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Abstract

Research has shown the importance of strategies in guiding
problem solving behavior. The experiment and model
presented here provide further specification of how more
optimal strategies come to be adopted with experience.
Isomorphs of the Tower of Hanoi were used to allow
participants to develop a degree of expertise with a novel task.
In the solutions, evidence for at least two strategies is
apparent. The results suggest that when strategies are not
successful in achieving the goal, other strategies may emerge
and eventually come to dominate performance in a task. The
ACT-R model of this task captures participant performance
by using the same strategies to solve the problems and by
gradually switching to more effective ones as simple
strategies fail in solving the problems.

Introduction
Strategies are ubiquitous in problem solving. Even in novel
tasks, participants bring general strategies to bare while
searching for the correct solution. As experience is gained
with a problem, these strategies often are abandoned in
favor of strategies that are more particular to the task (Anzai
& Simon, 1979). As the new strategies are discovered and
practiced, solving problems within the task becomes easier
and solutions become more efficient. Eventually, a strategy
or set of strategies may be developed that can produce a
correct solution to any problem for a particular task.

Strategic Influences on Problem Solving
Research on strategies in problem solving has taken two
general forms. First, some researchers have focussed on the
impact of particular strategies on solution times and
accuracy (e.g. Altman and Trafton, 1999; Anderson,
Kushmerick, and Lebiere, 1993). These researchers
accurately model the particulars of strategy execution in
participants. They do not, however, track the shifts in
strategy use that typically occur as experience is gained with
a particular task. Others have looked at the use of different
strategies as individuals learn to solve problems (Lovett and
Schunn, 1999; Reder & Schunn, 1999; Siegler, 1987). These
researchers look at how multiple strategies for a task may
coexist. The experiment presented here looks at the
evolution of strategy use in solving the Tower of Hanoi
problem. In addition, an ACT-R model of the task captures
overall participant performance while closely matching the
strategies they use and the transitions among them.

The Tower of Hanoi has served as a useful task in
problem solving research for a number of years (e.g.

Anderson, et. al., 1993; Anzai and Simon, 1979). The task
itself consists of three pegs upon which are placed any
number of disks. Figure 1 illustrates the elements of the
Tower of Hanoi task and the two isomorphs that we will be
studying in our experiments. The goal is to change the disk
arrangement from some start state into some particular goal
state. There are three rules to guide movement through the
problem space for the Tower of Hanoi. The first rule states
that only one disk may be moved at a time. The second rule
indicates that if more than one disk is on a particular peg,
then only the smallest of these disks may be moved. The
final rule says that a larger disk may not be moved to a peg
where there is a smaller disk. This results in the necessity
that the disks form a tower structure at all times, with larger
disks always being underneath smaller disks.

Figure 1: Mapping of the elements of the isomorphs used in
this study to the standard Tower of Hanoi.
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Research on the Tower of Hanoi indicates the importance
of some variant of a disk subgoaling strategy (Anzai &
Simon, 1979). In this strategy, subgoals are created to deal
with the largest disk out of place. When the largest disk is
placed into its goal state, focus is shifted to the next largest
disk. This process is repeated until the smallest disk is
placed. This strategy is quite effective, usually producing an
optimal solution, regardless of the particular problem
presented. While disk subgoaling may come to dominate
participant solutions in the end, it is not usually the case that
participants initially use this strategy. Rather, it tends to
emerge as familiarity with the task increasese (Anzai &
Simon, 1979). This is particularly the case with isomorphs
(Kotovsky, Hayes, & Simon, 1985) where participants tend
to start out with some sort of random search or simple hill-
climbing strategy and only gradually evolve a preference for
subgoaling. Also, subgoaling is not initially as predominant
if participants are presented with flat-to-flat problems
(problems with start and goal states where one disk is on
each peg) rather than with classic tower-to-tower problems.
Our research will use isomorphs and flat-to-flat problems,
where other strategies often predominate early. However,
these are not as effective as subgoaling. We want to study
and model the process by which participants come to prefer
the disk subgoaling strategy.

