions executing "in the past."

2

Following a failure, an action that is unable to make progress using one quorum assignment may

switch to another by restarting at a different level. Each action may choose the quorum assignment

best suited to the partition in which it is executing. A complete characterization of realizable levels of

availability and concurrency is derived directly from the data type specification.

Section 2 presents a brief survey of related work, and Section 3 describes our assumptions and

terminology. Section 4 describes our technique for responding to failures, and Section 5 describes

our technique for restoring normal operation when failures are repaired. Section 6 concludes with a

discussion. A proof of correctness is given in the appendix.

2. Related Work
A useful survey of techniques for preserving consistency in partitioned networks appears in [7].

Early file replication methods were not transparent: the value read from a file is not necessarily the

value most recently written [2,19, 28]. Non-transparent replication methods for directories have also

been proposed [23, 5,11]. Replication methods transparent in the presence of site crashes but not

partitions include [14,15,4].

Optimistic replication methods -permit inconsistencies to develop during partitions, but these

inconsistencies are detected and reconciled when communication is restored. Reconciliation

methods may be ad hoc, as in Locus [25] or Data-patch [12], or systematic, as in proposals by

Davidson [8] and Wright [31].

Pessimistic replication methods prevent inconsistencies from developing. Wright [31] has proposed a

pessimistic scheme in which actions taken from a predefined set are classified by their read and write

sets. A dependency analysis determines which classes can execute concurrently in distinct

partitions. Unlike the scheme proposed here, Wright's scheme requires that each action's data

dependencies be known in advance.

Replication methods based on quorum consensus [13,6] are pessimistic; an operation invocation will

succeed in any partition containing an appropriate quorum. The method proposed here is an

extension of quorum consensus methods for arbitrary data types proposed by the author [16,17,18].

Replication methods proposed by Eager and Sevcik [9] and by Abbadi, Skeen, and Cristian [1] permit

a file to be written in a majority partition while being read in other partitions. The principal limitation of

these proposals is the lack of support for operations other than Read and Write. For example, the

3

Credit and Debit operations provided by a replicated bank account are both classified as writes, and

thus both require a majority partition. By contrast, the method proposed here permits an account to

be credited and debited concurrently in disjoint partitions. As discussed in Section 6, Eager and

Sevcik's technique for responding to partitions can be viewed as a special case of our technique, but

we propose an alternative method for restoring normal operation when partitions are rejoined.

3. Assumptions and Terminology
The basic units of computation are sequential processes called actions, or transactions. Actions are

atomic, that is, serializable and recoverable. Serializability means that actions appear to execute in a

serial order [24], and recoverability means that an action either succeeds completely, or has no

effect. An action that completes all its changes successfully commits; otherwise it aborts, and any

changes it has made are undone.

The basic containers for data are called objects. Each object has a type, which defines a set of

possible states and a set of primitive operations that provide the (only) means to create and

manipulate objects of that type. For example, a bank account might be represented by an object of

type Account whose state is given by a non-negative dollar amount, initially zero. The Account data

type provides Balance, Credit, and Debit operations. Balance returns the current account balance:

Balance = Operation() Returns (Dollar)

Credit increments the account balance:

Credit = Operation(sum: Dollar).

Debit attempts to decrement the balance:

Debit a Operation(sum: Dollar) Signals (Overdrawn).

If the amount to be debited exceeds the account balance, the invocation signals an exception [21],

leaving the account balance unchanged. For brevity, a Debit event that terminates normally is simply

called a debit, otherwise it is called an overdraft.

3.1. Atomic O b j e c t s

With minor modifications, our model of atomic objects is that of Weihl [29, 30]. An object has two

specifications: its serial specification characterizes its behavior in the absence of failures and

concurrency, and its behavioral specification characterizes the level of concurrency it supports. For

both serial and behavioral specifications, computations are modeled as sequences of events ordered

by a system of logical clocks [20].

the absence of failures and concurrency, an object's state is given by a serial history. A serial

4

history is a sequence of events, where an event is a paired operation invocation and response. For

example,

Credit($20);Ok()
Debit($15);Ok()
Balance();Ok($5)

is a serial history in which an account, initially empty, is credited $20, debited $15, and the balance is

found to be $5. A serial specification for an object is a set of legal serial histories for that object. For

example, the serial specification for the Account data type includes only serial histories in which the

account balance never becomes negative. We assume that serial specifications are prefix-closed:

any prefix of a legal serial history is legal.

In the presence of failure and concurrency, an object's state is given by a behavioral history, which is

a sequence of operation executions, Commit events, and Abort events. To keep track of interleaving,

each event is associated with an action. For example,

Credit($5);Ok() A
Credit($5);Ok() B
Commit A
Debit($10);Ok()B
Commit B

is a behavioral history in which action A and B each credit $5 to the account, A commits. B debits $10

from the account, and commits. The ordering of operation executions in a behavioral history reflects

the order in which the the object returned the responses, not necessarily the order in which it

received the invocations.

A behavioral specification for an object is a set of legal behavioral histories for that object. Behavioral

specifications are assumed to be prefix-closed and on-line: the result of appending a Commit event

for an active action to a legal behavioral history yields a legal behavioral history. The serial and

behavioral specifications for the objects considered in this paper are related by the notion of

atomicity. Let > denote a total order on committed and active actions, and let H be a behavioral

history. The serialization of H with respect to > is the serial history h constructed as follows:

• Discard all events associated with aborted actions.

• Reorder the events so that if B » A then the subsequence of events associated with A
precedes the subsequence of events associated with B, for all actions A and B.

• Discard all Commit events, and all action identifiers.

H is serializable with respect to » if h is a legal serial history (i.e. is included in the object's serial

specification). H is serializable if it is serializable with respect to some ordering > . H is atomic if the

5

subhistory associated with committed events is serializable. An object is atomic if every history in its

behavioral specification is atomic. All objects considered in this paper are atomic.

3.2. Repl icated O b j e c t s

A replicated object is one whose state is stored redundantly at multiple sites. Replicated objects are

implemented by two kinds of modules: repositories and front-ends. Repositories provide long-term

storage for the object's state, while front-ends carry out operations for clients. Front-ends

correspond roughly to transaction managers and repositories correspond roughly to data managers

[3].

A replicated object's state is represented as a log, which is a sequence of entries, each consisting of

a logical timestamp, an event, and an action identifier. The log entries are partially replicated among

the repositories. For example, the following is a schematic representation of an Account replicated

among three repositories. For readability, a "missing" entry at a repository is shown as a blank

space.

