Knowledge Decomposition and Subgoal Reification
in the ACT Programming Tutor

Albert T. Corbett John R. Anderson
Human Computer Interaction Institute Departments of Psychology and
Carnegie Mellon University Computer Science
Pittsburgh, PA 15213 Carnegic Mellon University
412-268-8808 Pittsburgh, PA 15213
corbett @cmu.edu 412-268-2788
Abstract

A major issue in education is whether a complex skill can be decomposed into
components skills and whether the components can be independently learned and
assessed. This study examines the issue of knowledge decomposition in the context of
the ACT programming Tutor (APT). APT is a cognitive tutor that assists students in
learning to write short programs. The tutor is constructed around a production-rule
model of programming knowledge that allows the tutor to solve the exercises along
with the student and provide help as needed. This paper describes the model's
decomposition of early programming exercises into planning steps that are intrinsic
to the structure of the task and coding steps that should be isolable. Implications of
this decomposition for subgoal scaffolding and mastery-based learning are discussed
and an interface that reifies programming subgoals is evaluated empirically.
Students are shown to acquire programming knowledge most readily when the
isolable coding knowledge is mastered ahead of time and when an overt action is
associated with each planning subgoal. This knowledge is shown to generalize to
programming performance in the absence of such subgoal scaffolding. Finally, the
knowledge acquisition assumptions of the model are shown to fit student
performance best when coding rules are mastered ahead of time and planning
subgoals are scaffolded.

Keywords

Intelligent Tutoring Systems
Knowledge Representation
Student Modeling

Subgoal Scaffolding
Mastery Learning
Empirical Evaluation



A major issue in education is whether a complex skill can be decomposed into
component skills and whether these components can be learned and assessed
separately (Resnick & Resnick, 1992; Shepard, 1991). Mastery learning, in particular,
assumes that complex knowledge can be decomposed into hierarchy of prerequisites
and that prerequisites should be mastered before moving to higher level knowledge.
Review articles overwhelmingly confirm that mastery learning yields higher
achievement levels (cf. Kulik, Kulik & Bangert-Drowns, 1990), but critics note that
these achievement effects fall short of predictions (Resnick, 1977; Slavin, 1987).

The ACT Programming tutor attempts to implement mastery learning in the
framework of a detailed cognitive model. The tutor is a practice environment in
which students learn to write short programs in Lisp, Prolog and Pascal. Each of
these modules is constructed around a language-specific cognitive model of the
programming knowledge the student is acquiring. The embedded cognitive model
allows the tutor to solve the exercises along with the student and provide step-by-step
assistance as needed. The tutor is used to teach programming courses at Carnegie
Mellon University and in a local high school and has proven effective. Students
complete practice exercises with the tutor in as little as one-third the time required
by students working on their own and perform as well or better on tests (Anderson,
Corbett, Koedinger & Pelletier, in press). The tutor was developed, in part, to examine
the ACT model of procedural knowledge and skill acquisition. Early analyses of
student performance with the Lisp tutor largely confirmed assumptions concerning
the form of procedural knowledge in the ACT* model, but contributed to revisions in
the learning mechanism embodied in the more recent ACT-R model (Anderson,
Conrad & Corbett, 1989; 1993). In this study, we further examine the assumptions of
the model concerning the decomposition of procedural knowledge and implications
both for the scaffolding of planning subgoals and for mastery learning.

The Cognitive Model

ACT-R assumes that procedural knowledge can be represented as a set of
independent production rules that associate problem states and problem solving goals
with actions. Table 1 presents five example production rules that are acquired in the
first two sections of the Lisp curriculum. Rules P1 and P4 fire in sequence in solving
the first exercise in the Lisp curriculum, as shown here:

Exercise: Write a lisp function call that returns ¢ from the list (c d e).
Solution: (car '(c d e))

The tutor curriculum is structured around production sets. In each section of the
curriculum students read text that introduces a small set of production rules. Then
the tutor provides practice problems that exercise those rules. As the student works,
the tutor maintains an estimate of the student's knowledge state in a process we call
knowledge tracing. As each opportunity arises to apply a production rule during
practice, the tutor estimates the probability that the student has learned the rule,
contingent on the student's action. The learning and performance assumptions and
Bayesian computational procedure are described elsewhere (Corbett, Anderson &
O'Brien, in press). In knowledge tracing two learning parameters (probabilities) are
estimated empirically for each rule in the model, as shown in Table 2. These
parameters are employed to assess the decomposition assumptions of the model below.



