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For understanding development of quantitative thinking, the distinction between 
non-symbolic and symbolic thinking is fundamental. Non-symbolic quantitative 
thinking is present in early infancy, culturally universal, and similar across 
species. These similarities include the ability to represent and compare 
numerosities, the representations being noisy and increasing logarithmically 
with actual quantity, and the neural correlates of number representation being 
distributed in homologous regions of fronto-parietal cortex. Symbolic 
quantitative thinking, in contrast, emerged recently in human history, differs 
dramatically across cultural groups, and develops over many years. As young 
children gain experience with symbols in a given numeric range and associate 
them with non-verbal quantities in that range, they initially map them to a 
logarithmically-compressed mental number line and later to a linear form. This 
logarithmic-to-linear shift expands children’s quantitative skills profoundly, 
including ability to estimate positions of numbers on number lines, to estimate 
measurements of continuous and discrete quantities, to categorize numbers by 
size, to remember numbers, and to estimate and learn answers to arithmetic 
problems. Thus, while non-symbolic quantitative thinking is important and 
foundational for symbolic numerical capabilities, the capacity to represent 
symbolic quantities offers crucial cognitive advantages. 
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Quantitative thinking is central to human life. Whether the situation involves a 

child recalling which blocks provided her with the most candies on previous 

Halloweens, a Londoner telling the time by counting the tolls of Big Ben, or a candidate 

using polls to predict results of an upcoming election, quantitative thinking is important 

for learning from the past, monitoring the present, and planning for the future.  

Quantitative thinking plays an important role in the lives of other animals as well. 

To project the outcome of a future fight, prides of lionesses compare their pride-number 

to the number of distinct roars they hear in rival packs (McComb et al., 1994). Similarly, 
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to learn optimal foraging locations, animals in the wild encode the relative number of 

food items they have found previously in various locations (Davis, 1993).  

The existence of such quantitative abilities makes sense from an evolutionary 

perspective. Being deprived of a sense of how many would deprive an animal of any 

rationality in its judgments and decision-making. Rational choices among alternative 

strategies and courses of action would be rendered impossible. 

Given the importance of quantitative thinking, it is unsurprising that representations 

of quantity are a universal property of human cognition. Quantitative representations 

are present from early infancy (Cordes & Brannon, 2008; Feigenson, Dehaene, & Spelke, 

2004), and share striking similarities across human cultures that provide radically 

different cultural and linguistic experiences (Butterworth et al., 2008; Gordon, 2004; Pica 

et al., 2004). Moreover, early-developing quantitative representations play a central role 

in learning a wide range of other quantitative skills that have emerged more recently in 

human history, such as symbolic arithmetic and algebra (Ifrah, 2000). 

The central distinction among numerical capabilities that organizes this review, one 

that is highly correlated with the distinction between early-developing and later-

developing quantitative skills, is that between non-symbolic and symbolic capabilities. 

Non-symbolic capabilities are ones in which numerical properties are implicit; for 

example, when sets of 7 and 5 dots are presented, the facts that one set has 7, the other 

has five, and the first set has more objects than the second, are all implicit. In contrast, 

symbolic capabilities are ones in which the numerical properties are explicitly expressed 

as written Arabic numerals, spoken words, or written words (e.g., “7” or “seven”). Non-

symbolic and symbolic numerical processing differ in many ways. Non-symbolic 

processing of numbers is widespread across species; symbolic numerical processing 

appears to be unique to humans (aside from a small number of primates that have 

participated in laboratory experiments). Non-symbolic processes emerge in infancy; 
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symbolic processing does not emerge until later in childhood. Non-symbolic processing 

is approximate; symbolic processing allows precision. Moreover, symbolic processing of 

numbers shows wide variations among different cultures and historical periods, 

whereas variation in non-symbolic processing is less marked. 

One reason to be interested in the development of quantitative abilities is that 

findings from this area often shed light on general theoretical issues in cognitive 

development. These issues include the potential existence of innate representational 

abilities, the extent to which early-developed capacities are sufficient to support the 

development of later abilities, and whether experience creates new representational 

resources or selects among pre-existing ones for use in novel contexts. Among the 

reasons why studies of quantitative abilities have been so fruitful is that such studies 

permit a degree of mathematical precision that is much more typical of psychophysics 

than of studies of children’s concepts in other areas (e.g., theory of mind, biology, and 

moral development), thereby allowing researchers to test models that generate 

competing quantitative predictions. An equally important reason for the rapid 

expansion of this area is that valuable practical applications for improving children’s 

mathematical understanding have arisen from the theoretical work.  

  Within the distinction between non-symbolic and symbolic quantitative 

thinking, we focus on three main questions: (1) What quantitative abilities exist in 

infancy that provide the foundation for later, more advanced abilities; (2) How are later 

abilities continuous, and how are they discontinuous, with these early emerging 

abilities; and (3) How do developmental changes in these abilities affect other aspects of 

quantitative thinking, such as mental arithmetic? 

(H1) NON-SYMBOLIC QUANTITATIVE THINKING 

(H2) FOUNDATIONS OF QUANTITATIVE THINKING IN INFANCY 
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 Three key issues arise in studying the early foundations of human non-symbolic 

quantitative abilities. First, at what point in development do children reliably 

discriminate among quantities that differ in number and represent the number of entities 

in a set? Second, in early development, what mental mechanisms initially represent 

numerical values? Third, at what point in development can children mentally manipulate 

numbers (as measured, for example, by their ability to recognize impossible arithmetic 

transformations)? It turns out that all of these abilities are present early in infancy. 

(h3) Discrimination of Numerical Quantities  

Without the ability to perceive the difference between two sets that differ only in 

number, it would be impossible to understand the similarity of sets that have only 

number in common (cross-modal mapping), to distinguish between possible and 

impossible arithmetic transformations of sets of objects (non-symbolic arithmetic), to 

link numeric symbols to their approximate or exact referents (estimation, counting), or 

to engage in economic transactions. For these reasons, research on the development of 

numerical cognition begins with efforts to establish the capacities (and limits) of infants’ 

discrimination among quantities. 

(h4) Infants’ Discrimination Among Numbers of Objects. A consistent finding in 

research on development of quantitative abilities is that human infants notice changes in 

number in sets of 1-3 objects (Starkey & Cooper, 1980; Strauss & Curtis, 1981; Starkey, 

Spelke, & Gelman, 1983). In one early study of infants’ numerical capacities and a 

number of later ones, researchers observed a spontaneous preference for the larger set 

when two sets differed in number by a factor of 2 or more, even with very large sets 

(e.g., 128 versus 32 elements in Fantz & Fagan, 1975; 32 versus 16 in Xu, Spelke, & 

Goddard, 2005; 16 versus 8 in Lipton & Spelke, 2003). In other studies, investigators 

used habituation paradigms in which infants were repeatedly presented a particular 

number of objects until their looking time decreased, and then were presented with a 
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different number of objects. Recovery of looking time to novel stimuli (dishabituation) 

was observed when the ratio between original and novel sets was 2:1 or 3:2 (2 versus 3 in 

Strauss & Curtis, 1981; 8 versus 4 in Xu, 2003). The earliest signs of this kind of 

numerical discrimination appeared in 21- to 44-hour-old neonates, who—having been 

habituated to a display of 2 (or 3) dots—recovered interest when shown 3 (or 2) dots 

(Antell & Keating, 1983).  

Findings from studies of infants’ discrimination of sets of objects suggest three 

general conclusions. First, at all ages, the number required to discriminate between two 

relatively large sets (i.e., 4 or more members) is not an absolute number but rather a ratio 

(e.g., discrimination of 4 versus 8 objects is typical at ages where discrimination of 8 

versus 12 objects is not). Rather, as in the Weber-Fechner psychophysical function, the 

probability of discrimination is proportional to the difference in the logarithms of the numbers, 

where, for example, ln(32)-ln(16) = ln(16)-ln(8) = ln(8) –ln(4) > ln(12)-ln(8) = ln(6)-ln(4). 

Second, the difference in logarithms required to discriminate between numbers 

decreases with age. Thus, older infants discriminate ratios that younger infants do not 

(Cordes & Brannon, 2008). Finally, for very small numbers (i.e., 3 or less), the probability 

of discrimination is uniformly high, higher than would be predicted from considering 

the differences in logarithms alone. Thus, discriminating 2 versus 3 is easier for infants 

than discriminating 4 versus 6. 