El R2 E3
1:01 Credit($1);Ok() A 1:01 Credit($1);Ok() A

1:02 Credit($2);Ok() B 1:02 Credit($2);Ok() B
1:03 Credit($3);Ok() C . 1 : 0 3 Credit($3);Ok() C
1:04 Commit A 1:04 Commit A

1:05 Abort B 1:05 Abort B

This account has been credited three times by three actions, of which A has committed, B has

aborted, and C is still active. Note that no single repository has an entry for all events.

We emphasize that logs represent a conceptual model for the replicated data, not a literal design for

an implementation. More compact and efficient representations can be achieved by simple

optimizations (such as discarding entries for aborted actions) and by type-specific optimizations

(such as replacing a prefix of an account's committed entries with a single timestamped balance).

Bloch, Daniels, and Spector have proposed a compact representation for replicated directories [6],

and the author has proposed compaction techniques for other data types [16,17]. Nevertheless, to

avoid further digression, our examples use logs.

An operation is executed in three steps: the front-end reads information from an initial quorum for the

invocation, performs a local computation to choose a response, and writes to a final quorum for the

event. (Either the initial or final quorum may be empty.) A quorum for an event is any set of

repositories that includes both an initial and a final quorum.

6

An operation execution is successful if the client is able to locate an available front-end for the object,

and if the front-end is able to locate a quorum of available repositories. An action must be aborted if it

is unable to complete an operation execution. If the failed operation is executed as a nested action

[26, 22], the enclosing action need not be aborted. Because front-ends can be replicated to an

arbitrary extent, perhaps placing one at each client's site, the availability of a replicated object is

dominated by the availability of its repositories.

4. Layered Consensus Locking
This section describes a technique by which an action whose progress is blocked by failures may

switch to a quorum assignment better suited to the currently available set of repositories. (Section

5 addresses the problem of restoring the normal quorum assignments when partitions are rejoined.)

4.1. O v e r v i e w

Each action has an associated level, which is denoted by a natural number. Actions at the same level

are serialized dynamically through lock conflicts, but level n actions are serialized before level n + 1

actions. More precisely:

Definit ion 1: A behavioral history is layered hybrid atomic if it is serializable in the
following order: actions at distinct levels are ordered by level, and actions at the same
level are ordered by their Commit timestamps.

An object is layered hybrid atomic if every history in its behavioral specification is layered hybrid

atomic. Layered hybrid atomicity is an extension of hybrid atomicity [29], in which actions are

serialized in the order induced by their Commit timestamps. Like hybrid atomicity, layered hybrid

atomicity is local: if all objects in a system are layered hybrid atomic, then the system as a whole is

atomic.

Layered hybrid atomicity is guaranteed by a two-part mechanism:

1. An action may be delayed to prevent synchronization conflicts with other active actions.
For example, if action A at level 1 credits $10 to an empty account, and action C at level 2
attempts to debit $10, then C's response depends on A's outcome, and C is delayed until
A commits or aborts.

2. An action may be aborted to prevent synchronization conflicts with committed actions. In
the example above, once A and C have committed, an action B at level 1 that attempts to
debit the account is aborted, because neither response (Ok or Overdrawn) permits B to
be serialized between A and C. (If, instead, B were to credit the account, then it could
proceed without violating atomicity.)

Synchronization conflicts between active actions are resolved by a modified form of consensus

locking [18]. Every repository maintains an initial lock for each invocation and a final lock for each

7

event. Let e.inv denote the invocation part of an event e. To execute e, an action must acquire an

initial lock for e.inv at each repository in its initial quorum and a final lock for e at each repository in its

final quorum. Locks are granted on the basis of a predefined lock conflict relation between certain

initial and final locks. An action that attempts to acquire an initial lock will be delayed if an action at

the same or lower level holds a conflicting final lock. Similarly, an action that attempts to acquire a

final lock will be delayed if an action at the same or higher level holds a conflicting initial lock. Initial

and final locks are strict two-phase: an action holds its locks until it commits or aborts.

Synchronization conflicts between active and committed actions are resolved by level locks. Each

repository maintains a level lock for each invocation. The level lock for inv is a counter that records

the highest level for an action that committed at that repository while holding the initial lock for inv.

When a level n action commits holding an initial lock for inv, the level lock for inv is set to the greater

of its current value and n. The conflict relation for initial and final locks also governs conflicts

between level locks and final locks. Once a repository's level lock for an invocation has been set to n,

it will refuse all requests for conflicting final locks from actions at levels less than n..

Every replicated object provides a sequence of quorum assignments, one for each level. Level n

actions use level n quorum assignments. In our examples, level 1 is used for normal unpartitioned

activity, and higher level quorum assignments are used when failures occur. If an action is unable to

locate a particular quorum within its partition, it may still be able to make progress by restarting at a

higher level.

An operation is executed in the following steps:

• The client sends the invocation and action identifier to a front-end, which forwards them
to an initial quorum of repositories.

• Each repository grants the action an initial lock for the invocation as soon as no other
action holds a conflicting final lock. The repository sends its log back to the front-end.

• The front-end merges the logs from the initial quorum. The view is the serialization
constructed by: (i) discarding all entries generated by aborted and higher-level actions,
(ii) ordering actions by level, and (iii) ordering actions the same level by the timestamp
order of their Commit entries, placing the client's own action last. A single-site serial
implementation of the data type chooses a response from the view. The front-end
generates a new timestamp, appends an entry for the event to the (unserialized) log, and
sends the log to a final quorum of repositories.

• Each repository refuses the update if a level lock for a conflicting invocation has
advanced beyond n. Otherwise, it grants the action a final lock for the new event as soon
as no other action holds a conflicting initial lock. It merges the front-end's updated log
with its resident log and returns an acknowledgment to the front-end.

8

• As soon as a final quorum of repositories has acknowledged the update, the front-end
returns the response to the client.

Each action records its level at each repository before updating it for the first time. As part of its

commit protocol [10, 27], an action reads the logical clocks at each repository visited, and sends back

a Commit entry with a later timestamp. Each repository converts the action's initial locks to level

locks and releases its initial and final locks. The Commit entry is recorded at each repository updated

by the action. When an action aborts, initial and final locks are released, and an Abort entry is

recorded at each repository updated by the action.

Layered consensus locking exploits the observation that higher-level actions executing "in the

future" may use different quorum assignments than lower-level actions executing "in the past." Lock

conflicts and quorum assignments must satisfy two essential requirements:

L E a c h operation execution must encounter enough lock conflicts to preserve layered
hybrid atomicity.

2. Each invocations's view must include enough entries to choose a correct response.

In the next section we give a precise definition of the constraints governing lock conflicts and quorum

intersection.

