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Feedforward visual object perception recruits a cortical
network that is assumed to be hierarchical, progressing
from basic visual features to complete object
representations. However, the nature of the
intermediate features related to this transformation
remains poorly understood. Here, we explore how well
different computer vision recognition models account
for neural object encoding across the human cortical
visual pathway as measured using fMRI. These neural
data, collected during the viewing of 60 images of real-
world objects, were analyzed with a searchlight
procedure as in Kriegeskorte, Goebel, and Bandettini
(2006): Within each searchlight sphere, the obtained
patterns of neural activity for all 60 objects were
compared to model responses for each computer
recognition algorithm using representational
dissimilarity analysis (Kriegeskorte et al., 2008).
Although each of the computer vision methods
significantly accounted for some of the neural data,
among the different models, the scale invariant feature
transform (Lowe, 2004), encoding local visual properties
gathered from ‘‘interest points,’’ was best able to
accurately and consistently account for stimulus
representations within the ventral pathway. More
generally, when present, significance was observed in
regions of the ventral-temporal cortex associated with
intermediate-level object perception. Differences in

model effectiveness and the neural location of
significant matches may be attributable to the fact that
each model implements a different featural basis for
representing objects (e.g., more holistic or more parts-
based). Overall, we conclude that well-known computer
vision recognition systems may serve as viable proxies
for theories of intermediate visual object
representation.

Introduction

The process of visual object recognition typically
associates visual inputs—commencing with an array of
light intensities falling on the retina—with semantic
categories, for example, ‘‘cow,’’ ‘‘car,’’ or ‘‘face.’’
Nearly every model, theory, or computational system
that attempts to implement or account for this process,
including the biological visual recognition system
realized in the ventral occipito-temporal pathway of the
human brain, assumes a feedforward visual processing
hierarchy in which the features of representation
progressively increase in complexity as one moves up in
a feedforward manner (Riesenhuber & Poggio, 1999)—
the ultimate output being high-level object representa-
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tions that allow the assignment of category-level labels.
It goes almost without saying that within this
framework one presupposes levels of intermediate
featural representations that, while less complex than
entire objects, nonetheless capture important object-
level visual properties (Ullman, Vidal-Naquet, & Sali,
2002). Yet, for all the interest in uncovering the nature
of such features with respect to biological vision, they
remain remarkably elusive. At present, there is little
empirical data on the neural representations of visual
objects in the netherworld between input image and
object representation. The goal of our present study is
to unravel how the human brain encodes object
information along the ventral pathway—the neural
‘‘real estate’’ associated with visual object processing.

Given the paucity of data that bears on this
question, how do we develop viable theories explicat-
ing the features underlying the neural representation of
objects? One possibility is to focus on feature codes
realized in ‘‘category-selective’’ regions within the
ventral-temporal cortex. However, most investigations
of these regions—for example, the ‘‘fusiform face area’’
(FFA) associated with the detection and discrimina-
tion of faces (Haxby, Hoffman, & Gobbini, 2000;
Grill-Spector, Knouf, & Kanwisher, 2004), the ‘‘para-
hippocampal place area’’ (PPA) associated with scene
processing (Epstein, Harris, Stanley, & Kanwisher,
1999), or the lateral occipital complex (LOC) associ-
ated with the processing of objects more generally
(Grill-Spector, Kourtzi, & Kanwisher, 2001)—empha-
size specific object-level experiential factors or input
characteristics that lead to their recruitment but never
establish the underlying visual properties that form the
basis of the nominally category-specific representa-
tions. Most studies of the visual properties that lead to
the recruitment of these class-specific, functionally
defined brain regions have focused on the effects of
spatial transformations and of the alteration of simple
domain-specific features (Tsao & Livingstone, 2008).
For example, images of objects from within a given
class often elicit similar neural responses when scaled,
rotated, or moved to different locations in the visual
field although, in the case of picture-plane inversion or
3-D rotation, there is typically some change in neural
activity (Perrett et al., 1984; Haxby et al., 1999). To the
extent that viable models of neural representation have
been developed, they have relied on the statistical
analysis of the input space within a restricted object
domain. For example, ‘‘face spaces,’’ nominally
capturing the featural dimensions of human face
representation, can be defined using principal compo-
nent analysis (PCA) on face images or using param-
eterized models that are generative for constructing
what appear to be realistic new face stimuli (Calder &
Young, 2005; Freiwald, Tsao, & Livingstone, 2009).
Alternatively, the featural dimensions of representa-

tion are sometimes made more explicit as in Kravitz,
Peng, and Baker (2011), who found that the encoding
of scenes in the human visual cortex can be understood
in terms of an underlying set of intuitive properties,
including ‘‘open/closed’’ and ‘‘natural/artificial.’’

This is not to say that studies of intermediate feature
representation have not provided some more fine-
grained data regarding the neural encoding of objects.
For example, Tanaka (2003) explored the minimal
visual stimulus that was sufficient to drive a given
neuron at a level equivalent to the complete object. He
found that individual neurons in IT were selective for a
wide variety of simple patterns and shapes that bore
some resemblance to the objects initially used to elicit a
response from each neuron. Interestingly, Tanaka
hypothesized that this pattern-specific selectivity is
organized into a columnar structure that maps out a
high-dimensional feature space for representing visual
objects. Similarly, Yamane, Carlson, Bowman, Wang,
and Connor (2008) and Hung, Carlson, and Connor
(2012) used a somewhat different search procedure
employing a highly constrained, parameterized stimu-
lus space to identify contour selectivity for individual
neurons in the primate visual cortex. They found that
most contour-selective neurons in V4 and IT each
encoded some subset of the parameter space. More-
over, each 2-D contour within this space appeared to
encode specific 3-D surface properties, and small
collections of these contour-selective units were suffi-
cient to capture the overall 3-D appearance of an object
or object part. Within the human neuroscience
literature, the study most often associated with feature
decoding is that of Kay, Naselaris, Prenger, and
Gallant (2008), who explored how neural units coding
for orientation and scale within human V1, V2, and V3
can be assembled to reconstruct complex images.
Although Kay et al. provide an elegant demonstration
of how modern fMRI methods may support more fine-
grained analyses (and therefore inspiration for further
investigation), their work does not inform us regarding
the nature of intermediate features in that they relied on
well-established theories regarding the featural prop-
erties of V1 and V2. That is, they decoded features
within a reasonably well-understood parameter space
in which it is generally agreed that the particular brain
regions in question encode information about the
orientations and scales of local edges. Indeed, we see
this as the fundamental problem in any attempt to
decode the features of ‘‘intermediate-level’’ object
representation: The parameter space is extremely large
and highly underspecified; therefore, it is difficult to
find effective models that fit the data. As such, Ullman
et al.’s (2002) proposal that intermediate features can
be construed as image fragments of varying scale and
location—leaving the content of said fragments entirely
unspecified—is perhaps the strongest attempt yet at
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capturing task-relevant object information encoded
within the human ventral pathway. Supporting the
effectiveness of this sort of approach, there is some
neurophysiological evidence consistent with the frag-
ment framework laid out by Harel, Ullman, Epstein,
and Bentin (2007).