(P1) IF the goal is to return the first element of a list,
THEN code the function car, and :
set a goal to code the list as an argument.

(P2) IF the goal is to return the elements of a list in reverse order,
THEN code the function reverse, and
set a goal to code the list as an argument.

(P3) IF the goal is to insert an expression at the beginning of a list,
THEN code the function cons,

set a goal to code the expression as the first argument, and
set a goal to code the list as the second argument.

(P4) IF the goal is to code a literal list,
THEN code a single quote, followed by the list.

(P5) IF the goal is to code a literal atom,
THEN code a single quote, followed by the atom.

Table 1. Five production rules introduced early in the Lisp curriculum.

The learning and performance assumptions that underlie knowledge tracing also
yield performance predictions that can be evaluated empirically. Several studies
have examined the validity of knowledge tracing and found that the model reliably
predicts individual differences in test performance across students. (Corbett,
Anderson, Carver & Brancolini, 1994; Corbett, Anderson & O'Brien, 1993; in press).

Knowledge tracing is employed to implement mastery learning in the tutor. The
tutor continues presenting exercises in each curriculum section until the
probability that the student knows each rule reaches a criterion of 0.95. Thus,
students master the simple rules exemplified in Table 1 in the early curriculum
sections under the assumption that they enter into more complex programming tasks
in later sections. An analysis relating these simple skills to a somewhat more
complex task is presented in the next section.

Knowledge Decomposition and Planning Productions

Table 3 presents problem descriptions and solutions to four programming
exercises. The first two exercises are drawn from the first curriculum section that
introduces three extractor functions, car, cdr and reverse. Each of these operators
takes a single list and returns components of, or a transformation of, the list. In the
first exercise the student applies the operator car to the list (a b ¢) to return the
first element, &. In the second exercise, the student applies the operator reverse to

p(Lo) The probability the rule is in the learned state after reading the
text, prior to the first opportunity to apply the rule.

p(T) The probability that a student will learn the rule at each
opportunity to apply the rule during practice.

Table 2. The learning parameters employed in knowledge tracing.



the list (d e f) to return the list (f e d). The third exercise is drawn from the next
curriculum section that introduces three constructor functions, append, cons and
list. These operators take two or more arguments and create new lists. In this
exercise the student employs the operator cons to insert the atom & at the beginning
of (f e d). Note that these three exercises employ the five simple rules displayed in
Table 1.

Exercise Descrint Solut
(1) Write a function call that takes the list (a b ¢) and returns a. (car '(a b ¢)

(2) Write a function call that takes the list (d e f) and returns (f e d). (reverse '(d e N)
(3) Write a function call that takes a and (f e d) and returns (a f e d). (cons 'a '(f e d))

(4) Description: Write a function call that takes the lists (a b c) and (d e f) and returns the list (a f e d).

Subgoals: Planning Goal 1: Recognize that a must be extracted from (a b ¢)
Planning Goal 2: Recognize that the list (d e f) must be reversed
Planning Goal 3: Recognize that a and (f e d) must be combined in a list
Coding Goal 1: Code a call to cons
Coding Goals 2&3: Code a call to car with the first given as an argument
Coding Goals 4&5: Code a call to reverse with the second given as an argument

Solution: (cons (car '(a b ¢)) (reverse '‘d e D))

Table 3. Three simple exercises and a more complex subsequent exercise.

Now consider the more complex fourth exercise at the bottom of the table, drawn
from the fifth curriculum section. Unlike the earlier exercises, the student must
apply extractor functions to the given lists and combine the results into a new list.
The subgoal structure of this exercise is depicted in the table. It begins with three
planning goals in which the student must analyze the relationship between the
given and goal lists and recognize that (1) the first element 8 must be extracted from
the first given list, (2) the second list must be reversed to yield (f e d), and (3) that
the atom & must be combined with (f e d). The goal list concludes with five coding
goals in which the student employs the five production rules displayed in Table 1.