4.2. C o r r e c t n e s s Propert ies

We begin with some preliminary definitions. Let >- be a relation between invocations and events and

let h(i) denote the Mh event of the history h.

Definit ion 2: A history g is a closed subhistory of h with respect to >- if there exists an
injective order-preserving map s such that g(i) = h(s(i)) for all / in the domain of g, and if
e.inv >- e\ j > j \ h(j) = e, h{p) = e\ and s(i) = y, then there exists P such that s(i') • f.

Informally, if a closed subhistory contains an event e, it also contains every earlier event e' such that

e.inv >-e\

Let h • [inv;res] denote the result of appending the event [inv;res] to the history ft, and let S be a

specification.

Definit ion 3: A relation >- is a serial dependency relation for S if:

g • [invjres] € S => h • [inv;res] € S
for all invocations inv, all responses res, all legal histories h, and all closed subhistories g
that contain all events e of h such that inv >- e.

Informally, a correct response to an invocation can be chosen by observing any closed legal

subhistory that contains all the events on which the invocation serially depends. Of principal interest

are minimal serial dependency relations, having the property that no smaller relation is a serial

9

dependency relation. A data type may have more than one minimal serial dependency relation

[16,17]. Some examples of serial dependency relations are given below.

In the appendix we show that every behavioral history generated by layered consensus locking is

layered hybrid atomic if and only if the lock conflict and quorum intersection relations satisfy a

common serial dependency relation. In other words, there must exist a serial dependency relation >-

such that if inv >- e, then:

• Initial and level locks for inv at level n conflict with final locks for e at levels less than or
equal t o n .

• Each initial quorum for inv at level n intersects each final quorum for e at levels less than
or equal t o n .

The key observation is that these constraints permit higher-level quorum assignments to have smaller

final quorums and larger initial quorums than lower level quorum assignments.

Read Write

L e v e l ! (1,0) (0,3)

Level 2 (2,0) (0,2)

Level 3 (3,0) (0,1)

Figu re 4-1: Possible Quorum Assignments for a File

Perhaps the simplest example of a serial dependency relation is provided by the F/7e type, for which

Read invocations depend on Write events, but Write invocations do not depend on any prior events,

because the response to Write is always Ok. A file replicated among three identical repositories might

provide the range of quorum assignments shown in Figure 4-1, where (m,n) means that an event has

initial quorums consisting of any m repositories and final quorums consisting of any n repositories.

Levels three and higher are bound to the same quorum assignment. Actions in the majority partition

can read and write the file (at level 2), while actions in a minority partition may either read the file but

not write it (at level 1), or write the file but not read it (at levels 3 and higher).

For the Account data type, the correct response to a Debit invocation is Ok if the account balance

covers the debit, and Overdrawn otherwise. Consequently, Debit invocations depend only on events

that alter the account balance, i.e. credits and debits, but not overdrafts or balance inquiries. Balance

invocations have the same dependencies as Debit. Credit invocations depend on no earlier events

because the correct response to a Credit invocation is always O/c. An account replicated among

10

Credit Debit Balance and Overdraft

Level 1 (0,3) (1,3) (1,0)

Level 2 (0,2) (2,2) (2,0)

Level 3 (0,1) (3,1) (3,0)

Figu re 4 -2 : Possible Quorum Assignments for an Account

three identical repositories might provide the range of quorum assignments shown in Figure 4-2. An

action executing in a majority partition may execute any operation at level 2, and an action executing

in a minority partition may read the account balance at level 1, or credit the account at levels 3 and

higher. Note that the quorum assignment at level 3 would not be permitted by a simple read/write

classification of operations. The permissible quorum assignments for FIFO queues, priority queues,

and stacks are similar; simply replace Credit by Enq or Push, Debit by Deq or Pop, and Balance by

Size.

- - Insert Change LQQkyp Sjzg

Level 1 (1,3) (1,3) (1,0) (1,0)

Level 2 (1,3) (1,2) (2,0) (1,0)

Level 3 (1,3) (1,1) (3,0). (1,0)

Leve l ! (1,3) (1,3) (1,0) (1,0)

Level 2 (1,3) (1,2) .(2,0) (1,0)

Level 3 (2,2) (2,2) (2,0) (2,0)

Figu re 4 -3 : Possible Quorum Assignments for a Directory

A Directory stores pairs of values, where one value (the key) is used to retrieve the other (the item).

The insert operation inserts a new key/item pair in the directory, signaling an exception if the key is

already present. The Change operation alters the item bound to the given key, signalling an

exception if the key is absent. Lookup returns the item bound to the given key, signalling if the key is

11

absent, and Size returns the number of key-item pairs currently in the directory. Insert invocations

depend on prior Insert events, and Change invocations depend on prior Insert events but not on prior

Change events. Lookup depends on prior Insert and Change events, and Size depends only on prior

Insert events. Two alternative ranges of quorum assignments for a Directory replicated among three

identical repositories are shown in Figure 4-3.

4.3. A Repl icated A c c o u n t

To illustrate how this replication method enhances the availability of partitioned data, we trace a brief

history for an Account replicated among three repositories using the quorum assignments shown

above. The level locks for each repository are shown at the top of each column. (Level locks for

Credit are omitted because initial Credit quorums are empty.) For brevity, initial and final locks are

not shown. The account balance is initially zero. Action A records that it is executing at level 1,

credits ten dollars, and commits.

El E2 E3
Debit: 1 Debit: 1 Debit: 1
Balance: 1 Balance: 1 Balance: 1

0:00 Level(1) A 0:00 Level(1) A 0:00 Level(1)
0:01 Credit($10);Ok() A 0:01 Credit($10);Ok() A 0:01 Credit($10);pk() A
0:02 Commit A 0:02 Commit A 0:02 Commit A

The repositories are partitioned into a group containing R1 and a group containing R2 and R3. In the

minority partition, action B discovers it cannot locate a level 1 final Credit quorum, restarts at level 3,

and credits five dollars at R1.

El
Debit: 1
Balance: 1

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A
0:03 Level(3) B
0:04 Credit($5);0k() B
0:05 Commit B

Meanwhile, in the other partition, action C discovers it cannot locate a level 1 initial Debit quorum,

restarts at level 2, and debits ten dollars using R2 and R3 as its initial and final quorums.

12

R2
Debit: 1
Balance: 1

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A
0:06 Level(2) C
0:07Debit($10);Ok()C

B3
Debit: 1
Balance: 1

0:00 Level (1) A
0:01 Credit($10);Ok() A
0:02 Commit A
0:06 Level(2) C
0:07Debit($10);Ok()C

After the partitions are rejoined, C executes a Balance with an initial quorum of R1 and R2, observing

that the account is empty. C does not observe the five dollars credited by B because B is serialized

"in the future." When C commits, the level locks are set to 2 for Debit at R2 and R3, and for Balance

at R1 and R2.