Infant’s discrimination of auditory sequences (Lipton & Spelke, 2003; vanMarle 

& Wynn, 2009), temporal intervals (Brannon et al., 2008; vanMarle & Wynn, 2006), 

events (Wynn, 1996; Wood & Spelke, 2005,) and collective entities (Wynn et al., 2002) 

conforms to these generalizations about number discrimination. To cite one example, the 

Weber-Fechner law applies to discriminations among number of sounds. When Lipton 

and Spelke (2003) familiarized 6-month-old infants to a sequence of 8 or 16 sounds, 

infants more often turned their heads to hear a novel number of sounds (16 or 8) than to 
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hear the original number of sounds. As with objects, the ratio of the sets is what matters; 

6-month-olds discriminate between 32 and 16, 16 and 8, and 8 and 4 sounds, but not 

between 4 and 6 or 8 and 12 sounds (Lipton & Spelke, 2004; Xu, 2003; Xu et al., 2005). 

Also as with objects, the difference in logarithms required to discriminate between two 

numbers of sounds decreased with age: older infants discriminated ratios (e.g., 4:6) that 

younger infants did not (Lipton & Spelke, 2003). And as with objects, discrimination of 

very small numbers of sounds is consistently high, higher than would be expected from 

considering the ratio in isolation. When four-day-old infants were presented multi-

syllabic utterances, discriminations between 2 and 3 syllables were more likely than 

between 4 and 6 (Bijeljac-Babic et al., 1993).  

(h3) Do Infants Represent Number Per Se? 

 Whenever infants react to changes in a stimulus, a number of possible 

mechanisms might give rise to the reaction. In the case of numerical discrimination, 

different mechanisms might process numbers of discrete entities than other quantitative 

dimensions that often are correlated with number of discrete entities, such as summed 

area of the objects or their contour length). Because numerical and non-numerical 

parameters are inextricably linked in sets of objects, it is sometimes impossible to 

uniquely identify the factors that allowed infants to dishabituate to a display within a 

specific experiment (Mix, Huttenlocher, & Levine, 2002). Thus, infants’ ability to 

discriminate sets of items that differ in number may not necessarily mean that infants 

possess mental mechanisms that code number per se. In the next two sections, we 

examine this issue, first by reviewing whether infants’ sensitivity to non-numerical 

features of sets is sufficient to explain their ability to discriminate between sets that 

differ numerically, and then by examining evidence from cross-modal mapping studies 

that we view as decisive on this issue. 
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(h4) Non-numerical Cues to Numerical Quantity. One class of non-numerical cues 

that might cause an infant to dishabituate to a novel number of objects is continuous 

quantitative cues, such as surface area, volume, and contour length. A number of 

investigators have posited that discrimination among values of these continuous 

dimensions, rather than of number as such, explains findings that others have 

interpreted as indicative of numerical discrimination abilities (Clearfield & Mix, 1999, 

2001; Gao, Levine, & Huttenlocher, 2000; Mix, Huttenlocher, & Levine, 2002; Feigenson, 

Spelke, & Carey, 2002). In an important challenge to early research on infants’ numerical 

abilities, Clearfield and Mix (1999) habituated 6-month-olds to a series of stimuli that 

shared a set size (e.g., 3 objects) and a constant cumulative contour length. Infants were 

then presented a dishabituation trial, either with number held constant and cumulative 

contour length changed or vice versa. Infants responded as if they detected the change 

in contour length but not the change in number. Results of subsequent studies indicated 

that infants’ discrimination of surface area resembles that of the Weber-Fechner 

psychophysical function, with novelty preference increasing linearly with the ratio of the 

surface areas, a result that paralleled previous findings with discrete objects (Clearfield 

& Mix, 2001). One interpretation of these results (e.g., Mix et al., 2002; Newcombe, 2002) 

is that young infants do not represent number and instead respond solely to non-

numerical properties of the set.  

On the other hand, several considerations suggest that non-numerical cues are 

insufficient to account for infants’ ability to discriminate sets of objects. First, when non-

numerical properties of a large set of objects (e.g., 8 or more) are varied in the 

habituation display while number is held constant, infants in the test phase of the 

procedure reliably dishabituate when shown a set with a novel number of objects that 

shares non-numerical properties of the habituation sets (Brannon, Abbott, & Lutz, 2004; 

Xu & Spelke, 2000). If infants were sensitive only to the non-numerical properties of a 



Development of Quantitative Thinking 8 
 
 
 
 
set, this pattern of results would not occur. Second, discriminating non-numerical values 

of a set is often more difficult for infants than discriminating the numbers of objects in 

the set (Brannon et al., 2004; Cordes & Brannon, 2008, 2009). In Brannon et al.’s (2004) 

study, for example, 6-month-olds detected a 2-fold change in number after being 

habituated to a 5-fold change in surface area of the objects, but failed to detect a 2-fold 

change in surface area of the objects after being habituated to a 5-fold change in their 

number. Third, the similarity of findings on visual and auditory stimuli cannot be 

explained by spatial dimensions, such as contour length and surface area, which do not 

apply to sounds. Thus, rather than number being detected as a last resort, it seems more 

likely that infants simultaneously track the number of discrete objects in a set and the 

non-numerical characteristics of those objects. Consistent with this interpretation, 

combining auditory and visual cues to number improves the Weber-Fechner ratio that 

infants can discriminate over that which they can discriminate on the basis of visual cues 

alone (Jordan, Suanda, & Brannon, 2008). 

(h4) Numerical Representation in Infants: Evidence from Cross-Modal Mapping. When 

infants are habituated to a display of 8 objects or 8 tones and then recover interest in a 

display of 4 objects or 4 tones, is it because they recognize that the “eightness” of the 

habituation displays had been violated by the “fourness” of the test displays? This 

question is crucial because it gets at the heart of whether infants have a concept like 

“four” or “eight”, as when adults generalize the word “four” to four votes, four bell-

tolls, and four candies. To determine whether infants also have an abstract concept to 

which adults and older children would sensibly apply number words, researchers have 

tested infants’ ability to generalize across numerical groups that—like candies and bell-

tolls—are perceived by different sensory modalities (Izard et al., 2009; Jordan & 

Brannon, 2006; Kobayashi et al., 2005; Lourenco & Longo, 2010). An important feature of 

these cross-modal mapping tests is that they obviate objections that infants’ reactions are 
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driven only by non-numerical features of the input – contour length usually increases 

with the number of candies, but it doesn’t increase with the number of bell-tolls. 

Similarly, temporal length of a sequence of bell tolls generally increases with number of 

tolls but not with objects’ contour length.  

In cross-modal mapping studies, infants were initially reported to look longer at 

a set of 2 -3 objects that matched the number of sounds that were played simultaneously 

(Starkey, Spelke, & Gelman, 1983). However, subsequent studies reported no such 

preference (Mix et al., 1997) or a reversed preference (Mix et al., 1997; Moore et al., 1987). 

In all cases, the effect sizes were quite small, leading to the hypothesis that the 

contradictory findings were due to participants on the tails of a distribution whose 

means were in the middle (Mix et al., 2003).  

Recent studies, however, have reported robust evidence of cross-modal number 

matching for sets of 2-3 s in 6-month-olds (objects and tones in Kobayishi et al., 2005; 

faces and voices in Jordan & Brannon, 2006) and of larger sets in 2-day-olds (Izard et al., 

2009). An interesting feature of Izard et al. (2009) is that newborns’ looking time was 

greater when viewing congruent displays (4 syllables/4 objects or 12 syllables/12 

objects) than incongruent displays (4 syllables/12 objects or 12 syllables/4 objects). The 

difference in that study between congruent and incongruent displays was nearly 

identical for another 3-fold change in number (6 vs 18), and both differences were much 

greater than those evoked by a 2-fold change in number (4 vs 8). These findings are 

thought provoking, because they suggest that when newborns represent number in 

different modalities, their number representations are subject to the same ratio 

dependence observed in number discrimination within a single modality.  

(h3) Origins of the Mental Number Line 

If infants are capable of representing the number of items in a set, how might 

they do it? An important proposal for how this occurs—the mental number line 
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hypothesis—came from findings on number matching in non-human animals (Mechner, 

1958; Platt & Johnson, 1971; for review, see Boysen & Capaldi, 1993).  