Note that under this analysis, the complex task in exercise four does not simply
reduce to the five coding productions that are sufficient for exercises 1-3. However,
these five rules are necessary components of the solution to exercise 4. If the
simpler rules are mastered in early sections, it should not yield immediate mastery of
the more complex exercises, but should speed learning in these complex exercises.

Reifying Planning Subgoals

Consider exercise 4 again. Since the student enters code top-down, the first overt
coding action is to code the constructor function conms. This coding action is the
culmination of a four-step reasoning chain:

(1) Set a goal to return the atom a from the list (@ b ¢).

(2) Set a goal to return the list (f e d) from the list (d e f).

(3) Set a goal to write a function call that combines a and (f e d) in a list.
(4) Fire coding production P3 from table 1.



4

If we assume the student has mastered the production P3 in an earlier section,
correct performance depends on correct execution of three novel steps. We can
simplify the problem solving complexity for the student if we reify two of the three
planning steps with overt actions. This planning reification also simplifies the
attribution task in modeling the student's knowledge, since we can assume that the
accuracy of each of the overt actions now depends primarily on a single new rule.

We developed a variation of the tutor interface for the fifth curriculum section to
reify the first two subgoals in the above analysis. The standard coding interface is
depicted in Figure la and the revised interface is depicted in Figure 1b. In the
standard interface, the student simply begins coding the solution beginning with the
operator cons, as in other curriculum sections. In the plan reification interface the
student is required to fill in the two subgoal nodes to indicate what expressions must
be extracted from the givens before entering any code. In this example students
must type the expression &8 for <subgoall> and (f e d) for <subgoal2> before entering
the code (cons (car ‘(a b c)) (reverse ‘(d e f)).

Write a function call that takes the lists (a b c¢) and Write a function call that takes the lists (a b ¢) and

(d e f) and returns the list (a f e d). (d e f) and returns the list (a f e d).

<code> Subgoals: <subgoall> <subgoal2>
Code: <code>

Figure 1a: The standard coding interface. Figure 1b. The plan reification interface

This interface was employed in a study of the modeling assumptions. All students
worked with the standard coding interface through the first four curriculum
sections. In section 5 one group used the new planning interface while the other
group continued to work with the standard interface. Within each of these groups,
half the students worked to mastery in each of the curriculum sections, while the
other group completed a fixed set of required exercises. Several issues are examined:

(a) Do students learn the complex programming skill more readily if the first two
planning subgoals are reified as overt actions?

(b) Does the knowledge acquired with plan scaffolding in the revised interface
generalize to a standard coding environment that does not reify planning?

(c) Do students learn the complex programming skill more quickly if they have
already mastered the component simple coding rules.

(d) The first coding step (coding the constructor function) is governed by three
new productions in the standard coding interface, but only one new
production in the plan scaffolding interface. Does the knowledge tracing
model fit student performance better in the latter case?

The Design of the Study

Students in this experiment worked through the early sections of the ACT
Programming Tutor Lisp curriculum and completed three tests.



Subjects

Forty-six students were recruited to participate in the study for pay. These
students had an average Math SAT score of 665 and had completed an average of 1.0
prior programming courses, although none had prior experience with Lisp. Both of
these variables were controlled in assigning students to the four groups.

Design

Students worked through five curriculum sections in this study. This curriculum
introduces two data structures, atoms and lists, and introduces function calls. The
first section introduces three extractor functions, car, cdr and reverse, that return
components of, or a transformation of, a list. The second and third sections introduce
three constructor functions, append, cons and list that create new lists. The fourth
section introduces extractor algorithms - nested function calls that apply successive
extractor functions to extract components of lists. This study focuses on the fifth
section in which students embed extractors and extractor algorithms as arguments to
constructor functions as exemplified exercise 4 above. These five curriculum
sections contain 30 required tutor exercises.

One group of twenty-five students worked to mastery in all five curriculum
sections under the control of knowledge tracing, while a control group of twenty-
one students completed just the 30 required exercises. All students used the standard
coding interface - through the first four curriculum sections. Approximately half of
the students in each group employed the planning interface in section 5 (thirteen
mastery students and eleven control students), while the remaining students in each
group continued with the standard coding interface.

