Individual Differences and Predictive Validity in Student Modeling]

Albert T. Corbett John R. Anderson
School of Computer Science Department of Psychology
Carnegie Mellon University Carnegie Mellon University

Pittsburgh, PA 15213 Pittsburgh, PA 15213
ac21 @andrew.cmu.edu ja0s @andrew.cmu.edu
412-268-8808 412-268-2788
Valerie H. Carver Scott A. Brancolini
Department of Psychology Department of Psychology
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
vcle @andrew.cmu.edu sb5p @andrew.cmu.edu
412-422-8011 412-361-4623

Abstract

This paper evaluates the student modeling procedure in the ACT Programming Tutor (APT). APT
is a practice environment that provides assistance to students as they write short programs. The
tutor is constructed around a set of several hundred programming rules called the ideal student
model, that allows the program to solve exercises along with the student. As the student works the
tutor maintains an estimate of the probability that the student has Jearned the rules in the ideal
model, in a process we call knowledge tracing. The cognitive model, and the learning and
performance assumptions that underlie knowledge tracing are described. While the knowledge
tracing model is used primarily to estimate students' knowledge state, the underlying assumptions
also yield performance predictions.These predictions provide a good fit to students’ performance in
completing tutor exercises, but a more important issue is how well the model predicts students'
performance outside the tutor environment. A previous study showed that the model provides a
good fit to average posttest performance across students, but is less sensitive to individual
differences. This paper describes a method of individualizing learning and performance estimates
on-line in the tutor and assesses the validity of the resulting performance predictions.

Keywords: Student Modeling
Inteligent Tutoring Systems
Individual Differences
Learning

Presentation Preference: Talk or poster.

INot eligible for a David Marr Prize

Corbett, Anderson, Carver & Brancolini 1 Student Modeling

This paper describes efforts to model students’ changing knowledge state as they complete
exercises with the ACT Programming Tutor (APT). The project assumes that a cognitive skill can
be represented as a set of production rules and our diagnostic goal is to model changes in the
students' knowledge of these rules over time. The ultimate purpose is to predict students'
performance levels when working on their own outside the tutor environment and to customize the
tutor exercise sequence so that students achieve a satisfactory performance level as rapidly as
possible. In the following sections we describe the tutor, the curriculum, the cognitive model, the

learning and performance assumptions, individual differences and an evaluation of the model.

The ACT Programming Tutor (APT)

APT is a practice environment for students learning to program in Lisp, Prolog or Pascal
(Anderson, Corbett, Koedinger & Pelletier, in press). The Lisp and Prolog modules are presently
employed to teach a self-paced introductory programming course at Carnegie Mellon University
and the Pascal module is in use in an introductory programming course in a Pittsburgh High
School. The tutor presents exercises that require students to write short programs and provides
assistance as the students code their solutions. This report focuses on the Lisp curriculum and
Figure 1 depicts the computer screen at the beginning of the first Lisp exercise. The exercise
description appears in the window at the upper left and the student enters a solution in the code
window immediately below. This exercise involves just two coding goals or steps. In the figure,
the student has just completed the first step by entering the Lisp operator car. In the remaining step
the student will enter the literal list argument to car, (c d e). The tutor provides immediate
feedback on a step-by-step basis and requires immediate error correction, so the student always
remains on a recognized solution path.

The skill meter in the upper right corner of Figure 1 represents the focus of this study. It
displays the tutor's model of the student's knowledge state. This model consists of a set of
production rules for writing Lisp programs. Each rule that has been introduced in the curriculum is

represented by a bar graph in the skill meter depicting the probability that the student has learned

Corbett, Anderson, Carver & Brancolini 2 Student Modeling

the rule. In the figure, this probability is .50 for three of the rules, but has risen to .80 for the rule
the student has just exercised. In this study we evaluate this student modeling process and how

well it predicts student performance outside the tutor,

Prabiam Slotement Skiii Meter

write o 1§5p Tunction cels that returns & Trom the Hst (e d e). B Cog5ng 8 itoral il
Codéng REVERSE
mrrerey Coding {DR

Ceding CAR

1lsp Enarcies 1.t ¥ Meny
{car <EXPRDH)
(olom
tequal
Cevenp
4] -ﬂ, i
Om e o S
{¢
Cee
Ciix
b fchle
[{
(oo
Cxerop
Typo-in: I

¥int

Figure 1. The APT Programming Tutor interface at the beginning of a Lisp exercise.