El
Debit: 1
Balance: 2

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A
0:03 Level(3) B
0:04 Credit($5)^)k() B
0:05 Commit B

E2
Debit: 2
Balance: 2

0:00 Level (1) A
0:01 Credit($10);Ok() A

-0:02 Commit A

0:06 Level(2) C
0:07 Debit($10);Ok() C
0:09 Commit C

S3
Debit: 2
Balance: 1

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A

0:06 Level(2) C
0:07Debit($10);Ok()C
0:09 Commit C

Finally, action D at level 3 chooses all three repositories as the initial quorum for a Balance

invocation, observing that the account contains $5. When D commits, the level locks for Balance are

set to 3.

El
Debit: 1
Balance: 3

E2
Debit: 2
Balance: 3

R3
Debit: 2
Balance: 3

Henceforth, the level locks for Balance will prevent any action at levels 1 or 2 from debiting or

crediting the account.

5. Restoring Norma! Quorums
So far, layered consensus locking suffers from an important limitation: level locks set by actions

restarting at higher levels will eventually block the use of lower-level quorum assignments. In the

example above, once the account balance has been observed by a level 3 action, level lock conflicts

will prevent later credits and debits by any action using lower-level quorums. Nevertheless, it may be

desirable to continue using normal quorum assignments for objects unaffected by failures, and to

13

restore normal quorum assignments to other objects when failures are repaired. This section

describes a protocol for restoring an object's normal quorum assignment when enough repositories

are available.

Each object maintains a binding between level numbers and quorum assignments. Initially, actions

execute at level 1, using each object's level 1 quorum assignment. Suppose a partition forces some

actions to restart at level 2, setting level locks that block the use of the level 1 quorum assignment for

a particular object. Eager and Sevcik have proposed a restoration technique in which that object's

normal quorum assignment would be restored by retroactively converting the level 2 actions to level

1. Here, we propose an alternative technique. An object's normal quorum assignment is restored not

by retroactively lowering the levels of the actions that set its level locks, but by altering the object's

bindings between levels and quorum assignments. For example, by rebinding level 2 to the level 1

quorum assignment, later actions executing at level 2 will use the normal quorum assignment for that

object and for all objects that have carried out a similar rebinding. The advantage of this technique is

that each object's normal quorum assignment can be restored independently of the others. A

comparison of our technique with that of Eager and Sevcik is given in Section 6.

Following a partition, actions that choose to restart at a higher level will* set level locks that in turn

force other actions to restart, eventually propagating the higher level through the system. When an

action executing at the higher level encounters an object whose repositories are unaffected by the

partition (or perhaps no longer affected), it may rebind the object's original quorum assignment to its

own level. If the partition is repaired, and no additional failures occur, the system will stabilize in a

state where all actions execute at the higher level, but using the original unpartitioned quorum

assignments. In short, actions' levels are monotonically increasing, but quorum assignments are

adjusted dynamically on a per-object basis.

5.1. Rebinding Quorum Ass ignments

Each object maintains a quorum assignment table binding each level to a quorum assignment. An

object's quorum assignment table is replicated among its repositories and cached at its front-ends.

An initial coquorum for an invocation is any set of repositories that intersects each of the invocation's

initial quorums. Final coquorums and coquorums are defined similarly for events. The quorum

assignment for level n is rebound in the following steps, which must be executed atomically.

• Merge the level n entries from an old final coquorum for each event.

• Write out the entries to a new initial coquorum for each invocation.

• Update the binding for level n at an old coquorum for each event.

14

The first step ensures that each level n entry appears in the merged log. The second step ensures

that each level n entry appears at a new final quorum of repositories. The third step ensures that the

caches maintained by the front-ends remain consistent, as described below. Note that restoration

must preserve the constraints on quorum intersection; if levels 1, 2, and 3 are bound to distinct

quorum assignments, then one cannot rebind level 3 to the quorum assignment for level 1 without

also rebinding level 2. A single round of messages might be used to rebind multiple levels.

Each binding in an object's quorum assignment table has a timestamp which is updated each time the

binding is changed. Whenever a front-end sends a message to a repository on behalf of a level n

action, it includes its cached timestamp for level n's binding. Whenever a repository receives a

message with an out-of-date timestamp, it notifies the front-end of the new binding. Because the

newer binding appears at a coquorum for every event, any level n quorum chosen by a front-end

whose cache is out of date will include at least one repository whose binding is more current. When a

front-end receives notification of the new binding, it updates its cache and retries the operation.

5.2. An Example

For brevity, we use the following abbreviations for the account's quorum assignments.

Abbreviation Credit Debit Balance
01 (0,3) (1,3) (1,0)
Q2 (0,2) (2,2) (2,0)
0 3 (0,1) (3,1) (3,0)

lii the following diagram, the quorum assignment table binds levels 1, 2, and 3, to Q1, Q2, and 03,

respectively, and each binding has timestamp 0:00. LeveJs higher than 3 are implicitly bound to 03.

EL
0:00 Q1
0:00 Q2
0:00Q3

Debit: 1
Balance: 3

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A
0:03 Level(3) B
0:04Credit($5);Ok()B
0:05 Commit B

BZ
0:00 Q1
0:00 Q2
0:00 03

Debit: 2
Balance: 3

0:00 Level (1) A
0:01 Credit($10);Ok() A
0:02 Commit A

0:06 Level(2) C
0:07 Debit($10);Ok() C
0:09 Commit C

B3
0:00 Q1
0:00 Q2
0:00Q3

Debit: 2
Balance: 3

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A

0:06 Level(2) C
0:07Debit($10);Ok()C
0:09 Commit C

To rebind level 2 to Q1, the first step is to collect the level 2 entries from a final coquorum in Q2 for

15

both Credit and Debit, say R1 and R2. These entries are then written out to an initial coquorum in Q1

for both Credit and Deb/7, here consisting of all three repositories. The final step is to update the

quorum assignment table at a coquorum in Q2 for each event, say R1 and R2.