Finally, we note that current computational models
commonly applied to biological object recognition tend
to make only weak assumptions regarding the nature of
intermediate features—the exception being Hummel
and Biederman (1992), who made very strong as-
sumptions as to the core features used in object
representation—unfortunately, in this model, such
strong assumptions work against any generality for the
model. For example, almost all models employ variants
of Gabor filter banks, detecting local edges in visual
stimuli to explain selectivities in the primary visual
cortex (V1) (Hubel & Wiesel, 1968). Extending this
approach, both Serre, Oliva, and Poggio (2007) and
Kay et al. (2008) propose hierarchies of linear and
nonlinear spatial pooling computations with Gabor
filters at the base to model higher-level vision. One such
hierarchical model, HMAX (Cadieu et al., 2007),
partially predicts neural selectivity in the midlevel
ventral stream (V4) for simple synthetic stimuli.
However, HMAX imperfectly clusters pictures of real-
world objects relative to clustering based on neuro-
physiological and fMRI data from IT (Kriegeskorte et
al., 2008).

To further address the question of the complex
features underlying neural object representation, we
employed several models of visual representation
drawn from machine vision; each provides a putative
hypothesis regarding the features used in object
perception. These representations incorporate diverse
linear and nonlinear operations on image properties to
maximize machine performance in object detection and
recognition tasks. As such, we are relying on these
models as proxies for theories of features for biological
object representation. Given this set of models, we
collected data on human object processing using fMRI
and a simple object perception task. We then correlated
the resultant neural data with the object dissimilarity
matrices predicted by each computer vision model,
thereby establishing a correspondence between each
model and patterns of neural activity in specific spatial
locations within the brain. Consistent with the fact that
these models make different assumptions with respect
to object representation, we found that different models
were associated with neural object encoding in different
cortical locations. However, consistent with the overall
visual nature of all of these representations, we
observed that most of these associations lay within the
ventral and dorsal visual cortices. Of particular interest,
one popular machine vision representation, the scale
invariant feature transform (SIFT) (Lowe, 2004), which

encodes images using relatively simple local features,
was the most strongly associated with measured neural
activity in the brain regions typically associated with
midlevel object perception (e.g., fusiform cortex). To
better explicate how we arrived at this finding, we next
define what is meant by ‘‘dissimilarity’’ with respect to
both computational models and neural data.

Representational dissimilarity analysis

To assess model performance, neural stimulus
representations as measured by fMRI and a given
machine vision model were compared using represen-
tational dissimilarity analysis. For each set of voxels
and for each model, a pairwise distance matrix was
computed, reflecting which sets of stimulus images
were considered to be similar and which were
considered to be different (more detail is given in the
Representational Dissimilarity Measures section).
Model/neural matrices were more correlated when the
two corresponding representations of the stimuli
grouped the considered images in a similar manner.
Kriegeskorte et al. (2008) demonstrated the advan-
tages of dissimilarity analysis in observing and
understanding complex patterns of neural activity—in
their case, a collection of spatially contiguous voxels.
We similarly wished to understand object encoding
across restricted volumes of voxels. The advantage of
this approach is that it allows us to judge a model’s
descriptive power without requiring identification of
the exact—most likely nonlinear—mapping between
model and voxel responses. Indeed, O’Toole, Jiang,
Abdi, and Haxby (2005) and Kiani, Esteky, Mirpour,
and Tanaka (2007) pursued related cortical-computa-
tional dissimilarity analyses in studying visual per-
ception, finding that the organization of object
categories in IT is based, in part, on visual similarity
and, in part, on higher-order class information. The
ability of this method to bypass the issue of learning
direct mapping between model predictions and neural
data provides particular benefit for fMRI studies in
that it obviates the need to split rather limited data sets
in order to cross-validate.

Methods

Stimuli

A picture and word set comprised of 60 distinct color
object photos displayed on 53% gray backgrounds and
their corresponding basic-level names was used as
stimuli (Figure 1). The specific category of each object
was selected to match the 60 objects used in Just,

Journal of Vision (2013) 13(13):25, 1–27 Leeds, Seibert, Pyles, & Tarr 3

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933542/ on 04/30/2016



Cherkassky, Aryal, and Mitchell (2010); the particular
images used in Just et al. were drawn from the
Snodgrass and Vanderwart (1980) line-drawing image
data set. The photographic images used in our study
were taken from web image searches; therefore, we do
not have the rights to redistribute the actual images.
The 60 objects included five examples from each of 12
diverse semantic classes, for example, tools, food,
mammals, or body parts. Each object was depicted by a
single image. Although visual similarities among
stimuli can be seen across semantic groups, such as
knife and carrot (thin and slanted up to the right) or
tomato and eye (circular in the image plane), objects
within a semantic class were typically more similar to
one another relative to their across-class similarities.
Our use of real-world images of objects rather than the
hand-drawn or computer-synthesized stimuli employed
in the previously discussed studies of midlevel visual
coding, for example, Cadieu et al. (2007) and Yamane
et al. (2008), is intended to more accurately capture the
importance of the broad set of naturally occuring visual
features in object perception.

Subjects

Five subjects (one left-handed, one female, age range
20 to 24) from the Carnegie Mellon University
community participated, gave written informed con-
sent, and were monitarily compensated for their
participation. All procedures were approved by the
Institutional Review Board of Carnegie Mellon Uni-
versity.

Experimental design

All stimuli were presented using MATLAB (2012)
and the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997) controlled by an Apple Macintosh and were
back-projected onto a white screen located at the head

end of the bore using a DLP projector (Sharp XG-
P560W). Subjects viewed the images through a mirror
attached to the head coil with object stimuli subtending
a visual angle of approximately 8.38 · 8.38. Each
stimulus was displayed in the center of the screen for 2 s
followed by a blank 53% gray screen shown for a time
period randomly selected to be between 500 and 3000
ms, followed by a centered fixation cross that remained
displayed until the end of each 10-s trial, at which point
the next trial began. As such, the stimulus onset
asynchrony (SOA) between consecutive stimulus dis-
plays was fixed at 10 s. Subjects were instructed to press
a button when the fixation cross appeared. The fixation
onset detection task was used to engage subject
attention throughout the experiment. No other task
was required of the subjects, meaning that our study
addresses object perception under passive viewing
conditions.

The 10 s SOA was chosen to minimize temporal
overlap between voxel blood-oxygen level–dependent
responses for multiple stimuli: a slow event-related
design based on the assumption that the hemodynamic
response in the ventral-temporal cortex has decreased
to a sufficient degree in the 10–12 s after stimulus onset
to minimize the noise in our measurements of the
cortical responses.

The stimuli were presented in 24 6-min runs, spread
across three 1-hr scanning sessions and arranged to
minimize potential adaptation and priming effects.
Each scanning session included two sets of four runs.
Each run contained 15 word and 15 picture stimuli,
ordered such that the picture and the word corre-
sponding to the same object were not viewed in direct
succession, and all stimuli were viewed exactly once in
each four-run set to avoid priming and adaptation
effects. Trials using the word stimuli were not analyzed
or otherwise considered as part of our present study.
Stimulus order was randomized across blocks and
across subjects. Over the course of the experiment, each
subject viewed each picture and each word six times;
averaging across multiple repetitions was performed for

Figure 1. The 60-image stimuli displayed to subjects.
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each stimulus, described below, to reduce trial-by-trial
noise.