(h3) Parallels between Infants’ and Non-human Animals’ Numerical Magnitude 

Processing. To examine rats’ matching of number of physical actions to a criterion 

number (i.e., the number of actions rewarded on previous trials), Mechner (1958) and 

Platt and Johnson (1971) developed paradigms in which food was dispensed to a rat 

after it had pressed a lever a criterion number of times and then stopped pressing the 

lever, either in order to press another lever (Mechner, 1958) or to enter a feeding area 

(Platt & Johnson, 1974). Results of the two studies were similar, with the modal number 

(and standard deviation) of lever presses increasing with the criterion number (4, 8, 12, 

and 16). To ensure that the rats were estimating the number of lever presses, rather than 

the time since the trial had started, subsequent studies varied the degree of food 

deprivation imposed on the rats, on the logic that the hungriest rats would press the 

lever faster than the less-hungry rats (which they did). Speed of bar pressing did not 

affect matching of bar presses to the criterion number; the hungry rats still pressed the 

lever the same number of times as the less-hungry rats for each criterion number 

(Mechner & Guevrekian, 1962).  

The similarity of rats’ numerical processing to that of infants can be seen in the 

rats’ pattern of errors. Specifically, the likelihood of pressing the lever a given number of 

times in response to a particular criterion number decreased as a function of the difference 

in the two numbers’ logarithms. For example, as in the previously described studies of 

human infants, Mechner found that rats were more likely to confuse 6 with 4 lever-

presses than to confuse 8 with 4, and rats were more likely to confuse 16 with 12 than 8 

with 4. As Gallistel (1993) wrote, “It is as if the rat represented numerosity as a position 

on a [logarithmic!] mental number line (that is, a continuous mental/neural quantity or 

magnitude), using a noisy mapping process from numerosity to values on this 
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continuum, so that the one and same numerosity would be represented by somewhat 

different mental magnitudes (positions on the number line) on separate occasions” (p. 

215). 

Why might a “mental number line” (illustrated in Figure 1) be useful for thinking 

about infants’ and non-human animals’ encoding of number? One reason is that the 

mental number line provides a non-verbal mechanism for a true number concept, 

thereby accounting for prelinguistic infants’ (and other animals’) ability to generalize 

across perceptual modalities (Dehaene, 1992). If infants automatically convert the sight 

of six apples or the sound of six tones (Fig. 1, bottom panel, “Stimuli”) to the same 

position on a mental number line (Fig. 1, middle panel, “Mental Number Line”), then—

long before they learn conventional verbal counting—they could recognize an 

equivalent “sixness” of the two sets, to which a written or oral symbol (“six” or “6”) 

could later be associated.  

The mental number line metaphor is also useful for illustrating how number 

discrimination follows the Weber-Fechner law. That is, if mental magnitudes increase 

logarithmically with actual numeric value (as numbers on a slide rule), then numeric 

intervals on the lower end of the number line (like 1 and 2) are further apart and—given 

noisiness in the mapping—easier to discriminate than the same intervals at higher ends 

of the range, due to reduced overlap of signals.  

The idea that the mapping of quantities to the number line is noisy provides an 

interesting way to think about what changes in infants’ development. If the noisiness of 

the mappings to the logarithmic number line decreases with age, then the difference in 

logarithms required to discriminate any two quantities would also decrease with age. 

Thus, a logarithmically-scaled mental number line provides a simple way to 

conceptualize the numerical abilities of infants, how those abilities are limited by the 

Weber-Fechner Law, and how those abilities change with age and experience. 
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(h4) The Neural Basis of the Mental Number Line. What physical mechanisms 

generate the findings that are explained metaphorically by the mental number line 

construct? An idea that proved prescient was formulated by Dehaene and Changeux 

(1993). Working from the pattern of errors and solution times in numerosity 

discrimination studies that we reviewed earlier, as well as Dehaene’s own research on 

symbolic number comparison in human adults, Dehaene and Changeux proposed the 

existence of innate numerosity detectors, that is, neural units that directly code 

numerosity (cf. “numerons” in Gelman & Gallistel, 1978). 

 In the Dehaene-Changeux model, objects of various sizes and locations are 

initially presented to a retina-like module (or to echoic auditory memory in the case of 

sounds), and then normalized for size and location on an intermediate topographical 

map of object locations. Number is registered from a map of numerosity detectors that 

sum all outputs from the intermediate topographical map of object locations. An 

important feature of such a mechanism is that the internal representation of numerosity 

would be highly correlated with the number of objects in a set, regardless of their 

physical characteristics. Additionally, simulations that embodied the model revealed 

that the activations evoked by different input numerosities overlapped with one 

another, with the degree of overlap being proportional to the difference between the 

logarithms of the numerosities. In this way, the performance of the Dehaene-Changeux 

neural model suggested explanations of the experimental findings from newborns and 

rats, and it provided a powerful theoretical model for how a mental number line might 

be realized.  

 Independent empirical support for a neural mechanism like that hypothesized 

by Dehaene and Changeux (1993) came from a series of later findings by Nieder, Miller, 

and colleagues (for a review, see Nieder, 2005). These investigators obtained single-cell 

recordings of neural activity as an awake animal (a macaque monkey) tracked the 
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number of objects in a set. In a typical task, a set of N objects (dots in various positions, 

configurations, and sizes) was presented to the monkey in a sample display, a brief 

delay was imposed, and then a test display of objects was presented that had either the 

same number of objects as, or a different number than, the original display. The 

monkey’s task was to respond if the number in the test display matched the number in 

the sample display  

Like the hypothetical ‘numerons’ in the Dehaene-Changeux model, many 

neurons were found to be tuned to a particular numerosity (Nieder & Merten, 2007; 

Nieder & Miller, 2003, 2004). These neurons maintained their numerical selectivity in the 

face of variation in the position, size, and configuration of the objects in the display 

(Nieder et al., 2002). For example, some neurons were found to show peak firing for a set 

of 1, other neurons peak responding at a set size of 2, others at 3, and so on, all the way 

to numbers in the 30s (which were the highest numbers tested). These neurons were 

involved in numerical memory as well as perception: When the monkey saw a set of 4 

objects that then was hidden and the monkey had to maintain a representation of the 

number in memory, the 4-neurons maintained their activity more than competing 

neurons did.  

Further, the tuning curves of these neurons showed Gaussian variability on a 

logarithmic scale (as in Fig. 1). This means that neurons that peaked when four objects 

were presented to the monkey would also respond (somewhat less) if three or five 

objects were presented, and would respond much less when 1 or 10 objects were 

presented. Consequently, when the monkey needed to judge whether he was being 

shown a new number or an old number of objects, accuracy was linked to the difference 

in logarithms between the two numbers. Thus, collectively, the number-tuned neurons 

identified by Nieder and colleagues formed a physical basis for the Weber-Fechner law. 
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These number-tuned neurons were most abundant in the lateral prefrontal cortex 

(PFC) and in the fundus of the intraparietal sulcus (IPS) (Nieder & Miller, 2004). 

Neurons in the IPS are thought to code number first, because these neurons required 

shorter latencies on each trial to become numerosity selective than did PFC neurons 

(Nieder & Miller, 2004). Based on previous work showing that posterior parietal cortex 

(PPC) and PFC are functionally interconnected (Cavada & Goldman-Rakic, 1989, Chafee 

& Goldman- Rakic, 2000, Quintana et al., 1989), it also seems likely that numerical 

information first encoded in PPC might be conveyed directly or indirectly to the PFC, 

where the signals are amplified and maintained to gain control over behavior. Finally, in 

a remarkable similarity to the mental number line metaphor, the number-tuned neurons 

in PPC were found to be so intermingled with neurons that code for line length that 

number and length sensitive neurons were sometimes under the same electrode tip 

(Tudusciuc & Nieder 2007)! Thus, the distribution and timing of activation of number-

selective neurons suggests that the most likely site for a neural “mental number line” is a 

fronto-parietal circuit. 

Could the mental mechanism serving infants’ representation of number be the 

same ones serving monkeys’ numerical representations? Because obtaining single-cell 

recordings requires neuro-surgical implantation of electrodes, obtaining directly 

equivalent measures in human infants is unethical. Therefore, to obtain unobtrusive 

measures of human infants’ neural coding of number, Izard and colleagues (2008) 

obtained event-related potentials from 3-month-old infants while they were presented 

with a succession of sets that either changed in number but not object type (e.g., from 4 

ducks to 12 ducks) or in object type but not number (e.g., from 4 ducks to 4 balls). The 

study was designed so that most sets had the same number and type of objects (e.g., 

repeatedly presenting non-identical images of 4 ducks). Occasionally, however, a test 

image appeared that broke this regularity in either number, object identity, or both. The 
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brain response to this disruption was recorded in order to measure the event-related 

potential (ERP). Across different groups of infants, the numeric changes were 2 versus 3, 

4 versus 8, or 4 versus 12.  