HI
0:00 Q1
0:10 Q1
0:00 Q3

Debit: 1
Balance: 3

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A
0:03 Level(3) B
0:04 Credit($5);Ok() B
0:05 Commit B
0:06 Level(2) C
0:07 Debit($10);Ok() C
0:09 Commit C

R2
0:00 Q1
0:10 Q1
0:00 0 3

Debit: 2
Balance: 3

0:00 Level-(1) A
0:01 Credit($10);Ok() A
0:02 Commit A

0:06 Level(2) C
0:07Debit($10);Ok()C
0:09 Commit C

B3
0:00 Q1
0:00 Q2
0:00 0 3

Debit: 2
Balance: 3

0:00 Level(1) A
0:01 Credit($10);Ok() A
0:02 Commit A

0:06 Level(2) C
0:07Debit($10);Ok()C
0:09 Commit C

Now suppose a level 2 action attempts to credit the account from a front-end whose cache is out of

date. The front-end sends the Credit entry to two repositories along with the timestamp of its cached

binding for level 2. At least one repository will detect that the cached timestamp is cut of date, and

respond with the up-to-date binding. The front-end will update its cache and retry the Credit using

the newer quorum assignment.

Although restoration requires the co-operation of all three repositories in this example, fewer

repositories are needed for other quorum assignments. For example, if an account is replicated

among five identical repositories, a level can be rebound from Credit = (0,2), Debit = (4,2), Balance

= (4,0) to Credit = (0,3), Debit = (3,3), Balance = (3,0) with the co-operation of only four out of five

repositories.

6. Remarks
Layered consensus locking is general, systematic, and effective. It is general because it is applicable

to objects of arbitrary type; it is systematic because constraints on correct implementations are

derived directly from the specification of the data type in question; it is effective because it provides

better availability, better concurrency, and fewer restarts than comparable methods based on the

conventional read/write classification of operations.

16

6.1. Avai labi l i ty

In Eager and Sevcik's replication method [9], actions execute in one of two modes: normal or

partitioned. In normal mode, actions read from any copy of a file, and write to all copies. In

partitioned mode, actions use Gifford's quorum consensus method [13] to read and write a majority of

copies. Each partitioned-mode action keeps track of the missing writes it was unable to apply to each

copy of each file. Missincf write information is propagated by having each action post its own missing

write information at each site visited, and by merging the site's posted information with its own. When

a normal-mode action encounters missing write information at a site, the action must either restart in

partitioned mode, or it must carry out all the missing writes before proceeding. A complex protocol

ensures that the missing writes are executed in the correct order, and that any other missing writes

discovered during the protocol are themselves executed correctly. Once a missing write has been

executed, it need no longer be posted.

The quorum assignments permitted by Eager and Sevcik's scheme satisfy the constraints imposed by

layered consensus locking. In Figure 4-1, the level 1 quorum assignment corresponds to normal

mode, and the level 2 assignment corresponds to partitioned mode. (By replacing version numbers

with logical timestamps, Eager and Sevcik's method could be extended to permit the minority write

quorums at level 3.) For objects other than files, howeverrtayered consensus locking provides

enhanced availability by systematically exploiting type-specific properties. For example, if Credit and

Debit are simply classified as writes, then they cannot execute concurrently in distinct partitions.

Similar remarks apply to the operations of the Directory data type.

6.2. Restorat ion

Although Eager and Sevcik's restoration method has the advantage that a normal-mode action that

becomes aware of missing writes may still execute to completion if it is able to carry out the missing

writes, it has the disadvantage that it imposes a high level of interdependence among distinct objects.

A repository for one object may have to keep track of an arbitrary amount of missing write information

for other objects. Propagation of missing write information may force an action to use partitioned-

mode quorums even when all repositories for all objects it uses are available. Restoring normal

quorums for one object may require visiting an arbitrary number of other sites, making it difficult or

impossible to predict the amount of work required, or the likelihood that the necessary sites will be

available. Finally, restoration may become progressively more difficult as missing write information

propagates.

The principal advantage of the alternative restoration method proposed here is that each object

manages its quorum assignments independently of the others. The normal quorum assignment can

17

be restored to one object without affecting the quorum assignments for other objects, making it

possible to predict both the amount of work required, and the likelihood that the necessary

repositories will be available. Repositories for one object do not keep track of information about other

objects, and restoration does not become progressively more difficult.

6.3. C o n c u r r e n c y

Several recent proposals for replication methods treat concurrency control and replication

independently [13, 9,17,1]. Layered consensus locking goes against this trend by integrating

replication and concurrency control in a single mechanism. Although independent methods are

simpler, integrated methods support more concurrency. In layered consensus locking, both the lock

conflict and quorum intersection relations are governed by a common constraint: they must satisfy

the same serial dependency relation. If two-phase read/write locks were used in place of initial and

final locks, then the availability of replicated objects would be unaffected, but actions would

encounter more delays and restarts because the concurrency control mechanism would be unable to

exploit the same type-specific information used to enhance availability. For example, two-phase

read/write locks unnecessarily prohibit concurrent credits, and missing write awareness

unnecessarily requires a lower-level action to restart if it becomes "aware" of a credit by a higher

level action (see actions B and C in the example above).

Although every behavioral history generated by layered consensus locking is layered hybrid atomic,

the converse is false: there exist layered hybrid atomic behavioral histories that cannot be realized by

layered consensus locking. For example, if action A credits $10 and commits, concurrent actions B

and C could each debit $5 without violating layered hybrid atomicity. If, however, A had only credited

$5, then B and C could not be allowed to debit the account concurrently. Because layered

consensus locking (like most locking mechanisms) makes scheduling decisions exclusively on the

basis of predefined conflicts between invocations and events, it cannot distinguish between these

scenarios.

More concurrency can be achieved by taking more information into account. Unfortunately, no

concurrency control mechanism residing entirely at the repositories can take full advantage of state

information, because a replicated object's state can be ascertained only by merging the entries from

an appropriate quorum of repositories. For example, a repository for a replicated account may be

missing an arbitrary number of Credit and Debit entries, and hence no strictly local concurrency

control mechanism can tell whether an account's committed balance permits concurrent debits.

Consensus scheduling [18] is an alternative concurrency control/replication method in which

18

scheduling decisions are made at front-ends using information collected from multiple repositories.

Consensus scheduling can implement any behavioral specification, including the layered hybrid

atomic specifications not realizable by layered consensus locking. This additional power comes at a

cost: as discussed in [16,18], consensus scheduling may require more message traffic, it may place

additional constraints on quorum assignment, and it may require more complex local computations.

Additional experience is needed to evaluate these trade-offs.

The notion of layering can be applied to properties other than hybrid atomicity. For example, Static

atomicity [29, 30] is an alternative local atomicity property in which each action executes a Begin

event when it starts executing. Actions must be serializable in the timestamp order of their Begin

entries. A consensus locking mechanism satisfying static atomicity proposed in [16] can readily be

modified to encompass multiple levels.