The first session for each subject also included
functional localizer scans to identify object selective
cortex, namely, the LOC, a functionally defined region
(Kourtzi & Kanwisher, 2000) that we consider
separately from the anatomically identified lateral
occipital cortex (LO) (although there is overlap
between the two areas). For this localizer, 16-s blocks
of common everyday objects were alternated with 16-s
blocks of phase-scrambled versions of the same
objects, separated by 6 s of fixation (Kourtzi &
Kanwisher, 2000; Grill-Spector et al., 2001). Phase
scrambling was achieved by taking the Fourier
transform of each image, randomizing the resulting
phase values while retaining the original frequency
amplitudes, and reconstructing the image from the
modified Fourier coefficients (Schultz & Pilz, 2009).
Within each block, 16 images, depicting 14 distinct
objects, were shown for 800 ms each, and each object
was followed by a 200 ms gray screen. Two of the
objects were sequentially repeated once during each
block; to maintain attention, subjects were instructed
to monitor for this, performing a one-back identity
task in which they responded via a key press whenever
the same object image was repeated across two image
presentations. Six blocks of both the intact and
scrambled-object conditions were presented over the
282 s scan (Pyles & Grossman, 2009). The object
images used in the localizer scans were different from
the object picture stimuli discussed in the Stimuli
section. LOC area(s) were identified as those brain
regions more selective for intact versus scrambled
objects. LOC areas included all regions containing
spatially contiguous voxels (no minimum cluster size)
for which beta weights for the block design had a
significance level of p , 0.005.

To provide anatomical information, a T1-weighted
structural MRI was performed between runs within the
first scanning session for each subject.

fMRI procedures

Subjects were scanned using a 3.0 T Siemens Verio
MRI scanner with a 32-channel head coil. Functional
images were acquired with a gradient echo-planar
imaging pulse sequence (TR 2 s, TE 26 ms, flip angle
908, 2 · 2 · 3 mm voxels, field of view 192 · 192 mm2,
31 oblique-axial slices). Slices spanned the majority of
the brain to observe relevant stimulus representations
beyond the visual streams (Figure 2). An MP-RAGE
sequence (flip angle 98, 1 mm3 voxels, field of view 256
· 256 mm3, 176 sagittal slices) was used for anatomical
imaging.

Preprocessing

Functional scans were coregistered to the anatomical
image and motion-corrected using AFNI (Pittman,
2011). Highpass filtering was implemented in AFNI by
removing sinusoidal trends with periods of half and full
length of each run (338 s) as well as polynomial trends
of orders one through three. The data then were
normalized so that each voxel’s time course was 0 mean
and unit variance (Just et al., 2010). To allow
multivariate analysis to exploit information present at
high spatial frequencies, no spatial smoothing was
performed (Swisher et al., 2010). Prior work has
demonstrated that spatial smoothing monotonically
decreases statistical power for a variety of statistical
tests, including univariate t values (Kriegeskorte et al.,
2006).

For each stimulus repetition, the measured response
of each voxel consisted of five data samples starting 2 s/
1 TR after onset, corresponding to the 10 s between
stimuli. Each five-sample response was consolidated
into a weighted sum, intended to estimate the peak
response. This was accomplished as one step in a
‘‘searchlight’’ process (Kriegeskorte et al., 2006): 123-
voxel searchlight spheres with radii of 3 voxels were
defined centered sequentially on every voxel in the
brain. The average five-sample response of voxels
across this sphere and across all stimulus presentations
was computed. For a given searchlight, for each
stimulus, each voxel was assigned a number based on
the dot product of this average response and the voxel’s
mean response across all six repetitions of that
stimulus. To the extent that hemodynamic responses
are known to vary across cortical regions, this
procedure allowed us to take into account a given
voxel’s local neighborhood mean response shape.
Fitting the local average response may provide a more
accurate model of the relative activity of voxels across a
sphere as compared to fitting a fixed response function
across the whole brain.

Initial voxel selection

Data analysis was performed on the entire scanned
brain volume with subregions defined by the sequential
searchlight. To distinguish the brain, in its entirety,
from the surrounding skull and empty scanner space, a
voxel mask was applied based on functional data using
standard AFNI procedures. Voxels outside the full-
brain mask were set to 0 at all time points; these 0
values were incorporated into searchlight analyses
when performed close to the exterior of the brain.
Because the inclusion of these null values was
consistent across all stimuli, it did not affect the
patterns of the dissimilarity matrices.
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Representational dissimilarity measures

As discussed earlier, we employed representational
dissimilarity as a means for relating the neural
representation of objects to the representation of the
same objects within a variety of computer vision
models. A representational dissimilarity matrix (RDM)
Dm was computed for each encoding model m such that

Dm
i; j ¼ dmðsi; s jÞ ð1Þ

meaning the matrix element in the ith row and jth

column contains the distance, or dissimilarity, between
the ith and jth stimulus si and s j in the model m. A given
dissimilarity matrix captures which visual objects are
clustered together by the corresponding representation.
The searchlight procedure was then used to identify
voxel clusters with Dms similar to the RDMs of each
computer vision model.

A 123-voxel searchlight sphere was defined centered
on each voxel in the brain (Kriegeskorte et al., 2006)

Figure 2. Slice coverage for all subjects.
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with individual voxel responses to each stimulus
computed as described in the Preprocessing section.
For a given searchlight centered on voxel location (x, y,
z), each RDM entry D

searchlightx;y;z
i;j was defined as one

minus the Spearman correlation between the voxel
responses for stimuli i and j (Kriegeskorte et al., 2008):

d searchlightx;y;zðsi; s jÞ ¼ 1� rðvðsiÞ; vðs jÞÞ ð2Þ
The 123-element vector v(si) represents the voxel

responses for stimulus i averaged across all six blocks
to compute the RDM. This averaging enhances the
stimulus-specific response over the independent time-
varying noise, providing a more stable estimate of the
searchlight response to each stimulus.

Five computational models of object representation
were implemented for comparison with the neural
representation of objects. Four of these methods were
drawn from popular computer vision models with
varied approaches to object representation, and the
fifth was a standard computational model designed to
account for neural responses relatively early in the
primate visual cortex. Distinct distance metrics dm(� � �)
were derived from each method. These models, ordered
from relatively more local to more global feature
representations, are described next.

Gabor filter bank

The Gabor filter is a well-established model of cell
and voxel-level selectivity in V1 (Daugman, 1985).
Each filter identifies a specific local-oriented edge in the
stimulus. A bank of filters spans edge angle, position,
and size. The first four levels of the filter bank used in
Kay et al. (2008) were implemented and used to
represent each image. The real-valued responses for
each filter were recorded in a vector. Euclidean distance
was used to measure the difference between the vectors
associated with each pair of images.

Geometric blur

Geometric blur uses local image properties at selected
interest points. The relative locations of these interest
points are included in the image encoding, thus
incorporating more global geometric properties of each
object. Feature vectors consist of pixel values regularly
sampled in radiating circles around the interest point
with the starting point for sampling being determined by
local image statistics. Pixel values are blurred over space
with increasing blur for higher-radius circles. This
approach emphasizes precise details at each interest
point and lower-resolution context from the surround-
ing region, similar to the decrease in spatial resolution
away from the retina’s focal point in early vision.

Interest points were selected randomly from edges
found by a Canny edge detector (Canny, 1986).

Features were extracted through an implementation of
the algorithm described in Berg, Berg, and Malik
(2005). For each pair of images, each interest point in
one image (the image with fewer points) was matched
with the point spatially closest in the second image. The
dissimilarity for each pair of points was computed by
taking the weighted sum of the negative correlation
between the two feature vectors, the Euclidean distance
between the points, and the change in circle orientation
as defined in Berg et al. (2005). The final dissimilarity
between images was found by summing the dissimilar-
ities for all pairs of points. This incorporates both
global geometric information and spatially sampled
local image statistics.