The Cognitive Model

A central assumption underlying the tutor is that a cognitive skill such as programming can be
modeled as a set of independent production rules. Each step in performing a skill is governed by
one of these if-then rules, relating the current goal and problem state to an appropriate action.
The wtor is constructed around a set of several hundred language-specific rules for writing
programs called the ideal student model. The tutor attempts to match the student’s action at each
step in solving an exercise to an applicable rule in the ideal student model in a process we call

model tracing. If a match is found, the assumption is made that the student has applied an

Corbett, Anderson, Carver & Brancolini 3 Student Modeling

analogous cognitive rule and the tutor's internal representation of the problem state is updated

accordingly. If not, the tutor notifies the student of the error.

The Learning Model

The ideal model also serves as an overlay model of the individual student’s knowledge state
(Goldstein, 1982). In knowledge tracing, the tutor maintains a probability estimate that the student
has learned each rule in the ideal model. At each opportunity to apply a rule, the probability that
the student knows the rule is updated, contingent on the accuracy of the student's action. The
Bayesian computational procedure is a variation of one described by Atkinson (1972). It assumes
a simple two-state learning model with no forgetting. Each rule is either in the learned or unlearned
state. A rule can make the transition from the unlearned to the learned state at each opportunity to
apply the rule. The model employs two learning parameters and two performance parameters,
displayed in Table 1. The value of each parameter is allowed to vary across production rules in the
mode] and is estimated empirically from earlier tutor data. See Corbett and Anderson (1992) for

complete details on the model and computations.

pLO The probability a rule is in the learned state prior to the first opportunity to
apply the rule (i.e., from reading the text).

pT The probability a rule will make the transition from the unlearned to the learned
state following an opportunity to apply the rule

pG The probability a student will guess correctly if the applicable rule is in the
unlearned state

pS The probability the student will slip and make an error when the applicable rule
is in the learned state

Table 1. The learning and performance parameters employed in knowledge tracing.

Mastery Learning
The tutor uses the knowledge tracing mechanism in an attempt to implement mastery learing.

Each lesson in the tutor is divided into sections in which a small set of programming rules is

Corbett, Anderson, Carver & Brancolini 4 Student Modeling

introduced. Students complete a set of required exercises in each section that cover the rules being
introduced, then continue working on remedial exercises in the section until the learning probability
of every rule in the section has reached a criterion value, 0.95. The knowledge tracing procedure
passed a minimum validity test when it was introduced. Posttest scores were higher when the
remediation algorithm was in operation (Anderson, Conrad & Corbett, 1989). However, we need
to examine the validity of the model in predicting performance to determine the feasibility of

genuine mastery learning in which all students are assisted in reaching a high level of performance.

Predictive Validity and Individual Differences in Parameter Estimates

The learning and performance assumptions in the model allow us to predict the probability of
correct coding actions. The probability that a student s will respond correctly at each goal g is
given by the following equation:

pCgs = pLys * (1 - pSp) + (1 - plas) * pGr

That is, the probability that student s will successfully apply an appropriate rule r at goal g is the
sum of two products: (1) the probability that rule r is in the learned state for student s times the
probability of a correct response if the rule is in the learned state, and (2) the probability that rule r
is not in the learned state for student s times the probability of a correct guess if the rule is not in
the learned state. These predictions have been shown to fit the tutor data very well (Corbett &
Anderson, 1992; Corbett, Anderson & O'Brien, 1993).

It is important that the model accurately predict posttest performance outside the tutor
environment. Students can deviate from correct solution paths in a posttest, so predictions at the
level of individual goals are problematic, however, we can derive performance predictions at the
level of whole exercises. If production rules are independent as the model assumes, then the

probability that a student will complete an exercise correctly is given by

ITpCy

Corbett, Anderson, Carver & Brancolini 5 Student Modeling

the product of the probabilities that the student will respond correctly at each successive goal in
solving the exercise.