More generally, hybrid atomicity can be replaced by an arbitrary sequence of atomicity properties.

Let {9.} be a sequence of atomicity properties, not necessarily distinct. A behavioral history is layered

^-atomic if it is serializable in the following order, actions at distinct levels are ordered by level, and

actions at level / are ordered by 9.. Layered ^.-atomicity is a local atomicity property if each 9. is local.

Although consensus scheduling can realize any-layered ^-atomic behavioral specificatior*, more work

is needed to evaluate the extent to which such generalizations are useful.

I. Formal Definitions and Proofs
This appendix presents a formal definition and proof of layered consensus locking. The first section

gives a formal definition of layered consensus locking in terms of a non-deterministic automaton that

accepts certain behavioral histories. The second section defines and proves correctness properties

for such automata.

An automaton is a tuple <Q, q 0 , S, 5>, where Q is a set of states, q0 is the initial state, S is a set of input

symbols, and S C Q X S X Q i s a transition relation. The transition relation can be extended to sets

of states:

5 (0 , s o) * 0

and to sequence of input symbols:

S(X, A) = X

5(X,s*s 0) = 5(8(X ,s) ,s 0)

19

Here A denotes the empty string. A string s is accepted by an automaton if 8(qQi s) * 0 .

1.1. The Layered Consensus Locking Automaton
We use the following primitive domains:

• ACTION is the set of actions,

• INV is the set of invocations,

• NAT is the set of natural numbers,

• REPOS is the set of repositories,

• RES is the set of responses,

• TIMESTAMP is the set of timestamps.

We use the following derived domains:

• EVENT = INV X RES,

• QUORUM = 2 R E P 0 S .

If x and Y are domains, (x Y) denotes the set of partial maps from x to Y. A log L is a map from a

finite set of timestamps to event/action pairs.

L: TIMESTAMP - * EVENT X ACTION

Two logs L and Mare coherent if they agree at every timestamp for which they are both defined. The

merge operation U is defined on pairs of coherent logs by:

(L U M){t) = if L(t) is defined then L{t) else M(t).

Because the merge operation is defined only for coherent logs, it is commutative and associative.

Every log corresponds to a behavioral history in the obvious way. For brevity, we sometimes refer to a

log L in place of its behavioral history, e.g. "L is legal" instead of "the behavioral history represented

by L is legal." The exact meaning should be clear from context.

A layered consensus locking automaton accepts behavioral histories. Its set of states is a subset of

the Cartesian product of the following component sets:

• Log: REPOS —• (TIMESTAMP EVENT X ACTION)

• ClOCk: TIMESTAMP

• l-Lock: REPOS (INV -r* 2 A C T I 0 N)

• F-Lock: REPOS - > (EVENT 2 A C T I 0 N)

20

• L-Lock: REPOS - + (INV NAT)

• Committed: 2 A C T , 0 N

• Aborted: 2 A C T , O N

The Log component associates a log (initially empty) with each repository. The Clock component

models a system of logical clocks, establishing an unambiguous ordering for events. /-Loc/c, F-Lock,

and L-Lock keep track of the initial locks, final locks, and level locks maintained at each repository.

For example, l-Lock(R)Onv) is the set of actions that hold initial locks for inv at R. Initially, no initial or

final locks have been granted, and all level locks are set to 1. The sets Committed and Aborted keep

track of the actions that have committed and aborted; each is initially empty.

The automaton's transition relation is defined using the following sets.

• A serial specification Spec € EVENT*.

• Initial: INV --• 2 Q U O R U M assigns initial quorums to invocations.

• Final: EVENT 2 Q U O R U M assigns final quorums to events.

• Level: ACTION —• NAT assigns levels to actions.

• A lock conflict relation > - L C INV X EVENT.

• A quorum intersection relation >~ Q C INV X EVENT (derived from Initial and Final).

The transition relation for each event is described in two parts: (i) the states in which the event is

accepted, and (ii) the automaton's possible states after accepting the event. We now describe the

transition relation for operation executions, commits, and aborts.

An operation execution [e A] is accepted only in states satisfying the following properties.

• A has not committed. Entries for aborted actions are accepted and ignored. Henceforth,
we assume A is active.

• There exists an initial quorum IQ € Initial(e.inv) such that no repository in IQ has granted
a conflicting final lock to an action whose level is less than or equal to that of A.

• There exists a final quorum FQ € Final(e) such that no repository in FQ has granted a
conflicting initial lock to an action whose level is greater than or equal to that of A.

• No repository in the final quorum has a conflicting level lock whose value exceeds A 's
level.

• The event produce a legal serial history when appended to the serial history constructed
by merging the logs from the initial quorum, serializing the committed actions first by

21

level, and then by the order of their commit events, discarding the events of actions
whose levels exceed that of A, and appending the events of A.

Once the operation execution is accepted, the automaton undergoes a state transition.

• The clock is advanced.

• The action is granted an initial lock for the invocation at each repository in the initial
quorum.

• The action is granted a final lock for the event at each repository in the final quorum.

• An entry for e is generated with the new clock value and appended to Log(IQ). The
updated log is merged with the log at each repository in the final quorum.

A Commit event for A is accepted only if the action has not already committed or aborted. When an

action commits:

• The clock is advanced.

• A Commit entry with the new timestamp is recorded at each repository R where A holds a
final lock.

• The action is added to the set of committed actions.

• Level locks in the initial quorum are updated.

• All initial and final locks are released.

An Abort event for A is accepted only if the action has not already committed. When an action aborts,

the clock is advanced, initial and final locks are released, abort entries are recorded at each

repository where the action holds a final lock, and the action is added to the set of aborted actions.

1.2. Correctness Arguments
In this section we show that the behavioral histories accepted by a consensus locking automaton are

layered hybrid atomic if and only if the lock conflict and quorum intersection relations satisfy a

common serial dependency relation.

We start with a lemma about serial dependency.

Lemma 4: Let % be a serial dependency relation, e an event, and /?1 and h2 serial
histories such that /?1 • h2 and /?1 • e are legak fSJ...„ * . stains no e' such that e'.inv 9t> e,
then rt1 • e • h2 is legal.

Proof : By induction on the length of h2. The result is immediate if h2 is empty. Otherwise
let h2 = h2 • e\ The history • h2 is a closed legal subhistory of • e • h2 containing
all events e" such that e'.inv % e", Because % is a serial dependency relation, the legality
of h 1 • h2 • e* implies the legality of • e • h2 • e - ^ • e • h2.