Scale invariant feature transform

SIFT features (Lowe, 2004) have been widely used in
computer vision systems for visual object recognition.
This approach selects significant pixel patches of an
image and captures associated visual properties that are
invariant to a variety of common transformations, such
as rotation, translation, image enlargement, and
(potentially) changes in ambient lighting. More specif-
ically, for a given image, interest points are identified,
and a scaled, rotated frame is defined around each
point. For each frame, a feature vector is computed to
encode the local image properties, defined as coeffi-
cients of a pyramid of image gradients increasing in
spatial scope. SIFT features were extracted from the 60
object stimuli using the VLFeat package for Matlab
(Vedaldi, 2011) with default settings when not other-
wise specified.

A bag of features approach was used to compare
SIFT features for pairs of images (Nowak, Jurie, &
Triggs, 2006). Conceptually, each of the SIFT feature
vectors in each stimulus is categorized as one of 128
‘‘words,’’ and the words are consistently defined across
all 60 images. Each image is then characterized by the
frequency of each of the possible words. More
specifically, k-means clustering is performed on the
feature vectors from all interest points of all pictures,
placing each vector into one of 128 groups. Assignment
of multidimensional continuous-valued vectors to a
small number of groups greatly reduces SIFT’s
representational complexity. A histogram is computed
to find the frequency of each vector group in each
image, and the histograms were normalized to sum to
one. For each image pair, the Kullback-Leibler (KL)
divergence was used to measure the difference between
the resulting two normalized histograms.

Shock graphs

The shock graph provides a complete and unique
representation of a given visual object’s external shape
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by constructing a modified form of Blum’s medial axis
(Kimia, Tannenbaum, & Zucker, 1995) based on the
object’s silhouette. The graph is a set of vertices, edges,
and shock labels, G¼ (V, E, k). Each vertex represents a
point or interval along the medial axis, edges connect
spatially neighboring points or intervals, and each label
specifies the curvature of the portion of the silhouette
associated with the corresponding vertices:

� k¼ 1 when curvature is monotonic; object only
widens or only narrows over an interval

� k¼ 2 when curvature reaches a local minimum at a
point; object narrows prior to the point in the axis
and widens after the point

� k¼ 3 when curvature remains constant over an
interval; object silhouette ends in a semicircle or
object is a circle

� k¼ 4 when curvature achieves a local maximum at a
point; object widens prior to the point in the axis and
narrows after the point

Further details are provided by Siddiqi, Shokou-
fandeh, Dickinson, and Zucker (1999). The distance
between graph pairs was computed using a graph-
matching technique implemented by ShapeMatcher
5.2.1, which also was used to generate the graphs
(Macrini, 2008).

Scene gist

Although scene gist (Oliva & Torralba, 2001) is
specially designed for recognition of scenes rather than
objects, we included this model partly as a control for
our assumptions about object representation and partly
to explore whether global image encoding methods are
applicable to biological object perception. In the scene
gist model, each picture is represented as a weighted
sum of bases, found through PCA such that a small
number of bases can be added together to reconstruct
natural scene images with low error. The weights used
in summing the bases to reconstruct an image serve as
the features.

A scene gist feature vector for each image was
computed using Matlab code implemented by Torralba
(2006) and normalized to sum to one. The distance
between each image pair was calculated as the KL
divergence between the corresponding normalized
feature vectors.

Two additional models and associated distance
metrics were implemented as controls for the five
computational models. The first control computed the
Euclidean distance between grayscale pixel intensities of
image pairs, comparing each image pair on the simplest
visual level, absent of assumptions about perceptually
meaningful visual properties. The second control
computed the correlation between binary semantic
properties of object pairs for 218 semantic features

employed by Sudre et al. (2012), comparing objects
largely based on nonvisual properties, such as animacy
and edibility.

After defining the distance metrics and calculating
the RDM entries for each of the five models, the
resultant matrix for each model was compared to the
matrix for each searchlight volume by converting the
lower triangle of each 60 · 60 matrix into a 1770 · 1
vector and measuring correlations. When a model
represents a set of image pairs as similar and a voxel
sphere encodes the same pairs of images as similar, we
may consider the voxels to be selective for the visual
properties captured in the model. By comparing each
computational representation with searchlights swept
across the whole brain, we can identify which cortical
regions, if any, have responses well described by each
method’s object/image representational approach.

Statistical significance values were computed at each
searchlight location through permutation tests. The
elements of the vectorized computer vision RDMs were
permuted 500 times; the mean and variance of
correlations for each searchlight position with each
permuted RDM were computed to derive z values for
the true correlation measures. The z values were
converted into one-tailed p values, using p¼ (1 – erf [z]),
where erf is the cumulative density function of the
Gaussian distribution N(0,1). A threshold was chosen
for each subject and each computational model such
that the false detection rate was q � .001, typically p�
.001, following the method of Genovese, Lazar, and
Nichols (2002), and the regions above threshold were
visualized over the subjects’ anatomical surfaces.
Surface maps were constructed using FreeSurfer (2012)
and SUMA (Saad, 2006).

Results

Our study was designed to illuminate how the human
visual system encodes object information along the
ventral pathway and, in particular, explicate the nature
of intermediate neural object representations. To that
end, we employed five computational models that make
specific, and different, assumptions about the algo-
rithms for recognizing content in visual images (see the
Representational Dissimilarity Measures section). To
the extent that there is a gap in our knowledge with
respect to the nature of intermediate features in human
vision, we adopted these models as proxy theories,
which each provide differing constraints on possible
representations. Individual models were compared to
our fMRI data by measuring the distance or represen-
tational dissimilarity between each pair of object stimuli
for both the particular computational model and the
neural encoding. A searchlight method was used to
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identify brain regions in which the set of interstimulus
distances, that is, the grouping of the stimuli, was
similar to the grouping of the same stimuli produced by
a given computational representation. Of note, in
comparison to the limited functional regions identified
by the LOC localization technique discussed in the
Experimental Design section, we searched almost the
entire brain to allow for the existence of brain regions
selective for complex visual features beyond those
regions often associated with object representation.

Given that all five of our included models rely on the
same visual input as our fMRI experiment, it is not
surprising, but still gratifying, that we observe significant

correlations between our neural data and all five models.
Figure 5 depicts those brain areas with significant
correlations (q , .001) between the distance matrices
derived from each model and the neural responses
within each area. Importantly, although we scanned
across almost the entire brain, these correlated brain
areas are focused in anatomical locations associated with
low-, mid-, and high-level vision in both dorsal and
ventral visual cortices with limited spread to the
prefrontal cortex (PFC). Overall, the SIFT model most
consistently matched the obtained stimulus representa-
tions in midlevel visual areas, and the Gabor filter bank
model most consistently matched the obtained stimulus

Figure 3. Five computational models under analysis. Features from SIFT are edge statistics measured at selected local scaled and

rotated frames; features from geometric blur are blurred pixel values circularly sampled at local interest points; features from shock

graph are computed based on shape of object silhouette; features from scene gist are edge statistics sampled at multiple scales

across the full image and compared against standard scene statistics; features from Gabor filter bank are projection of full image on

Gabor wavelet pyramid.
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representations in low-level visual areas. The neuroan-
atomical locations for matches to the three other models
were less consistent across subjects.