In all cases, the ERPs revealed that infants’ brains detected both types of changes 

(number and object). To examine the underlying circuitry, the investigators used a 

source reconstruction method that was based on a model of the infants’ cortical folds. 

This analysis suggested that the whereas the infants’ left occipitotemporal cortex 

responded to object novelty, the infants’ right parietal cortex responded to numerical 

novelty, like the corresponding area of the monkeys studied by Nieder.  

This method for localizing infants’ neural activity is admittedly coarse, due to the 

relatively poor spatial resolution of EEG. However, the results were quite similar to 

those observed in adults and 4-year-olds in studies using more spatially precise fMRI 

methods (Cantlon et al., 2006; Piazza et al., 2004). In these studies too, regions of the 

occipitotemporal area reacted to changes in object identity but not to changes in number, 

whereas posterior parietal regions reacted to changes in number but not to changes in 

object identity. Both EEG and fMRI data are consistent with the conclusion that number 

is among the dimensions that are quickly extracted when processing visual stimuli. 

(h3) Arithmetic in Infancy: Travels on the Mental Number Line 

  An important property of a number line is that it makes basic addition and 

subtraction trivial. That is, traveling four spaces forward from four registers the sum of 

four and four; traveling four spaces back from eight registers the difference between 

eight and four, and so on.  

 Therefore, if infants possess a mental number line and encode numerical values 

of stimuli, they should register sums and differences of numeric quantities (at least 

approximately). This hypothesis led Wynn (1992) to conduct a series of experiments on 

infants’ arithmetic capacities. To test ability to compute 1 + 1, for example, Wynn 
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recorded infants’ looking times as they watched one object appear to be placed behind 

an opaque screen and then another object added to it behind the screen. When the screen 

dropped, seeming to reveal the arithmetically impossible event 1 + 1 = 1, infants looked 

longer than when the screen dropped and revealed an outcome consistent with the 

arithmetically realistic event 1 + 1 = 2. To be sure that this difference in looking wasn’t 

caused by infants simply preferring to look at one object rather than two, Wynn also 

examined two objects initially seeming to be placed behind a screen and one object then 

seeming to be removed. In this situation, infants looked longer when they were shown 

the arithmetically impossible event of two objects being present after one seemed to be 

removed, rather than the arithmetically realistic event of one being present. This pattern 

of findings has since been replicated by other investigators (Koechlin et al., 1997; Simon 

et al., 1995).  

Testing the idea that infants correctly registered the outcome of the arithmetic 

operation and were surprised by the arithmetically impossible event, Berger, Tzur, & 

Posner (2006) collected EEG recordings of infants’ brain activity during presentation of 

correct and incorrect arithmetical operations. In addition to replicating Wynn’s finding 

of infants looking longer at the seemingly impossible number of objects, infants’ brain 

activity indicated an error detection process in the arithmetically impossible condition. 

Specifically, the topography and frequency (θ-band effects) of the infants’ brain activity 

were quite similar to what had been found previously in adults when they observe or 

make responses that they know are wrong, though the error detection signal emerged 

more slowly in infants than in adults. 

An alternative to Wynn’s interpretation was that the source of infants’ surprise 

was not violation of their numeric expectations but rather a violation of their 

expectations about objects (Simon, 1997; Uller, Carey, Huntley-Fenner, & Klatt, 1999). In 

this account, babies used the appearance of the objects to track their individual identities 
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and were surprised when a new individual—not a new number—appeared or went 

missing. This is a reasonable distinction: When determining whether everyone is present 

in a small research group, for example, the professor might notice that Tom is missing 

from the normal attendees of Tom, Dick, Harry, without bothering to encode how many 

people were present. As we have seen, infants’ abilities to compare sets of four or fewer 

objects is much greater than would be expected by a mental number line; thus, a 

subitizing mechanism for tracking small numbers of objects (Kahneman, Treisman, & 

Gibbs, 1992; Scholl & Leslie, 1999; Trick & Pylyshyn, 1994) might explain infants’ error 

detection on this task.  

One way to test whether babies’ numeric expectations are violated by 

arithmetically impossible events is to test whether this surprise is also evident when 

babies witness arithmetically impossible transformations of large sets, where all the 

individuals couldn’t be represented through subitizing (McCrink & Wynn, 2004). 

Consistent with Wynn’s original interpretation that infants were surprised by the 

numerical outcome, when 9-month-old babies were confronted with arithmetic 

transformations of large sets (e.g., 5 + 5 = 10 versus 5 + 5 = 5, or 10 – 5 = 5 versus 10 – 5 = 

10), they also looked longer at the arithmetically-impossible events than the 

arithmetically-possible ones. 

One reason why infants might look longer at the “impossible’ outcome is that a 

logarithmically compressed mental number line representation supports babies’ ability 

to register approximate sums and differences. If adding n2 to n1 involves traveling n2 

spaces forward from n1 on the mental number line, then babies would arrive at the 

position log(n1) + log(n2), which would be a considerable overestimation of the actual 

result. Conversely, subtraction through traversing a mental number line would yield a 

considerable underestimation of the actual results. From this perspective, babies would 
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have no doubt found 5 + 5 = 5 surprising because they would have experienced it as log 

(5) + log (5) and thus expected to see log(25)!  

Consistent with this compressed mental number line interpretation, McCrink & 

Wynn (2009) reported that 9-month-old babies’ expectations of arithmetic 

transformations overestimate the results of additive operations and underestimate the 

results of subtractive operations. Thus, when babies were initially shown a sequence of 

events equivalent to 6 + 4, they looked significantly longer when the raised screen 

revealed 5 objects than when it revealed 20 objects. Similarly, when babies were shown a 

sequence equivalent to 14 – 4, they looked significantly longer when the raised screen 

revealed 20 objects than when it revealed 5. In the same study, the infants looked 

equally long at 20 objects as 10 at the end of the first example, and looked as long as 5 

objects as at 10 at the end of the second example. McCrink and Wynn (2009) explained 

these findings in terms of “operational momentum.” In particular, they suggested that 

infants moved too far in a positive direction along the mental number line when they 

added sets of dots and too far in a negative direction when they subtracted sets of dots 

because they didn’t know where to stop their travel along the mental number line. 

Another possibility is that the results reflected the infants using logarithmically 

compressed representations of numerical quantity. In particular, the arithmetically 

impossible events (e.g., 6 + 4 = 20; 14 - 4 = 5) that babies looked at as much as the correct 

answers were those answers predicted by the view that the infants were mentally 

representing the problem on a logarithmically compressed mental number line. 

(H2) CHANGES BEYOND INFANCY IN NON-SYMBOLIC NUMERICAL PROCESSING 

(h3) Numerical Discrimination. Infants’ discrimination between sets of objects that 

differ in number predict several features of older children’s and adults’ performance on 

similar, non-verbal numerosity discrimination tasks. Recall the conclusion that the 

probability of infants’ discrimination was related to the difference between the 
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logarithms of the number of objects in the two sets. When prevented from counting sets 

of objects (e.g., through tight time limits or interpolated tasks), older children’s and 

adults’ reaction times show the same pattern. For example, the time required for 

children and adults to select the larger set is proportional to the logarithm of the 

distance between the numbers of objects in the two sets, both for sets of less than 10 

objects (Buckley & Gillman, 1974; Huntley-Fenner & Cannon, 2000) and for sets of 10 or 

more objects (Birnbaum, 1980; Piazza et al., 2004; Ratcliff et al., in press). 

Another conclusion from infants’ performance was that the difference in 

logarithms needed to discriminate the number of objects in two sets decreases with age. 

The relation between set size and solution times shows the same pattern in childhood. 

The time required to discriminate between two numbers that are close together 

decreases from early childhood to later childhood to adulthood (Ratcliff et al., in press). 