Procedure

Students worked through the curriculum at their own pace. In each section,
students read text describing Lisp, then completed a set of required exercises that
cover the programming rules being introduced. Students in the mastery condition
then completed remedial exercises as needed to bring all production rules introduced
in the section to a mastery criterion (minimum knowledge probability of 0.95).
Students completed cumulative tests following the first, fourth and fifth sections.
These tests contained six, twelve and eighteen programming exercises respectively.
These exercises were similar to those completed with the tutor and the test interface
was identical to the tutor interface, except that students could freely edit their code
and received no tutorial assistance. No plan scaffolding was provided in the test
environment; all students used the standard coding interface.

Results

One student in the mastery-learning/plan-scaffolding condition was atypical in
completing three times as many remedial exercises as any other student and is
excluded from further analysis. The remaining twenty-four mastery students
completed an average of 18 remedial exercises (range = 1 to 53) in addition to the 30
required exercises.

Plan Scaffolding Effectiveness

In the mastery condition the dependent measure of plan scaffolding effectiveness
is the number of remedial exercises needed to achieve mastery in the tutor. All



students in this condition should master the programming skills and should perform
similarly on the tests. In the control group all students complete a fixed number of
exercises and the primary measure in assessing the planning interface is test
performance.

Tutor Measure: Remedial Exercises. Within the mastery condition, students
working with the planning interface required an average of 8.8 remedial exercises
"to reach mastery in curriculum section 5. Students in the standard coding condition
required 12.2 remedial exercises to reach mastery. This advantage for the plan
scaffolding condition is reliable, t(22) = 2.32, p < 0.05. However, this comparison is
valid only if students in the two groups are shown to achieve comparable test
performance below.

Test Measures. The third test contained six exercises drawn from section 5.
Recall that all students completed these test exercises in the standard coding
interface, although without tutorial support. Table 4 displays the average probability
of completing these six exercises correctly for the four groups. In a two-way
analysis of variance, the main effect of tutor interface (plan reification vs standard
coding) is non-significant, F(1,41) = 1.7. The main effect of practice (mastery vs fixed
control) is reliable, F(1,41) = 25.39, p < .01 and the interaction is reliable F(1,41) = 4.22,
p < .05. As expected the students who worked to mastery in the tutor performed
reliably better on the test than students in the control group who completed the fixed
set of required exercises. Within the mastery condition, the tutor interface
manipulation had no impact on test performance. This has two implications. First,
the interpretation of remedial exercises above is valid. Second, the knowledge that
students acquired with the plan scaffolding interface fully transferred to the
standard coding interface in the test. Within the fixed practice control condition, the
plan-reification group performs better than the standard coding group. This test
advantage for plan scaffolding in the tutor is reliable, t(19) = 2.08, p = .05.

Tutor Interface

Practice Planning Coding
Mastery 0.74 0.79
Control 0.52 0.27

Table 4. The impact of practice condition and tutor interface on test accuracy
(average probability of correct exercise)

Modeling Knowledge Acquisition

Finally, we can assess the decomposition and acquisition assumptions of the model
by examining the fit of the model to coding performance in the tutor. More
specifically, we examine the fit to the first coding step in the fifth section exercises,
in which the student codes a constructor function. Recall that in the mastery-
learning/plan-reification condition, performance accuracy is primarily governed
by a single new planning production. In the other three conditions, performance
accuracy will be determined by multiple productions. In the mastery-
learning/standard-coding condition, performance is governed by three new
planning productions. In the fixed-practice/plan-reification condition,



performance is largely determined by a new planning production and an old coding
production that is not fully learned. Finally, in the fixed-practice/standard-coding
condition performance is determined by three new planning productions and an old
production that is not fully learned. '

We fit the learning and performance model to each group's performance on the
first coding step across the six required tutor exercises in section 5. Table 5 displays
the best fitting learning parameter estimates for the four conditions and the
correlation of actual and predicted accuracy across these six coding goals. The third
column in the table displays the best fitting estimate of p(LQ), the probability that
the students learned an appropriate rule from reading the text prior to the first
practice exercise. The fourth column displays the best fitting estimate of p(T) the
probability of acquiring a rule at each opportunity to apply it in practice. The fifth
column represents the goodness of fit of the model.