22

Let > denote the order used to define layered hybrid atomicity. If H is a behavioral history, and A an

active action, VIEW(H,A) is the serial history constructed from H by serializing the committed actions

in the order discarding the events of actions whose levels exceed that of A, and appending the

events of A. An outcome of H is a serial history constructed by committing some set of active actions

and serializing the result in the order If G is a subhistory of H, any outcome of H induces an

outcome of G. Note that* H is on-line layered hybrid atomic if and only if all its outcomes are legal

serial histories.

Definit ion 5: Let *$> be a relation between invocations and events. A subhistory G of a
behavioral history H is view-closed with respect to % if VIEW(G,A) is a closed subhistory of
every outcome of H.

We omit mention of 9k and H when they are clear from context. The following lemma is an immediate

consequence of our definitions:

Lemma 6: The result of merging view-closed sublogs is a view-closed sublog.

Let >- denote > - L H > - Q , the intersection of the lock conflict and quorum intersection relations.

Consider an automaton that has accepted a history /•/•[eA], where e is an operation invocation,

/?1 • e • h2 is an outcome of H*[e A] , and • h2 is the induced outcome of H. As before, let Log(IQ)

denote the merger of the logs from an initial quorum for e.inv.

Lemma 7: If e1 is an event in such that e.inv >- e, then e' appears in VIEW(Log(IQ),A).

Proof : The intersection of the initial quorum for e.inv and the final quorum for e* is non
empty. The action that executed e' must have committed relative to A, otherwise some
repository has granted conflicting locks.

Lemma 8: There is no event e f in h2 such that e'.inv >- e.

Proof : If e' exists, the intersection of the initial quorum for e'.inv and the final quorum for e
is non-empty. If B is the action that executed e\ then A and B hold conflicting locks.

We now show some invariant properties of automata by induction on the length of the accepted

history. Each property clearly holds in the initial state, and each property is clearly preserved when

Commit or Abort events are accepted. We focus on showing that each property is preserved when an

operation execution [e A] is accepted.

The first step is to show that the view for each invocation is a view-closed subhistory of the accepted

history.

Lemma 9: Merging the logs from any set of repositories yields a view-closed subhistory of
the accepted history.

Proof : It suffices to show that the log at any single repository is view-closed; the more

23

general result follows from Lemma 6. If a repository R is outside the final quorum for e,
then its log is unchanged. Otherwise, the new log is:

Log'(R) = Log(R) U (Log(IQ) • [e A])

Log(IQ) is the merger of view-closed logs (induction hypothesis), and is therefore view-
closed (Lemma 6). LogtiQ) • [e A] is view-closed (Lemma 7), Log(R) is view-closed •
(induction hypothesis), and therefore Log'(R) is view-closed (Lemma 6).

Coro l lary 10: VIEW(Log(IQ),A) is closed in any outcome of the accepted history.

The next step is to show that each invocation's view is a legal serial history.

Lemma 11: If >- is a serial dependency relation, then the result of merging logs from any
collection of repositories is layered hybrid atomic.

Proof : Let S be a set of repositories, and let Log(S) and Log'(S) be the results of merging
the logs from the repositories in S respectively before and after a new event is accepted.
We show that if Log(S) is layered hybrid atomic, so is Log'(S). If S does not intersect the
final quorum for the new event e, then Log(S) * Log'(S)t and the result is immediate.
Otherwise,

Log'(S) = (L o g (S) U (L o g (I Q) - [e A])

Let h • e • h- be any outcome of Log'(S), and h1 • h2 the induced outcome of Log(S).
VIEW(Log(IQ),A) is a closed subhistory of (Corollary 10), legal (induction hypothesis),
and it contains each event e1 of /?1 such that e.inv >- e' (Lemma 7). Because >- is a serial
dependency relation and VIEW(Log(IQ),A) • e is legal, so is • e. There is no e' in /?2

such that e'.inv >- e (Lemma 8), hence • e • h2 is legal (Lemma 4).

Coro l la ry 12: VIEW(Log(iQ),A) is a legal serial history.

We remark that Theorem 11 does not quite prove the correctness of layered consensus locking

because the history accepted by an automaton is not necessarily the history reconstructed by

merging the logs at all repositories since events with empty final quorums appear at no repositories.

We are now ready to present the basic correctness result:

Theorem 13: The histories accepted by a layered consensus locking automaton are
layered hybrid atomic if the intersection of the lock conflict and quorum intersection
relations is a serial dependency relation.

Proof : Suppose the automaton accepts [e A] after accepting H. Let • e • h2 be any
outcome of H*[e A], and let h 1 • h2 be the induced outcome of H. H is layered hybrid
atomic (induction hypothesis), thus hA is legal. VIEW(Log(IQ),A) is a closed subhistory of
/71 (Corollary 10), legal (Corollary 12), and contains every event e' such that e.inv >~ e'
(Lemma 7). Because >^ is a serial dependency relation and ViEW(Log(IQ),A)*e is legal, so
is h 1 • e. There is no e' in h2 such that e'.inv >- e (Lemma 8), hence hA • e • h2 is legal
(Lemma 4).

We now show the converse: if >- is not a serial dependency relation, there exists a quorum

24

assignment for which an automaton will accept a history that is not layered hybrid atomic.

We start with a lemma. Let % be a relation between invocations and events that is not a serial

dependency relation; i.e. there exist serial histories ft and g and an event e such that g is a closed

subhistory of ft containing all events e' such that e.inv e, gme is legal, but Ire is illegal.

Lemma 14: There exist g, ft, and e such that g is missing exactly one event of ft.

Proof : Suppose g is missing k events of ft. Consider the sequence of histories {ft.| / =
0,...,/c}, where hQ = g, ftR = ft, and ftj + 1 is derived from ft. by restoring its earliest missing
event.

If there exists an / such that ft. is legal but ftj + 1 is not, then ft. can be written as
9 0 # S f 1 # e 2 # 5 f 2 ' a n d ^ i + l a S W g r V 9 2 ' w h e r e V V 9 ^ i S l e g a l ' a n d gQ*eSgSe2 , S n 0 t

But g 0
g 1 is a closed legal subhistory of ff0*e1

#g1 containing all events related to e2.inv by
proving the lemma.

Otherwise, suppose ft. is legal for all / between 0 and k. Because ftQ
#e is legal and ftk

#e is
not, there must exist an / such that ft.#e is legal but ftj+1*e is not. This ft. is a closed legal
subhistory of ft. 1 containing all events e" such that e.inv % e', proving the lemma.

We now show that serial dependency is the weakest property that guarantees layered hybrid

atomicity.

Theorem 15: Given a relation >- that is not a serial dependency relation, there exists an
automaton that (i) has >- as the intersection of its lock conflict and quorum intersection
relations, and (ii) accepts a history that is not layered hybrid atomic.