If we consider the underlying characteristics of each
model, these results appear reasonable. First, the
Gabor filter bank model encodes local oriented edges
and has been used successfully to model receptive fields
in the early visual cortex (Kay et al., 2008). Thus, the
distance matrix correlations resulting from the Gabor
filter bank model serve as a baseline to ensure that our
overall approach is viable. As such, we expected a
significant match between the activity observed in
human V1 and this model. Moreover, including the
Gabor filter bank model allows us to contrast these
baseline correlations expected to be associated with
earlier visual processing with any observed correlations
arising in mid- and high-level visual areas. As
illustrated in Figure 5 in orange, S2, S3, and S5 all show
a positive correlation between the RDMs from the
Gabor filter bank model and neural activity in the left
occipital pole, and all five subjects show a positive
correlation in the right occipital pole. Somewhat
surprisingly, the Gabor filter bank model also elicits
significant positive correlations in midlevel visual areas,
including the left fusiform cortex (lFus) in all five
subjects and the right fusiform cortex (rFus) in subjects
S2, S3, S4, and S5; subjects S2, S3, and S5 also exhibit
positive correlations in the left LO. We also see some
correlation in anatomical regions often associated with
higher-level visual processing, for example, extending
more anteriorly in the ventral temporal cortex for S1,
S4, and S5. Finally, the Gabor filter bank model is
correlated with activity beyond the ventral stream,
including the inferior parietal (IP) region in the left
hemisphere of S2, S3, and S4, and in the right

hemisphere of S2; somewhat smaller correlations were
also observed in the left PFC of S2 and right PFC of S3
and S5. Least intuitive may be the small-area, weak-
correlation matches in the left precentral sulcus of S3
and S5. Figure 6 emphasizes the most consistent match
regions across subjects are in the bilateral occipital
poles and early ventral stream.

In contrast with the Gabor filter bank model, the
SIFT model encodes local visual statistics selected
across points of interest in an image. The more
restricted results observed for the SIFT model are
consistent with this difference in representation. Posi-
tive correlations between the SIFT model and regions
of neural activity are evident in subjects S2, S3, S4, and
S5 as illustrated in Figure 5 in blue. With respect to the
SIFT model, our major finding is that these four
subjects all show positive correlations in the bilateral
fusiform cortex. Subject S5 also shows a positive
correlation in the bilateral LO. In the dorsal stream,
there is strong positive correlation for S2 in the left IP.
We also observed a positive correlation in the left PFC
for S5 and right PFC for S2 and S5. Figure 6 illustrates
the overlap of positively correlated regions across
subjects in the bilateral fusiform cortex and in the
posterior right ventral stream.

The geometric blur model, much like SIFT, encodes
local visual properties from selected points in each
image but also encodes more global information about
object geometry. As illustrated in cyan in Figure 5, all
five subjects showed positive correlations with neural
activity in midlevel visual areas; the breakdown by
subjects is illustrated in Figure 6. Subjects S1 and S5
exhibited positive correlations spanning the bilateral
fusiform cortex and posterior IT (pIT) with S5
exhibiting a more continuous region. More anteriorly

Figure 4. Multidimensional scaling visualization of the relative clustering of 15 of the stimulus pictures based on each computational

model under analysis.
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in the right IT, we observed a spatially smaller positive
correlation for S1 and S4. The right occipital pole also
had small spatial regions showing positive correlations
for S1, S2, S3, and S5 in addition to regions near the
left occipital pole for S1 and S5. Within the ventral
visual cortex, S5 also shows a positive correlation in
bilateral LO. In the dorsal stream, there are small
positively correlated areas in the parieto-occipital
sulcus (POS) for S2. Finally, we observed a positive
correlation in PFC for S5.

The shock graph model uniquely represents the
silhouette shape of a given visual object, ignoring small-
scale internal details critical to more local models, such
as SIFT and geometric blur. Positive correlations
between neural activity and the shock graph model are

illustrated in green in Figure 5. These positive
correlations are apparent for subjects S1, S3, S4, and
S5. S1 exhibits positive correlations in the bilateral LO
and bilateral occipital poles. There are positive
correlations for S3, S4, and S5 in rFus as illustrated in
Figure 6.

The scene gist model encodes global image proper-
ties most commonly found in natural scenes, focusing
on the two-dimensional spectrum across a given image.
Positive correlations for the scene gist model are shown
in purple in Figure 5 with the most robust results being
observed in S5 although, as illustrated in Figure 6,
there are also positive correlations in S1, S3, and S4.
More specifically, S1 and S5 exhibit positive correla-
tions in lFus. S5 also shows positive correlations in the

Figure 5. Cortical regions with a dissimilarity structure significantly correlated, q , .001, with the dissimilarity structures of the five

different models of visual feature coding. Colors are associated as follows: blue for SIFT, cyan for geometric blur, green for shock graph,

purple for scene gist, and orange for Gabor filter bank. Color intensity proportional to correlation. Regions matching multiple models

show the corresponding colors overlayed. Note first that although we illustrate these results on surface maps, the actual searchlights

were run on brain volumes and, second, that color overlap sometimes forms misleading shades, for example, purple as the

combination of blue and orange. Compare with Figure 6 in cases of uncertainty.
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rFus, bilateral LO, and bilateral pIT. S3 and S5 show
positive correlations in the right occipital pole with S5
also showing a positive correlation in the left temporal
pole. Less robust effects are seen for S4 and S5 in a
more anterior region of the right IT; and S1 and S5
show positive correlations near the left IP.

Taking a somewhat broader perspective, compari-
sons among these results indicate that some brain
regions appear to consistently correlate with several of
the computational models we considered. First, the
geometric blur and SIFT models, both encoding local
statistics of images, have overlapping regions on the
ventral surfaces of S3 and S5 and in the PFC of S5.
Within the ventral surface, these regions tend to be in

the pIT. The greatest degree of overlap can be seen
between SIFT and the Gabor filter bank model across
subjects S2, S3, S4, and S5, largely along the posterior
ventral surface. To some extent, this may be expected
simply by chance as these two methods produce the
largest sets of model-cortical match regions. It also is
worth noting SIFT is based on nonlinear operations on
selected Gabor filter responses, potentially tying the
two methods together.

Examination of searchlight correlation values pooled
across broad, independently defined anatomical regions
provides additional perspective on the descriptive
power of each computational model with respect to
activity in the visual cortex (Figure 8). Correlations for

Figure 6. Cortical regions on Talairach brain with dissimilarity structure significantly correlated, q , .001, with the structures of

computer visual models. Colors are associated with subjects as follows: blue for S1, cyan for S2, green for S3, yellow for S4, and

orange for S5. Red denotes overlap between two or more subjects with darker shades of red corresponding to increasing numbers of

subjects overlapping with one another.
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the Gabor filter bank model are significantly higher
than correlations for all alternative models across
subjects and across a variety of primarily posterior
regions, including the right occipital cortex and the left
lingual cortex. At the same time, correlations are also
present in anterior regions, such as rFus. Correlations
for the SIFT model are significantly higher than
correlations for all alternative models in the left and
right occipital cortices for S2 and S5 and in the right
middle occipital cortex for S5 as well as more anteriorly
in lFus for S4 and S5, in rFus for S5, and in rIT for S4.
Correlation comparisons for the other three models are
rarely significant and scattered across the visual cortex.

The two control models, encoding particularly
simple information in one case (pixel intensities) or
particularly abstract in the other case (semantic
properties), were considered as contrasts to the five
computational models of visual perception. The loca-
tions of the two control models’ few significant
correlations with neural activity reinforce the use of the
searchlight RDM method in the study of cortical visual
representations.

The pixel-intensity model reflects the presence of
bright or dark pixels at each location in an image, and
the Gabor filter bank model of V1 discussed above
reflects the presence of contrast edges between groups
of pixels across narrow regions of an image. The
algorithmic similarity between these models and the
conceptual simplicity of the pixel-intensity comparison
lead us to anticipate most regions showing significant
positive correlations with the pixel-intensity model will
appear early in the ventral pathway. This is observed in
part as illustrated in Figure 9. S1 and S4 show relatively
large regions of positive correlations bilaterally at or
near the occipital pole, and S2 shows positive
correlations near the right occipital pole. The pixel-
intensity model also produces significant positive
correlations in the right LO for S1, left anterior IT
(aIT) for S2, and right aIT for S4, spanning smaller
cortical regions. Less intuitively, there are small
positively correlated areas in the left IP for S2 and S5,
right IP for S3, bilateral POS for S5, and bilateral
orbital frontal cortex for S5.