The “internal Weber fraction,” which indicates the difference in ratios needed to reliably 

discriminate set sizes, has proved useful for quantifying this type of developmental 

change (Izard et al., 2008; Piazza et al., 2004). Piazza et al. (2010) reported an exponential 

decline in the internal Weber fraction from an average of 0.34 for kindergarteners, down 

to 0.25 for 10-year-olds, to 0.15 for adults. Similarly, Halberda and Feigenson (2008) 

reported internal Weber fractions of 0.38 for kindergarteners and 0.11 for adults. 

Interestingly, individual differences in Weber fractions within an age group are 

correlated with the students’ math achievement test scores (Halberda, Mazzocco, & 

Feigenson, 2008). This pattern supports the hypothesis that the precision of the mental 

number line is foundational to other quantitative skills. 

A third conclusion from studies of infants’ numerical abilities is that infants’ 

discrimination of very small numbers of objects are consistently higher than would be 

expected from considering the Weber fractions in isolation. The same is true for older 

children’s and adults’ solution times on similar problems. That is, the time required to 
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judge the greater of two sets of 3 or fewer objects is uniformly low, much lower than 

would be expected given their ratios alone (Oyama, Kikuchi, & Ichihara, 1981; Chi & 

Klahr, 1975; Mandler & Shebo, 1982; Trick & Pylyshyn, 1994). 

The similarities in performance among infants, older children, and adults suggest 

that the process of numerosity discrimination is similar, with all groups accessing the 

mental number line representation. This hypothesis is consistent with findings of 

substantial overlap between the regions in the intraparietal sulcus that are activated by 

infants, younger children, older children, and adults when comparing numerosities 

(Castelli, Glaser, & Butterworth, 2006; Piazza Izard, Pinel, et al. 2004; Piazza, Mechelli, 

Price, et al. 2006; Piazza, Pinel, Le Bihan, et al. 2007). 

(h3) Development of Non-symbolic Arithmetic Beyond Infancy. To examine the 

development of non-symbolic arithmetic beyond infancy, McCrink, Dehaene, & 

Dehaene-Lambertz (2007) showed adults several hundred videos of two successive sets 

of dots and asked them to approximate their sum or difference by choosing one of two 

sets of dots. As with infants, adults almost always overshot the correct outcomes on 

addition problems, as if they had moved “too far” along the mental number line, 

whereas they almost always undershot the correct outcomes on the subtraction 

problems, again moving too far on the mental number line in the other direction. In 

addition, the researchers found that from adults’ modal response, the distribution of 

other responses tapered off as a function of the ratio of the true and alternative 

quantities, just as would be predicted by Weber-Fechner’s law. To illustrate the 

magnitude of this error, the presented subtraction problem of 32 - 16 = 8 was judged to 

be correct approximately 60% of the time, which is quite a radical departure from 

moving along a linearly scaled mental number line. 
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(H1) DEVELOPMENT OF SYMBOLIC REPRESENTATION OF NUMBERS IN CHILDHOOD AND 

BEYOND 

In the previous section, we reviewed evidence that a logarithmically-compressed 

mental number line is a powerful construct for understanding non-symbolic 

representations of numerical magnitude, that the construct provides a good analogy to 

the way that the brain codes numerosity, and that the hypothesis accounts for prominent 

features of infants’, older children’s, and adults’ non-symbolic arithmetic capacities.  

In this section, we examine the extent to which early-developing, non-symbolic 

representations of quantity serve as a foundation for later-developing, symbolic ones. As 

we will show, on some tasks, the logarithmic function translating symbolic numeric 

quantities into a subjective representation is preserved from early childhood through 

adulthood. We will also see that new ways of thinking about number emerge with age 

and experience with symbolic expressions of numbers, thereby preparing children to 

acquire more complex quantitative skills. The new and old numerical representations 

coexist after the new forms are acquired, with their use varying with the situation and 

with the child’s numerical experience and mathematical aptitude. Evidence for these 

ideas comes largely from tasks such as number line estimation that require participants 

to translate between alternative quantitative representations, at least one of which is 

inexact and at least one of which is a symbolically expressed number. Finally, we 

examine the influence of internal representations of number on uses of those 

representations in symbolic arithmetic, their relation to overall mathematical 

achievement, and ways in which research on the mental number line has led to effective 

instructional interventions. 

(h2) The Growth of Quantitative Thinking During Childhood: Understanding and 

Operating on Numerical Symbols 



Development of Quantitative Thinking 22 
 
 
 
 
 In this section, we examine how children learn to use the symbols of the decimal 

system to think about quantities, and how mastery of this symbol system profoundly 

expands their mathematical capabilities. Early in the learning process, these symbols —

like the Arabic numerals in Diester and Nieder’s study—are meaningless stimuli for 

young preschoolers. For example, 2- and 3-year-olds who count flawlessly from 1-10 

have no idea that 6>4 and 8>6, regardless of whether the number symbols are spoken or 

written, nor do children of these ages know how many pennies to give an adult who 

asks for 4 or more (and very early on, not even how many to give an adult who asks for 

1-3) (Le Corre, Van de Walle, Brannon, & Carey, 2006; Le Corre & Carey, 2007; Sarnecka 

& Carey, 2008).  

As young children gain experience with the symbols in a given numerical range 

and associate them with non-verbal quantities in that range, they initially map them to a 

logarithmically-compressed mental number line (Berteletti, Lucangeli, Piazza, Dehaene, 

& Zorzi, 2010; Booth & Siegler, 2006; Geary, Hoard, Nugent, & Byrd Craven, 2008; 

Opfer, Thompson, & Furlong, 2010; Siegler & Booth, 2004; Siegler & Opfer, 2003; 

Thompson & Opfer, 2010). Over a period that typically lasts 1-3 years for a given 

numerical range (0-10, 0-100, or 0-1000), their mapping changes from a logarithmically 

compressed form to a linear form, in which subjective and objective numerical values 

increase in a 1:1 fashion. Use of linear magnitude representations occurs earliest for the 

numerals that are most frequent in the environment, that is the smallest whole numbers 

(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2009), and it gradually is applied to 

increasingly large numbers (Siegler, Thompson, & Opfer, 2009). In this section, we first 

examine this process of learning representations of symbolic numbers as it applies to 

numerical magnitude comparison and then as it applies to number line estimation; after 

this, we examine the consequences of individual differences in these numerical 
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representation processes and interventions that promote the growth of linear 

representations. 

 (h3) Symbolic number comparison. When 3-year-olds from middle-income 

backgrounds or 4- and 5-year-olds from low-income backgrounds are presented 

numerical magnitude comparison problems involving the numbers 1-9 in symbolic 

form, their performance is near chance (Ramani & Siegler, 2008; Siegler & Robinson, 

1982). In contrast, by kindergarten or first grade, most children are highly accurate on 

these numerical comparison problems with Arabic numerals. Their solution times, and 

those of older children and adults, are subject to the same Weber-Fechner law that 

characterizes numerical comparisons of non-symbolic stimuli, such as dot arrays 

(Buckley & Gillman, 1974; Moyer & Landauer, 1967; Sekuler & Mierkiewicz, 1977), with 

the time required to select the larger of two numbers being inversely proportional to the 

logarithm of the distance between the numbers being compared. Thus, the time required 

to select the larger of 3_5 is less than the time required to compare 5_7, and the time 

required to select the larger of 30_50 is less than the time required to compare 50_70. 

This finding suggests that Arabic numerals automatically activate the same mental 

number line representation that encodes non-symbolic numerosity (as in Fig. 1).  

 Consistent with this idea, fMRI studies have revealed that even very brief 

presentations of number symbols evoke number-related activation in the intraparietal 

cortex of educated adults (Naccache & Dehaene, 2001). The systems for representing 

non-symbolic and symbolic numbers appear to be closely linked. In addition to the 

physical overlap, if not identity, between the systems, habituation of one leads to 

habituation of the other. Thus, after adaptation to 17, 18, or 19 dots, dishabituation (as 

measured by fMRI activations) is observed when the Arabic numeral 50 is presented, 

but not when the numeral 20 is presented (Piazza et al. 2007). These results suggest 

that—at least in educated adults—populations of neurons in parietal and prefrontal 
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cortex are activated by both non-symbolic numerosities and by number symbols. Put 

another way, the mental number line appears to link symbolic and non-symbolic 

numerical representations.  

Given that the invention of Arabic numerals only dates back a few thousand 

years (Ifrah, 2000), it is implausible that the brain evolved specifically to handle them. 