In a previous study the model proved quite accurate in predicting posttest performance levels
on average across students, regardless of whether students worked to mastery in the tutor
curriculum or just completed a fixed set of exercises (Corbett, Anderson & O'Brien, in press).
However, when students worked through the remediation process to "mastery” in the tutor, the
model was completely insensitive to individual differences among sfudents in posttest
performance. This was true despite the fact that raw error rate in the tutor exercises correlated
strongly with posttest performance across students, r = -0.64. The more errors students made in
the tutor exercises, the lower they tended to score on the postiest.

This pattern of results, in which quiz performance correlates with raw error rates in the tutor but
not the model's predictions, can arise because the model does not capture individual differences
among students in the learning and performance parameters. The four learning and performance
parameter estimates vary across productions, but are held constant across students. Consequently,
we may be underestimating the knowledge state of students who are doing well in the tutor
exercises, while overestimating the knowledge state of students who are struggling. As a result,
students who are making few errors and completing féw remedial exercises may nevertheless be
overlearning, while students making many errors and doing many remedial exercises may still be
underlearning. This pattern would result in the observed negative correlation of tutor errors and
posttest accuracy.

We can revise the standard knowledge tracing model to reflect individual differences by
incorporating four individual difference weights for each student, wLg, wT, wG and wS, one
weight for each of the four learning and performance parameters. To generate weighted parameters
for each student, we convert each of the group parameter estimates to odds form, multiply by the
corresponding subject-specific weight, and convert the resulting odds back to a probability as

shown here:

Corbett, Anderson, Carver & Brancolini 6 Student Modeling

Pir * wis + (1 - pir)

In this formula, i indicates the parameter type (pLg, pT, pG, pS), r the rule and s the student.

We examined this revised model after the fact with the data from the prior study and it proved
substandally more sensitive to individual differences in postiest performance (Corbett, Anderson &
O'Brien, in press). However, there is a practical problem in deploying this model. The subject
weights, like the learning and performance parameters must be estimated empirically. While the
rule-specific performance parameters can be estimated from previous tutor data, the same is not
true of the subject-specific weights. In applying the model retroactively to the earlier study, we
used the student’s entire tutor data set to estimate weights. In practice, we need to employ the
weights in the tutor when there is only partial data on a student's performance and when there is
insufficient time to employ a curve-fitting algorithm in any case. The present study evaluaies an

attempt to estimate student-specific weights on-line.

The Study

Students in this study worked through the first six sections of the APT Lisp curriculum and
completed three posttests. The study is designed to assess the posttest predictive validity of the

revised knowledge tracing procedure with individualized learning and performance weights.

Students
Twenty college students were recruited for pay. The students’ mean Quantitative and Verbal
SAT scores were 628 and 577 respectively. These students had taken an average of 0.6

programming courses previously, but this was their first exposure to Lisp.

The Curriculum
The curriculum in this study introduces two data structures, atoms and liszs, along with

function calls (operations) and function definitions. The first section introduces three extractor

Corbett, Anderson, Carver & Brancolini 7 Student Modeling

functions, car, cdr and reverse, that return components of or a transformation of a list. The second
and third sections introduce three constructor functions, append, cons and list that build new lists.
In the fourth section nested extractor function calls are introduced. In the fifth section students
learn to define new functions that employ these extractor algorithms. In the sixth section students
define functions that employ both constructor and extractor functions. This curriculum is covered

by 54 rules in the ideal student model and requires a minimum of 64 exercises to complete.

Procedure

Students worked through the curriculum at their own pace. In each section students read text
describing Lisp, then completed a fixed set of required exercises that cover the programming rules
being introduced. At that point, regression equations, as described below, were employed to
generate four learning and performance weights for each student. In the first five sections,
students then completed remedial exercises as needed to bring all production rules introduced in the
section to a mastery criterion (minimum learning probability of 0.95). In the final section, students
completed a fixed set of exercises with no remediation.