Practice Tutor Learn from Learn in r
Interface Text Practice

Mastery Planning 0.50 0.27 0.72

Mastery Coding 0.30 0.14 -0.04

Control Planning 0.13 0.15 0.22

Control Coding 0.20 0.10 -0.02

Table 5. Best fitting estimates of the two learning parameters in the model

As can be seen the mastery-learning/plan-reification condition is the only
condition that is well fit by the model. The correlation coefficient, 0.72, is reliably
different from each of the other three conditions. Not only does the model provide
the best fit in this condition, but the best fitting parameter estimates indicate that
students are learning most quickly. The probability that students in this condition
understand the rule from reading is 0.50 and the probability of acquiring at each
opportunity to practice the rule is 0.27. Each of these probabilities is approaches
twice the corresponding value of the other conditions.

Conclusion

The model-guided plan scaffolding proved an effective pedagogical device. The
model suggests that coding the first Lisp operator in these exercises requires three
planning step and a previously learned coding production. When subgoal
scaffolding is used to map the three subgoals onto distinct actions, students acquire
the skill more quickly. Students learn the skill most quickly if they have also already
mastered the fourth coding step. It is important to note that this benefit generalized
to the test environment in which no scaffolding was provided. Finally, the model was
most successful in the mastery-learning/plan-reification condition in predicting the
accuracy of the students' first coding action. This is the only condition in which
constructor coding accuracy is primarily governed by a single production rule.

The results support the proposition that a complex skill can be decomposed into
underlying knowledge components. The results also provide some insight on why



previous mastery efforts may have only had partial success, as noted in the
introduction. Some of the underlying curriculum components are like the planning
productions in this research and Go not normally have behavioral indicants. This
makes it difficult to teach the components and to assess whether they have been
mastered. However, we have shown that at least in one case it is possible to design an
interface which reifies the hidden components.

References

Anderson, J. R., Conrad, F.G. and Corbett, A.T. (1989). Skill acquisition and the LISP
Tutor. Cognitive Science, 13, 467-505.

Anderson, J. R., Conrad, F.G. and Corbett, A.T. (1989). The Lisp Tutor and skill
acquisition. In J. Anderson (Ed) Rules of the mind. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Anderson, J.R., Corbett, A.T. Koedinger, K.R. and Pelletier, R. (in press). Cognitive tutors:
Lessons learned. Journal of the Learning Sciences.

Corbett, A.T., Anderson, J.R., Carver, V.H. and Brancolini, S.A. (1994). Individual

differences and predictive validity in student modeling. In A. Ram & K. Eiselt

(eds.) The Proceedings of the Sixteenth Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Lawrence Erlbaum.

Corbett, A.T., Anderson, J.R. and O'Brien, A. T. (1993) The predictive validity of student
modeling in the ACT Programming Tutor. In P. Bma, S. Ohlsson & H. Pain (eds.)
Artificial Intelligence and Education, 1993: The Proceedings of AI-ED 93.
Charlottesville, VA: AACE.

Corbett, A.T. and Anderson, JR. and O'Brien, A.T. (in press). Student modeling in the
] ACT Programming Tutor. In P. Nichols, S. Chipman and B. Brennan (eds.)
Alternative Diagnostic Assessment.. Hillsdale, NJ: Erlbaum.

Kulik, C.C,, Kulik, J.A. and Bangert-Drowns, R.L. (1990). Effectiveness of mastery
leamning programs: A meta- analysis. Review of Educational Research, 60, 265-

Resnick, L.B. (1977). Assuming that everyone can learn everything, will some learn
less? School Review, 85, 445-452.

Resnick, L.B. and Resnick, D.P. (1992). Assessing the thinking curriculum: New tools
for educational reform. In B. Gifford & M. O'Connor (eds.) Changing assessments:
Alternative views of aptitude, achievement and instruction. Boston: Kluwer.

Shepard, L. A. (1991). Psychometrician's beliefs about leaming. Educational
Researcher, 20, 2-16.

Slavin, R.E. (1987). Mastery leamning reconsidered. Review of educational research,
57, 175-213.