More likely, the link between the two systems arises through learning during childhood. 

To investigate how this learning process might occur, Diester and Nieder (2007) trained 

two monkeys to associate Arabic numerals with the numerosity of multi-dot displays. 

After the training, a large proportion of PFC neurons encoded numerical values, 

irrespective of whether the numbers had been presented to the monkeys in the form of 

dots or Arabic numerals. Moreover, these neurons exhibited similar tuning functions, 

with activity falling with increasing numerical distance from the neuron’s ‘preferred’ 

numerical value. Over the course of training, numeral-numerosity associations 

progressively shifted from the PFC to the IPS. 

 A similar pattern may exist in human development (Ansari et al., 2005; 

Kaufmann et al., 2006; Rivera et al., 2005; Houdé et al., 2010). The distance effect 

observed in monkey’s PFC neurons has also been observed in the PFC of preschool 

children. Moreover, with age and experience, neural activation in response to numerical 

stimuli shifts to posterior parietal areas, particularly in the left hemisphere, much as the 

numeral-numerosity associations shifted to IPS during the later stages of training among 

the monkeys studied by Diester and Nieder (2007). Together, these results suggest that 

the PFC might be the first cortical area to link numerals to the mental number line, and 

that with age and experience, the IPS is increasingly involved in linking numerals with 

the numerosities for which they stand. 

(h3) Number-line estimation. An alternative method that has been developed to 

examine the development of representations of numerical magnitudes is the number-
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line estimation task (Siegler & Opfer, 2003). On this task, participants are shown a blank 

line flanked by a number at each end (e.g., 0 and 1,000) and asked where a third number 

(e.g., 150) would fall on the line. This task is particularly revealing about representations 

of numerical magnitude because it transparently reflects the ratio characteristics of the 

number system. Just as 150 is twice as large as 75, the distance of the estimated position 

of 150 from 0 should be twice as great as the distance of the estimated position of 75 

from 0. More generally, estimated magnitude (y) should increase linearly with actual 

magnitude (x), with a slope of 1.00, as in the equation y = x.  

Across a number of cross-sectional studies using this number-line estimation task 

(Booth & Siegler, 2006; Laski & Siegler, 2007; Opfer & Siegler, 2007; Siegler & Booth, 

2004; Siegler & Opfer, 2003; Thompson & Opfer, 2008, 2010), a systematic difference 

between younger and older children’s estimates has been evident: Younger children’s 

estimates of numerical magnitude typically follow Fechner’s law (y = k × ln x) and 

increase logarithmically with actual value (Figure 2). In contrast, older children’s 

estimates for the same range of numbers increase linearly with actual value. 

This developmental sequence emerges at different ages with different numerical 

ranges (Figure 2). It occurs between preschool and kindergarten for the 0-10 range, 

between kindergarten and second grade for the 0–100 range, between second and fourth 

grade for the 0–1,000 range, and between third and sixth grade for the 0–100,000 range 

(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Opfer & Siegler, 2007; Siegler & 

Booth, 2004; Thompson & Opfer, 2010). Thus, as shown in Figure 2A, on the 0–100 

number line estimation task, the logarithmic function fit kindergartners’ estimates better 

than did the linear function, but the linear function fit second-graders’ estimates better 

than did the logarithmic function. The same transition occurs roughly a year later for 

children with mathematical learning difficulties (Geary, Hoard, Byrd-Craven, Nugent, & 

Numtee, 2007). The timing of the changes corresponds to the periods when children are 
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gaining extensive exposure to the numerical ranges: through counting during preschool 

for numbers up to 10, through addition and subtraction between kindergarten and 

second grade for numbers through 100, and through all four arithmetic operations in the 

remainder of elementary school. 

How might these changes occur? One clue came from the estimates of sixth 

graders and adults in Siegler and Opfer (2003). The median estimates of both groups 

increased linearly with numeric value, but the variability of estimates for both was 

smallest near the quartiles on the number line, as if these older children and adults 

mapped numbers like 0, 250, 500, 750, and 1000 to 0, 1, 2, 3, and 4—that is, numbers that 

other studies indicated they already represent linearly (Chi & Klahr, 1975; Siegler & 

McGilly, 1989; Siegler & Robinson, 1982). This observation suggested that children might 

map early-developing linear representations of numerical magnitudes to guide their 

learning about the magnitudes of less familiar, larger numerals, a process that might be 

aided through children learning about fractions and percentages in third through fifth 

grade.  

To test this idea about how the logarithmic-to-linear shift occurs, we conducted 

three microgenetic studies that allowed us to examine changes in numerical estimation 

on a trial-to-trial basis (Opfer & Siegler, 2007; Opfer & Thompson, 2008; Thompson & 

Opfer, 2008). In these studies, we used an experimental manipulation to help students 

who initially used logarithmic representations to adopt a linear representation. 

Specifically, we provided children with feedback on their estimates of numbers around 

150, the point where the logarithmic and linear functions that pass through 0 and 1,000 

are most discrepant. The idea was that this feedback would be highly salient, due to it 

indicating that the children’s estimates were far from correct, and that the experience 

would lead children to draw an analogy between what the feedback indicated about the 

correct placement of 150 on a 0-1000 number line and their existing knowledge of the 
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correct placement of 15 on a 0-100 number line. After receiving feedback on their 

estimates of numbers around 150, second-graders in all three studies provided estimates 

that increased linearly with actual value (Figure 3A). This representational change was 

evident in differences in the median estimates of the treatment groups on pretest and 

posttest, with pretest estimates being best fit by logarithmic functions and posttest 

estimates being best fit by linear functions. Providing feedback regarding correct 

placements at other numerical values, such as 725, also increased the linearity of 

estimates, but change occurred more slowly and to a somewhat lesser extent (Opfer & 

Siegler, 2007). Consistent with the interpretation that this change came about through a 

process of analogy, when children were given an opportunity to compare (1) the 

placement of 15 cherries on a line flanked by 0 and 100 cherries, and (2) the placement of 

1500 on a line flanked by 0 and 10,000, children quickly apprehend the similarity of the 

two situations, and use it to improve their estimates of the larger numbers (Thompson & 

Opfer, 2010). 

As is evident in Figure 3, second-graders’ newly adopted linear representation 

spanned the entire 0–1,000 range and was not simply a ‘‘local fix’’ to the numbers near 

150. This effect across the entire numerical range was consistent with the view that the 

numerical magnitude representation has psychological reality as a coherent unit, rather 

than simply being a convenient way of summarizing data. Moreover, like an analogical 

insight (e.g., Gick & Holyoak, 1983; see Holyoak, Chap. 13), the shift occurred abruptly, 

much more abruptly than what had been observed in studies of transitions in related 

areas such as addition and numerical insight problems (e.g., Siegler & Jenkins, 1989; 

Siegler & Stern, 1998). Often, feedback on a single trial was sufficient to yield a shift 

from a logarithmic to a linear pattern of estimates (Opfer & Siegler, 2007; Opfer & 

Thompson, 2008; Thompson & Opfer, 2008). 
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The finding of new symbolic representations arising through analogies to 

representations of similar relations in simpler contexts is widely evident in cognitive 

development (for a review, see Gentner, 2010). Such analogy-based representational 

change is important, because it suggests a potential solution to a problem that is 

endemic to the mental number line representation discovered by Nieder and colleagues. 

The problem is that it seems as though one would simply run out of “numerons” to 

represent large numbers. Do people and other animals possess neurons that fire more in 

response to seeing 1582 dots than in response to 1583? However, if learners can map 

small numbers to large ones, they would gain the ability to use the relations among 

small number representations to represent relations among larger magnitudes (as when 

adults mapped 250-500-750-1000 to 1-2-3-4 or ¼, ½, ¾, 1 or to 25%, 50%, 75%, and 100%). 

If this occurs at the neural level (and in some sense it must), then having a limited 

number of numerons imposes no inherent limit on the number of numeric magnitudes 

that could be represented.  