Experiment
In the three-disk Tower of Hanoi, there is a particular class
of problem states in which there is one disk on each of the
three pegs (flat states). There are a total of six of these
states, and for each there are exactly two other flat states
that are 5 moves away (minimum number of moves). Based
on the disk subgoaling strategy, getting to one of these other
flat states involves deeper subgoaling (hard) than getting to
the other (easy). The breakdown of the subgoal structure of
these problem types is illustrated in Figure 2. It shows that
two subgoals need to be formed in the hard problems before
making the first move, while a single subgoal is sufficient in
the easy problems. An important feature of these two
problem types is that they are otherwise quite similar. They
both require 5 moves to solve, utilize the same set of start
and goal states, and can be solved optimally using a similar
sequence of moves. Because of these interesting
characteristics, it is these problems that are used in the
current study.

Since the superficial features of a task (cover story) can
exert a strong impact on difficulty (Kotovsky, et. al., 1985),
two different isomorphs of the Tower of Hanoi are. This is
to help insure that any differences found are not simply an
artifact of the cover story, but rather involve something
more directly related to the task's structure. The Tower of
Hanoi isomorphs used in this study are the Monster Move
isomorph (Kotovsky, et. al., 1985) and the Paint Stripping
isomorph (Gunzelmann & Blessing, 2000). In terms of the
isomorphs, the pegs in the Tower of Hanoi are synonymous

with monsters in the Monster Move isomorph and with
pieces of furniture in the Paint Stripping isomorph. The
disks are represented by globes held by the monsters and by
layers of paint on the furniture. The relationships among
these three isomorphs are illustrated in Figure 1. The
relationships among elements are a bit easier to describe in
terms of the standard Tower of Hanoi, so the results will be
discussed in terms of “disks” and “pegs”.

Easy Problem      Hard Problem

Goal => Solve-Problem                  Goal => Solve-Problem
S1 => Place Large S1 => Place-Large

    S2 =>Move Med.
Move Small         Move Small
!pop!         !pop!

!pop!     !pop!

S2 => Place Medium
Move Small     Move Small
!pop!     !pop!

!pop! !pop!

Place Small Place Small
!pop! !pop!

Figure 2. Breakdown of the easy and hard problem types
used in this study.

Since these problems all begin and end with flat states
they tend to encourage a particular kind of problem solving
strategy in which participants simply transform flat state
into flat state, looking for the goal state. One flat state can
be transformed into another flat state using a three-move
sequence of moving one disk onto a second disk, moving
the other disk to where the first disk had been, and then
moving the first disk to where the third disk had been. In
effect, this switches the location of the first and third disk.
At best, such a flat-to-flat strategy will solve the problems in
6 moves (two disk switches each taking 3 moves) rather
than the optimal 5. We were interested in seeing how this
flat-to-flat strategy would evolve in competition with a disk
subgoaling strategy.

Method
The participants were 24 undergraduate students from
Carnegie Mellon University. Participants received either
course credit (n=7) or were paid (n=17) for their
participation in the one-hour experiment.

The entire experiment was completed on a computer.
Each participant was given a sequence of three tasks, with
the first and third being the same Tower of Hanoi isomorph.
The second task was given as a filler task. Before they
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began solving the problems for each task, participants were
presented with a problem statement (cover story), a set of
three rules, and an explanation of how to use the interface.
Participants were instructed to solve each problem for each
task by reaching the goal state that was presented on the
screen. If an error was made while solving any of the
problems, a message box appeared restating the rule that
had been violated. After each problem, a message box
appeared indicating that they had solved it correctly. The
same procedure was followed for each of the three tasks.

Participants were randomly assigned to groups based
upon, (1) The cover story for the Tower of Hanoi isomorph,
(2) The type of problems they completed in the first set of
problems (easy vs. hard), and (3) the type of problems for
the second set. Each participant completed 6 problems in
each isomorph set. Since the pattern of results was the same
for both isomorphs, the data presented here is combined
across them.

Results and Discussion
Evidence for the use of a strategy like disk subgoaling
comes from problem solutions and the corresponding move
latencies. Of all problems, 42% were solved optimally, and
an additional 30% had solutions that incorporated an
optimal 5-move final path. The move latencies for these
solutions support the conclusion that participants were
planning and executing 2-moves in sequence, similar to the
data reported by Kotovsky, et. al. (1985). That is, move
latencies were longer for the first and third moves than for
the other three (7.2 versus 2.0 seconds on average),
suggesting that more planning occurs before those moves
are made. While this does not necessarily mean that
participants were using the disk subgoaling strategy
specifically, it is reasonable to conclude that they were
using a strategy at least quite similar to it.