Proof : Given a quorum intersection relation > ^ Q and a lock conflict relation > - L such that
>- = > - Q n > - L is not a serial dependency relation, choose ft, g, and e to satisfy Lemma
14, where ft • ft1 • e* • ft2 and g • ft1 • ft2.

We construct an automaton with two repositories: R1 and R2. Action A at level 1 executes
the events in ft1 and commits, choosing R1 and R2 as initial and final quorums for each
event. B at level 2 executes e\ choosing R1 as initial and final quorums. Action C at level
3 executes the events in ft2 followed by e, choosing R2 as the initial quorum for all
invocations inv such that inv > - L e", and both R1 and R2 for all other invocations. C
chooses R1 and R2 as final quorums for all events.

These quorum choices must satisfy > - Q , because otherwise there would be an invocation
inv in ft2 such that inv >- e\ a contradiction. The entry for e ! does not appear in any view
for C, because B is active. C is not delayed, because the final lock held by B at R1 does
not conflict with any initial locks acquired there by C . If B and C both commit, the
accepted history has the illegal serialization • e' • ft2 • e.

25

References
[I] Abbadi, A. E., Skeen, D., and Cristian, F.

An efficient, fault-tolerant protocol for replicated data management.
In Proceedings, And ACM SIGACT-SIGMOD Conf. on Principles of Database Systems. 1985.

[2] Alsberg, P. A., and Day, J . D.
A principle for resijient sharing of distributed resources.
In Proceedings, 2nd Annual Conference on Software Engineering. October, 1976.

[3] Bernstein, P. A., and Goodman, N.
A survey of techniques for synchronization and recovery in decentralized computer systems.
ACM Computing Surveys 13(2): 185-222, June, 1981.

[4] Birman, K. P., Joseph, T. A., Raeuchle, T., and Abbadi A. E.
Implementing fault-tolerant distributed objects.
In Proc. 4th Symposium on Reliability in Distributed Software and Database Systems.

October, 1984.

[5] Birrel, A. D., Levin, R., Needham, R., and Schroeder, M.
Grapevine: an Exercise in Distributed Computing.
Communications of the ACM 25(14):260-274, Ap, 1982.

[6] Bloch, J , J . , Daniels, D. S., and Spector, A. Z.
Weighted voting for directories: a comprehensive study.
Technical Report CMU-CS-84-114, Carnegie-Mellon University, April, 1984.

[7] Davidson, S. B., Garcia-Molina, H., Skeen, D. •
Consistency in a Partitioned Network: A Survey.
Technical Report TR 84-4, Dept. of Computer and Information Sciences, University of

Pennsylvania, February, 1984.

[8] Davidson, S. B.
Optimism and consistency in partitioned distributed database systems.
ACM Transactions on Database Systems 9(3):456-482, September, 1984.

[9] Eager, D. L., and Sevcik, K. C.
Achieving robustness in distributed database systems.
ACM Transactions on Database Systems 8(3):354-381, September, 1983.

[10] Eswaran, K.P., Gray, J .N. , Lorie, R.A., and Traiger, I.L.
The Notion of Consistency and Predicate Locks in a Database System.
Communications ACM 19(11):624-633, November, 1976.

[I I] Fischer, M., and Michael, A.
Sacrificing serializability to attain high availability of data in an unreliable network.
In Proceedings* ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March,

1982.

[12] Garcia-Molina, H., Allen, T, Blaustein, B., Chilenskas, R. M., Ries, D.
Data-Patch: Integrating Inconsistent Copies of a Database after a Partition.
In Proceedings of the'3rd Symposium on Reliability in Distributed Software and Database

Systems. October, 1983.

26

Gifford, D. K.
Weighted Voting for Replicated Data.
In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM SIGOPS,

December, 1979.

Goodman, N., Skeen, D., Chan, A., Dayal, U., Fox, S, and Ries, D.
A recovery algorithm for a distributed database system.
In Proceedings, 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March,

1983.

Hammer, M. M., and Shipman D. W.
Reliability Mechanisms in SDD-1, a System for Distributed Databases.
ACM Transactions on Database Systems 5(4):431 -466, December, 1980.

Herlihy, M. P.
Replication Methods for Abstract Data Types.
Technical Report MIT/LCS/TR-319, Massachusetts Institute of Technology Laboratory for

Computer Science, May, 1984.

Herlihy, M. P.
General quorum consensus: a replication method for abstract data types.
Technical Report CMU-CS-84-164, Carnegie-Mellon University, December, 1984.

Herlihy, M. P.
Availability vs. atomicity: concurrency control for replicated data.
Technical Report CMU-CS-85-108, Carnegie-Mellon University, February, 1985.

Johnson, P. R., and Thomas, R. H.
The maintenance of duplicate databases.

Technical Report RFC 677 NIC 31507, NetWork Working Group, January, 1975.

Lamport, L.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (7):558-565, July, 1978.
Liskov, B., and Snyder, A.
Exception handling in C L U .

IEEE Transactions on Software Engineering 5(6):546-558, November, 1979.

Moss, J . E. B.
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, Massachusetts Institute of Technology Laboratory for

Computer Science, April, 1981.
Oppen, D., Dalai, Y . K.
The clearinghouse: a decentralized agent for locating named objects in a distributed

environment.

Technical Report OPD-T8103, Xerox Corporation, October, 1981.

Papadimitriou, C.H.
The serializability of concurrent database updates.
Journal of the ACM 26(4):631 -653, October, 1979.

27

Popek, G. J . , Walker, B., Chow, J . , Edwards, D., K^r.c, C. Rudisin, G., and Thiel, G .
Locus: a network transparent high reliability distributed system.

In Proceedings, Eighth Symposium on Operating Systems Principles. December, 1981.

Reed, D.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983. *

Skeen, M. D.
Crash Recovery in a Distributed Database System.
PhD thesis, University of California, Berkeley, May, 1982.

Thomas, R. H.
A solution to the concurrency control problem for multiple copy databases.
In Proc. 16th IEEE Cojvput Soc. Int. Conf. (COMPCON). Spring, 1978.

Weihl, W.
Data-Dependent concurrency control and recovery.

In Proc. 2nd Annual Symposium on Principles of Distributed Computing. August, 1983.

Weihl, W.
Specification and implementation of atomic data types.
Technical Report TR-314, Massachusetts Institute of Technology Laboratory for Computer

Science, March, 1984.

Wright, D., D.
Managing Distributed Databases in Partitioned Networks.
Technical Report 83-572, Cornell University, September, 1.983.