(h3) Measurement and numerosity estimation. To examine the generality of the 

developmental transition revealed by the number line task, several studies have tested 

whether similar changes are evident in estimates of line lengths and numbers of discrete 

objects (measurement estimation and numerosity estimation) (Booth & Siegler, 2006; 

Laski & Siegler, 2007; Thompson & Siegler, 2010). On the measurement estimation task, 

children saw an extremely short line, labeled “1 zip”; a long line, labeled “1,000 zips”; 

and a number indicating the length of a line (in zips) that should be drawn. Children 

drew a line to approximate the desired length, then were asked to draw a line of a 

different number of zips, and so on. On the numerosity estimation task, children saw a 

computer screen that depicted one box with 0 dots, one with 1,000 dots, and a third, 

initially empty, box that could be filled with the desired number of dots by placing the 

cursor in the “increase” box or the “decrease” box and holding down the mouse until 
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the desired number of dots was reached (the time limit was too short for the children to 

count the dots). 

On each task, the same logarithmic to linear shift that had been observed with 

number line estimation was observed (Booth & Siegler, 2006; Thompson & Siegler, 2010). 

On the measurement estimation task in Booth & Siegler (2006), for example, the variance 

accounted for by the best-fitting linear function increased with age (from 85% to 98%), 

whereas the variance accounted for by the best-fitting logarithmic function decreased 

with age (from 91% to 74%). Further, individual second graders’ measurement estimates 

were more likely to be better fit by the logarithmic function than by the linear function 

(70% vs. 30%), whereas fourth graders’ estimates were more likely to be better fit by the 

linear function than by the logarithmic function (78% vs. 22%). Similarly, the percentage 

of children for whom the linear function provided the better fit on the numerosity 

estimation task increased from 43% to 82%, whereas the percentage of children for 

whom the logarithmic function provided the better fit decreased from 57% to 18%. 

(h3) Number categorization. To examine whether the logarithmic to linear 

transition extended beyond estimation tasks, Laski and Siegler (2007) presented 5- to 8-

year-olds with a numerical categorization task. Children were told that 1 was a ‘‘really 

small number’’ and that 100 was a ‘‘really big number’’ and then were asked to 

categorize numbers between 1 and 100 as ‘‘really small,’’ ‘‘small,’’ ‘‘medium,’’ ‘‘big,’’ or 

‘‘really big.’’ Each child’s categorization of each number was assigned a numerical value 

ranging from 1 for the ‘‘really small’’ category to 5 for the ‘‘really big’’ category. Then, 

the mean value for the categorizations of each number was computed, and the fit of 

linear and logarithmic functions to the mean categorization scores for the full set of 

numbers was calculated. 

Kindergartners’ mean categorizations of the numbers were better predicted by 

the best-fitting logarithmic function than by the best-fitting linear function. In contrast, 
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second-graders’ mean categorizations were (non-significantly) better predicted by the 

best-fitting linear function than by the best-fitting logarithmic function. The same 

change was evident for the number line task. Moreover, the linearity of individual 

children’s number line estimation and categorization patterns were highly correlated, 

providing additional evidence for the generality of the logarithmic to linear transition in 

representations of numerical magnitudes. 

If number line estimation and categorization reflect the same underlying 

numerical representation, then experience that leads to improved number line 

estimation might transfer to numerical categorization. To test this hypothesis, Opfer and 

Thompson (2008) presented kindergartners who initially produced number line 

estimates that were more logarithmic than linear with feedback designed to improve the 

linearity of number-line estimates and tested both number line estimation and 

categorization. As expected, after the feedback experience, the linear function provided a 

better fit to the mean category judgments of children who received feedback on their 

number-line judgments than for those who did not receive such feedback. Thus, the 

change from a logarithmic to a linear representation on the number line task extended to 

the categorization task, even without any feedback on that task.  

(h3) Symbolic Arithmetic. Linear representations of numerical magnitudes also are 

important for symbolic arithmetic abilities, both for approximating answers and for 

learning exact sums. One source of evidence regarding approximations to correct sums 

comes from Gilmore, McCarthy, and Spelke’s (2007) study of preschoolers’ estimates of 

answers to arithmetic problems that they had not yet encountered in school. The 

investigators presented 5- and 6- year-olds with problems such as “Sarah has 21 candies, 

she gets 30 more, John has 34 candies— who has more?” To insure that the preschoolers 

understood the symbols that were being used, the problems were simultaneously 

presented both orally—as spoken numerals—and in writing, as Arabic numerals.  
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Despite the fact that the preschoolers had received no training with numbers of 

that size, they spontaneously performed better than chance (60%–75%). This was true 

regardless of their socio-economic origins. Performance was still approximate, however, 

and depended on the ratio of the two sums that the children were choosing between, a 

signature of the Weber-Fechner law.  

Other evidence for the relation between the linearity of numerical magnitude 

representations and arithmetic knowledge comes from positive relations between the 

linearity of first through fourth graders’ estimates on number line, measurement, and 

numerosity tasks on the one hand and the accuracy of their estimates of answers to two 

digit plus two digit addition problems on the other (Booth & Siegler, 2006). Yet other 

correlational evidence comes from positive relations in first graders’ linearity of number 

line estimates and the number of single digit addition problems that the children 

answered correctly (Booth & Siegler, 2008; Geary, et al., 2007).  

 In addition to this correlational evidence, linear representations of numerical 

magnitude also play a causal role in arithmetic learning. Booth and Siegler (2008) 

pretested first-graders‘ number-line estimation and retrieval of answers to 13 addition 

problems, ranging in difficulty from 1 + 4 to 49 + 43. Then, children were trained on the 

easiest 2-digit + 2-digit problems that they had answered incorrectly on the pretest. All 

children were presented with each of these addition problems three times, with 

feedback regarding the correct answer being provided after each presentation. 

 A randomly chosen half of the children were also presented with analog linear 

representations of the addends and sum. This manipulation was intended to inculcate a 

linear representation of the numbers in the addition problems and ideally of numbers in 

the 0–100 range more generally. Children in this experimental condition saw a number 

line with 0 at one end and 100 at the other, then saw the first addend represented by a 

red bar just above the line, then the second addend represented by a blue bar just below 
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the line, and then the sum represented by a purple bar straddling the line. Thus, if the 

problem was 43 + 49, the red bar would be 43% of the number line’s length, the blue bar 

49% of its length, and the purple bar 92% of its length. The logic was that seeing the 

linear representations of the addends and sums along the number line would allow 

children to encode the numerical magnitudes more accurately and thus help them 

retrieve the answers to the problems. 

 Presentation of the analog representations of the addends and sum along the 

number line was causally related to arithmetic learning; it increased the number of 

addition problems correctly recalled on the posttest and also improved the linearity of 

the children’s number-line estimates. Moreover, the effect of the experimental 

manipulation was even stronger for measures of the closeness of addition errors to the 

correct sum than for the number of correct sums, supporting the view that activating the 

linear representation was the means through which the experimental manipulation 

produced its effect. If this mechanism were not involved, why else would children who 

were presented with the analog representations of the addends and sums increasingly 

advance incorrect answers that were close to the sum and decreasingly produce answers 

that were far from it? Similarly, randomly assigning preschoolers to play a linear 

numerical board game, rather than a color board game, has been found to increase 

preschoolers’ learning of answers to arithmetic problems (Siegler & Ramani, 2009). Thus, 

linear magnitude representations are both causally and correlationally related to 

arithmetic learning.  

(h3) Relations between Numerical Magnitude Representations and Overall Mathematics 

Proficiency. Both non-symbolic and symbolic numerical magnitude representations have 

been found to be related to standardized mathematics achievement test performance. 

Halberda et al. (2008) found that accuracy of non-symbolic number comparison was 

positively related to achievement test scores in mathematics, but not to other domains of 
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the school curriculum. Similarly, Holloway and Ansari (2008) found that individual 

differences in the distance effect during symbolic number comparison among children 

aged 6 to 8 years is related to mathematics achievement but not reading achievement.  

Moreover, the linearity of number line, measurement, and numerosity estimation, as 

well as of numerical categorization, have been related to mathematics achievement test 

performance (Booth & Siegler, 2006; 2008; Laski & Siegler, 2007); and children with 

mathematical learning difficulties, as defined by low mathematics achievement test 

scores, often generate logarithmic patterns of estimates for several years beyond the time 

when other students have adopted linear representations for the same numerical range 

(Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Geary, Hoard, Nugent, & Byrd-

Craven, 2008). Thus, linear representations of numerical magnitudes seem related to 

general as well as specific numerical competencies. 

(h3) Theoretically-based Educational Interventions. Research on the centrality of the 

mental number line in numerical knowledge suggested an educational intervention that 

has proved highly effective with low-income preschoolers. The intervention began with 

the question, “How do children develop an initial linear representation of numerical 

magnitudes?” Experience with counting likely contributes, but such experience is 

insufficient for children to construct linear representations of numerical magnitudes, as 

indicated by the previously described dissociation between counting knowledge and 

magnitude comparison of the numbers that can be counted.  