The evidence also suggest that flat states were particularly
attractive to participants as they tried to find a solution. If
moves were made entirely at random, it would be expected
that participants would arrive at flat states every 4.5 moves
(6 of 27 states are flat states). However, the rate was
actually every 3.33 moves for participants (ignoring flat-to-
flat 5-move final paths), with the minimum distance
between flat states being 3 moves (see above). In addition,
of the problems that were not solved using a 5-move final
path, half had a final path that incorporated only a single
additional move, which involved moving through an
intermediate flat state en route to the correct solution. The
data indicating a preference for flat states is further
enhanced by the latency data collected. For every
participant, move latencies were greater for flat states than
for other states. This provides persuasive evidence that more
planning occurred in flat states than in other states and that
participants were implementing a flat-to-flat strategy. That
is, participants seemed to be planning and executing

sequences of 3 moves that transformed the problem state
from one flat state into another.

There are two explanations for why participants may have
learned such a strategy. First, as stated above, both the start
state and the goal state were flat states, immediately
drawing participants attention to them as somehow
important in the task. Second, in flat states, rule 2 does not
apply (if there is more than one disk on a peg, only the
smallest may be moved), simplifying the evaluation needed
to plan a move. This would reduce the memory load for
planning a move, and perhaps allow participants to look
further ahead in the problem to plan multiple moves. As
such, these states become a “home base” of sorts where
participants can regroup and consider alternatives.

It is important to recall that the participants in this study
were not given training on strategies for solving any of the
problems. Thus, the solution strategies were developed by
the participants as they worked through the problems. Still,
the hard problems took, on average, 1.1 additional moves to
solve than the easy problems. Though this effect did not
reach statistical significance in this experiment, it was fairly
robust. It was constant across isomorphs and remained fairly
stable across problem number. The fact that this difference
did appear, and in the expected direction, lends insight into
participants’ representations of the problems and how they
sought to solve them. Combined with the evidence for disk-
subgoaling, these findings suggest that the added level of
subgoaling made it more difficult for participants to
successfully plan and execute the moves to solve the hard
problems optimally.

There is ample evidence for both a disk-subgoaling and a
flat-to-flat strategy in participants’ data. In the next section
on the model, we will provide further analysis of these
results. Also there is evidence for a shift in these strategies.
During the first 6 problems, subjects solved 64% of the
problems in the 5 moves dictated by the disk subgoaling and
24% of the problems by going through a pair of flat to flat
transformations. For the second 6 problems these
percentages were 83% disk-subgoaling and 14% flat-to-flat.

Model
An ACT-R model (Anderson, 1976; Anderson & Lebiere,
1998) of participant performance was developed with the
goal of capturing the overall performance of participants
while simultaneously matching their strategy use. Based on
the data presented above, the model was constructed to use
three different strategies as it went about solving the
problems presented. These were the disk subgoaling
strategy, the flat-to-flat strategy, and a random strategy. The
random strategy allows for the unfocussed meandering
about the problem space that is particularly characteristic of
the early stages of problem solving in a novel task
(Kotovsky, et. al., 1985).

Model Design and Mechanisms
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The ACT-R model evaluates the success of a strategy by
noting whether or not each use of the strategy leads to a
solution to the problem. If the evaluation of one strategy
becomes increasingly negative, there will be a tendency to
switch to other, potentially more effective, strategies. Over
time, the model will come to settle on the strategies that are
generally more effective. To accomplish this, the model
goes through a series of iterations of (1) choosing a strategy,
(2) executing the strategy, (3) evaluating the result (i.e. has
the problem been solved). The critical stage in this process
within the model is strategy selection. At the point in the
problem where a strategy needs to be chosen, there are three
productions that may fire (one for each of the strategies).
The choice of which production fires in ACT-R is governed
by the calculation of the “expected gain” (E) for each
production. In this process, a quantity is calculated for each
production to represent how quickly its use is expected to
result in satisfying the goal. The production producing the
highest value for this quantity is selected and fires. The
equation for expected gain (E) in ACT-R is:

E = PG - C

where P is the probability that both the production will
succeed and the goal eventually will be achieved, C is the
anticipated cost (in seconds) of achieving the goal using the
production, and G is a global variable representing the value
(in seconds) of achieving the goal (i.e. how much time is the
model willing to spend to solve the problem). The value of
G was set at 50. While this value is traditionally set at 20 in
ACT-R, these problems take longer than that for participants
(and the model) to solve. So, this value was raised to
accommodate the greater amount of time needed to solve
them. For this model, the initial values of C were equal for
all the strategies. But, as the model performs the task, it
adds the cost incurred in executing each strategy to the
value of C in the strategy-choice production. In contrast, the
P values were estimated for each production.  The equation
for P is:

P = Successes/(Successes + Failures)

where “successes” and “failures” refer to the number of
eventual successes and eventual failures that occurred when
this production was used. That is, how often has the goal
been achieved and how often has the goal not been achieved
when this production has been used? The initial values for
the “successes” and “failures” for each of the three strategy
choice productions were parameters estimated in fitting the
model. While all these values were set, it is really the
relative difference in this ratio among the three productions
that matters most in the model. In addition, the sum of
successes and failures was made to equal 50 for all three.
This quantity controls the stability of E by influencing how
much a single success or failure will affect the calculation of

P. As the model performs the task, it gains experiences and
adds to these values. Each time a strategy is executed either
a success (if the problem is solved during the execution of
the strategy) or a failure (if the problem is not solved) is
added to the calculation of P. Thus, as the model gains
experience, the rapidity of change and the impact of any
single attempt at using a strategy diminishes. That is, the
model slowly begins to settle on the most successful
strategies. The initial values and the values after learning for
the variables (for a single run of the model in one condition
of Experiment 1) are presented in Table 2.

Table 1: Initial parameter settings for model and their values
after learning.

Successes Failures P E
Initial

Disk-subgoal 25 25 .50 23.95
Flat-toFlat 26 24 .52 24.95
Random 28 22 .56 26.95

12 hard trials
Disk-subgoal 34 29 .54 22.16
Flat-toFlat 29 31 .49 21.35
Random 28 36 .44 20.13

100 hard trials
Disk-subgoal 121 37 .77 24.89
Flat-toFlat 30 42 .42 16.62
Random 28 46 .38 16.76

The values of P are not perfectly correlated with the
values in E is because E includes the costs incurred for
executing each strategy (C). Although disk-subgoaling is
more successful at solving the problems, it is more costly
(in terms of time) because it involves more planning and
more moves per attempt than the others. These offsetting
influences maintain the mixture of strategies over the course
of the experiment. With more problems, the degree of
separation increases, leaving the disk-subgoaling strategy as
the preferred strategy. The values for the variables after the
model solves 100 hard problems are presented at the bottom
of Table 2.

The final parameter of importance is a noise parameter
that is added to the calculation of E. A noise value is
produced separately for each production on each cycle of
the model. In this model, the value is randomly selected
from a distribution with a mean of 0 and a standard
deviation of about 1.8. The strategy-choice production
selected to fire is the one that has the highest value of E
after noise has been added to the calculation described
above for each.

A major assumption of the model is that most participants
would begin the experiment without a clear idea of how to
solve the problems. In the model, this is instantiated in the
initial values of E for the three strategy-choice productions.
In particular, the “successes” and “failures” were set such
that the random strategy was initially preferred. This was
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followed by the flat-to-flat strategy, with the disk-
subgoaling strategy least preferred. The reason for this
ordering is that the disk-subgoaling strategy is the most
sophisticated strategy in the model. Thus, the model tends to
begin with the simplest strategy (i.e. make a move and
evaluate the result) and moves toward more efficient,
though more complicated ones.

There is one additional mechanism that is critical for the
fit of the model to the data presented. It is largely
responsible for the difference in difficulty found between
the easy and hard training problems and operates similarly
to the strategy-choice mechanism described above. At the
point in the disk-subgoaling strategy where a second
subgoal needs to be formed, there are two productions that
may fire. One accurately forms the second subgoal and the
problem is ultimately solved correctly from that point. The
other gives up on the strategy and goes on to try a different
approach (perhaps returning to try disk subgoaling at a later
point). The critical parameter for this mechanism is once
again the initial difference in the expected gain value for the
two productions. For the sake of simplicity, the same sum of
successes and failures (50) was used for these productions
as for the strategy-choice productions. The estimated
“successes” and “failures” for the production to give up
were 40 and 10 respectively (P=.80, E=38). For the
production that successfully pushed the second subgoal, the
values were 38 and 12 respectively (P=.76, E=36). These
impact the value of E for these productions similarly to the
strategy choice productions presented in Table 2. This
means that the model tends to give up initially. However,
since this inevitably means that the strategy will fail to
achieve the goal (adding a failure to the production that
gives up), it learns rather quickly to press on, execute the
additional level of subgoaling, and solve the problem
successfully (adding a success to the “push-on” production).
All of these parameters were estimated to fit the aggregate
move data (Figures 3 and 4; averaged into quartiles). The
more detailed data on strategy use is examined next.