The semantic model encodes generally nonvisual
information about each object, leading us to anticipate
most regions showing significant positive correlation
will appear at high levels of the ventral pathway or
outside the ventral pathway entirely. As expected, as
illustrated in Figure 9, the few regions of positive
correlation appear more anteriorly, in the left LO and
left Fus for S1 and in the bilateral Fus for S2. The
model does not significantly match neural activity in
any region for S3, S4, and S5. The lack of frequent
positive correlations is not surprising as the semantic
model is designed to compare 251 high-level properties

simultaneously—unlikely to be localized to a single
brain region.

Another way of examining this data involves
focusing on a specific functional region—in this case,
the area of the ventral stream most often associated
with generic, high-level object processing, the LOC
(Kourtzi & Kanwisher, 2000; Grill-Spector et al., 2001).
Overlap between cortical regions differentially selective
for objects, identified using the LOC ‘‘localizer’’
described above, and searchlight volumes found to be
positively correlated with one or more of the five
computational models are illustrated in Figure 10.
These overlap regions were spatially small as compared
to the overall volumes identified by the searchlight
process and varied in anatomical location depending on
the particular computational model and the subject.
For example, within the LOC, the anatomically based
left LO overlapped with a volume identified as
correlated with the Gabor filter bank model in S3, and
the lFus showed overlap with volumes associated with
the Gabor filter bank model in S4. Further overlap
within the LOC was observed for Gabor filter bank
volumes located in the right pIT for S4, in a more
anterior region of the left IT for S1, and in the left
extrastriate cortex for S3 and S5. With respect to
correlated searchlight volumes arising from the SIFT
and geometric blur models, within LOC we observed
overlap in the right LO, pIT, and more anterior IT for
S5. Finally, the geometric blur model overlapped with
LOC responses in the anterior IT for S1.

To provide perspective on the similarities among the
five studied computational models, we compared their
respective stimulus distance matrices in Figure 11. We
compute correlations for distance matrices including 59
of the 60 rows and columns and observe the average
and standard deviation for each model comparison. We
observe that the correlation between models’ stimulus
grouping structures generally fails to act as a predictor
of overlapping regions seen in Figure 5 with the
potential exception of the link between SIFT and
geometric blur. Figure 11 also illustrates that the
models have notably low pairwise correlations, that is,
representations, of the 60 stimuli. Supporting this
observation, for the most part, there are few overlap-
ping regions across models in any of the five subjects.
The low correlation between SIFT and Gabor filter
bank, despite the overlap of their corresponding match
regions in neuroimaging data, may reflect the removal
of image location-specific information encoded in the
Gabor filter bank but discarded in the bag-of-features
evaluation of SIFT descriptors (Nowak et al., 2006).

A distribution of the model-neural activity positive
correlation values, akin to a Gamma distribution, is
above the false discovery rate threshold for each subject
and for each model. The nature of these distributions is
illustrated in Figure 12. Note that while the average

Journal of Vision (2013) 13(13):25, 1–27 Leeds, Seibert, Pyles, & Tarr 13

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933542/ on 04/30/2016



Figure 7. Number of voxel searchlight center in Talairach brain with more than one subject showing significant, q , .001, neural-

model correlations. Results divided among anatomical regions of the ventral visual pathway. Number of searchlight centers

represented according to color bar with dark blue for zero centers and dark red for 64 or more centers.
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significant correlations for each model are roughly the
same, r¼ 0.15, the highest values provide a sense of
ranking among computational representations in their
abilities to account for neural responses. Most intui-
tively, the Gabor filter bank model, assumed to account
for aspects of processing within the primary visual
cortex, shows the strongest matches with an average
top correlation of roughly r ¼ 0.33; analysis of
individual subject correlations reveals the same pattern.
SIFT exhibits the second highest set of correlations
with an average top correlation of roughly r¼0.23. The
distribution of maximum correlations follows the same
trend as the total area across all of the positively
correlated regions for each model across all subjects;
this is shown in Figures 5 and 6. Figure 12 also
illustrates that there are significant positive correlations
between every subject and every model. Certain
matches are omitted from the discussion above because

of their low correlations and their small surface spans,
making them difficult to interpret.

The significant positive correlation values between
model and neural RDMs are rather low—almost
entirely below 0.3. To assess the extent to which noise
in fMRI measurements adversely affected correlation
magnitude, we computed and studied split half
correlations. At each searchlight location, we recom-
puted the RDM based on voxel responses for the first
three displays of each stimulus and, separately, for the
second three displays of each stimulus. We then
computed the correlation of the two RDMs at each
location, shown in Figure 14. Split half correlations
were markedly below 1.0. While they could rise as high
as 0.66 for some subjects, most correlations were below
0.3 even in the ventral pathway presumed to respond
most strongly and most consistently to visual object
stimuli across displays. Thus, correlation values of 0.1

Figure 8. Average positive correlation value measured for searchlights in anatomical regions of the ventral visual pathway, based on

Talairach projection. Star (*) indicates correlations in anatomical region significantly greater ( p0 � 0.01, Bonferroni-corrected for 5 ·
10 · 5 ¼ 250 multiple comparisons) for the selected model than for the other four models.
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and 0.2 may correspond to stronger matches in the
absence of measurement noise.

The three-voxel searchlight radius used to compute
each RDM was motived by parameter exploration
reported in past literature to maximize neural encoding
information (Kriegeskorte et al., 2006) and was further
found using the present neuroimaging data to maximize
RDM correlations. Figure 15 shows the correlation of
voxel spheres centered at selected locations are at or near
maximum value across subjects and models when using
a searchlight radius of three voxels. In some conditions,
increasing or decreasing the radius by two or more
voxels could significantly alter the measured correlation
value. Figure 16 suggests that additional image stimuli
would decrease the variance of our measured correla-
tions and hence increase statistical power. While the
mean correlation is less dependent on the number of
images than the number of voxels, from Figure 15, this is

an expected property of dissimilarity matrices. Adding
and removing images from a dissimilarity matrix
corresponds to adding and removing rows and columns
while leaving the remaining entries in the matrix intact.
In contrast, adding and removing voxels, as in Figure
15, changes all of the values of the dissimilarity matrix.
From the data we have collected, it is unclear how many
images would be required for the reduction in measured
correlation variances to saturate.

Discussion

Computational models of vision as proxy
theories of biological vision

Our goal in this project was to better elucidate the
featural selectivity of the ventral neural substrates
supporting visual object processing. In contrast to our
understanding of early visual processing (e.g., V1) and
the high-level organization of visual cortex (e.g., the
LOC, FFA, PPA, etc.), intermediate representation
along the ventral pathway is poorly understood. To the
extent that few theories account for this stage of visual
object processing, we adopted a collection of theories
drawn from computer vision to serve as proxies in that
each theory makes specific, and different, assumptions
regarding object representation.