One common activity that was hypothesized by Siegler and Booth (2004) to help 

children generate linear representations is playing linear, number board games -- that is, 

board games with linearly arranged, consecutively numbered, equal-size spaces (e.g., 

Chutes and Ladders.) These board games provide multiple cues to numbers’ magnitudes. 

The greater the number in a square, the greater: a) the distance that the child has moved 

the token, b) the number of discrete moves of the token the child has made, c) the 
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number of number names the child has spoken, d) the number of number names the 

child has heard, and e) the amount of time since the game began. Thus, children playing 

the game have the opportunity to relate the number in each square to the time, distance, 

and number of manual and vocal actions required to reach that number.  

To test whether playing number board games promotes number sense, Ramani and 

Siegler (2008; Siegler & Ramani, 2008; 2009) randomly assigned 4- and 5-year-olds from low-

income backgrounds to play either a number board game or a color board game. At the 

beginning of each session, children in the number board condition were told that on each turn, 

they would spin a spinner that would point to “1” or “2”, that they should move their token 

that number of spaces, and that the first player to reach the end would win. Children in the 

color board condition were told that on each turn, they would spin a spinner that could point 

to different colors, that they should move their token to the nearest square with the same color 

as the one to which the spinner pointed, and that the first player to reach the end would win. 

The experimenter also told children to say the numbers (colors) on the spaces through which 

they moved. Thus, children in the number board group who were on a 3 and spun a 2 would 

say, “4, 5” as they moved their token. Children in the color board group who were on green 

and spun a “blue” would say “purple, blue.” If a child erred or could not name the numbers or 

colors, the experimenter correctly named them and then had the child repeat the names while 

moving the token. The preschoolers played the number game or the color game about 20 times 

over four 15 minute sessions within a two-week period; each game lasted about 3 minutes.  

 Playing the number board game led to dramatic improvements in the low-income 

preschoolers’ number line estimates. Accuracy of number line estimation, magnitude 

comparison, counting, and numeral identification increased from pretest to posttest 

among children who played the number board game. Gains remained present on a 

follow-up nine weeks later. In contrast, there was no change in the accuracy of estimates 

of children who played the color board game (Ramani & Siegler, 2008; Siegler & Ramani, 
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2009). Playing the game also improved the children’s learning of subsequently presented 

addition problems (Siegler & Ramani, 2009).  

 
(H1) CONCLUSIONS AND FUTURE DIRECTIONS 
 
 Quantitative thinking, ranging from the ability to choose the greater of two sets 

of a few objects to the ability to project arithmetic transformations with very large 

numbers, is central to the lives of humans and other animals. In this chapter, we have 

argued that despite quantitative thinking playing important roles in the lives of both 

humans and other animals, there is also a fundamental distinction present between two 

kinds of quantitative thinking—non-symbolic and symbolic—and that this distinction is 

essential to understanding what develops in human quantitative thinking. 

On non-symbolic quantitative tasks, similarities between human and non-human 

quantitative thinking pervade many levels of analysis. In a wide range of species and 

age groups (1) there is a capacity to mentally represent and compare the approximate 

number of objects or events in sets; (2) mental representations of non-symbolic numeric 

quantities are noisy and increase logarithmically with actual quantity, leading to the 

speed and accuracy of comparison depending on the ratio of the two numbers, and (3) 

the neural correlates of non-symbolic number representation are distributed in regions 

of fronto-parietal cortex that overlap greatly across species and age groups from infants 

to adults. A common cognitive mechanism—a logarithmically-compressed “mental 

number line”—also appears to underlie thinking about non-symbolic quantities in 

people and other animals.  

 Non-symbolic quantitative thinking, however, has important limitations. Non-

symbolic representations of quantitative properties of sets greater than three or four 

objects are inexact, making impossible activities such as economic transactions that 

require precision (Furlong & Opfer, 2009). Lack of symbols also makes it impossible to 
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communicate numerical properties to other minds (e.g., that there are 12 sheep in one 

herd but 18 in another). Further, without symbols, it is impossible to preserve numerical 

information over time, as when recording tallies of livestock in a ledger, and it is 

impossible to track small but important changes, for example gradual increments in the 

size of a herd. Moreover, mentally adding or subtracting non-symbolic quantities of any 

substantial size yields extremely noisy estimates that preclude many characteristic 

human activities, such as deciding on a fair exchange involving numerous specific items. 

Thus, while the capacity to represent and compare non-symbolic quantities is important, 

and provides a basis for symbolic numerical capabilities, the capacity to represent 

symbolic quantities offers crucial cognitive advantages. 

 This theoretical contrast between non-symbolic and symbolic quantitative 

abilities provides a useful way to approach development of quantitative thinking. 

Numeric symbols were invented relatively recently in human history, making it 

implausible that the brain evolved specifically to handle them; they must be learned 

through prolonged interaction with the environment. Consistent with this perspecitve, 

non-symbolic quantitative thinking emerges early in infancy and shows little variation 

among children of different cultural backgrounds. In contrast, symbolic quantitative 

thinking emerges much later, typically in preschool among middle and upper class 

groups in developed societies and even later among less affluent groups in those 

societies. Indeed, numerical symbols are used only for a few small whole numbers 

among children in adults in less developed societies, such as some indigenous 

Amazonian populations (Dehaene, Izard, Spelke, & Pica, 2008). For all of these reasons 

and many more, the distinction between non-symbolic and symbolic quantitative 

thinking is fundamental to describing and understanding the development of 

quantitative thinking. 
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 As we have seen, children’s learning of the decimal system and the meaning of 

the symbols within it occurs over many years through substantial observation of adults 

and older children, direct instruction from teachers and parents, extensive practice, and 

surmounting misunderstandings and forming new understandings. Early in the 

learning process, numerical symbols are meaningless stimuli for young preschoolers. 

For example, 2- and 3-year-olds who count flawlessly from 1-10 have no idea that 6>4, 

nor do children of these ages know how many pennies to give an adult who asks for 4 or 

more. As young children gain experience with the symbols in a given numerical range 

and associate them with non-verbal quantities in that range, they initially map them to a 

logarithmically-compressed mental number line. Over a period that typically lasts 1-3 

years for a given numerical range (0-10, 0-100, or 0-1000), children’s mapping of 

symbolically expressed numbers to non-verbal representations changes from a 

logarithmically compressed form to a linear form. In the linear representation, subjective 

and objective numerical values increase in a 1:1 fashion. Use of linear magnitude 

representations occurs earliest for the numerals that are most frequent in the 

environment, that is the smallest whole numbers, and is gradually extended to 

increasingly large numbers.  

The logarithmic-to-linear shift in children’s representations of symbolic 

quantities expands children’s quantitative thinking profoundly. It improves (1) 

children’s ability to estimate the positions of numbers on number lines, (2) to estimate 

the measurements of continuous and discrete quantities, (3) to categorize numbers 

according to size, (4) to remember numbers they have encountered, and (5) to estimate 

and learn the answers to arithmetic problems. These abilities are crucial for learning 

mathematics, resulting in the use of linear representations of number being highly 

correlated with skill at arithmetic and overall mathematics achievement. Especially 

important, educational interventions aimed at inculcating linear representations have 
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broad and sustained effects on mathematics performance and learning. In contrast, 

interventions aimed at improving non-symbolic quantitative abilities (e.g., Räsänen et 

al., 2009) have proved less effective in leading to positive educational outcomes. 

A final contrast between development of non-symbolic and symbolic 

quantitative thinking is worth highlighting as an important direction for future research. 

Although much is known about the neural substrate of non-symbolic quantitative 

abilities, and a reasonable amount is known about its development, little is known about 

several remaining issues concerning symbolic numerical capabilities: (1) What are the 

neural substrates for acquiring the ability to think about symbolic numerical quantities? 

(2) How do the neural correlates of symbolic number representation change with age 

and experience? (3) How does a limited set of neurons represent the magnitudes of a 

much larger set of symbolic numeric quantities, including those expressed by integers, 

fractions, and ordinals? and (4) What mechanisms for representing symbolic number are 

affected by the various developmental disorders (e.g., William’s syndrome) that are 

marked by difficulties with mathematics?  
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