Following the first, fourth and sixth sections students completed a cumulative posttest. The
posttests contained six, twelve and fifteen programming exercises respectively. These exercises
are similar to the ones completed with the tutor. The quiz interface was a structure editor, identical
to the tutor interface, except that (1) students can freely edit their code and (2) no help is available.

Estimating Weights. When best fitting student weights are derived, as in the previous
study, the logarithms of the weights are strongly correlated with the total number of errors students
make in the fixed set of required tutor exercises. When a student completed each set of required
exercises in the current study, four updated weights were derived based on cumulative errors and

the regression equations derived in the earlier study.

Results
Students completed an average of 11 remedial exercises in addition to the 64 required exercises.

The number of remedial exercises ranged from 0 to 98,

Corbett, Anderson, Carver & Brancolini g Student Modeling

Internal Validity. We can use the knowledge tracing model to predict accuracy at each goal
in the tutor exercises, as described above. To assess the internal validity of the knowledge tracing
process we examined the tutor protocol files and traced each student's performance goal-by-goal
through the curriculum. At each of the 345 goals in the required exercises, we first predicted the
probability of a correct response given the applicable rule, then applied the the knowledge tracing
procedure to update the learning probability for the applicable rule. We did not fit (predict accuracy
for) the remedial exercises, however we did update learning probabilities at these goals, just as the
tutor would. The model yielded a good fit to the data across the 345 goals. The actual probability
of a correct response and the predicted probability both averaged 0.90 across goals. Actual and
expected accuracy rates were also highly correlated across goals, r=0.79, p < 0.0001.

Posttest Predictive Validity. As described above, the knowledge tracing model allows
us to predict the probability that a student will complete a posttest exercise correctly. For each
student and each posttest we computed (1) the proportion of exercises actually completed correctly
and (2) the mean expected probability of completing the exercises correctly. The average of these
statistics across subjects is displayed in Table 2. As can be seen the model accurately predicts
average posttest performance across subjects in the first test, but overestimates performance on the
last two tests by roughly 15%. |

Table 2 includes two measures concerning individual differences in posttest performance. The
correlation of actual posttest performance accuracy and predicted accuracy, TAP, is reported. In
addition, the correlation of actual posttest accuracy and raw error rate in the tutor, TAE, is
displayed. Results for the first and third posttests replicate those obtained previously with the
standard knowledge tracing model. The current model and the standard model are insensitive to
individual differences on the first test, but there are no discernible individual differences on this
relatively easy test. On the other hand, the current model is highly sensitive to individual
differences on the third posttest, r = 0.81, p < 0.0001. However, this test covers the final tutor
section in which students completed a fixed curriculum rather than working to mastery and the

standard model is also highly sensitive to individual differences under these circumstances.

Corbett, Anderson, Carver & Brancolini 9 Student Modeling

The second posttest represents the crucial test for sensitivity to individual differences in the
current individualized knowledge tracing model. Students work to mastery in all curriculum
sections on this test and in the preceding study the standard knowledge tracing model proved
completely insensitive to substantal individual differences in performance that correlated strongly
with raw tutor error rate. In the present study, there is again a strong correlation of Posttest 2
performance with raw error rate, r = -0.63. Unlike the standard model, however, the
individualized knowledge tracing model in this study shows at least moderate sensitivity to these

individual differences, r = 0.31, p < 0.10.

Mean Proportion Correct
Actual Predicted TAP TAE
Posttest 1 .92 91 0.01 0.05
Posttest 2 76 .87 0.31 -0.63
Posttest 3 .66 A5 0.81 -0.78

Table 2. Actual and expected proportion of exercises completed correctly across subjects in each
of the three posttests.

Discussion

The new individualized knowledge tracing model is reasonably successful in predicting average
group performance, although it overpredicts posttest performance somewhat. It is more effective
than the standard knowledge tracing model in identifying individual differences. Raw tutor error
rate remains as good or better a predictor of individual differences, although the ultimate goal of the
knowledge tracing model is to structure practice so that this correlation of raw tutor error rate and
posttest performance is substantially reduced or eliminated.