To apply these theories to the neural representation
of objects, we analyzed the pattern of similarity
relationships between objects within the same collection
of 60 objects as represented within the brain using
patterns of object-generated activity recorded by fMRI
and within each computational model. We then applied
a searchlight analysis to uncover correlations between
patterns of neural activity within brain subregions—
sampled across the brain—and patterns within each
computational model. This approach provided many
regions in which there was a reasonable correspondence
between a given model and the observed neural
activity. Importantly, almost all of these significant
correlations occurred in brain areas associated with
visual object processing, thereby providing a theoretical
sanity check that our results are informative with
respect to our question of interest. At one level, this
general result should not be particularly surprising; all
of our models relied on the same spatial input, images
of objects that were used as stimuli in the neuroimaging
component of our study. Ideally, correlations at input
should be reflected, at least to some degree, in
correlations in representation of that input. On the
other hand, the tested models each captured somewhat
different linear and nonlinear structures in their
representation of objects (e.g., Berg et al., 2005;
Chandrasekhar et al., 2010). For example, the interest

Figure 9. Cortical regions with a dissimilarity structure

significantly correlated, q , .001, with the dissimilarity

structures of five control models of object coding. Colors are

associated as follows: pink for pixel intensities and brown for

semantic properties.
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point frameworks used in the SIFT and geometric blur
models provide a potential basis for parts-based
perception—often assumed to be a critical element in
the biological representation of objects (Schyns, Bon-
nar, & Gosselin, 2002; Zhang & Cottrell, 2005). In
contrast, the shock graph approach provides a compact
encoding of an object’s silhouette and major axes,
supporting a parametric description of holistic repre-
sentation (Kimia et al., 1995). Scene gist is even more
biased in representing global properties of an image,

encoding the entire image structure of an object as well
as its background (Oliva & Torralba, 2001). The pixel
intensity and semantic property control models capture
even more extreme low- or high-level object properties
and are, accordingly, generally localized by our method
to lower- and higher-level stages along the ventral
pathway.

Beyond the basic finding that our highest model-
neural response correlations are observed within the
visual system, we gain further confidence regarding the

Figure 10. Cortical regions selected by LOC localizer and also found to have dissimilarity structure significantly correlated, q , .001,

with the structures of computer vision models. Colors are associated as follows: blue for SIFT, cyan for geometric blur, green for shock

graph, yellow for scene gist, orange for Gabor filte rbank. Yellow contours show LOC localized regions.
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informativeness of our method from the observation
that the strongest correlations between the Gabor filter
bank model and neural activity are located early in the
visual pathway, near the occipital pole and extrastriate
cortex. This finding is consistent with a wide variety of
studies characterizing early neural visual receptive
fields as coding for local-oriented edges (Hubel &
Wiesel, 1968; Daugman, 1985; Kay et al., 2008). The
extension of these significant correlation regions into
the higher-level bilateral fusiform cortex and IP cortex
has slightly less clear interpretations but may support
the hypotheses of Cadieu et al. (2007) and Serre et al.
(2007) that later stages of the ventral visual stream
employ a hierarchy of sometimes nonlinear operations
based on initial Gabor filter outputs. Beyond the
operations specified in Serre et al. and Cadieu et al.,
SIFT represents a reframing of Gabor filter-like
outputs for more complex recognition tasks, potentially
accounting for the overlap in brain regions we observe
between the correlations for the Gabor filter bank and
SIFT models across subjects.

In summarizing the relative performance of the
tested models, we find that both across and within
subjects, the SIFT model appears to be the most
promising of those tested for accounting for interme-
diate-level object representation in the human visual
system. In particular, the SIFT model most strongly
and consistently matched patterns of neural activity in
rFus, an anatomical neighborhood associated with

processing faces and other objects drawn from domains
of expertise (Haxby et al., 2000; Tarr & Gauthier, 2000;
Grill-Spector et al., 2004). To a lesser extent, we also
observed correlations for the SIFT model within the
left LO, a neuroanatomically defined brain region also
associated with object perception (Grill-Spector et al.,
2001). However, as shown in Figure 10, the SIFT
model rarely correlates with brain regions lying within
the functionally defined object-selective area referred to
as LOC. Thus, it appears that the representation of
objects in SIFT is similar to an intermediate encoding
stage along the path to high-level object representation.

As a ‘‘proxy’’ model of intermediate feature repre-
sentation, the preponderance of significant SIFT
correlations in our results invites further reflection on
its underlying algorithm. As discussed earlier, SIFT’s
interest point strategy is consistent with parts- or
feature-based models of object perception. Notably,
unlike geometric blur, our implementation of SIFT
disregards the spatial locations of the local image
regions it encodes, a characteristic that is consistent
with the observation of invariance between intact
images and their block-wise scrambled versions (Vo-
gels, 1999). Similarly, SIFT incorporates aspects of the
Gabor filter bank model, which does a reasonable job
at capturing characteristics of early visual processing;
as such, this component of SIFT enhances its nominal
biological plausibility. Finally, our ‘‘bag of features’’
implementation of the SIFT model (Nowak et al.,
2006) supports the learning of commonly occurring
local edge patterns as ‘‘visual features.’’ The use of such
features allows the extraction of statistical patterns in
the input similar to how vision scientists often
characterize V1 receptive fields (Olshausen & Field,
1997). Each of these many algorithmic elements
contribute to the stimulus representations embodied in
our use of SIFT; further work is required to understand
which of these elements contribute to the observed
significant model-neural RDM correlations.

Our results also suggest that the shock graph model
may be informative with respect to intermediate feature
representation. Shock graphs describe objects in terms
of their global shapes, capturing their axial structures
and silhouettes. Thus, spatial information about the
relative positions of shape features are preserved, but
the local image statistics that may specify local features
are not captured (e.g., texture). Our observation of
correlations between ventral stream neural activity and
the shock graph model supports the idea underlying
shape-based encoding in intermediate-level neural
representations (Tanaka, 2003; Yamane et al., 2008;
Hung et al., 2012). To the extent that these correlations
are confined to more posterior parts of the ventral
stream, they are, however, somewhat inconsistent with
the observation of Hung et al. of shape-based
representations in the anterior IT in monkeys. At the

Figure 11. Distance matrix Spearman correlations among the

five models. Mean and standard deviation correlations

computed using the leave-one-out method, leaving out 1 of the

60 stimuli for the distance matrices. Higher correlations in

larger font and in darker red backgrounds.

Journal of Vision (2013) 13(13):25, 1–27 Leeds, Seibert, Pyles, & Tarr 18

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933542/ on 04/30/2016



Figure 12. Histograms of significant correlations between model and searchlight RDMs. Median correlations for each model and each

subject are shown as dashed red lines. The rightmost column shows the average histograms of the correlation values pooled across

the five subjects, and each blue histogram bar is computed as a fraction of the total count; pink bars show the standard deviation for

each correlation value bin.
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same time, this observation should not be generalized
to other models of global encoding as we find that scene
gist, encoding spatial frequencies across whole images,
produces correlations in more anterior IT.

More generally, although our results are informative
in some respects, it is doubtful that any established
computational vision model accurately captures the
neural representations instantiated in intermediate-level
biological vision. Indeed, the best correlations between
any model and the fMRI-derived cortical distance
matrices (Figure 12) fall below 0.5. Nonetheless, the
large majority of statistically significant (q , .001)
model-fMRI correlations were found in visual brain
areas with some differentiation within these areas for
different methods. Furthermore, significant correla-
tions generally were larger than pairwise correlations
observed between model-derived distance matrices
(Figure 11) and often approached the split half
correlation values of voxel searchlight RDMs, indicat-
ing that some seemingly low values may be due to
noise. Thus, while our conclusions are necessarily
limited by the noise inherent in fMRI measurements,
we suggest that our methods provide some sense of the

visual properties for which given brain regions may be
selective.