Figure 3: Model fit to moves to solve data where the first set
consisted of hard problems.

Figure 4: Model fit to moves to solve data where the first set
of problems was easy problems.

Fit to the Strategy Data (Final Paths)
The rather good fit to the average move data (r2=.91, mean-
deviation=.798) suggests that the model is capturing human
performance and learning in the task. However, a more
compelling argument for the model comes from the fit of
the model to more detailed accounts of the participants’
solutions. The best way to examine strategies that
participants were using is to look at how they actually
solved the problems they were given. From Kotovsky, et. al.
(1985) comes the idea of a 2-stage solution process, an
initial exploratory phase where no progress is made toward
the goal followed by the final path, where generally a rapid
and efficient solution is produced. The final path begins
when the person is the same number of moves from the goal
as he or she was at the start of the problem. For the hard and
easy problems, this means that the final path begins the last
time the participant is 5 moves from the goal (via the
shortest path) before actually solving it.

Previous research has found that the exploratory moves
relate more closely to problem difficulty than length of the
final path (e.g. Kotovsky, et. al., 1985). In concert with this
finding, the difference in final path behavior between the
easy and hard problems is not large. On the other hand, final
path length is informative about the strategies being used by
participants as they solve problems. In particular, the final
path length of the problems used here can help to
differentiate among problems solved using a disk-
subgoaling strategy, solutions using a flat-to-flat strategy,
and solutions involving a more random sequence of moves.
As stated above, the disk subgoaling strategy, if executed
correctly, will give rise to perfect solutions and optimal final
paths. On the other hand, the flat-to-flat strategy will
produce solutions that are slightly less than optimal. For the
5-move problems used here, a flat-to-flat solution would
take 6 moves (2 consecutive flat-to-flat transformations).
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To examine the fit of the model to the solutions produced
by participants, the length of the final path was determined
for each problem solution in both the model and the data. In
Table 2, the percentage of problems solved with final paths
suggestive of each strategy is indicated by condition. The
remaining problems involved longer final paths that did not
follow a readily identified pattern.

Table 2: Percentage (%) of problems supporting the disk
subgoaling and flat-to-flat strategies by condition.

Data Model
Set One

Easy
Disk Subgoal 63 68
Flat-to-Flat 25 22

Hard
Disk Subgoal 67 68
Flat-to-Flat 24 15

Set Two
Hard (from Hard)

Disk Subgoal 86 78
Flat-to-Flat  6 13

Hard (from Easy)
Disk Subgoal 77 82
Flat-to-Flat 19 15

Easy (from Hard)
Disk Subgoal 83 81
Flat-to-Flat 14 12

Easy (from Easy)
Disk Subgoal 83 87
Flat-to-Flat 17 12

From the data presented in Table 2, it is clear that the
model reproduces much of the strategic richness of
participant performance. To test this assertion, a Chi-square
test was performed on the participant versus model data.
This statistic provides a rough indication of the similarity of
the predicted model data to the obtained empirical data. For
the data in Table 2, X2(11)=7.59, P>.05. This suggests that
the model is doing a very good job of modeling the
strategies used by participants while solving the problems.

Conclusion
The data and model presented here provide evidence that the
failure of simple strategies to reach the goal can lead
individuals to switch to the use of more sophisticated
strategies for achieving that end. As strategies are
attempted, they are evaluated in terms of their success in
achieving the goal, but also in terms of the costs associated
with executing them. While sophisticated strategies may
initially fare poorly, due to a greater cost, in the end they are
likely to emerge as the preferred strategy due to their greater
likelihood of successfully solving the problem.

The participants in this study were given no instruction on
how to solve the problems they were given. Initially, they
were unsure of how to maneuver through the problem space,
as suggested by the many apparently random moves that

were made. But, as they gained experience with the
isomorphs, their solutions became increasingly organized,
and clear evidence of the two strategies described here
emerged. The model accurately captures this aspect of
participant solutions, showing a gradual and noisy shift
from completely undirected random moves to optimal
solutions using a sophisticated strategy. This kind of
transition in strategies is certain to appear in other tasks, as
it has already been noted in children solving addition
problems (Siegler, 1987). The richness of strategy use in
participants is an important aspect of problem solving
behavior, and one that warrants careful consideration in
problem solving research.
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