There are a variety of possible reasons that the model predicts higher posttest accuracy than is
actually obtained: (1) while the model fits the tutor data in general, it may be systematically

overpredicting performance on students’ final tutor exercises as well as on the posttest; (2) students

Corbett, Anderson, Carver & Brancolini 10 Student Modeling

motivation may drop off for the posttest, resulting in a performance decline; (3) students may have
forgotten some knowledge acquired with the tutor; and (4) students may acquire suboptimal rules
with the tutor that do not fully generalize to the test.

We can largely rule out the first three possibilities in this study, based on some additional data
analyses. First, there is no evidence that the model is systematically overpredicting tutor
performance toward the end of each section. The exercises can be categorized according to the
functions and algorithms employed, and we computed the actual and predicted performance for the
final exercise of each type in the tutor. The model actually underpredicts performance on these
exercises by about 5%. Second, we measured total time spent on each quiz as an indirect measure
of motivation. Posttest time correlates inversely with posttest performance. That is, students who
perform worse on the test are taking longer to complete it, as would be expected if they are
struggling. Finally, the decline in students’ performance from the tutor to posttest does not appear
to reflect forgetting. Each quiz is cumulative, and there are four sections in common to both
quizzes 2 and 3. The relative retention interval for rules introduced in each of these four sections
is not correlated with performance on the rules either within or across the two tests.

The likely explanation for the model's 15% overprediction of posttest performance is that the
rules students are forming do not fully generalize to the posttest environment. Even the early
portions of the Lisp curriculum is conceptually challenging and students may form suboptimal
rules during practice that are only partially correlated with correct rules (Corbett & Anderson,
1992, 1993). However, the tutor uses a "dropout"” remediation algorithm that may contribute to
this problem. In each section of the curriculum a few rules are introduced. As the student
"masters” some of these rules they are dropped from the practice sequence and students complete
exercises that employ the remaining rules. As practice progresses and the set of remaining rules
and corresponding actions declines, there is a growing potential to generate spurious rules based
on superficial characteristics of the exercises, or even to simply guess correctly. This pattern
would simultaneously lead to a strong inverse relationship between tutor errors and posttest

performance, and weaken the predictive validity of the knowledge tracing model. This suggests

Corbett, Anderson, Carver & Brancolini 11 Student Modeling

the remedial algorithm should retain programming rules in the sequence of practice exercises even
after the student has "mastered"” the rules. While this increases total practice time, it may be

necessary for students to genuinely master the material.
References

Anderson, I.R., Conrad, F. and Corbett, A.T. (1989) Skill acquisition and the LISP Tutor.
Cognitive Science, 13, 467-505.

Anderson, I.R., Corbett, A.T. Koedinger, K.R. and Pelletier, R. (in press). Cognitive tutors:
Lessons learned. Journal of the Learning Sciences.

Atkinson, R.C. (1972). Optimizing the learning of a second-language vocabulary.

Journal of Experimental Psychology, 96, 124-129.

Corbett, A.T. and Anderson, J.R. (1992) Student modeling and mastery learning in a computer-
based programming tutor In C. Frasson, G. Gauthier, G. McCalla, (Eds.} Intelligent tutoring
systems: Second international conference on intelligent tutoring systems, New York: Springer-
Verlag.

Corbett, A.T. and Anderson, I.R. (1993) Student modeling in an intelligent programming tutor.
In E. Lemut, B. du Boulay & G. Dettori (eds.) Cognitive models and intelligent
environments for learning programming. New York: Springer-Verlag.

Corbett, A.T,, Anderson, I.R. and O'Brien, A.T. (1993). The predictive validity of student
modeling in the ACT Programming Tutor. In P. Brna, 8. Ohlsson & H. Pain (eds.) Ariificial
Intelligence and Education, 1993 The Proceedings of AI-ED 93. Charlottesville, VA: AACE.

Goldstein, I.P (1982). The genetic graph: A representation for the evolution of procedural
knowledge. In D. Sleeman and J.S.Brown (eds.) Inrelligent tutoring systems. New York:
Academic.

Acknowledgement

This research was sponsored by the Office of Naval Research under grant N00014-91-J-1597.