From a theoretical perspective, one potential con-
cern with this interpretation is how we selected
particular computational models for use in our study.
In large part, our choices were based on each model’s
success or popularity in the extant computational
vision literature and on each model’s distinct encoding
strategy with respect to intermediate feature represen-
tation—an intuition validated by the fact that the
models have measurably different stimulus dissimilarity
matrices (Figure 11). Of note, our present work does
not include an analysis of the popular hiearchical
model of biological vision known as ‘‘HMAX’’
(Riesenhuber & Poggio, 1999; Cadieu et al., 2007; Serre
et al., 2007). HMAX employs a hierarchical series of
summing and nonlinear pooling operations to model
midlevel visual regions, such as V2 and V4. However,
the HMAX model contains a variety of variables that
must be fit either to the input stimulus set or to a set of
experimental data (Serre et al., 2007). In an additional
experiment not presented here, we found the actual
data set collected in our study using the 60-image

Figure 13. Scatter plot of significant correlation values (y axis) for each model by subject. Each plot depicts these correlations relative

to the distance, in voxels, from the back of the brain, moving progressively in an anterior direction (x axis; log scale).
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stimuli was insufficient for reliable fitting of HMAX
(Seibert, Leeds, Pyles, & Tarr, 2012) even when limiting
the model to layers S1 through C2 as in Cadieu et al. In
contrast, the application of HMAX to the responses of
individual neurons in monkeys (Cadieu et al., 2007) is
more feasible as data for thousands of trials can be
acquired. At the same time, it is worth noting that
neurophysiological recordings of IT do not correspond
to HMAX predictions for stimulus grouping structure
(Kriegeskorte et al., 2008).

HMAX, considered up to the S2 layer, and the
histogram of oriented gradients (HoG) model (Dalal &
Triggs, 2005) both constitute prospective models of
visual representation. Moreover, both are similar in
form to the successful SIFT method. All three of these
models rely on a nonlinear combination of local edges
to characterize an image. HMAX computes local edges
using Gabor filters in the ‘‘S1’’ layer (as in SIFT),

records the maximum response for each filter orienta-
tion over a broader region within the given image in the
‘‘C1’’ layer, and computes weighted sums across the
selected C1 edge responses in the S2 layer (Riesenhuber
& Poggio, 1999). HoG computes local edges through
computation of visual gradients of Gaussian-smoothed
image patches and accumulates the gradients centered
at each pixel through histograms normalized among
broader patches (Dalal & Triggs, 2005). Conceptually,
each model posits biologically plausible nonlinear
pooling operations of local image properties that may
relate to cortical object representations. Given the
present results for SIFT, it seems likely HoG and the S2
layer of HMAX may also show significant correlations,
perhaps in slightly differing brain regions. Of particular
interest, weakening or strengthening of RDM correla-
tions in response to changes in edge computations and
pooling techniques may allow for a more clear

Figure 14. Split half correlation of searchlight RDMs based on the average of the first three recorded responses to each stimulus

versus RDMs based on the average of the second three recorded responses to each stimulus. Correlations greater than 0.1 are

displayed.
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Figure 15. Correlations between RDMs for searchlights of varying voxel radii with model RDMs. The center for each searchlight was

selected to be the voxel with the largest r ¼ 3 searchlight correlation value for a given subject and model, provided there was

sufficient room from the ends of the recording volume to also compute a r¼ 7 searchlight. Error bars were computed by correlating

model and searchlight RDMs for 55 out of 60 images randomly selected 500 times. Colors are as follows: blue for Gabor filter bank, red

for SIFT, green for geometric blur, black for scene gist, and purple for shock graph.
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Figure 16. Correlations of each model and neural RDM using a variable number of stimuli. The location of each searchlight was

selected to be the same as in Figure 15 for ease of comparison. Colors are as follows: blue for Gabor filter bank, red for SIFT, green for

geometric blur, black for scene gist, and purple for shock graph.

Journal of Vision (2013) 13(13):25, 1–27 Leeds, Seibert, Pyles, & Tarr 23

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933542/ on 04/30/2016



understanding of the representational principles used in
the ventral pathway.

From an empirical perspective, a second potential
concern is the degree of variability in the spatial
location, or even the existence, of large high-correlation
brain regions for each model within individual subjects.
In some cases, as in SIFT and Gabor filter bank, the
changes in anatomical positions across subjects were
relatively slight, consistent with variability of func-
tional region locations, such as LOC or FFA (Kung,
Peissig, & Tarr, 2007). More qualitative variability, for
example, across lobes or hemispheres, may reflect
meaningful differences in our subjects’ cognitive and
cortical approaches to object perception. For example,
individuals may vary in the degree to which they attend
to local versus global features or apply holistic
mechanisms (Wong, Palmeri, Rogers, Gore, & Gauth-
ier, 2009). Beyond the potential strategic variation in
how individuals perceive objects, noise in the hemo-
dynamic signals may increase the variability of
correlated brain regions across subjects. However, this
latter possibility fails to explain why all subjects exhibit
significant and consistent correlations within the visual
pathway for several of the models.

Conclusion

Our study aims to connect the cortical encoding in
mid- and high-level visual areas of the human ventral
stream and image representations as realized in several
different computational models of object representa-
tion. Perhaps the most salient conclusion we can make
is that the best biological/computational correspon-
dence is observed for the SIFT model (Lowe, 2004).
Although such results do not imply that SIFT-like
computations are somehow realized in the human
brain, they do suggest that the SIFT model captures
some aspects of the visual stimulus that are likewise
instantiated in human visual object processing. In
particular, SIFT pools information about the presence
of oriented edges distributed across image space, an
approach generally understood to be used in cortical
perception. Further study is required to assess which
representational elements of SIFT are most biologically
relevant.

As this study is one of the first attempts to directly
connect extant computational models of object repre-
sentation with the neural encoding of objects, there
remains ample room to sharpen our observations and
to further explore the space of possible biological vision
representations. For example, maximum possible cor-
relations between model and cortical representations of
stimulus objects presently are rather low—generally
below r¼ 0.3. Our results are limited by measurement

noise and relatively weak hemodynamic signal mea-
sured to reflect cortical activity. To strengthen future
studies, the passive viewing task used in the neuroim-
aging component of our study could be replaced by an
active object identification task, which, conceivably,
might yield stronger neural signals and more robust
results. In contrast, broadening the set of stimuli
viewed to enable a wider comparison of visual
representations would offer little additional benefit in
the absence of a dramatic increase in the number of
stimuli and, likely, in the required scanning time.

Another improvement would be to consider other
computational vision models, for example, HoG (Dalal
& Triggs, 2005), the more biologically inspired model
HMAX (Riesenhuber & Poggio, 1999), or the hierar-
chical model described in Jarrett, Kavukcuoglu,
Ranzato, and LeCun (2009). SIFT’s similarity to the
HMAX S2 layer and to HoG—all three models rely on
nonlinearities to pool local edge information—indicates
further pursuit of these kinds of representations to
describe high-level voxel encodings may prove a fruitful
course for future research. Finally, a more sophisti-
cated approach to developing informative model-brain
correspondences may be to combine the dissimilarity
matrices for any group of representational methods
with weights optimally learned to match the represen-
tation within any given brain region (Tjan, 2001).

In sum, our study provides a foundation for further
exploration of well-defined quantitative models using
dissimilarity analyses and points the way to methods
that may help shed further light on the visual features
encoded in the human brain.

Keywords: neuroimaging, object recognition, compu-
tational modeling, intermediate feature representation
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